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Abstract

The  assimilation of  radial wind  from Doppler  radar into  numerical forecast  models  can 

improve weather predictions. Radial wind contains only the velocity component of wind moving 

along a radial line from the radar. Experiments were performed with a simple model based on the 

shallow  water  equation  with  no  rotation.  'Radial'  velocity  and  geopotential  observations  were 

assimilated using a 4D-Var assimilation scheme. An observation operator was introduced for the 

observations, to accommodate radial wind observations. A variety of experiments were performed in 

order to examine the effect of different parameters in  finding a  solution close to the truth. The 

quantity and error of the observations affected the accuracy of the analysis.
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1   Introduction

Data assimilation is a means of incorporating observations into a forecasting model, to adjust the 

simulation  closer  to  reality,  and  create  better  initial  conditions  for  subsequent  forecasts. 

Meteorological forecasting is making more and more use of observation assimilation in numerical 

weather prediction. Wind velocity from Doppler radar is one type of weather observation that is not 

currently fully utilised. Present effort is directed towards assimilation of radar data in high resolution 

models, including the Met Office's new 1.5 km resolution model (Ballard et al., 2006), as radar is one 

of the few means of making observations at high resolution over a large spatial scale. In this study the 

idea  of  using  radial  wind  vectors  for  assimilation  is  considered  by  simulating  radial  velocity 

observations in a simple shallow water model. For radial velocity observations, a new operator was 

created. 

This shallow water equation model was used to examine different schemes to linearise the model (see 

below; Lawless et al., 2003; Lawless et al., 2005). The usual tangent linear model was compared with 

a perturbation forecast model and shown to have similar convergence rates, although there was some 

difference between the analyses when observation error was present.

The model used here is based on the shallow water equation in one dimension, with no rotation. The 

fluid flow is modelled over an obstacle. The equations describing the model are 
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Here, h=h x is the height of the bottom orography, u is the velocity of the fluid and =gh  is 

the geopotential, where g is gravity and h is the depth of the fluid above the orography (Lawless et al., 

2003, Lawless et al., 2005). The model uses a discrete form of these equations using a two-time-level 

semi-Lagrangian integration scheme. The variables are located on a staggered grid and the new values 

of φ and u are not determined simultaneously.

There  are  several  schemes  that  can  be  used  to  assimilate  observations.  Here  four-dimensional 

variational assimilation (4D-Var) was used. In this scheme, the observations are assimilated within a 
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space and time domain and optimized within that domain. The fit of the model to the observations 

incorporates the propagation of the observations through time as the model runs. As such, the best fit 

of the observations into the model must also be a solution to the model.

Data assimilation involves a background term, which is the initial or prior estimate of the 

model state, and the analysis, which is the updated model state.  The 'best fit' of the model and the 

observations is found by minimising a cost function, which represents the difference between the 

model and the observations, and the background state. The cost function, J, is given by 

J [x0]=
1
2
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1
2
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where x0 is the model state at the initial time, xb is the background field and yi
o are the observations. 

The values of  x are constrained to be solutions to the model, such that  xi=M(xi-1) where  M is the 

model operator. H is the observation operator which maps from the model space to the observation 

space,  by  producing  model  values  at  the  observation location  and  deriving  the  variable  if  the 

observation type is not a model variable.   B and  R are the background error and observation error 

covariance matrices. These matrices affect the relative weight of the background and the observation 

terms when minimising the cost function is indicated by the inverse of the covariance matrices. The 

values  of  R are  calculated  from the  observation  error  variances  and  the  non-diagonal  elements 

indicate error correlations  between observations.  For  B-1 an  inverse Laplacian  is  used, which  is 

calculated according to (5).
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where c is the correlation length and σ2 is the variance of the error for background values of u and φ.

To calculate the cost function, a discrete version of this equation is used, and solved with an 

iterative algorithm (described in Lawless et al., 2005). The observation operator is linearised (denoted 

H) about the model state for each iteration, to reduce computational effort. The model operator M is 

also linearised, which makes the cost  function quadratic, which for the model  used here can be 

achieved with either a tangent linear model or a perturbation forecast model. The incremental cost 

function is given by (6)
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x0
 k 
=x0

k1
−x0

k  where k is the iteration number. These iterations constitute the outer loop of the 

solution Each outer loop involves improving the guess for  x0, which is used to run the nonlinear 

model to calculate xi
(k) at each timestep ti, used in the incremental cost funtion (6).

Within each outer loop, the cost function is minimised, using an iterative procedure referred to 

as the inner loop. The minimisation is accomplished by finding the minimum of the gradient of the 

cost function.  The gradient indicates the direction for each iteration of the inner loop to improve the 

estimate. The gradient of the cost function is determined using an adjoint model. The adjoint model 

consists of the derivatives of the cost function with respect to the variables. In this model, a Beale 

restarted  memoryless  quasi-Newtonian  conjugate  gradient  method  is  used  for  the  minimisation, 

implemented by the CONMIN routine1. 

For a solitary Doppler radar, the only radial velocity can be measured directly, i.e. the component of 

movement directed towards or away from the radar. For example, in the case of a monotonic wind, 

the velocity will be negative on one side of the radar, positive on the other, and zero at a tangent. For 

the 1D case here, an observation operator was created as a diagonal matrix, where the velocity was 

multiplied by -1 on one side of the radar, and multiplied by 1 on the other side, so the diagonal 

elements hi of H were:

h i={−1
1

xxr

xxr
} (7)

where the location xr of the radar on the grid was specified, and x represents the grid locations. For 

simplicity, xr was assumed to fall between grid points, as the radar does not make observations at it's 

own location so this value would be zero. Off-diagonal elements of H would also be zero. In a full 3D 

wind field, the observation operator would map the velocity vector at any point to the position vector 

of the velocity with respect to the radar. The spatial extent and spatial resolution of observations could 

be specified independently of  the observation  operator,  for  simulating limited range of  Doppler 

velocities. Another consideration is that the spatial frequency of the observations may not match that 

of the model grid.

In this report, section 2 describes the model setup, lists the model parameters and associated 

values, as were used in various experiments. Section 3 describes the effect of various parameters and 

describes the results of several specific experiments.

1 In the ACM TOMS package available from the GAMS software library at gams.nist.gov
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2   Model Parameters

The model has a one-dimensional domain of grid length 200 and grid spacing 0.01. The timestep was 

9.2e-3. A run of the model providing u and φ everywhere provided 'truth' for comparison with the 

analysis, and was used to generate observations and the background. The background was the truth 

with a phase shift.  Obsevations were sampled from the truth and then random noise was added 

according to the variance specified, unless perfect observations were being used (see section 3.3).

A range of experiments were conducted with the model, changing various model parameters 

and observation choices. These parameters (with range of values in brackets) include:

● Presence of u and/or φ observations to be assimilated.

● Range of observations of u and/or φ (everywhere, limited to 50 <x<150)

● Spatial frequency of observations(every gridpoint in x or every 10)

● Correlation length (used for B) (10 to 50)

● Variance of observation errors (used for R diagonal elements) (0.001-0.02)

● Number of assimilation time steps (normally 50, tried 100)

● Forecasting time steps (normally 0, tried 100)

● Background weight (additional term to weight the background term in the cost function (4)) 

(0.001 - 1)

Various parameters were also varied to test the effect on convergence.

● Outer loops, ideally more than required for convergence (normally 50, tried up to 150)

● Solver tolerance for convergence of the final solution (1e-8 – 1e-3)

● Number of conmin iterations (the inner loop) (200 usually, tried 300 and 400)

● Inner tolerance for convergence of cost function and its gradient in conmin (O(0.1 -0.5))

● Outer tolerance for convergence within outer loop.(O(0.0005-0.001))

● Solver max iterations for minimising the cost function (normally 200, used 50 for perfect 

observations)

Other options.

● Background type – how the background was calculated from the (truth + phase error)

● Covariance B matrix type (I or Laplace (see 5))

● Covariance R matrix type (I or real, i.e. using real variances of observations)

The parameters used in the various trials and experiments are tabulated in Appendix 1. For the main 
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set of experiments, most trials are displayed graphically in Appendix 2. Each graph has four panels, 

showing the background, truth, and analysis for velocity (u) and for geopotential (φ), the cost function 

value, and the cost function relative gradient.

3   Results

3.1 Effect of some parameters, based on experiments

This  section  discusses  briefly the  effect  of  various parameters  which  were  noted in  Section 2. 

Initiailly, various experiments were run with different choices of parameters, in order to select one 

suitable to act as a control experiment. The control is described as Trial 1 in the Appendices, and used 

'typical' values for quantitative parameters, and observations coinciding with all grid point locations. 

For the subsequent trials, as listed in the Appendices, one or two parameters were varied. All were 

performed with the radar observation operator in place, as whether the velicity observations were 

'radial' or not would not effect the analysis. The effect of various parameters is now described.

Increasing the number of assimilation time steps visibly improved the analysis, i.e. it more 

closely resembled the truth. Changing the number of time steps from 50 to 100 (as in trials 16-19 as 

shown in Appendix 2) lowered the final cost function value and its gradient by an order of magnitude, 

because the number of observation was doubled, thus a far more precise analysis could be obtained.

The  analysis was  much  smoother  (not  shown)  when  using  the  real  R  matrix based  on 

observation covariances, and the inverse Laplacian  B  matrix (5),  compared to using the Identity 

matrix for the B and R matrices. (All experiments described here use the real R and inverse Laplacian 

B matrices.)  The correlation length affected the smoothness of the  analysis as it affected how the 

observations were spread within the spatial domain. There was an issue with the φ analysis values that 

occurred when there were no φ observations, which resulted in the φ analysis values offset from the 

truth and background by ~0.1. This offset was affected by the correlation length. For a correlation 

length of 20 the offset manifested (Figure 1); for a correlation length of 50 there was no offset (Figure 

2; see trials 10-12). The reason for this was not determined, though one possibility is that the spread 

of observations was not sufficient to allow for calculation of the value of  φ, even though the slope of 

φ was able to be calculated with some accuracy.

Typically, the cost function would reach a constant value (e.g. to four significat figures) very 

quickly, but the (relative) gradient, used as the stopping criteria, would decline erratically. With no 

background term (background weight = 0), the gradient declined without the noise. However, the 

analysis was not as smooth when the background was disregarded (see Trial 19 in Appendix 2).
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The background term can provide the starting point for assimilation. The background variance 

and weight of the background term determined how much the background contributed to the analysis, 

and to the cost function. If the background weight was zero, the analysis converged much closer to the 

observations. However, the analysis was also noisy, which was not due to the observation noise (as 

demonstrated when the observations were perfect). Using limited-domain observations and ignoring 

the background term caused the model to explode (Trial 18, not shown), which implied there was 

insufficient information from which to produce a viable analysis.

A non-zero background weight substantially increased the cost function value (J) from O(500) 

to O(20000). However, the cost function also depended upon the number of observations, which made 

it harder to compare the size of J in runs with a different number of observations. Results from a 

study by Sun and Crook (1997), showed that for assimilation of single Doppler radar winds, including 

a background term improved the analysis.

Figure 1: (Trial 3) No φ observations and correlation length was 20. The φ value was offset.
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Figure 2. (Trial 9) No φ observations and u observations were limited to between 50 and 150. The 

correlation length was 50.

Several  trials  were  performed  varying  the  availability  of  observations.  With only  φ 

observations, the solution did not converge as well. u observations alone gave a better solution, but 

observations of both u and φ gave the best solution. Limiting the spatial extent of observations within 

the domain to close to the radar also resulted in poorer convergence. Naturally, more observations 

will result in a solution closer to the truth.

Reducing the tolerance of  the inner and outer loops allowed the model to converge to a 

solution faster. The number of conmin iterations was usually (half to two thirds of loops) insufficient 

to allow convergence within the outer loop,  using the outer tolerance of 2e-4. Convergence was 

improved with more perfect observations or a higher outer tolerance (around 2e-3, Trial 17). For 

solution convergence within the specified number of outer loops, a more relaxed solver tolerance was 

required. A solver tolerance of 1e-3 was found suitable for noisy observations of limited range (see 
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Trials 16-19). For most experiments, the solver tolerance was probably too small.

3.2  Single observation tests 

Several experiments were performed using one single observation location, for both variables and at 

all forecast timesteps. The paramters are listed in Table 2 of Appendix 1. In this case the analysis 

resembled the background in that the phase offset was not altered; however the amplitude of the 

variables was affected throughout (Figure 3). The location of the observation did not seem to matter 

(not shown) and the shape of the wave was not altered at all, when the background weight was not 

zero  As the background is the truth with a phase shift, this brought the the estimate closer to the truth 

in some parts, and moved further away in other parts. When the background weight was zero, there 

was a localised shift in the analysis closer to the truth.

Figure 4. Analysis using one observation of u located at x=60, marked by the dotted line.

3.3  Perfect observation test

For this test the observations were made exactly equal to the truth (no noise was added) and were 

located at every grid point. The variance of the observation errors , used for the R matrix, was varied 

between 0.02 and 0.002. The number of assimilation time steps was increased from 50 to 100 and the 

maximum solver iterations was reduced to 50 (to match the setup described by Lawless et al., 2004). 
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This resulted in the analysis exactly matching the truth, unless the background weight was 0. With the 

background weight equal to 0 the analysis was noisy. This resulted in cost function values O(500) and 

gradient  values  O(0.002).  These  cases  reached  convergence  within  the  number  of  outer  loops 

specified.

Running with a limited range of data and 100 assimilation time steps reduced the gradient by a 

factor of 4. The cost function magnitude depended upon the number of observations. The analysis 

appeared very similar to the result from 50 assimilation time steps.

3.4  Radar Observation Set Up

To simulate the assimilation of radar data, an observation was introduced operator to make the model 

appear like the observations, as discussed in the introduction. The observation operator was stored as 

a vector of 1 and -1 values (7). In this case the velocity observations were negative before the radar 

(see Figure 4). The location of the last observation before the radar was input in vars_user_mod.f90 to 

specify the radar location. When the observations were generated (from the truth, plus noise), the sign 

was changed for u observations before the radar. (The radar does not observe φ.) For example, see 

Figure 1. As might be expected in a situation where radar targets were not universally distributed, the 

range of observations was also limited to a part of the domain. Similarly the radar observations could 

be of lower resolution than the model, as ground clutter interference or superobbing might produce. 

Thus the spatial resolution was decreased from 1 to 10 for some model runs (not shown). The result of 

this was to reduce the accuracy of the analysis compared to the truth, as would be expected.

Using 4D-var, the observations were advected and the analysis improved beyond the range of 

the observations in  the direction of advection. In  the opposite direction the observations had no 

influence and the analysis was closer to the background. Figure 2 indicates this, where for 0<x<50 the 

analysis follows the background, but for the rest of the domain, the analysis is close to the truth, even 

where there were no observations. Trials 9-12 matched the radar setup described here, where the 

correlation length was varied. Trials 13-15 had velocity observations everywhere in  the domain. 

Trials 9-15 all excluded φ observations, as a radar can not observe φ directly.
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Figure 4. Truth and observations for the radar assimilation experiments.

4   Summary

The 4D-Var  assimilation of  velocity  and  geopotential observations  into  a  simple  shallow water 

equation model was explored here, with two objectives. The first was to become familiar with various 

parameters and their effect, and the second was to consider the setup for radial velocity observations, 

like that  from a  Doppler radar. The 'radar'  setup involved creating an observation  operator that 

reflected the change in velocity sign of the observation about the location of the radar.

It was clear that the number of observations had an impact upon how closely the analysis 

resembled the truth. The number of observations could change through the number of timesteps with 

observations, the spatial range and spatial  frequency of observations,  and the absence of  u or  φ 

observations.

The tolerance which marks when convergence is achieved (of either the inner loop, the outer 

loop, or the solution) must be sufficiently large for cases where the observations are noisy. A solver 

tolerance inthe order of 10-3 was found suitable for noisy observations.

The use of a background can improve the analysis by providing the field where there are no 

observations. With 4D-Var, the observations can also be advected through to improve the analysis 

where there are no observations.
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Appendix 1

Tables indicating parameters of experiments.

Table 1. Parameter variation experiments.

Description Model Obs everywhere No φ obs No u obs M+corr=50
M+corr50

+tol
1 (M) 2 3 4 5 6

Number of assim timesteps 50 50 50 50 50 50
Number of forecast timesteps 0 0 0 0 0 0
Solver max iterations 200 200 200 200 200 200
Solver  tolerance 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008
First u ob timestep 0 0 0 - 0 0
Last u ob timestep End End End - End End
First φ ob timestep 0 0 - 0 0 0
Last φ ob timestep End End - End End End
Time frequency of u obs 1 1 1 - 1 1
Time frequency of φ obs 1 1 - 1 1 1
First u ob point 50 0 0 - 50 50
Last u ob point 150 End End - 150 150
First φ ob point 50 0 - 0 50 50
Last φ ob point 150 End - End 150 150
Space frequency of u obs 1 1 1 - 1 1
Space frequency of φ obs 1 1 - 1 1 1
Variance of u obs 0.02 0.02 0.02 - 0.02 0.02
Variance of φ obs 0.02 0.02 - 0.02 0.02 0.02
Variance of u background 1 1 1 1 1 1
Variance of φ background 2 2 2 2 2 2
Corr length 20 20 20 20 50 50
Background weight 1 1 1 1 1 1
Max number outer loops 50 50 50 50 50 50
Minim max iters 200 200 200 200 200 200
Cov B matrix* Laplace Laplace Laplace Laplace Laplace Laplace
Cov R matrix** Real Real Real Real Real Real

Stop criteria Relative grad Relative grad Relative grad Relative grad
Relative 

grad
Relative 

grad
Inner tolerance 3.00E-001 3.00E-001 3.00E-001 3.00E-001 3.00E-001 5.00E-001
Outer tolerance 2.00E-004 2.00E-004 2.00E-004 2.00E-004 2.00E-004 1.00E-003
φbar 1.5 1.5 “ “

Comments
Not 

converging
Converging 

faster

* Inverse Laplacian as shown in Equation 5.
** Real R uses the variance of the observations.

Continued on the next two pages.
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Table 1 continued.

M+corr50+tol M+corr50+tol 6+no φ Corr=10 Corr=20 Corr=50
Corr=50, u 
allover

7 8 9 10 11 12 13
50 50 50 50 50 50 50
0 0 0 0 0 0 0

200 200 200 200 200 200 200
1.00E-008 1.00E-007 1.00E-008 1.00E-008 1.00E-008 1.00E-008 1.00E-008

0 0 0 0 0 0 0
End End End End End End End

0 0 - - - - -
End End - - - - -

1 1 1 1 1 1 1
1 1 - - - - -

50 50 50 50 50 50 1
150 150 150 150 150 150 End
50 50 - - - - -

150 150 - - - - -
1 1 1 1 1 1 1
1 1 - - - - -

0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.02 0.02 0.02 0.02 0.02 0.02 0.02

1 1 1 1 1 1 1
2 2 2 2 2 2 2

50 50 50 10 20 50 50
1 1 1 1 1 1 1

50 50 50 50 50 50 50
200 200 200 300 300 300 300

Laplace Laplace Laplace Laplace Laplace Laplace Laplace
Real Real Real Real Real Real Real

Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad
1.00E-001 5.00E-001 5.00E-001 5.00E-001 5.00E-001 5.00E-001 5.00E-001
1.00E-004 1.00E-003 1.00E-003 1.00E-003 1.00E-003 1.00E-003 1.00E-003

1.5 1.5

Conv slower Like 6
Test for φ 
offset problem
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Table 1 continued.

3+300conmin φ_bar=2 n. forecast
Long run for 
convergence

Tolerance for 
Convergence No Bkgd

No bkgd, obs 
everywhere

14 -- 15 16 17 18 19
50 50 50 100 100 100 100
0 0 10 0 0 0 0

200 200 200 200 200 200 200
1.00E-008 1.00E-008 1.00E-008 5.00E-004 1.00E-003 1.00E-003 1.00E-003

0 0 0 0 0 0 0
End End End End End End End

- - - 0 0 0 0
- - - End End End End
1 1 1 1 1 1 1
- - - 1 1 1 1
1 1 1 50 50 50 1

End End End 150 150 150 End
- - - 50 50 50 1
- - - 150 150 150 End
1 1 1 1 1 1 1
- - - 1 1 1 1

0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.02 0.02 - 0.02 0.02 0.02 0.02

1 1 1 1 1 1 1
2 2 2 2 2 2 2

20 20 50 50 50 50 50
1 1 1 0.001 0.001 0 0

50 50 50 150 50 50 50
300 300 300 400 200 200 200

Laplace Laplace Laplace Laplace Laplace Laplace Laplace
Real Real Real Real Real Real Real

Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad
5.00E-001 5.00E-001 5.00E-001 5.00E-001 3.00E-001 3.00E-001 3.00E-001
1.00E-003 1.00E-003 1.00E-003 1.00E-003 2.00E-003 2.00E-003 2.00E-003

2 Conv in 19 loops

No effect No effect
Converged in 
49 loops Crashed Much higher J

More obs
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Table 2. Single observation test.

1
Number of assim timesteps 50 50 50
Solver max iterations 200 200 200
Solver  tolerance 1.00E-008 1.00E-008 1.00E-008
First u ob timestep 1 1 1
Last u ob timestep End End End
First φ ob timestep - - -
Last φ ob timestep - - -
Time frequency of u obs 1 1 1
Time frequency of φ obs - - -
First u ob point 60 60 60
Last u ob point 60 60 60
First φ ob point - - -
Last φ ob point - - -
Space frequency of u obs 1 1 1
Space frequency of φ obs - - -
Variance of u obs 0.02 0.02 0.02
Variance of φ obs 0.02 0.02 0.02
Variance of u background 1 1 1
Variance of φ background 2 2 2
Corr length 50 20 50
Background weight 1 1 0
Max number outer loops 50 50 50
Minim max iters 500 500 500
Cov B matrix Laplace Laplace -
Cov R matrix Real Real Real
Stop criteria Relative grad Relative grad Relative grad
Inner tolerance 5.00E-001 5.00E-001 5.00E-001
Outer tolerance 1.00E-003 1.00E-003 1.00E-003
Comments Shift Has a localised change
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Table 3. Perfect observation tests (Observations = truth).

Solver tol No variance Lower variance
Number of assim 
timesteps 50 50 50 50 50 50
Solver max iterations 50 50 50 50 50 50
Solver  tolerance 1.00E-008 1.00E-004 1.00E-008 1.00E-008 1.00E-008 1.00E-008
First u ob timestep 1 1 1 1 1 1
Last u ob timestep End End End End End End
First φ ob timestep 1 1 1 1 1 1
Last φ ob timestep End End End End End End
Time frequency of u obs 1 1 1 1 1 1
Time frequency of φ obs 1 1 1 1 1 1
First u ob point 1 1 1 1 1 1
Last u ob point End End End End End End
First φ ob point 1 1 1 1 1 1
Last φ ob point End End End End End End
Space frequency of u obs 1 1 1 1 1 1
Space frequency of φ obs 1 1 1 1 1 1
Variance of u obs 0.02 0.02 0 0.001 0.001 0.001
Variance of φ obs 0.02 0.02 0 0.001 0.001 0.001
Variance of u background 1 1 1 1 1 1
Variance of φ background 2 2 2 2 2 2
Corr length 50 50 50 50 50 50
Background weight 1 1 1 1 2 0.5
Max number outer loops 50 50 50 20 20 20
Minim max iters 500 500 500 500 500 500
Cov B matrix Laplace Laplace Laplace Laplace Laplace Laplace
Cov R matrix Real Real Identity Real Real Real
Stop criteria Relative grad Relative grad Relative grad Relative grad Relative grad Relative grad
Inner tolerance 5.00E-001 5.00E-001 5.00E-001 5.00E-001 5.00E-001 5.00E-001
Outer tolerance 1.00E-003 1.00E-003 1.00E-003 1.00E-003 1.00E-003 1.00E-003

Comments
Not much 
difference

Much better 
convergence J increase

J decrease. 
Better.
Still not 
converging.
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Appendix 2. Figures showing output from trials in Table 1.

Trial 1.

Trial 2.
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Trial 3.

Trial 4.
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Trial 5.

Trial 6.
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Trial 7.

Trial 8.
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Trial 9.

Trial 10.
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Trial 11.

Trial 12.
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Trial 13.

Trial 14.
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Trial 15.

Trial 16.
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Trial 17.

Trial 19.
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