
 
T H E   U N I V E R S I T Y   O F   R E A D I N G 

 
 
 
 
 
 
 
 

Fast algorithms for setting up the stiffness matrix in 
hp-FEM: a comparison 

 
T. Eibner, J.M. Melenk 

 

 
 
 
 

Numerical Analysis Report  3/05 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

D E P A R T M E N T   O F   M A T H E M A T I C S  
 

 
 



1

Fast algorithms for setting up the stiffness matrix in
hp-FEM: a comparison

T. Eibner J.M. Melenk

Abstract

We analyze and compare different techniques to set up the stiffness matrix in the hp-version of the finite element method.
The emphasis is on methods for second order elliptic problems posed on meshes including triangular and tetrahedral elements.
The polynomial degree may be variable. We present a generalization of the Spectral Galerkin Algorithm of [7], where the shape
functions are adapted to the quadrature formula, to the case of triangles/tetrahedra. Additionally, we study on-the-fly matrix-vector
multiplications, where merely the matrix-vector multiplication is realized without setting up the stiffness matrix. Numerical studies
are included.

I. INTRODUCTION

The hp-version of the finite element method (hp-FEM) (see, e.g., the monographs [13], [11], [5] and the references therein) as
well as the closely related spectral method (see, e.g., the survey article [1] and the references there) are well-established tools in
computational structural and fluid mechanics. Typically, the bulk of the alphanumerical cost in the hp-FEM is in the numerical
quadratures used to set up the stiffness matrix; this is in sharp contrast to the standard low order FEM (h-FEM), where most of
the computational effort is spent on the solution of the resulting (linear) system. The present paper therefore considers different
techniques for the rapid computation of the stiffness matrix in high order methods. As is standard in most FEM, all quadratures
are done on a reference element K̂, which, in 2D, is either the reference square or the reference triangle; in 3D, the most important
ones are the hexahedron, the tetrahedron, the prism, and the pyramid. Also the shape functions are defined on the reference
element. We will discuss the generation of the element stiffness matrices for the following situation that is typical of scalar valued
second order elliptic equations:

(SK)ij := a(ψj , ψi), a(u, v) :=

∫

bK

(A(x)∇u) · ∇vdΩ, (1)

where the shape functions ψi ∈ Ψ := {ψi | i = 1, . . . , N} are given. The situation for vector valued second order problems (e.g.,
linear elasticity) is very similar as is the case of lower order terms, i.e.,

∫
bK

b(x)∇uv + c(x)uvdΩ for suitable functions b, c.

The typical procedure, especially in computational structural mechanics, is to set up the element stiffness matrices SK of (1) for
each element and then assemble them into the global stiffness matrix. This assembly procedure is described, for example, in [3],
[2], [11], [5], [12].
If the set Ψ of shape functions spans the space of polynomials of degree p, then the simplest algorithm to compute the element
stiffness matrix S has complexity O(p3d), where d is the spatial dimension of reference element K̂: the number of elements in
Ψ is O(pd) and O(pd) quadrature points are needed to obtain a sufficiently accurate approximation of the integrals defining the
entries of SK . It appears to be S. Orszag [10] who first pointed out that if the quadrature domain K̂ has product structure (i.e., if
it is a square or a hexahedron) and if the shape functions Ψ have product structure, then the computational cost can be lowered to
O(p2d+1) for setting up the element stiffness matrix and O(pd+1) to realize a fast matrix-vector multiplication. This technique
is called sum factorization. In the 1990s, Karniadakis and Sherwin designed shape functions on triangles and tetrahedra that—
after transformation to the reference square/hexahedron via the Duffy transformation—again have product structure. This insight
then allowed them to extend the sum factorization idea to triangles and tetrahedra and set up the stiffness matrix in complexity
O(p2d+1) also in this case. Since modern mesh generators typically create meshes consisting of triangles/tetrahedra, this work of
Karniadakis & Sherwin paved the way for the application of fast high order methods in many applications, [5].
Using sum factorization, the O(p2d) entries of the stiffness matrix SK are generated with work O(p2d+1). It is natural to ask
whether the optimal complexity O(p2d) can be reached. Indeed, by adapting the shape functions to the quadature formula, it is
possible to lower the complexity to O(p2d). This is was shown for squares and hexahedra in [7]. The present paper generalizes
some of these ideas to triangles and tetrahedra.

T. Eibner: Department of Mathematics, Technical University of Chemnitz, D-09107 Chemnitz, Germany, teibner@mathematik.tu-chemnitz.de
J.M. Melenk: Department of Mathematics, University of Reading, PO Box 220, Reading RG6 6AX, United Kingdom, j.m.melenk@reading.ac.uk



2

II. SOME KEY IDEAS ILLUSTRATED IN 2D

A. The idea of sum factorization

The idea of sum factorization can be motivated by the following problem, which mimics the computation of a mass or a stiffness
matrix in 2D: Compute, for all double indices (i1, i2), (j1, j2) ∈ {1, . . . , p}2 the field M with entries

M(i1,i2),(j1,j2) :=

q∑

k1=0

q∑

k2=0

ϕi1(k1)ψi2(k2)ϕ̃j1 (k1)ψ̃j2(k2)g(k1, k2) (2)

where the functions ϕi, ψi, φ̃i, ψ̃i, and g are given. The naive evaluation of all entries of M requiresO(p4(1 + q)2) floating point
operations. Since in our applications q = O(p), we arrive at a total cost of O(p6) to compute the p4 entries of M . By rerranging
the sums, this work can be reduced:

M(i1,i2),(j1,j2) =

q∑

k1=0

ϕi1(k1)ϕ̃j1 (k1)H(k1, i2, j2), H(k1, i2, j2) :=

q∑

k2=0

ψi2(k2)ψ̃j2(k2)g(k1, k2). (3)

The cost now is O((1 + q)2p2) to set up the auxiliary field H and thenO(p4(1 + q)) to perform the summation over k1. Thus, the
total cost is O(p4(1+q)+p2(1+q)2). Assuming again q = O(p), we arrive at a costO(p5). We note that the key to the lowering
of the complexity from O(p6) to O(p5) is to exploit product structure. For a further lowering to the optimal complexity O(p4),
additional properties must hold. In our algorithms below, we will adapt the shape functions to the quadrature formula employed.
The analog of this procedure in the present example of evaluating (2) corresponds to allowing some of the sums to collapse to few
terms: We define the set of relevant indices for the outer sum by

K1(i1, j1) := {k1 ∈ {0, . . . , q} |ϕi1(k1)ϕ̃j1(k1) 6= 0}

and note M(i1,j1),(i2,j2) =
∑

k1∈K1(i1,j1) ϕi1(k1)ϕ̃j1 (k1)H(k1, i2, j2). If we define by |K1| := max{#K1(i1, j1)| | (i1, j1) ∈

{1, . . . , p}2} the maximal number of relavant terms, then the total cost to set up M is O((1 + q)2p2) + O(|K1|p
4), which leads

to the work bound O(|K1|p
4) for q = O(p). If |K1| is bounded independently of p, then this represents a lowering of the total

complexity of the algorithm. We observe that we arbitarily chose in (3) to evaluate the double sum defining M(i1,i2),(j1,j2) as the
iterated sum

∑
k1

∑
k2

; equally well, we could have summed
∑

k2

∑
k1

. This is of interest if |K1| is not bounded independently
of p but instead the set

K2(i2, j2) := {k2 ∈ {0, . . . , q} |ψi2(k2)ψ̃j2(k2) 6= 0}

is small for all (i2, j2). If |K2| (defined analogously to |K1|) is bounded independently of p, then we arrive again at an O(p4)
algorithm by switching the summation order in (2) and evaluating M as

M(i1,i2),(j1,j2) =
∑

k2∈K2(i2,j2)

ϕi2 (k2)ϕ̃j2 (k2)H(k2, i1, j1), H(k2, i1, j1) :=

q∑

k1=0

ψi1(k1)ψ̃j1(k1)g(k1, k2). (4)

This example shows that it may be advantageous to carefully choose the summation order. It will be an ingredient of the algorithms
below, and we also refer to [7] for more details.

B. Fast stiffness matrix generation in 2D

We now illustrate how the abstract ideas of sum factorization can be employed in the generation of stiffness matrices. We consider
the case K̂ = T 2, where the reference triangle T 2 is defined in Def. III.1 below. The Duffy transformation D2 (see Def. III.1
below) is a bijection between the square Q2 = (−1, 1)2 and the triangle T 2. The change of variables given by D2 allows us to
write the integral a(u, v) in (1) is then written as

a(u, v) =

∫

Q2

(
∂η1 û

1 − η2
, ∂η2 û

)
· Â

(
∂η1 v̂

1−η2

∂η2 v̂

)
(1 − η2) dη1dη2, û := u ◦D2, v̂ := v ◦D2, Â := A ◦D2 (5)

where we used the explicit formulas for D′
2 and detD′

2 given in Lemma III.2. Since all quadratures will be performed on Q2, it
will be convenient to define the shape functions Ψ only implicitly on T 2; instead, we will define them explicitly on Q2 as the set
Φ and then set Ψ := Φ ◦D−1

2 . To fix ideas and notation, we define the bilinear form â and the space of polynomials Q̃p by

â(û, v̂) :=

∫

Q2

(
∂η1 û

1 − η2
, ∂η2 û

)
· Â

(
∂η1 v̂

1−η2

∂η2 v̂

)
(1 − η2) dη1dη2,

Q̃p := {u ∈ Qp | (∂η1u)|η2=1 = 0}, Qp := span{ηi
1η

j
2 | 0 ≤ i, j ≤ p}.



3

We note that the bilinear form â is well-defined on Q̃p because the polynomials û ∈ Q̃p are constant on the line η2 = 1 so that
the term 1

1−η2
∂η1 û, which seemingly has a singularity at η2 = 1, is in fact smooth there.

The basis Ψ on K̂ is defined such that three goals are met: a) Ψ contains the space of Pp of polynomial of degree p to ensure
good approximation properties; b) Ψ leads to a fast evaluation of the stiffness matrix SK ; c) Ψ allows for an easy assembly of
the element stiffness matrix SK into the global stiffness matrix. The last requirement effectively dictates that the set Ψ consist
of “external shape functions” (which are typically split further into “vertex shape functions” and “edge shape functions”) and
“internal shape functions”: the internal shape functions vanish on ∂K̂ and the restriction to ∂K̂ of the external shape functions
coincides with standard choices. We will construct Ψ as Ψ = Ψexternal ∪ Ψinternal, where, Ψexternal is further split into
Ψexternal = Ψvertex ∪ Ψedge. We will assume that standard choices (e.g., those described in [11], [5]) for Ψvertex and Ψedges

are made and that the number of functions in Ψexternal is 3p. In particular, since the transformationD2 is polynomial and due to
the property of the Duffy transformation that the edge η2 = 1 of Q2 is mapped to the single point (−1, 1) of T 2, we have that the
transformed external shape functions are polynomials of degree p that are constant on the edge η2 = 1, viz.,

Φexternal := Ψexternal ◦D2 ⊂ Q̃p.

We now seek the internal shape functions Ψinternal such that Φinternal := Ψinternal ◦D
−1
2 is also a subset of Q̃p. In view of the

fact that the quadrature is done on Q2, we define the internal shape functions directly on Q2, i.e., we choose Φinternal and then
set Ψinternal = Φinternal ◦D

−1
2 . As a specific example, we take Φinternal as

Φinternal = {l
(1)
i (η1)l

(2)
j (η2) | 1 ≤ i, j ≤ p− 1},

where the functions l(1)i and l(2)j are Lagrange interpolation polynomials for point sets

−1 = ξ
(1)
0 < x

(1)
1 < · · · < ξ(1)p = 1, −1 = ξ

(2)
0 < ξ

(2)
1 < · · · < ξ(2)p = 1;

that is, the polynomials l(1)i , l(2)i are given by

l
(1)
i (x) =

p∏

j=0
j 6=i

x− ξ
(1)
j

ξ
(1)
i − ξ

(1)
j

, l
(2)
i (x) =

p∏

j=0
j 6=i

x− ξ
(2)
j

ξ
(2)
i − ξ

(2)
j

.

We note that Φinternal = {u ∈ Q̃p |u|∂Q2 = 0}. This in turn implies that the functions of Ψinternal vanish on ∂T 2. A calculation
(see, e.g., Lemma III.8) reveals that together with standard choices of Ψvertex, Ψedges (e.g., those described in [11], [5]) we get
Ψvertex ∪ Ψedges ∪ Ψinternal ⊃ Pp, which ensures that

S̃p := spanΨ (6)

has good approximation properties.
The splitting of the shape functions Ψ into external and internal ones induces a block structure of the stiffness matrix SK :

SK =

(
SEE SEI

SIE SII

)
;

here the superscriptE represents external shape functions and I internal ones. We now illustrate how this choice of internal shape
functions allows us to construct the stiffness matrix SK in optimal complexity by showing how SII can be computed with work
O(p4); analogous calculations can be done for the other blocks. We define a tensor product quadrature formula Sq by

Sq(g) :=

q∑

k=0

q∑

l=0

ω
(1)
k ω

(2)
l g(x

(1)
k , x

(2)
l ) ≈

∫

Q2

g(η1, η2)(1 − η2)dη1dη2

and replace the integral in the definition of â by this quadrature formula. Then, the entries of the matris S II are given by (we use
double indices (i1, i2), (j1, j2) for notational convenience)

SII
(i1,i2),(j1,j2) =

q∑

k=0

q∑

l=0

ω
(1)
k ω

(2)
l

(
l′i1(x

(1)
k )

li2(x
(2)
l )

1 − x
(2)
l

, li1(x
(1)
k )l′i2(x

(2)
l )

)
Â(x

(1)
k , x

(2)
l )


 l′j1(x

(1)
k )

lj2 (x
(2)
l )

1−x
(2)
l

lj1(x
(1))
k l′j2(x

(2)
l )


 .

Remark II.1: Below, we will be interested in the case that the 1D quadrature rules
∑q

k=0 ω
(1)
k f(x

(1)
k ),

∑q
l=0 ω

(2)
l f(x

(2)
l ) are of

Gauss-Lobatto and Gauss-Lobatto-Jacobi type. For these quadrature rules, the endpoints ±1 are quadrature knots. Evaluating



4

terms of the form
l
(2)
i2

(x)

1−x at x = 1 is then to be understood as taking the limit as x→ 1. This is merely a notational problem since

the polynomials l(2)i2
, l(2)j2

vanish at the endpoints x± 1.

Upon expanding the matrix vector products inside the double sum we arrive at a sum with 4 four terms. For the technique of sum
factorization, all four terms can be treated similarly. For example, for one of the “mixed” ones, we get

SII,mixed
(i1,i2),(j1,j2) :=

q∑

k=0

q∑

l=0

ω
(1)
k ω

(2)
l l′i1(x

(1)
k )

li2(x
(2)
l )

1 − x
(2)
l

Â12(x
(1)
k , x

(2)
l )lj1(x

(1)
k )

l′j2(x
(2)
l )

1 − x
(2)
l

.

Using sum factorization techniques, the cost to evaluate all (p−1)4 entries of SII,mixed is, as seen above,O(p4(1+q)+p2(1+q)2).
Up to now, the fact that the functions l(1)i , l(2)i are Lagrange interpolation polynomials with respect to some points was not relevant.

If we choose the points {ξ(1)i | i = 0, . . . , p}, {ξ(2)i | i = 0, . . . , p} to be subsets of the quadrature points, then the sets

{k ∈ {0, . . . , q} | li1(x
(1)
k ) 6= 0}, {l ∈ {0, . . . , q} | li2(x

(2)
l ) 6= 0},

have cardinality bounded by 1 + (q − p). Thus, from the above discussion, we see that the cost to set up S II,mixed reduces to
O(p2q2 + p4(1 + q − p)). In particular, if q = p+m for a fixed m, we arrive at the desired optimal complexityO(p4). One way
to proceed therefore is to choose a quadrature formula with q = p+m and then to select from the quadrature knots an appropriate
subset for the definition of the Lagrange interpolation polynomials l(1)i , l(2)i . A special case is that of q = p: then the choice of the

quadrature formula dictates uniquely the polynomials l(1)i , l(2)i .

Remark II.2: If q > p, then the interpolation points ξ(1)
i , ξ(2)i are not uniquely determined and a selection has to be made. One

possible criterion is the conditioning of the resulting mass matrix; we refer to [7] where similar considerations were performed
for selecting points on squares and hexahedra.

C. Convergence properties

1) Gauss-Lobatto and Gauss-Lobatto-Jacobi quadrature: The use of quadrature formulas entails errors that need to be estimated.
We will consider quadrature formulas that are tensor products of Gauss-Lobatto and Gauss-Lobatto-Jacobi quadrature rules. We
note that this choice implies in particular that the endpointsx = ±1 are in fact quadrature points. More specifically, we take x(1)

i =

x
(GL)
i , i = 0, . . . , q, and x(2)

i = x
(GLJ)
i , i = 0, . . . , q, where the Gauss-Lobatto points −1 = xGL

0 < xGL
1 < · · · < xGL

q = 1 are

the zeros of the polynomial x 7→ (1−x2)P
(1,1)
q−1 (x) and the Gauss-Lobatto-Jacobi points −1 = xGLJ

0 < xGLJ
1 < · · · < xGLJ

q = 1

are the zeros of x 7→ (1−x2)P
(2,1)
q−1 (x); here, we employed the standard notation for the Jacobi polynomials P (α,β)

q . It is possible
to find positive quadrature weights ωGL

i , ωGLJ
i (see, e.g., [5, Appendix B] for explicit formulas) such that

q∑

i=0

ωGL
i f(xGL

i ) =

∫ 1

−1

f(x) dx,

q∑

i=0

ωGLJ
i f(xGLJ

i ) =

∫ 1

−1

f(x)(1 − x) dx ∀f ∈ P2q−1, (7a)

1

3

q∑

i=0

ωGL
i |f(xGL

i )|2 ≤

∫ 1

−1

|f(x)|2 dx ≤

q∑

i=0

ωGL
i |f(xGLJ

i )|2 ∀f ∈ Pq, (7b)

1

4

q∑

i=0

ωGLJ
i |f(xGLJ

i )|2 ≤

∫ 1

−1

|f(x)|2(1 − x) dx ≤

q∑

i=0

ωGLJ
i |f(xGLJ

i )|2 ∀f ∈ Pq . (7c)

We may then define the quadrature rule

Ŝq(g) :=

q∑

k=0

q∑

l=0

ωGL
k ωGLJ

l g(xGL
k , xGLJ

l ) ≈

∫

Q2

g(η1, η2)(1 − η2) dη1dη2,

on the square Q2, which in turn defines a quadrature formula on T 2 via

Sq(g) := Ŝq(g ◦D2) ≈

∫

T 2

g(x, y) dx dy.

The bilinear form a(·, ·) of (1) may then be replaced with its discrete counterpart

aq(u, v) := Sq(∇u ·A∇v).

The properties (7) of the Gauss-Lobatto and the Gauss-Lobatto-Jacobi quadrature allow us to formulate a coercivity result for aq :



5

Theorem II.3: Let K̂ = T 2, let A ∈ L∞(K̂) be a matrix-valued function x 7→ A(x) ∈ R
2×2 such that for each x ∈ T 2 the

matrix A(x) is symmetric positive definite with 0 < λ ≤ A(x) ≤ Λ. Then

λ

12
‖∇u‖2

L2(T 2) ≤ aq(u, u) ≤ Λ‖∇u‖2
L2(T 2) ∀u such that u ◦D2 ∈ Q̃q.

We note that the shape functions Ψ defined above span a S̃p of the form considered in Theorem II.3. We also note that the case
q = p is explicitly included.
2) Convergence analysis: The discrete coercivity result of Theorem II.3 allows one to perform a quadrature analysis based on
the Strang lemma—we refer to, e.g., [6], [1], [8] where the details are elaborated. In order to illustrate the kind of result that can
be expected, we formulate how the optimal algebraic rate of convergence of the p-version FEM is preserved. To that end, we
consider the model problem

∇ · (A(x)∇u) = f on Ω, u|∂Ω = 0 (8)

and let T be a triangulation (with element maps FK : T 2 → K) of a domain Ω ⊂ R
2; we recall the definition of S̃p in (6). The

approximation space Vp is obtained by assembling the shape functions Ψ in the standard way, i.e., Vp = {u ∈ H1
0 (Ω) |u|K ◦FK ∈

S̃p ∀K ∈ T }. The fully discrete scheme consists of the finite element method for (8) with approximation space Vp where all
integrals are replaced with the quadrature formula Sq : Find up,q ∈ Vp such that

∑

K∈T

Sq((∇up,qA∇v) ◦ FK) =
∑

K∈T

Sq((fv) ◦ FK) ∀v ∈ Vp. (9)

The following result illustrates that the presence of quadrature does not affect the rate of convergence of the p-version:
Theorem II.4: Let Ω ⊂ R

2 be a domain with piecewise analytic boundary. Let T be a (fixed) triangulation with analytic element
maps. Let the matrix A of (1) be analytic on Ω and assume that 0 < λ ≤ A(x) ≤ Λ < ∞ for all x ∈ Ω. Let f be analytic on Ω.
Let u ∈ H1

0 (Ω) be the solution of (8) and up,q be the solution of (9). Then for q ≥ p the approximation up,q exists and satisfies

‖u− up,q‖H1(Ω) ≤ C

{
inf

v∈Vp/2

‖u− v‖H1(Ω) + e−bp

}
,

where the constants C, b > 0 depend only on λ, Λ, Ω, the elements maps FK , and f .
Remark II.5: The solution u of the elliptic boundary value problem in Theorem II.4 has singularities at the vertices of the curvi-
linear polygon Ω. This implies that the optimal rate of convergene of the p-FEM (without quadrature errors) is algebraic. Corol-
lary II.4 states that the fully discrete scheme converges at athe same (algebraic) rate. If the solution happens to be analytic, then
the fully discrete scheme will also convergence at an exponential rate.

D. Overintegration

We showed in Theorem II.3 that even the minimial quadrature rule (i.e., the case q = p) discussed above retains for scalar problems
certain coercivity properties of the continuous problem. However, the proof of Theorem II.3 suggests that the coercivity constant
of the fully discrete scheme deteriorates in the presence of distorted meshes. Additionally, in the case of non-affine meshes a
corresponding analysis for vector-valued problems such as the system of linear elasticity is, to the knowledge of the authors,
missing. These are just some reason why it is customary in computational structural mechanics to employ overintegration, where
the number of quadrature points q is strictly greater than the polynomial degree p. Typically, q ∈ {p + 1, . . . , p + 4}. In this
situation, it was proposed in [7] to fix a quadrature order q and then select a subset of the quadrature points as the knots on which
to base the definition of the Lagrange interpolation polynomials. Some criteria on which to base the selection of the points are
discussed in [7] and could be extended to the present situation. Nevertheless, the focus of the present paper is not the optimal
choice of the points. Instead, we concentrate on investigating whether adapting the shape functions to the quadrature formula (and
thereby reducing the complexity of setting up the stiffness matrix) can compete with the use of standard shape functions such as
those discussed in [5]: We note that the number of internal shape functions proposed here is roughly twice that of the standard
choice for 2D problems and roughly six times that of standard choices in 3D. Since in many hp-FEM implementations the internal
shape functions are eliminated on the element level by Gaussian elimination with work O(p3d), the savings achieved by fast
quadrature using enlarged sets of internal shape functions may be partially offset by a cost increase in the static condensation.
We also mention that the shape functions that we study below differ slightly from those discussed so far. Our reasons for the
specific choice made below is that it ensures that the second derivatives of the shape functions (on T d) are sufficiently smooth.
This is convenient, for example, if the element residual has to be computed in residual based error estimation as proposed in [9].

III. SHAPE FUNCTIONS ON TRIANGLES AND TETRAHEDRA

A. Duffy transformation

The coefficient matrix A in (1) is often non-polynomial due to, for example, the use of blending elements to capture non-
polynomial geometries. In this situation, the entries of SK cannot be evaluated exactly and numerical quadrature has to be



6

Fig. 1. Transformations D2 and D3

A B

C C

η1

η2

A B

C

ξ1

ξ2
D2

D2
−1 ξ1

ξ2

ξ3

η1

η2
η3

D

A

B

C

A

B

D

C

C

D

D

D

D3

D
−1

3

employed. If the reference element K̂ is the reference triangle or tetrahedron, then it is natural to perform the quadrature on a
square/hexahedron by a further transformation using the Duffy transformation. The following definition formalizes these notions:
Definition III.1—reference elements: We define the triangle, tetrahedron, and the i-th dimensional reference cube Qi by:

T 2 = {(x, y) | − 1 < x, y ∧ x+ y < 0},

T 3 = {(x, y, z) | − 1 < x, y, z ∧ x+ y + z < −1},

Qi = (−1, 1)i.
Lemma III.2: The Duffy transformations D2, D3 are given by:

D2 : (η1, η2) 7→

(
1

2
(1 + η1)(1 − η2) − 1, η2

)
, (10)

D3 : (η1, η2, η3) 7→

(
1

4
(1 + η1)(1 − η2)(1 − η3) − 1,

1

2
(1 + η2)(1 − η3) − 1, η3

)
. (11)

Then

| detD′
2| =

(
1 − η2

2

)
, | detD′

3| =

(
1 − η2

2

)(
1 − η3

2

)2

, and T i = Di(Q
i), i = 2, 3.

If K̂ = T d, then the chain rule allows us to rewrite the integral (1) as follows:

a(u, v) =

∫

T d

(A(x)∇u) · ∇vdΩ =

∫

Qd

(
(∇u ◦Dd), Â(∇v ◦Dd)

)
| detD′

d|dΩ, Â := (D′
d)

−1(A ◦Dd)(D
′
d)

−T . (12)

Once the integration over T d is rewritten as an integration over Qd, we may employ standard tensor product quadrature techniques
of Gauss, Gauss-Lobatto, or, more generally, of Gauss-Jacobi-Lobatto type.

B. Shape functions on T 2 and T 3

The stiffness matrix SK is completely fixed once the shape functions Ψ are chosen. We will discuss two different choices of this
set Ψ below. Some key considerations that determine the construction are:

• Since the quadrature over T d is reformulated as a quadrature over Qd in (12), it is advantageous to define the shape functions
explicitly as functions on Qd and thereby only implicitly on T d by means of the Duffy transformation. In view of the fact
that sum factorization techniques will employed, the shape functions (as defined on Qd) have product structure.

• In order to facilitate variable polynomial degree distributions in hp-FEM, a (possibly different) polynomial degree is associ-
ated with each of the topological entities, i.e., each edge e, face f (in 3D), and the element has its own degree.

We will discuss two sets of shape functions. The first set Ψ(KS) is taken from [5] and contains shape functions with a tensor
product structure suitable for applying sum factorization. The second set Ψ(Lag) is a modification of Ψ(KS) that contains shape
functions where the so-called internal shape functions are adapted to the quadrature rules. First some abbreviations:
Abbreviations III.3: Let

f1(x) :=

(
1 − x

2

)(
1 + x

2

)
, f2(x) :=

(
1 − x

2

)
, f3(x) :=

(
1 + x

2

)
.

Definition III.4—shape functions on T 2: Let T 2 be the reference triangle with vertices A, B, C. Let p = (pAB , pAC , pBC , pK)
be a degree vector with the understanding that pAB is the polynomial degree associated with the edge AB etc. The value pK is
the degree associated with the element. For i = 1, 2 let Ni = {η

(i)
k |k = 1, .., pK − i} be a nodal set with −1 < η

(i)
1 < . . . <

η
(i)
PK−i < 1 and l(Ni)

k the k-th Lagrange interpolation polynomial with respect to Ni. Then we define

Ψ(KS) =

5⋃

B=0

Ψ
(KS)
B and Ψ(Lag) =

5⋃

B=0

Ψ
(Lag)
B ,



7

where

Ψ
(KS)
B := Φ

(KS)
B ◦D−1

2 =
{
φ ◦D−1

2 |φ ∈ Φ
(KS)
B

}
, Ψ

(Lag)
B := Φ

(Lag)
B ◦D−1

2 =
{
φ ◦D−1

2 |φ ∈ Φ
(Lag)
B

}

and the sets ΦB are sets of functions defined on Q2 given by

Φ
(KS)
0 = Φ

(Lag)
0 = Φ0 := {f3(η2)} ,

Φ
(KS)
1 = Φ

(Lag)
1 = Φ1 := {f2(η1)f2(η2), f3(η1)f2(η2)} ,

Φ
(KS)
2 :=

{
f1(η1)f

p+1
2 (η2)P

(1,1)
p−1 (η1) | p = 1, . . . , pAB − 1

}
,

Φ
(Lag)
2 :=

{
f1(η1)f

2
2 (η2)P

(1,1)
p−1 (η1) | p = 1, . . . , pAB − 1

}
,

Φ
(KS)
3 = Φ

(Lag)
3 = Φ3 :=

{
f2(η1)f1(η2)P

(1,1)
q−1 (η2) | q = 1, . . . , pAC − 1

}
,

Φ
(KS)
4 = Φ

(Lag)
4 = Φ4 :=

{
f3(η1)f1(η2)P

(1,1)
q−1 (η2) | q = 1, . . . , pBC − 1

}
,

Φ
(KS)
5 :=

{
f1(η1)f1(η2)f

p
2 (η2)P

(1,1)
p−1 (η1)P

(2p+1,1)
q−1 (η2)

∣∣∣ 1 ≤ p ≤ pK − 2
1 ≤ q ≤ pK − p− 1

}
,

Φ
(Lag)
5 :=

{
f1(η1)f1(η2)f2(η2)Cpl

(N1)
p (η1)Cql

(N2)
q (η2)

∣∣∣ 1 ≤ p ≤ pK − 1
1 ≤ q ≤ pK − 2

}
,

where the constants Cp are scaling parameters.
Definition III.5—shape functions on T 3: Let T 3 be the reference tetrahedron and let p = (pAB , . . . , pCD, pABC , . . . , pBCD, pK)
be a degree vector. As in the 2D case, the subscriptsAB, . . . , BCD represent edges and faces of the tetrahedron T 3 with vertices
A, B, C, D. For i = 1, 2, 3 let Ni = {η

(i)
k |k = 1, .., pK − 3} be a nodal set with and l(Ni)

k the k-th Lagrange interpolation
polynomial with respect to Ni. Then we define

Ψ(KS) =
13⋃

B=0

Ψ
(KS)
B and Ψ(Lag) =

13⋃

B=0

Ψ
(Lag)
B ,

where

Ψ
(KS)
B := Φ

(KS)
B ◦D−1

3 =
{
φ ◦D−1

2 |φ ∈ Φ
(KS)
B

}
Ψ

(Lag)
B := Φ

(Lag)
B ◦D−1

3 =
{
φ ◦D−1

2 |φ ∈ Φ
(Lag)
B

}

and the sets ΦB are sets of functions defined on Q3 given by:

Φ
(KS)
0 = Φ

(Lag)
0 = Φ0 := {f3(η3)} ,

Φ
(KS)
1 = Φ

(Lag)
1 = Φ1 := {f3(η2)f2(η3)} ,

Φ
(KS)
2 = Φ

(Lag)
2 = Φ2 := {f2(η1)f2(η2)f2(η3), f3(η1)f2(η2)f2(η3)} ,

Φ
(KS)
3 = Φ

(Lag)
3 = Φ3 :=

{
f1(η1)P

(1,1)
p−1 (η1)f

p+1
2 (η2)f

p+1
2 (η3) | 1 ≤ p ≤ pAB − 1

}
,

Φ
(KS)
4 = Φ

(Lag)
4 = Φ4 :=

{
f2(η1)f1(η2)P

(1,1)
q−1 (η2)f

q+1
2 (η3) | 1 ≤ q ≤ pAC − 1

}
,

Φ
(KS)
5 = Φ

(Lag)
5 = Φ5 :=

{
f3(η1)f1(η2)P

(1,1)
q−1 (η2)f

q+1
2 (η3) | 1 ≤ q ≤ pBC − 1

}
,

Φ
(KS)
6 = Φ

(Lag)
6 = Φ6 :=

{
f2(η1)f2(η2)f1(η3)P

(1,1)
r−1 (η3) | 1 ≤ r ≤ pAD − 1

}
,

Φ
(KS)
7 = Φ

(Lag)
7 = Φ7 :=

{
f3(η1)f2(η2)f1(η3)P

(1,1)
r−1 (η3) | 1 ≤ r ≤ pBD − 1

}
,

Φ
(KS)
8 = Φ

(Lag)
8 = Φ8 :=

{
f3(η2)f1(η3)P

(1,1)
r−1 (η3) | 1 ≤ r ≤ pCD − 1

}
,

Φ
(KS)
9 = Φ

(Lag)
9 = Φ9 :=

{
f1(η1)P

(1,1)
p−1 (η1)f

p
2 (η2)f1(η2)P

(2p+1,1)
q−1 (η2)f

p+q+1
2 (η3)

∣∣∣

1 ≤ p ≤ pABC − 2, 1 ≤ q ≤ pABC − p− 1
}
,

Φ
(KS)
10 = Φ

(Lag)
10 = Φ10 :=

{
f1(η1)P

(1,1)
p−1 (η1)f

p+1
2 (η2)f1(η3)f

p
2 (η3)P

(2p+1,1)
r−1 (η3)

∣∣∣

1 ≤ p ≤ pABD − 2, 1 ≤ r ≤ pABD − p− 1
}
,



8

Φ
(KS)
11 = Φ

(Lag)
11 = Φ11 :=

{
f2(η1)f1(η2)P

(1,1)
q−1 (η2)f1(η3)f

q
2 (η3)P

(2q+1,1)
r−1 (η3)

∣∣∣

1 ≤ q ≤ pACD − 2, 1 ≤ r ≤ pACD − q − 1
}
,

Φ
(KS)
12 = Φ

(Lag)
12 = Φ12 :=

{
f3(η1)f1(η2)P

(1,1)
q−1 (η2)f1(η3)f

q
2 (η3)P

(2q+1,1)
r−1 (η3)

∣∣∣

1 ≤ q ≤ pBCD − 2, 1 ≤ r ≤ pBCD − q − 1
}
,

Φ
(KS)
13 :=

{
f1(η1)P

(1,1)
p−1 (η1)f1(η2)f

p
2 (η2)P

(2p+1,1)
q−1 (η2)f1(η3)f

p+q
2 (η2)P

(2p+2q+1,1)
r−1 (η3)

∣∣∣

1 ≤ p ≤ pK − 3, 1 ≤ q ≤ pK − p− 2, 1 ≤ r ≤ pK − p− q − 1
}
,

Φ
(Lag)
13 :=

{
f1(η1)Cpl

(1)
p (η1)f1(η2)f2(η2)Cq l

(2)
q (η2)f1(η3)f

2
2 (η3)Crl

(3)
r (η3)

∣∣∣

1 ≤ p ≤ pK − 3, 1 ≤ q ≤ pK − 3, 1 ≤ r ≤ pK − 3
}
.

Here, the factor Cp is a scaling factor. We recall that the sets Φi define the shape functions on Qd;
Remark III.6: Restricted to the boundary ∂T d the shape functions of Ψ(Lag) and Ψ(KS) are (up to possibly a scaling factor)
identical. The major difference between these two sets lies in the internal shape functions and the number of internal shape
functions:

#INT(Φ(Lag)) =

{
(pK − 1)(pK − 2) : d = 2

(pK − 3)3 : d = 3
, #INT(Φ(KS)) =

{
1
2 (pK − 1)(pK − 2) : d = 2

1
6 (pK − 1)(pK − 2)(pK − 3) : d = 3

.

Remark III.7: Whereas in 3D, the functions Φ(KS) and Φ(Lag) differ only in the internal shape functions, they differ (slightly)
also in the edge shape functions associated with edgeAB in the 2D case. However, the restriction to ∂T 2 of these functions differs
at most by a scaling factor. Our reason for choosing these functions in Φ

(Lag)
2 is that the parameter p is relevant for the η1-variable

only, which allows us to simplify the implementation of the spectral Galerkin algorithm below. Since for the 3-dimensional case
such a simplification of the structure cannot be obtained without changing the shape functions on ∂T 3 significantly, we restrict
our attention in the 3D case to modifying the internal shape functions.
The subdivision of the shape functions into different groups in Definition III.4 and Definition III.5 follows a standard pattern in
hp-FEM. In the case of the triangle we have the vertex shape functions ψ ∈ Ψ0 ∪Ψ1, the edge shape functions ψ ∈ Ψ2 ∪ . . .∪Ψ4

and the internal shape functions ψ ∈ Ψ5. For the tetrahedron we have the vertex shape functions ψ ∈ Ψ0 ∪ . . . ∪ Ψ2, the edge
shape functions ψ ∈ Ψ2 ∪ . . . ∪ Ψ8, the face shape functions ψ ∈ Ψ9 ∪ . . . ∪ Ψ12 and the internal shape functions ψ ∈ Ψ13.
The following lemma collects the important properties of the shape functions:
Lemma III.8: For d = 2, 3 let p(K) be the polynomial degree distribution of K ∈ T . Let Ψ(KS) = Φ(KS) ◦D−1

d and Ψ(Lag) =
Φ(Lag) ◦D−1

d be given by Definition III.4 or Definition III.5. Denote by

Pp := span

{
d∏

i=1

xαi

i |αi ∈ N0,

d∑

i=1

αi ≤ p

}

the spaces of all polynomials of total degree p in d variables and set

Pp(T d) =





{ ψ ∈ PpK (T d) | ψ|e ∈ Ppe(e) ∀e = edge of T 2} : d = 2{
ψ ∈ PpK (T d)

∣∣∣∣
ψ|e ∈ Ppe(e) ∀e = edge of T 3

ψ|f ∈ Ppf
(f) ∀f = face of T 3

}
: d = 3

.

Then
1) The sets Ψ(KS) and Ψ(Lag) are sets of linearly independent functions.
2) Pp(T d) = span{ψ | ψ ∈ Ψ(KS)} ⊂ span{ψ | ψ ∈ Ψ(Lag)} =: Q̃p(T d).
3) All ψ ∈ Ψ(KS) are polynomial.
4) For arbitrary ψ = ψ(ξ) ∈ Ψ(Lag) and Dd : R

d → R
d : η 7→ ξ given by Lemma III.2, the functions

[
∂ψ

∂ξi

]
◦Dd and

[
∂2ψ

∂ξi∂ξj

]
◦Dd

are polynomials for all i, j ∈ {1, .., d}.
Proof: The properties concerning Ψ(KS) are shown in [5]. The properties of Ψ(Lag) follow by some calculations, the details

of which can be found in [4].
Corollary III.9: For d = 2, 3 let Ψ(KS/Lag) and Φ(KS/Lag) be given by Definition III.4 or Definition III.5 respectively. Then the
entries of the local stiffness matrix SK , given by (12), can be computed as

(SK)ij =

∫

Qd

(
∇̃φj , Ĉ∇̃φi

)
| detD′

d|dΩ =
3∑

r,r′=1

∫

Qd

∇̃r′φjĈr′r∇̃rφi| detD′
d|dΩ



9

where

∇̃φ
(K)
i :=





[
1

(1−η2)
∂φ
∂η1

, ∂φ
∂η2

]T
: d = 2

[
1

(1−η2)(1−η3)
∂φ
∂η1

, 1
(1−η3)

∂φ
∂η2

, ∂φ
∂η3

]T
: d = 3

is polynomial and

Ĉ := M−1
d (A ◦Dd)M

−T
d , M−1

2 :=

[
2 2(1 + η1)
0 1

]
, M−1

3 :=




4 2(1 + η1) 2(1 + η1)
0 2 (1 + η2)
0 0 1


 .

IV. APPROXIMATION PROPERTIES

Lemma III.8 implies that the space spanned by the Karniadakis-Sherwin shape functions is contained in the space spanned by the
Lagrange shape functions. For problems where the FEM realizes an energy minimization this implies that the FEM based on the
Lagrange shape functions will have improved approximation properties. The following example illustrates this effect.
Example IV.1: For Ω = T d let

−∆u = 1 on Ω and u = 0 on ∂Ω.

We apply the p-version FEM on a single element using both the sets Φ(KS) and Φ(Lag). The results of our computations are shown
in Figure 2. As expected, using Φ(Lag) reduces the error significantly. The rate of convergence, however, cannot be expected to
be improved since both sets of shape functions rely on the approximation properties of polynomials.

Fig. 2. Approximation properties (cf. Example IV.1)

10
1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

H1−error − 2D 

|u
*−

u p| H
1 (T

2 )

polynomial degree

Lag shape functions
KS  shape functions

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

H1−error  −  quadrature: q
i
=p

K
 − 3D

|u
*−

u p| H
1 (T

2 )

polynomial degree

Lag
KS

V. ALGORITHMS FOR SETTING UP THE ELEMENT STIFFNESS MATRICES

Having several sets of shape functions in hand, we will consider different algorithms for setting up the element stiffness matrix.
We start with the most elementary one, which applies a standard tensor product quadrature to each entry of SK separately.

A. Standard algorithm

For an arbitrary set of shape functions Ψ = {ψi | i = 1, . . . , N} on T d the standard algorithm for setting up the element stiffness
matrix reads:
Algorithm V.1—standard algorithm:

1) Choose quadrature rules
QR(i) = S(i) ×W (i) = {(η

(i)
0 , ω

(i)
0 ), . . . , (η(i)

qi
, ω(i)

qi
)},

which incorporate the det |D′
d| terms of (13) as weight functions (Gauss-Jacobi-Lobatto quadrature) and set

QR = QR(1) × . . .× QR(d) .

2) Initialize SK = 0
3) For all (η(1), . . . , η(d)) ∈ S(1) × . . .× S(d) and corresponding weight (ω(1), . . . , ω(d)) do

SK [i][j]+ = ω(1) · . . . · ω(d)
(
∇̃(ψj ◦Dd), Ĉ∇̃(ψi ◦Dd)

)∣∣∣
(η(1),...,η(d))

∀ 1 ≤ i, j ≤ N.



10

B. Sum factorization

Considering Definition III.4 and Definition III.5 we observe that after transformation to the reference cube, all of our shape
functions φ = ψ ◦Dd have a common tensor product structure. For Ψ(KS) as well as for Ψ(Lag) we have

Ψ ◦D2 = Φ =

{
φ(B,k1,k2)(η1, η2) = g

(1)
B,k1

(η1)g
(2)
B,k1,k2

(η2)

∣∣∣∣
1 ≤ k1 ≤ K1(B)
1 ≤ k2 ≤ K2(B, k1)

}
(13)

for d = 2 and

Ψ ◦D3 = Φ =



φ(B,k1,k2,k3)(η1, η2, η3) = g

(1)
B,k1

(η1)g
(2)
B,k1,k2

(η2)g
(3)
B,k1,k2,k3

(η3)

∣∣∣∣∣∣

1 ≤ k1 ≤ K1(B)
1 ≤ k2 ≤ K2(B, k1)
1 ≤ k3 ≤ K3(B, k1, k2)



 (14)

for d = 3. Thus, since the components of ∇̃Φ are of the same structure, we obtain by making use of sum factorization ideas the
following algorithm of complexityO(p2d+1

K ) for setting up the element stiffness matrix. For d = 3 this algorithm reads:
Algorithm V.2—sum factorization 3D:

1) For i = 1, . . . , 3 choose quadrature rules

QR(i) = {(η
(i)
li
, ω

(i)
li

) | li = 0, . . . , qi}

which incorporate the det |D′
3| terms of (13).

2) For all 1 ≤ r ≤ 3 and 0 ≤ B ≤ 13 let

∇̃rΦB =
{
g̃
(1)
(B,r,k1)

(η1)g̃
(2)
(B,r,k1,k2)

(η2)g̃
(3)
(B,r,k1,k2,k3)(η3)

∣∣∣

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2)
}

3) For 1 ≤ r ≤ 3, 0 ≤ B ≤ 13, 0 ≤ li ≤ qi, 1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2) compute the
auxiliary arrays

G(1)(B, r, k1, l1) = g̃
(1)
B,r,k1

(η
(1)
l1

)

G(2)(B, r, k1, k2, l2) = g̃
(2)
B,r,k1,k2

(η
(2)
l2

)

G(3)(B, r, k1, k2, k3, l3) = g̃
(3)
B,r,k1,k2,k3

(η
(3)
l3

)

4) For 1 ≤ r, r′ ≤ 3 and 0 ≤ li ≤ qi compute the auxiliary array

Ĉ(r′, r, l1, l2, l3) = Ĉ(r′,r)(η
(1)
l1
, η

(2)
l2
, η

(3)
l3

)

5) Initialize SK = 0
6) For 1 ≤ r, r′ ≤ 3 and 0 ≤ B,B′ ≤ 13 compute:

H(1)[k1, k
′
1, l3, l2] =

q1∑

l1=0

G(1)(B, r, k1, l1)G
(1)(B′, r′, k′1, l1)Ĉ(r′, r, l1, l2, l3)ω

(1)
l1
,

H(2)[k1, k
′
1, k2, k

′
2, l3] =

q2∑

l2=0

G(2)(B, r, k1, k2, l2)G
(2)(B′, r′, k′1, k

′
2, l2)H

(1)[k1, k
′
1, l3, l2]ω

(2)
l2
,

with

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2),

1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′, k′1), 1 ≤ k′3 ≤ K3(B
′, k′1, k

′
2), 0 ≤ li ≤ qi.

SK [(B, k1, k2, k3)][(B
′, k′1, k

′
2, k

′
3)]+ =

q3∑

l3=0

G(3)(B, r, k1, k2, k3, l3)G
(3)(B′, r′, k′1, k

′
2, k

′
3, l3)H

(2)[k1, k
′
1, k2, k

′
2, l3]ω

(3)
l3
,

for

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2),

1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′, k′1), 1 ≤ k′3 ≤ K3(B
′, k′1, k

′
2).

Remark V.3: The 2-dimensional version of Algorithm V.2 can be obtained by the same ideas as in the 3-dimensional case.



11

Remark V.4: For each pair (B,B′) a separate quadrature rule could be chosen. In particular for blocks with low polynomial
degree this might lead to further savings.
Remark V.5: The precomputing of the shape functions and coefficient matrix in step 3 and 4 is done due to the fact that evaluations
of the shape functions and coefficient matrix can be very expensive, especially for large polynomial degrees or coefficients with a
complicated structure. The precomputations of step 3 and 4 lead to a considerable speed-up, since we have to evaluate the shape
functions and coefficient matrix just once for all quadrature points.
Remark V.6: It is not necessary to perform the precomputations of step 3 for each element of a meshing T . Provided the quadrature
rules depend only on the internal polynomial degree and due to the fact that pe, pf ≤ pK for all edges and faces of the element
K, it suffices to compute the arrays of step 3 just once for each pK ∈ {1, . . . , pmax} and assumed uniform polynomial degree
distribution, that is pe = pf = pk for all edges and faces.

C. Spectral Galerkin method

In the last subsection we already exploited the tensor product structure of the shape functions. If, however, the shape functions
and the quadrature rules are adapted to each other, then a further reduction of the complexity is possible. To that end we consider
in the following quadrature rules of the form

QRi = S(i) ×W (i) = {(η
(i)
0 , ω

(i)
0 ), . . . , (η(i)

qi
, ω(i)

qi
)}, QR = QR1 × . . .× QRd

which incorporate the det |D′
d| terms of (13) in conjunction with the modified shape functions Φ(Lag), where the nodal sets N (i)

are subsets of the quadrature points, that is N (i) ⊂ S(i). Considering the shape functions of Φ(Lag), we additionally observe a
simpler tensor product stucture as in the general cases (13) and (14)

Φ(Lag) =
{
φ(B,k1,k2)(η) = g

(1)
B,k1

(η1)g
(2)
B,k2

(η2) | 1 ≤ ki ≤ Ki(B)
}

for d = 2 and
Φ

(Lag)
13 =

{
φ(13,k1,k2,k3)(η) = g

(1)
13,k1

(η1)g
(2)
13,k2

(η2)g
(3)
13,k3

(η3) | 1 ≤ ki ≤ K
}

for d = 3. Evaluating the gradient of the interior bubble shape functions at the quadrature points, we obtain, due to the adaption
of shape functions and quadrature rules, a considerable number of zeros. Thus, we can replace the sums in Algorithm V.2 by the
following pattern:

q1∑

l1=0

g̃
(1)
(B,r,k1)

g̃
(1)
(B′,r′,k′

1)Ĉr′,r

∣∣∣
(η

(1)
l1

,η
(2)
l2

,η
(3)
l3

)
→

∑

li∈NZ
(1)

(r,r′)
[k1,k′

1]

g̃
(1)
(B,r,k1)

g̃
(1)
(B′,r′,k′

1)
Ĉr′,r

∣∣∣
(η

(1)
l1

,η
(2)
l2

,η
(3)
l3

)
,

where the sets of relevant indices

NZ
(1)
(r,r′)[k1, k

′
1] := {l1 ∈ {0, . . . , q(1)} | g̃

(1)
(B,r,k1)

g̃
(1)
(B′,r′,k′

1)

∣∣∣
η
(1)
l1

6= 0},

can be precomputed easily. (For the summations over l2 and l3 we proceed analogously.) Moreover, due to simpler stucture of
Φ(Lag), we are able to permute the summation order of li, i = 1, . . . , d arbitrarily for B = B′ = 13 in the 3-dimensional case
and for all pairings (B,B′) in the 2-dimensional case. Since we know the number the non-zero elements #NZ

(1)
(r,r′)[k1, k

′
1], we

can estimate the work for setting up the auxiliary arrays H as well as for setting up the stiffness matrix SK for each permutation
of the summation order and choose, of course, the cheapest one. Thus, we can replace step 6 of Algorithm V.2 for B = B ′ = 13
in 3D and for all pairings B,B′ in 2D by the following:1

Algorithm V.7—spectral Galerkin 3D:

6. For B = B′ = 13 and all 1 ≤ r, r′ ≤ 3 do:

1) For i = 1, ..., 3, 1 ≤ ki ≤ Ki(B), 1 ≤ k′i ≤ Ki(B
′) and 0 ≤ li ≤ qi compute:

F (i)[ki, k
′
i, li] := G(i)(B, r, ki, li)G

(i)(B′, r′, k′i, li), NZ
(i)[ki, k

′
i] := {li | F

(i)[ki, k
′
i, li] 6= 0}, Si :=

∑

ki,k′

i

|NZi[ki, k
′
i]|

2) For all permutations (i1, i2, i3) of {1, 2, 3} estimate the work for the summation order
∑qi1

li1=0

∑qi2

li2=0

∑qi3

li3=0:

W(i1,i2,i3) =(qi1 + 1)(qi2 + 1)Si3+ %setting up H(1)

Ki3(B)Ki3 (B
′)(qi1 + 1)Si2+ %setting up H(2)

Ki3(B)Ki3 (B
′)Ki2(B)Ki2(B

′)Si1 %setting up SK

1again, we only consider the 3D version



12

3) Find a permutation (i1, i2, i3) with W(i1,i2,i3) ≤W(i′1,i′2,i′3)
for all (i′1, i

′
2, i

′
3).

4) For 1 ≤ ki ≤ Ki(B), 1 ≤ k′i ≤ Ki(B
′) and 0 ≤ li ≤ qi compute the auxiliary arrays

H(1)[ki3 , k
′
i3 , li1 , li2 ] =

∑

li3∈NZ(i3)

F (i3)[ki3 , k
′
i3 , li3 ]Ĉ(r′, r, l1, l2, l3)ω

(i3)
li3

H(2)[li1 , ki3 , k
′
i3 , ki2 , k

′
i2 ] =

∑

li2∈NZ(i2)

F (i2)[ki2 , k
′
i2 , li2 ]H

(1)[li1 , li2 , ki3 , k
′
i3 ]ω

(i2)
li2

5) For all 1 ≤ ki ≤ Ki(B), 1 ≤ k′i ≤ Ki(B
′) add

SK [(B, k1, k2, k3)][(B
′, k′1, k

′
2, k

′
3)] + =

∑

li1∈NZ(i1)

F (i1)[ki1 , k
′
i1 , li1 ]H

(2)[li1 , ki3 , k
′
i3 , ki2 , k

′
i2 ]ω

(i1)
li1

Assuming quadradure rules of order

qi =





pK + q : d = 2, i = 1
pK − 1 + q : d = 2, i = 2
pK + q : d = 3

(15)

with q ≥ 0 and q = O(1), we obtain, completely analogously to [7], a complexity of O(p2d
K ) for setting up the element stiffness

matrix SK . Thus, asymptotically Algorithm V.7 is superior to Algorithm V.2 if we consider the computing time for setting up
SK . However, the critical point is that due to the increased number of internal shape functions for large polynomial degrees
pK the advantage in setting up the stiffness matrix will be offset if we consider an hp-implementation making use of static
condensation, since, at least asymptotically, the cost of static condensation dominates the total cost per element. Only numerical
tests, which we present below, can tell whether there exists a range {p0, . . . , pN} of polynomial degrees where it is preferable to
use Algorithm V.7.

VI. REMARKS ON STATIC CONDENSATION AND PRECOMPUTED ARRAYS

A. Static Condensation

In hp-FEM it is customary to perform static condensation. The partition of the shape functions into external E={vertex, edge,
face} and I=internal shape functions implies a corresponding block structure of the local element stiffness matrices SK as well as
of the global stiffness matrix Sglob. That is:

SK =

[
SEE

K SEI
K

SIE
K SII

K

]
Sglob =

[
SEE SEI

SIE SII

]
.

Due to the support properties of the internal shape functions, the matrix SII is block diagonal with SII = diag(SII
K ). In static

condensation, the Schur complement is formed by eliminating the internal shape functions, Sc = SEE −SEI(SII)−1SIE; which
leads (at least for large polynomial degrees) to a dramatically reduced problem size. In practice, the Schur complement S c is
obtained by assembling the condensed element stiffness matrices Sc

K = SEE
K − SEI

K (SII
K )−1SIE

K . The local static condensation,
i.e., computing Sc

K , is an O(p3d
K ) process, but can be performed using highly optimized LAPACK routines, namely, the routine

’dposv’ to solve the linear system of equations SII
K X = SIE

K and the routine ’dgemm’ to compute Sc
K = SEE

K − SEI
K X . Due to

the high degree of optimization of these LAPACK routine, we expect this O(p3d
K ) term to dominate the total cost per element only

for large polynomial degrees pK .

B. Precomputed Arrays

A standard device for computing element stiffness matrices in hp-FEM is to employ precomputed arrays, which can lead to
considerable savings. To describe this technique, suppose that the matrix A of (1) is constant for each element and that the mesh
consists of affine elements only, i.e., all element maps FK : K̂ → K of the mesh are affine. Then all element stiffness matrices
SK are given by

(SK)ij =

∫

bK

∇ψj(F
′
K)−1A(F ′

K)−>∇ψi| detF ′
K |dΩ.

Since the element map FK is affine and the matrix A is constant, we note that (SK)ij can be obtained as a linear combination
of the values

∫
bK

∂kψj∂lψidΩ. Thus, if the polynomial degree p is the same for all elements of the mesh (and the polynomial

basis Ψ is the same for all elements), then an array with values Hpre(k, l, i, j) :=
∫
bK

∂kψj∂lψidΩ may be precomputed once, and

all element stiffness matrices SK are easily obtained as linear combinations of entries of Hpre. If the polynomial degree is not
constant on the mesh, then the method of precomputed arrays is still applicable provided that Hpre includes all combinations of
shape functions needed. In practice, this can be achieved efficiently if the polynomial basis employed is hierarchic, i.e., if the set
Ψp of shape functions for polynomial degree p is contained in Ψp′ for p′ ≥ p; in that case, the cost of setting up Hpre depends
only on the maximal polynomial degree of the mesh.



13

VII. MATRIX VECTOR MULTIPLICATION WITHOUT SETTING UP THE ELEMENT STIFFNESS MATRIX

In the last sections we discussed different methods for setting up the element stiffness matrices SK . However, for solving the final
global linear system of equations by an iterative solver such as, for example, the conjugated gradient method, we actually do not
need to generate the stiffness matrices explicitly. Instead, it suffices to realize the matrix-vector multiplication w 7→ Sglobw. In
fact, for the shape functions considered here an “assembly on the fly” is very simple to realize so that we may restrict our attention
the elementwise matrix-vector multiplication, i.e., the map v 7→ b := SKv. In this section we show how to realize such a matrix
vector multiplication without setting up the matrix SK explicitly. For the following we always assume (15) .

A. Sum factorization

We start with a sum factorization idea leading to an algorithm of complexity O(pd+1
K ) for performing one multiplication. Since

the cases d = 2 and d = 3 are very similar, we will describe this idea only for the case d = 3. On the reference tetrahedron T 3 let
the shape functions Ψ be given by Definition III.5. That is

ψ(B,k1,k2,k3) = φ(B,k1,k2,k3) ◦D
−1
3 with φ(B,k1,k2,k3)(η1, η2, η3) = g

(1)
(B,k1)

(η1)g
(2)
(B,k1,k2)(η2)g

(3)
(B,k1,k2,k3)(η3)

and
0 ≤ B ≤ 13, 1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2).

Applying the quadrature rule

QR = QR1 ×QR2 ×QR3 with QRi = S(i) ×W (i) = {(η
(i)
0 , ω

(i)
0 ), . . . , (η(i)

qi
, ω(i)

qi
)},

on Q3, with the abbreviations I = (B, k1, k2, k3) and I ′ = (B′, k′1, k
′
2, k

′
3), the entries of the element stiffness matrix SK are

given by (see Algorithm V.1)

SK =


 ∑

l1,l2,l3

3∑

r,r′=1

ω
(1)
l1
ω

(2)
l2
ω

(3)
l3

(
∇̃r′φI′ Ĉr′r∇̃rφI

)∣∣∣
(η

(1)
l1

,η
(2)
l2

,η
(3)
l3

)




I,I′

.

Thus, the vector b := SKv can be evaluated as

bI =
∑

(r,r′,B′,k′

1,k′

2,k′

3)

∑

(l1,l2,l3)

ω
(1)
l1
ω

(2)
l2
ω

(3)
l3

(
∇̃r′φI′ Ĉr′,r∇̃rφI

)∣∣∣
(η

(1)
l1

,η
(2)
l2

,η
(3)
l3

)
vI′ (16)

and following algorithm realizes a sum factorization idea leading to an efficient matrix vector multiplication without setting up
the element stiffness matrix SK and complexityO(pd+1

K ).
Algorithm VII.1—Matrix vector multiplication on the fly - 3D:

1) For i = 1, . . . , 3 choose quadrature rules

QR(i) = {(η
(i)
li
, ω

(i)
li

) | li = 0, . . . , qi)},

which incorporate the det |D′
3| terms of (13).

2) For all 1 ≤ r ≤ 3 and 0 ≤ B ≤ 13 let

∇̃rΦB =
{
g̃
(1)
(B,r,k1)

(η1)g̃
(2)
(B,r,k1,k2)(η2)g̃

(3)
(B,r,k1,k2,k3)

(η3)
∣∣∣

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2)
}
.

3) For 1 ≤ r ≤ 3, 0 ≤ B ≤ 13, 0 ≤ li ≤ qi, 1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2) compute the
auxiliary arrays

G(1)(B, r, k1, l1) = g̃
(1)
B,r,k1

(η
(1)
l1

)

G(2)(B, r, k1, k2, l2) = g̃
(2)
B,r,k1,k2

(η
(2)
l2

)

G(3)(B, r, k1, k2, k3, l3) = g̃
(3)
B,r,k1,k2,k3

(η
(3)
l3

).

4) For 1 ≤ r, r′ ≤ 3, and 0 ≤ li ≤ qi compute the auxiliary array

Ĉ(r′, r, l1, l2, l3) = Ĉ(r′,r)(η
(1)
l1
, η

(2)
l2
, η

(3)
l3

).



14

5) Initialize b = 0
6) Compute the auxiliary arrays

H(1)[r′, B′, k′1, k
′
2, l3] =

∑

k′

3

v(B′,k′

1,k′

2,k′

3)
G(3)(B′, r′, k′1, k

′
2, k

′
3, l3)

H(2)[r′, B′, k′1, l2, l3] =
∑

k′

2

H(1)[r′, B′, k′1, k
′
2, l3]G

(2)(B′, r′, k′1, k
′
2, l2)

H(3)[r′, l1, l2, l3] =
∑

B′,k′

1

H(2)[r′, B′, k′1, l2, l3]G
(1)(B′, r′, k′1, l1)

H(4)[r, B, k1, l2, l3] =
∑

r′,l1

ω
(1)
l1
H(3)[r′, l1, l2, l3]Ĉ(r′, r, l1, l2, l3)G

(1)(B, r, k1, l1)

H(5)[r, B, k1, k2, l3] =
∑

l2

ω
(2)
l2
H(4)[r, B, k1, l2, l3]G

(2)(B, r, k1, k2, l2)

for 1 ≤ r, r′ ≤ 3, 0 ≤ B,B′ ≤ 13, 0 ≤ li ≤ qi and

1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2),

1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′, k′1), 1 ≤ k′3 ≤ K3(B
′, k′1, k

′
2).

For 0 ≤ B ≤ 13, 1 ≤ k1 ≤ K1(B), 1 ≤ k2 ≤ K2(B, k1), 1 ≤ k3 ≤ K3(B, k1, k2) compute

b(B,k1,k2,k3) =
∑

l3

ω
(3)
l3
H(5)[r, B, k1, k2, l3]G

(3)(B, r, k1, k2, k3, l3).

The algorithm can be divided into two parts, namely, steps 1-4 which are the initialization and steps 5,6, which realize the actual
matrix vector multiplication. Irrespective of the number of matrix-vector multiplications, the initialization has to be done only
once. More precisely, assuming that a finite element mesh T is given, the computation of the arrays of step 2 has to be done only
once for each internal polynomial degree pK occurring in T (see Remark V.6) and the computation of the symmetric auxiliary
array Ĉ(r′, r, l1, l2, l3) with its (1/2)32(q1 + 1)(q2 + 1)(q3 + 1) entries has to be done once for each K ∈ T . Even for elements
with large polynomial degrees and resulting quadrature rules of high order this additional storage is of an acceptable size. For
example, for an element with pK = qi = 10 the storage of Ĉ(r′, r, l1, l2, l3) requires, assuming 8 Byte per entry, about 47 KByte.
Consequently, considering the computing time for one matrix-vector multiplication, we will omit the time necessary for steps 1-4.
For the modified shape functions ΦLag we obtain further savings by adding up only the non-zero elements in the sums of step 6.
Remark VII.2: The disadvantage of adding up only the non-zero elements is a frequent accessing of non-contiguous pieces of
computer memory, which may offset some of these gains on some modern memory architectures.
Figures 8, 9 and Tables I-IV show the computing time for the matrix vector multiplication for different sets of shape functions and
different methods. Note that for a matrix vector multiplication performed with the BLAS-routine we additionally have to set up
the stiffness matrix SK .
Algorithm VII.1 realizes one special summation order and the question arises if there are other good summation orders. For the
case of ΦKS the following lemma answers this question.
Lemma VII.3: Let the shape functions ΨKS be given by Definition III.4 or Definition III.5. Then the only summation order for (16)
yielding a complexity O(pd+1) for one matrix vector multiplication is given by (l3, l2, l1, k

′
1, k

′
2, k

′
3) for d = 3 or (l2, l1, k

′
1, k

′
2)

for d = 2 respectively. All other summation orders lead to a complexity worse than O(pd+1).
Proof: Since the proofs for d = 2 and d = 3 are completely analogous, we will only prove the 3-dimensional case. We

consider only the internal shape functions (B=B’=13). The upper left graph in Figure 3 shows the dependences between the
entities k1, k2, k3, l1, l2, l3, k

′
1, k

′
2, k

′
3. Each vertex represents one of those entities and an edge between two vertices V1 and V2

exists if and only if there is a factor in

b(B,k1,k2,k3) =
∑

{r,r′,B′}

∑

{k′

1,k′

2,k′

3,l1,l2,l3}

ω
(1)
l1
ω

(2)
l2
ω

(3)
l3
G

(3)
B′,r′(k

′
1, k

′
2, k

′
3, l3)G

(2)
B′,r′(k

′
1, k

′
2, l2)G

(1)
B′,r′(k

′
1, l1)Ĉr′,r(l1, l2, l3)

G
(1)
B,r(k1, l1)G

(2)
B,r(k1, k2, l2)G

(3)
B,r(k1, k2, k3, l3)v(B′,k′

1,k′

2,k′

3).

which depends on both entities represented by V1 and V2. For example,G(3)
B′,r′(k′1, k

′
2, k

′
3, l3) implies the edges {k′1, k

′
2}, {k′1, k

′
3},

{k′1, l3}, {k′2, k
′
3}, {k′2, l3} and {k′3, l3}. Now, summation over one entity, characterized by V , means creating an auxiliary array

depending on all entities adjacent to V and leads to a new dependence graph. Since for the internal shape functions each ki, k′i and

li covers a range of O(pK), the total amount of work for such a summation is given by O(p
1+A(V )
K ), where A(V ) is the number

of vertices adjacent to V . Thus, in order to obtain a complexity of O(p4
K) or better, we are not allowed to sum over entities with

more than 3 adjacent vertices. Figure 3 shows the unique summation order leading to complexityO(p4).



15

Fig. 3. Proof of Lemma VII.3

k’_1 k’_2 k’_3

l_3l_2l_1

k_1 k_2 k_3

k’_2k’_1

l_3
l_2l_1

k_1 k_2 k_3

k’_1

l_3l_2l_1

k_3k_2k_1

k’_3 k’_2
Sum Sum Sum

k’_1

l_1
l_2 l_3

k_1 k_2 k_3

l_1 l_2 l_3 l_3 l_3l_2

k_1 k_1 k_1 k_1 k_3k_3k_3k_3 k_2k_2k_2k_2

SumSumSum
l_1 l_2 l_3

Remark VII.4: There exists one exception to Lemma VII.3, namely,

b(B,k1,k2,k3) =
∑

(r,r′,B′,k′

1,k′

2,k′

3,l∗,l∗)

∑

(li)

. . . ,

where we start with summation over li. In this case the inner sum is independent of the vector v(B′,k′

1,k′

2,k′

3)
and can be pre-

computed as an auxiliary array H . However, since this inner sum contains the factor Ĉ(r′, r, l1, l2, l3) which depends on the
element K, we have to compute an auxiliary array H (K) for each element K of a finite element meshing separately. Starting the
summation with

• l1, this leads to

H
(K)
r,r′,B,B′ [k1, k

′
1, l2, l3] =

∑

l1

ω
(1)
l1
Ĉr′,r(l1, l2, l3)G

(1)
B,r(k1, l1)G

(1)
B′,r′(k

′
1, l1),

• l2, this leads to

H
(K)
r,r′,B,B′ [k1, k

′
1, k2, k

′
2, l1, l3] =

∑

l2

ω
(2)
l2
Ĉr′,r(l1, l2, l3)G

(2)
B,r(k1, k2, l2)G

(2)
B′,r′(k

′
1, k

′
2, l2),

• l3, this leads to

H
(K)
r,r′,B,B′ [k1, k

′
1, k2, k

′
2, k3, k

′
3, l1, l2] =

∑

l3

ω
(3)
l3
Ĉr′,r(l1, l2, l3)G

(3)
B,r(k1, k2, k3, l3)G

(3)
B′,r′(k

′
1, k

′
2, k

′
3, l3).

As we can see, setting up these auxiliary arrays is of complexity worse thanO(pd+1) and has to be done for each element of a mesh
separately. Thus, for large polynomial degrees and just a few matrix vector multiplications (i.e., good preconditioners) setting up
the arraysH(K) can become more time consuming than performing the matrix vector multiplications with use of Algorithm VII.1.
Another point is that storing H (K)

r,r′,B,B′ [k1, k
′
1, l2, l3] for pK = qi = 10 requires about (1/2) ∗ 32 ∗ 62 ∗ 104 ∗ 8 Byte ≈ 17MByte

of memory. Consequently, we exclude a summation order starting with li.
Remark VII.5: Lemma VII.3 says that (l3, l2, l1, k′1, k

′
2, k

′
3) or (l2, l1, k

′
1, k

′
2) respectively are the uniquely determined best choices

for a global and constant summation order and one may think of a summation order depending onB andB ′. However, for Ψ(KS),
due to factors g(j)

(B,...) which depend several ki or k′i, this approach will not be practicable and leads only to an extensive case

differentiation. For the modified shape functions Ψ(Lag) we investigate this possibility in the next subsection.

B. Speeding up the matrix vector multiplication by spectral Galerkin ideas

In this subsection we want to exploit the special structure of ΦLag to obtain a speed up for the on the fly matrix vector multipli-
cation. However, since in the 3-dimensional case we only modified the internal shape functions and the internal shape functions
take only a fraction of the total computing time (Fig. 8) will restrict our attention to the 2-dimensional case. Thus we have

ψ(B,k1,k2) = φ(B,k1,k2) ◦D
−1
2 with φ(B,k1,k2)(η1, η2) = g

(1)
(B,k1)

(η1)g
(2)
(B,k2)

(η2) and 0 ≤ B ≤ 5, 1 ≤ ki ≤ Ki(B).



16

The main idea to achieve a speed-up compared to Algorithm VII.1 is to exploit that the shape functions and the quadrature rules
are adapted to each together with the simpler structure of the shape functions. Considering

b(B,k1,k2) =
∑

{r,r′,B′}

∑

{k′

1,k′

2,l1,l2}

ω
(1)
l1
ω

(2)
l2
G

(2)
B′,r′(k

′
2, l2)G

(1)
B′,r′(k

′
1, l1)Ĉr′,r(l1, l2)G

(1)
B,r(k1, l1)G

(2)
B,r(k2, l2)v(B′,k′

1,k′

2),

withG(i)
B,r(ki, li), Ĉr′,r(l1, l2) and v(B′,k′

1,k′

2)
as in the previous section, we have 24 possible summation orders for {k ′1, k

′
2, l1, l2}.

Thus, we want to find and apply the cheapest, or at least a good summation order depending on B,B ′, r, r′. However, some of
these permutations can be excluded a priori:

• (k′i, lj , ∗, ∗) since a calculation reveals that for all i, j ∈ {1, 2} (lj , k
′
i, ∗, ∗) is equal to or more efficient than (k′i, lj , ∗, ∗).

• (k′i, k
′
i
, lj , lj) since this is equivalent to setting up a block of the stiffness matrix.

• (∗, ∗, k′i, lj) du to an argumentation as in Remark VII.4.
• (li, k

′
i
, li, k

′
i) since an efficient implementation becomes equivalent to (∗, ∗, k′i, lj).

Thus, it remain four permutations of type (lj , lj , k
′
i, k

′
i
) and two permutations of type (lj , k

′
j , lj , k

′
j
). Considering (l1, k

′
1, l2, k

′
2),

we have
b(B,k1,k2) =

∑

l1

ω
(1)
l1
G

(1)
B,r(k1, l1)

∑

r′,B′,k′

1

G
(1)
B′,r′(k

′
1, l1)H

(2)
r,r′,B,B′(k2, k

′
1, l1),

where

H
(2)
r,r′,B,B′(k2, k

′
1, l1) =

∑

l2

Hr′,B′(k′1, l2)Ĉr′,r(l1, l2)G
(2)
B,r(k2, l2) (17)

Hr′,B′(k′1, l2) =
∑

k′

2

ω
(2)
l2
G

(2)
B′,r′(k

′
2, l2)v(B′,k′

1,k′

2). (18)

SinceG(1)
B,r(k1, l1) depends on the same entities as the auxiliary arrayH (2), we can avoid setting up the arrayH (2)

r,r′,B,B′(k2, k
′
1, l1)

and evaluate the sum with almost the same or even less work as:

b(B,k1,k2) =
∑

l1

ω
(1)
l1
G

(1)
B,r(k1, l1)

∑

r′,B′,k′

1

∑

l2

G
(1)
B′,r′(k

′
1, l1)Hr′,B′(k′1, l2)Ĉr′,r(l1, l2)G

(2)
B,r(k2, l2),

which in turn is equivalent to

b(B,k1,k2) =
∑

l1

ω
(1)
l1
G

(1)
B,r(k1, l1)

∑

l2

∑

r′,B′,k′

1

G
(1)
B′,r′(k

′
1, l1)Hr′,B′(k′1, l2)Ĉr′,r(l1, l2)G

(2)
B,r(k2, l2).

Thus, since we can argue in the same way for (l2, k
′
2, l1, k

′
1), we can restrict our algorithm to consider the four permutations of

type (lj , lj , k
′
i, k

′
i
}.

Algorithm VII.6—spectral matrix vector multiplication on the fly:
1) For i = 1, 2 choose quadrature rules

QR(i) = {(η
(i)
li
, ω

(i)
li

) | li = 0, . . . , qi}

which incorporate the det |D′
2| term of (13).

2) For all 1 ≤ r ≤ 2 and 0 ≤ B ≤ 5 let

∇̃rΦB =
{
g̃
(1)
(B,r,k1)

(η1)g̃
(2)
(B,r,k2)

(η2)
∣∣∣ 1 ≤ ki ≤ Ki(B)

}

3) For 1 ≤ r ≤ 2, 0 ≤ B ≤ 5, 0 ≤ li ≤ qi, 1 ≤ ki ≤ Ki(B) compute

G(1)(B, r, k1, l1) = g̃
(1)
B,r,k1

(η
(1)
l1

) NZ(1)(B, r, k1) = {l1 | G(1)(B, r, k1, l1) 6= 0}

G(2)(B, r, k2, l2) = g̃
(2)
B,r,k2

(η
(2)
l2

) NZ(2)(B, r, k2) = {l2 | G(2)(B, r, k2, l2) 6= 0}

4) For 1 ≤ r, r′ ≤ 3 and 0 ≤ li ≤ qi compute the auxiliary array

Ĉ(r′, r, l1, l2) = Ĉ(r′,r)(η
(1)
l1
, η

(2)
l2

)

5) Initialize b = 0, H(2)[r′, l2, l1] = 0
6) For 1 ≤ r′ ≤ 2, 0 ≤ li ≤ qi compute

H(2)[r′, l2, l1] =
∑

B′,k′

1,k′

2

v(B′,k′

1,k′

2)
ω

(1)
l1
ω

(2)
l2
G(1)(B′, r′, k′1, l1)G

(2)(B′, r′, k′2, l2)



17

as follows: For all 1 ≤ r′ ≤ 2, 0 ≤ B′ ≤ 5 compute

a) S1 :=
∑

k′

1

#NZ(1)(B′, r′, k′1) and S2 :=
∑

k′

2

#NZ(2)(B′, r′, k′2)

b) If [(q2 + 1)S1 +K1(B
′)S2] ≤ [(q1 + 1)S2 +K2(B

′)S1]

Initialize H(1)[k′1, l2] = 0

Add H(1)[k′1, l2]+ = v(B′,k′

1,k′

2)ω
(2)
l2
G(2)(B′, r′, k′2, l2)

for all 1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′), l2 ∈ NZ(2)(B′, r′, k2).

Add H(2)[r′, l2, l1]+ = ω
(1)
l1
H(1)[k′1, l2]G

(1)(B′, r′, k′1, l1)

for all 1 ≤ k′1 ≤ K1(B
′), l1 ∈ NZ(1)(B′, r′, k1), 0 ≤ l2 ≤ q2.

c) If [(q2 + 1)S1 +K1(B
′)S2] > [(q1 + 1)S2 +K2(B

′)S1]

InitializeH(1)[k′2, l1] = 0

Add H(1)[k′2, l1]+ = v(B′,k′

1,k′

2)ω
(1)
l1
G(1)(B′, r′, k′1, l1)

for all 1 ≤ k′1 ≤ K1(B
′), 1 ≤ k′2 ≤ K2(B

′), l1 ∈ NZ(1)(B′, r′, k1).

Add H(2)[r′, l2, l1]+ = ω
(2)
l2
H(1)[k′2, l1]G

(2)(B′, r′, k′2, l2)

for all 1 ≤ k′1 ≤ K1(B
′), l1 ∈ NZ(1)(B′, r′, k1), 0 ≤ l2 ≤ q2.

7) Compute
b(B,k1,k2) =

∑

(r,r′,l1,l2)

H(2)[r′, l2, l1]Ĉ(r′, r, l1, l2)G
(1)(I1)G

(2)(I2)

as follows: For all 1 ≤ r ≤ 2, 0 ≤ B ≤ 5 compute

a) S1 :=
∑

k1

#NZ(1)(B, r, k1) and S2 :=
∑

k2

#NZ(2)(B, r, k2)

b) If [2(q2 + 1)S1 +K1(B)S2] ≤ [2(q1 + 1)S2 +K2(B)S1]

InitializeH(3)[k1, l2] = 0

Add H(3)[k1, l2]+ = Ĉ(r′, r, l1, l2)H
(2)[r′, l2, l1]G

(1)(B, r, k1, l1)

for all 1 ≤ k1 ≤ K1(B), l1 ∈ NZ(1)(B, r, k1), 0 ≤ r′ ≤ 2, 0 ≤ l2 ≤ q2.

Add b(B,k1,k2)+ = H(3)[k1, l2]G
(2)(B, r, k2, l2)

for all 1 ≤ k2 ≤ K2(B), l2 ∈ NZ(2)(B, r, k2), 1 ≤ k1 ≤ K1(B).

c) If [2(q2 + 1)S1 +K1(B)S2] > [2(q1 + 1)S2 +K2(B)S1]

InitializeH(3)[k2, l1] = 0

Add H(3)[k2, l1]+ = Ĉ(r′, r, l1, l2)H
(2)[r′, l2, l1]G

(2)(B, r, k2, l2)

for all 1 ≤ k2 ≤ K2(B), l2 ∈ NZ(2)(B, r, k2), 0 ≤ r′ ≤ 2, 0 ≤ l1 ≤ q1.

Add b(B,k1,k2)+ = H(3)[k2, l1]G
(1)(B, r, k1, l1)

for all 1 ≤ k1 ≤ K1(B), l1 ∈ NZ(1)(B, r, k1), 1 ≤ k2 ≤ K2(B).
The basic idea of this algorithm is to set up the auxiliary array

H(2)[r′, l2, l1] =
∑

B′

∑

{k′

1,k′

2}

v(B′,k′

1,k′

2)
ω

(1)
l1
ω

(2)
l2
G(1)(B′, r′, k′1, l1)G

(2)(B′, r′, k′2, l2)

and the vector
b(B,k1,k2) =

∑

{r,r′}

∑

{l1,l2}

H(2)[r′, l2, l1]Ĉ(r′, r, l1, l2)G
(1)(B, r, k1, l1)G

(2)(B, r, k2, l2)

by applying the more efficient summation order of {k′1, k
′
2} or {l1, l2} respectively depending on (B′, r′) and (B, r). Since we

always have to add up only the non-zero terms, one matrix vector multiplication has a total amount of work given by:

WMv =
∑

B,r

Wb(B, r) +
∑

B′,r′

WH(B′, r′),



18

with

WH (B′, r′) = min{ (q2 + 1)S1(B
′, r′) +K1(B

′)S2(B
′, r′), (q1 + 1)S2(B

′, r′) +K2(B
′)S1(B

′, r′) },

Wb(B, r) = min{2(q2 + 1)S1(B, r) +K1(B)S2(B, r), 2(q1 + 1)S2(B, r) +K2(B)S1(B, r) }

and Si(B, r) =
∑

ki
NZ(i)(B, r, ki), Si(B

′, r′) =
∑

k′

i
NZ(i)(B′, r′, k′i). The complexity of Algorithm VII.6 is still O(p3) but

it reduces the computing time significantly. (See Figure 2 and Tables I, II)

VIII. COLLECTION OF NUMERICAL RESULTS

This section collects all numerical results for the 2- and 3-dimensional case. For our computations we choseA(x) = I but proceed
as in the case of non-constant coefficients. The quadrature rules that we use are Gauss-Lobatto-Jacobi rules

QR = QR1 × . . .× QRd with QRi = S(i) ×W (i) = {(η
(i)
0 , ω

(i)
0 ), . . . , (η(i)

qi
, ω(i)

qi
)},

which incorporate the | detD′
d| terms. That is, we have the following weight functions:

ω = 1 for QR1, ω = (1 − η2) for QR2, ω = (1 − η3)
2 for QR3 .

For the 2-dimensional case we consider a quadrature order of q1 = q2 = pK and define the following 3 types of quadrature for
the 3-dimensional case:

Typ-1: q1 = q2 = q3 = pK , Typ-2: q1 = q2 = q3 = pK + 1, Typ-3: q1 = q2 = q3 = pK + 2.

Remark VIII.1: The quadrature of Typ-1 and the quadrature we use in the 2-dimensional case are not of the minimal possible
order. Indeed, setting up the stiffness matrix in 2D could also be done with q1 = pK , q2 = pK − 1.
The Lagrange shape functions Φ(Lag) are always adapted to the quadrature and we assume a uniform polynomial degree distribu-
tion onK. That is, all edges and faces of K have the same polynomial degree pK as K has. All computations are executed on the
same computer, a Pentium IV, 2400 MHz with 1GB main memory. Tables I- IV show the computing time for the generation of
the stiffness matrix (gen), for performing the static condensation (sc) and for one matrix-vector multiplication (Sv). Furthermore,
the abbreviations in the tables mean the following:

KS - our computation is performed with the shape functions Φ(KS)

Lag - our computation is performed with the shape functions Φ(Lag)

blas - our computation is performed with BLAS or LAPACK routines
sum fact. - our computation is performed with the sum factorization algorithm
spect Gal. - our computation is performed with the spectral Galerkin algorithm

We denote the total number of shape functions by DOF and the number of internal shape functions by INT.

Fig. 4. Setting up the element stiffness matrix - computing time - 2D

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Assemblation  − 2D

t[s
ec

]

polynomial degree

Lag − sum fact
Lag − spect Gal
Lag − const coeff.
KS  − sum fact
KS  − simple Alg
KS  − const coeff.

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Assemblation and static condensation  − 2D

t[s
ec

]

polynomial degree

Lag − sum fact
Lag − spect Gal
KS  − sum fact
KS  − simple Alg



19

Fig. 5. Setting up the element stiffness matrix - computing time - blockwise - 2D

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Lagr. − spect. Gal. − assemblation  − 2D

t[s
ec

]

polynomial degree

Int x Int
Edg x Int
Edg x Edg
Vtx x{Vtx,Edg,Int}
Init
Sc

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

KS − sum fact. − assemblation − 2D

t[s
ec

]

polynomial degree

Int x Int
Edg x Int
Edg x Edg
Vtx x{Vtx,Edg,Int}
Init
Sc

TABLE I
KS - COMPUTING TIME - QUADRATURE: qi = pK - 2D

pK DOF INT gen sc S*v (blas) S*v (sum fact)
4 15 3 1.98e-04 3.70e-05 3.00e-06 3.50e-05
5 21 6 2.97e-04 3.10e-05 4.00e-06 4.00e-05
6 28 10 4.56e-04 5.00e-05 4.00e-06 5.60e-05
7 36 15 6.95e-04 6.10e-05 8.00e-06 7.00e-05
8 45 21 1.10e-03 9.30e-05 9.00e-06 9.40e-05
9 55 28 1.58e-03 1.53e-04 1.20e-05 1.23e-04

10 66 36 2.29e-03 2.35e-04 1.40e-05 1.57e-04
11 78 45 3.29e-03 3.60e-04 1.90e-05 1.97e-04
12 91 55 4.62e-03 5.48e-04 2.50e-05 2.36e-04
13 105 66 6.40e-03 8.55e-04 3.70e-05 2.88e-04
14 120 78 8.64e-03 1.22e-03 4.20e-05 3.44e-04
15 136 91 1.13e-02 1.75e-03 5.90e-05 4.20e-04
20 231 171 4.02e-02 7.79e-03 2.10e-04 9.10e-04
25 351 276 1.00e-01 2.54e-02 4.04e-04 1.69e-03
30 496 406 2.27e-01 7.57e-02 6.89e-04 2.75e-03
50 1326 1176 2.27e+00 1.23e+00 4.49e-03 1.20e-02



20

TABLE II
LAG - COMPUTING TIME - QUADRATURE: qi = pK - 2D

pK DOF INT gen sc S*v (blas) S*v (sum fact) S*v (spect Gal)
4 18 6 2.18e-04 9.60e-05 2.00e-06 3.40e-05 2.30e-05
5 27 12 2.96e-04 1.16e-04 4.00e-06 4.10e-05 2.80e-05
6 38 20 4.30e-04 1.72e-04 4.00e-06 5.30e-05 4.90e-05
7 51 30 6.09e-04 2.55e-04 8.00e-06 6.70e-05 4.40e-05
8 66 42 8.62e-04 3.35e-04 1.80e-05 8.80e-05 5.30e-05
9 83 56 1.14e-03 5.58e-04 2.70e-05 1.14e-04 6.30e-05
10 102 72 1.62e-03 9.30e-04 3.60e-05 1.54e-04 7.70e-05
11 123 90 2.09e-03 1.51e-03 4.60e-05 2.03e-04 9.40e-05
12 146 110 2.81e-03 2.36e-03 6.40e-05 2.42e-04 1.11e-04
13 171 132 3.54e-03 3.54e-03 9.10e-05 3.01e-04 1.31e-04
14 198 156 4.63e-03 5.26e-03 1.25e-04 3.58e-04 1.53e-04
15 227 182 5.70e-03 7.51e-03 1.75e-04 4.27e-04 1.81e-04
20 402 342 1.66e-02 3.67e-02 5.32e-04 9.00e-04 3.61e-04
30 902 812 7.74e-02 4.03e-01 2.08e-03 2.69e-03 9.70e-04
40 1602 1482 3.02e-01 1.93e+00 7.00e-03 6.09e-03 2.11e-03
50 2502 2352 8.43e-01 7.31e+00 1.51e-02 1.15e-02 3.98e-03

TABLE III
KS - COMPUTING TIME - QUADRATURE: qi = pK - 3D

pK DOF INT gen sc S*v (blas) S*v (sum fact)
4 35 1 6.00e-03 1.43e-04 5.00e-06 7.65e-04
5 56 4 1.20e-02 2.76e-04 9.00e-06 1.20e-03
6 84 10 2.25e-02 6.24e-04 1.90e-05 1.81e-03
7 120 20 3.87e-02 9.92e-04 3.60e-05 3.23e-03
8 165 35 7.25e-02 2.45e-03 6.90e-05 4.35e-03
9 220 56 1.29e-01 5.57e-03 1.25e-04 6.92e-03

10 286 84 2.14e-01 1.16e-02 2.34e-04 9.47e-03
11 364 120 4.02e-01 2.48e-02 4.11e-04 1.28e-02
12 455 165 5.22e-01 5.00e-02 6.36e-04 1.63e-02
13 560 220 7.90e-01 9.71e-02 9.23e-04 2.22e-02
14 680 286 1.12e+00 1.83e-01 1.34e-03 2.78e-02
15 816 364 1.60e+00 3.37e-01 1.88e-03 3.61e-02
20 1771 969 8.21e+00 3.98e+00 9.07e-03 9.78e-02
25 3276 2024 2.80e+01 2.47e+01 3.08e-02 2.17e-01
30 5456 3654 7.59e+01 1.10e+02 8.52e-02 4.19e-01

TABLE IV
LAG - COMPUTING TIME - QUADRATURE: qi = pK - 3D

pK DOF INT gen sc S*v (blas) S*v (sum)
4 35 1 5.99e-03 1.35e-04 4.00e-06 7.69e-04
5 60 8 1.18e-02 3.30e-04 1.00e-05 1.21e-03
6 101 27 2.27e-02 1.03e-03 2.70e-05 1.97e-03
7 164 64 4.13e-02 3.29e-03 7.10e-05 3.03e-03
8 255 125 8.02e-02 1.12e-02 1.81e-04 4.37e-03
9 380 216 1.45e-01 3.44e-02 4.42e-04 6.75e-03

10 545 343 2.46e-01 1.12e-01 8.27e-04 9.15e-03
11 756 512 3.90e-01 3.12e-01 1.56e-03 1.23e-02
12 1019 729 6.21e-01 7.70e-01 2.85e-03 1.59e-02
13 1340 1000 9.65e-01 1.63e+00 5.18e-03 2.13e-02
14 1725 1331 1.43e+00 3.25e+00 8.56e-03 2.73e-02
15 2180 1728 2.13e+00 6.29e+00 1.37e-02 3.52e-02
20 5715 4913 1.34e+01 1.01e+02 9.30e-02 9.49e-02



21

Fig. 6. Setting up the element stiffness matrix - computing time - 3D

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
4

Assemblation − quadrature: q
i
=p

K
 − 3D

t[s
ec

]

polynomial degree

Lag − sum fact
Lag − spect Gal
Lag − const. coeff.
KS  − sum fact
KS  − simple Alg.
KS  − const. coeff.

10
1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Assemblation and static condensation −  quadrature: q
i
=p

K
  − 3D

t[s
ec

]

polynomial degree

Lag − sum fact
Lag − spect Gal
KS  − sum fact
KS  − simple

Fig. 7. Setting up the element stiffness matrix - computing time - blockwise - 3D

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Lag − spect.Gal. − assemblation − quadrature: q
i
=p

K
 − 3D

t[s
ec

]

polynomial degree

Int x Int
Face x Int
Face x Face
{Vtx,Edg}x{Vtx,Edg,Face,Int}
Init
Sc

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
4

KS  −  sum fact. − assemblation  − quadrature: q
i
=p

K
  − 3D

t[s
ec

]

polynomial degree

Int x Int
Face x Int
Face x Face
{Vtx,Edg}x{Vtx,Edg,Int}
Init
Sc

Fig. 8. Matrix vector multiplication - computing time

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

S*v − 2D

t[s
ec

]

polynomial degree

KS − blas
KS − on the fly − sum
Lag − blas
Lag − on the fly − sum
Lag − on the fly − spect

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

S*v − quadrature: q
i
=p

K
 − 3D

co
m

p.
 ti

m
e 

 t[
se

c]

polynomial degree p

KS − blas
KS − sum fact
Lag − blas
Lag − sum fact
Lag − sum fact − Φ

13
 part



22

Fig. 9. Different quadrature rules - assemblation and matrix vector multiplication - computing time - 3D

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Lag − assemblation(spect.Gal.) and  S*v(sum fact.) − 3D

as
se

m
bl

at
io

n 
tim

e 
 t[

se
c]

polynomial degree p

Typ1 − total
Typ2 − total
Typ3 − total
Typ1 − IntxInt
Typ2 − IntxInt
Typ3 − IntxInt
Typ1 − S*v
Typ2 − S*v
Typ3 − S*v

10
1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

KS − assemblation(sum fact) − S*v(sum fact)

as
se

m
bl

at
io

n 
tim

e 
 t[

se
c]

polynomial degree p

Typ1 − total
Typ2 − total
Typ3 − total
Typ1 − IxI
Typ2 − IxI
Typ3 − IxI
Typ1 − S*v
Typ2 − S*v
Typ3 − S*v

IX. CONCLUSIONS

In the last sections we discussed different algorithms for setting up the element stiffness matrix and performing on-the-fly matrix
vector multiplication. We considered the Karniadakis-Sherwin shape functions Φ(KS) in combination with both the standard
quadrature algorithm and the and sum factorization technique; we also introduced modified shape functions ΦLag that gener-
alize the spectral Galerkin ideas of [7] to triangular and tetrahedral elements. The numerical results of Section VIII show the
following:

• The standard method is by far the slowest algorithm in any case.
• Due to the increased number of internal shape functions, using Φ(Lag) leads to better approximation results. Moreover, in

2D setting up the element stiffness matrix with the spectral Galerkin algorithm in conjunction with Φ(Lag) is significantly
faster than setting up the stiffness matrix for Φ(KS) with sum factorization. In 3D, the shape functions Φ(Lag) contain almost
six times as many internal shape functions as Φ(KS); nevertheless, the time to set up the element stiffness matrix with the
spectral Galerkin algorithm in conjunction with Φ(Lag) is, for pK ≤ 20, almost the same as setting up the stiffness matrix
for Φ(KS) with sum factorization.

• Due to the increased number of internal shape functions, the static condensation process for the element stiffness matrix
based on Φ(Lag) is considerable slower as the static condensation process for the element stiffness matrix based on Φ(KS).
However, for the 2D case and pK ≤ 20 the computing time for setting up the condensed element stiffness matrix is in the
case of Φ(Lag) in conjunction with the spectral Galerkin algorithm almost the same as for the case of Φ(KS) together with
sum factorization. In the 3D case this point is reached already for pK = 8.

• A significant speed-up for setting up the element stiffness matrix can be obtained on elements with constant coefficients.
• Considering an hp-implemention using on-the-fly matrix vector multiplications, we obtain in the 2D case a significant speed-

up using the modified shape functions Φ(Lag) in conjunction with Algorithm VII.6.

REFERENCES

[1] C. Bernardi and Y. Maday. Spectral methods. In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, Vol. 5. North Holland, 1997.
[2] L. Demkowicz, K. Gerdes, C. Schwab, A. Bajer, and T. Walsh. A general and flexible fortran 90 hp-FE code. Computing and Visualization in Science,

1:145–163, 1998.
[3] L. Demkowicz, T.J. Oden, W. Rachowicz, and O. Hardy. Towards a universal hp finite element strategy. Part 1. Constrained approximation and data

structure. Comput. Meth. Appl. Mech. Engrg., 77:79–112, 1989.
[4] T. Eibner. Algorithmik der randkonzentrierten FEM. PhD thesis, Technische Universität Chemnitz, (in prep.).
[5] G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods for CFD. Oxford University Press, 1999.
[6] Y. Maday and E.M. Rønquist. Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput.

Meth. Appl. Mech. Engrg., 80:91–115, 1990.
[7] J.M. Melenk, K. Gerdes, and C. Schwab. Fully discrete hp-FEM: fast quadrature. Comput. Meth. Appl. Mech. Engrg., 190:4339–4364, 2001.
[8] J.M. Melenk and C. Schwab. hp FEM for reaction-diffusion equations I: Robust exponentional convergence. SIAM J. Numer. Anal., 35:1520–1557, 1998.
[9] J.M. Melenk and B. Wohlmuth. On residual-based a posteriori error estimation in hp-FEM. Advances in Comp. Math., 15:311–331, 2001.

[10] S.A. Orszag. spectral methods for problems in complex geometries. J. Comput. Phys., 37:70–92, 1980.
[11] C. Schwab. p- and hp-Finite Element Methods. Oxford University Press, 1998.
[12] P. Šolin, K. Segeth, and I. Doležel. Higher-order finite element methods. Chapman and Hall/CRC, 2003.
[13] B. Szabó and I. Babuška. Finite Element Analysis. Wiley, 1991.




