MATHEMATICS DEPARTMENT

The Implementation of a Direct Domain Decomposition Method
on a Small Transputer System

K.J. Neylon

Numerical Analysis Report 3/92

UNIVERSITY OF READING

The Implementation of a Direct Domain Decomposition Method
on a Small Transputer System

K.J. Neylon

Numerical Analysis Report 3/92

Department of Mathematics
P.O. Box 220
University of Reading
Whiteknights
Reading
RG6 2AX
United Kingdom

Abstract

Domain decomposition methods for the solution of BVPs divide the prob-
lem into smaller sub-problems at the discretisation stage by dividing the domain
into sub-domains. On each of these sub-domains, the corresponding sub-problems
can be solved separately before being combined to give the solution on the com-
plete domain. This has obvious advantages in parallel computation where each
sub-problem can be solved simultaneously on separate processors. Also, non-

concurrency based benefits exist for particular types of problems.

Most domain decomposition methods have some iterative feature or involve
the solution of a dense matrix system. In this report, a direct domain decom-
position method which involves matrix systems with the normal discretisation
sparsity pattern is described. Numerical results from the implementation of this
method on a two transputer parallel system are presented and execution time
values given show that the method does indeed parallelise well. However, it is
also found that a restrictively small time step is needed for the error introduced
by the decomposition to be of the same order as the error of the underlying

discretisation.

Contents

1 Introduction 1
2 Brief Description of Transputer System 2
2.1 Hardware 2
2.2 Software 2
2.3 Considerations for Algorithm Design 3
2.4 Timing of Applications L. 3
3 Domain Decomposition 4
3.1 Domain Decomposition Ideas 4
3.2 Common Domain Decomposition Methods 5
3.3 A Direct Domain Decomposition Method 6
4 Numerical Experiments 10
4.1 Test Problemso 10
4.2 Discretisation of Test Problem 11
4.3 Details of Application of Method 12
4.4 Parallel Implementation on Transputer System 16
4.5 Time Step Restriction 00 20
4.6 Position of Partition and Balancing of Application 24
5 Conclusions 25
6 Acknowledgements 26

References 27

i

1 Introduction

The need to perform extremely large numerical calculations in reasonable time
scales has led to the need for greater and greater computing power. One way of
fulfilling this need is to increase the performance of individual processing units
above the level currently attainable in semiconductor based devices by the use of
radical new materials (e.g. superconductors) but, as yet, much work is needed

before this becomes a practical possibility.

Since it is relatively cheap to mass-produce powerful semiconductor based
processors, another way of increasing power is to use separate processors on a
single application at the same time to share the computational task - parallel
computation. All modern ‘super-computers’ are parallel machines. There are
two important distinctions when performing a simple classification of a parallel
machine; the degree of granularity and the type of memory access. There may be
a small number of sophisticated processors (coarse granularity), each of which can
perform reasonably complex computational tasks independently, or there may be
many simple processors (fine granularity), each of which can only perform small
computational tasks. Some machines operate with a shared memory environment
where each processor has direct access to a common memory. Others have a dis-
tributed memory associated with individual processors and, for a processor to
gain access to data held in another processor’s memory, these processors must

communicate directly.

This report is concerned with an application for solving partial differential
equations on small transputer systems. These systems have a coarse grained,
distributed memory architecture. For an application to be suited to this type
of system, there must be at least a coarse degree of concurrency inherent in the

algorithm.

Domain decomposition methods present a means of imposing coarse concur-
rency on existing sequential PDE solvers. In these methods, the basic idea is to
break up the domain into sub-domains, solve each sub-domain problem separately,
and match the local solutions together. On a parallel computer, the sub-domain

problems can be distributed to the different processors and solved simultaneously.

In this report, the application of one particular domain decomposition method
on a two processor transputer system is described. Numerical experiments are
conducted on two example problems and timing values are obtained. A restriction

on the time step for reasonable accuracy with this method is also identified.

2 Brief Description of Transputer System

2.1 Hardware

A transputer is a single chip microprocessor designed as a building block for
parallel processors. To facilitate this, each transputer has both memory and four
links (which allow it to be connected to other transputers to form a system). The

four links allow many inter-connection topologies to be implemented.

The transputer system used for the work in this report consists of five T800
transputers which are linked in an open-ended pipeline topology (Figure 1), so
each transputer can only communicate directly with its two nearest neighbours.
Note that an open-ended n-stage pipeline network has (2n 4 1) free (or unused)
links and therefore does not make optimum use of the transputer communication

facilities. The host system is a PC.

Host] |

Figure 1: Open-ended Pipeline Topology

2.2 Software

Transputers are designed to implement the parallel programming language
OCCAM very efficiently. However, due to the large amount of financial (and
man-programming-hour) resources residing in FORTRAN code, parallel FOR-
TRAN packages are also available for transputers. 3L Parallel FORTRAN, [9],
is installed on the Reading system and all the parallel programming used in the
work described in this report has been carried out using this package. There are
two types of software parallelisation available in 3L, Parallel FORTRAN, tasks
and threads - the most important of which is the task.

A task is a self-contained FORTRAN program. Task structure is static (i.e.

tasks are not created or destroyed dynamically during execution) and no hier-

archy exists (i.e. there is no facility for ‘sub-tasks’ within tasks). A complete
application is viewed as a collection of one or more tasks. There is no memory
sharing between tasks. They communicate with each other via channels which are
one-way communication paths with fixed starting and finishing points. The task
structure has the advantage that it is easy to adapt the application to execute on
any number of transputers (up to the number of tasks in the application) since
the distribution of tasks on the available transputers is controlled by a single piece
of software - the configurer - which in turn is controlled by a small user-generated

input file - the configuration file.

A task may contain several concurrent threads - a thread is a FORTRAN
subroutine. These are created and destroyed during execution and are potentially
hierarchical (i.e. a thread may be created from within another thread). Threads
have shared common blocks. For programming ease, only the tasks structure was

used in the programming of the applications in this report.

2.3 Considerations for Algorithm Design

An important feature of transputers is that communication between them is
very much slower than communication within a particular transputer, so commu-
nication between transputers should be kept to a minimum (i.e. each transputer
should do a small amount of communicating and a large amount of processing).
Also, since transputers have only local memory and, in a pipeline network, they
may only communicate directly with their two nearest neighbours, then data re-
quired by a transputer from a non-adjacent transputer must be passed along the
chain through the intermediate transputers - this type of communication is very
inefficient and so should be avoided. This is not a problem in the applications
described in this report since only two tasks (and hence only two processors at

most) are used.

2.4 Timing of Applications

The mechanism used for obtaining the timing values for the execution of the
applications during this report is the low priority clock on the transputers com-
bined with the TIMER utility in the 3L Parallel FORTRAN package. The low
priority clock cycles at 15625 ticks/second and has a wrap round period of 2°2 ticks
(just over three days).

3 Domain Decomposition

3.1 Domain Decomposition Ideas

Domain decomposition methods for the numerical solution of partial differen-
tial equations involve dividing the region in which the equations are to be solved
into (possibly overlapping) sub-regions. When the problem on the whole region is
discretised (e.g. by the finite difference method or the finite element method), the
interior unknowns of one sub-region are not directly coupled to those of another
sub-region - they are only coupled via the variables in the overlap region. The
number of overlap variables is typically small compared to the overall number
of unknowns. By careful treatment of these overlap variables, the problems on
the sub-regions can become completely decoupled - hence these problems can be

solved simultaneously on separate processors of a parallel computer.

From [4], domain decomposition methods can also have benefits outside a

parallel computing environment:

e The decomposition of a problem into sub-problems is advantageous when

solving very large problems on a machine with limited storage.

e Some very efficient numerical techniques exist (e.g. discrete Fourier meth-
ods), although many of these can only be applied to problems on domains
with regular geometries. The domain decomposition method can be used to
divide a problem on an irregular region into sub-problems on regular sub-
domains (in this application, the domain decomposition method is similar

to the capacitance matrix technique [2]).

o When generating a numerical grid to discretise a geometrically complex do-
main in two or three dimensions, the whole region can be split into distinct
sub-domains on which it is easier to apply algebraic or PDFE grid generation
techniques [3]. This is the motivation behind the multiblock domain decom-

position philosophy currently in favour in the aeronautics industry [1].

e In many practical problems, the nature of the governing equations changes
throughout the domain or the equations have different parameters in dif-
ferent regions, in which case the idea of sub-dividing the region to allow
different solution techniques to be more easily implemented in the different

regions comes very naturally.

Only the parallel implementation of one particular domain decomposition method

is discussed in this report - these other benefits are not investigated.

3.2 Common Domain Decomposition Methods

Many domain decomposition approaches for the solution of boundary value
problems have some iterative feature. In general these are based on work origi-

nally done by Schwarz [8] who proposed solving the Poisson equation,
Vi%u=fin Q@ , wu=g¢g on 09

by dividing © into two overlapping sub-domains, €y and Qy (Figure 2), and

6Q

Figure 2: Schwarz Decomposition

solving the two sub-domain problems. The solution on each sub-domain is used
to update the overlap boundary data for the adjacent domain. For the decompo-
sition shown in Figure 2, an initial guess, «, may be specified for the solution on
I'1. The problem on €2 is then,

Vzul = f n Ql
with boundary conditions,
u; =g¢ on 09 NN

U, —« on Iy

The solution uf on €, provides boundary data 3 on I'y for the solution of a similar
problem on 25 which in turn leads to an improved iterate on I'y - the procedure
can then be repeated. Convergence of this method can be proven by the maxi-
mum principle. (This procedure is easily parallelised by providing initial starting

iterates on I'y and I'y simultaneously and solving concurrently.)

Other decomposition methods involve condensing out a system of equations

for the overlap variables from the complete discrete system by forming the Schur

complement of the matrix for the complete problem - this involves forming and
solving a relatively small but dense matrix system for the overlap variables (as
opposed to the sparse matrix system generally generated by the discretisation of
the PDE) and then using the results of this as boundary conditions for the (now

distinct) sub-regions.

The domain decomposition approach used in this report [7] involves no itera-
tion and there are no dense matrix systems to generate, store and solve for the

overlap variables.

3.3 A Direct Domain Decomposition Method

To introduce the domain decomposition method from [7], consider the discre-
tised form of a partial differential equation (which applies in a region), given

by a system of linear equations for the nodal unknowns,
Au=f (1)

The region) can be partitioned into two distinct sub-regions, €); and 2, as

shown in Figure 3, with

Au1 = fl and AUQ = f2 (2)
where
f
£ = =
0 €O,
and
0
£, — c Oy
f e,

Note that € could have been partitioned into any number of distinct sub-

domains but the case with two sub-regions will serve to illustrate the method.

Figure 3: Non-overlapping Partitioning with Two Domains

Since the systems are linear, then by super-position the solution to (1) is
u=u; +u

This method for finding the solution to (1) involves solving two systems each
the size of the original system, so there appears to be no benefit in this approach
- even when implemented on a parallel machine. However for problems which,
when discretised, give rise to strictly diagonally dominant matrices, the solution

to

Aui = fZ

decays to zero outside €); away from the partitioning boundary. For example, the

numerical solution of a parabolic problem, the 1-D heat equation,
U = Uy, on Q=1[0,1 , t>0

with initial condition,
. (7T
u(x,0) = sin (—)
2
and boundary conditions,

u(0,)=0 , wu(l,t)=1

using two distinct domains,

by a Crank-Nicolson finite difference method with three point central spatial

discretisation and Az = At = 107 after one time step is shown in Figure 4.

075 075
5 05 5 05

025 K 025+ J
0.4 T 0.4 T

LI e e T T T T T T
0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

Figure 4: Decay of Solution away from Partitioning Boundary

This figure demonstrates the decay of the solution to the sub-problems (2)

away from the partitioning boundary for this particular example, i.e. u; decays

to zero rapidly in Qy (left plot) as does uy in y (right plot). Therefore, if an
artificial internal boundary with homogeneous Dirichlet boundary condition is
placed somewhere in €2, far enough away from 2; for the exact solution to be
in some sense ‘small’ there, then the solution can be obtained as the sum of the
solutions on the sub-regions. The problem is now being solved on two overlapping

sub-regions - the notation for this partitioning is shown in Figure 5.

o]

Figure 5: Overlapping Partitioning with Two Domains

Formalising this, let A, and A, be the matrices arising from the discretisation
of the problem in two overlapping sub-regions, 0, and QQ, and let f, and f; be

the restrictions of f; and f; to Ql and QQ, i.e.

A N A A

f1:f1€Q1 y fQZfQEQQ
After solving the systems,

A =f A, =1 (3)
let u; be the prolongation of G; to obtained by augmenting it with 0 outside
Qi, le.

u, €0
u; = .
0 otherwise

and

{ﬁz e,
Uy =

0 otherwise

If the size of the overlap region has been chosen so that the solution on Q; is the
same (to some prescribed tolerance) as the solution on € using distinct domains,

then the solution to (1) is given by
u~ u;+ uy

When applying this domain decomposition method numerically, the aim is to

make the error introduced by the domain decomposition of the same order as the

error caused by the discretisation of the problem.

The class of problems which give rise to matrices which are strictly diago-
nally dominant is not restricted to parabolic problems. For example, the elliptic

problem known as the Helmholtz equation,
Vu—cu=f (c>0)

can also have this property.

Note that no iteration is required in this method and both the matrices in
(3) are as sparse as the original matrix in (1). If the overlapping region is small
compared to the size of the whole region then the computational work done in
solving the two sub-systems is not very much more than that used to solve the
original equation. The sub-systems can be generated and solved simultaneously

on separate processors in a parallel computer.

4 Numerical Experiments

4.1 Test Problems

The test problem is the constant coefficient, two-dimensional heat equation,
u — Viu= f(z,y,t) , t>0 (4)

on the unit square,
Q={0<2<1,0<y <1}

with initial condition,
u(:z;, Y, 0) = ui(xv y)

and Dirichlet boundary conditions,
u(x,y,t) given on I

Problem A :

flx,y,1) = (20 — a)e™ ' sin(ra) sin(ry)
u(z,y,t) =0 on N
u;(x,y) = sin(wx) sin(7y)
This has exact solution,
u(z,y,t) = e sin(zz)sin(ry)
Problem B :

T

Fla,y,t) = (4 _ oz) ¢~ sin (2) sin(ry)

Tr =

y=20,1

u(z,y,t) =0 on {

u(z,y,t) = e “sin(ry) on x =1

T

ui(z,y) = sin (2) sin(7y)
This has exact solution,

u(z,y,t) = e “'sin (7;1;) sin(7y)

10

4.2 Discretisation of Test Problem

A Crank-Nicolson finite difference scheme on an regular Cartesian mesh with

a five point spatial stencil is used to discretise (4), which then becomes,

n+l . n
i i
At
L a2 N ufjpn = 2ul; Fu;
2 (Az)? (Ay)?
n Dfulfyy = 2uf T+l el = 20 4 ul
2 (Az)? (Ay)?

(L+ ffrl) (5)

1
2
where Az is the mesh size in the z-direction

Ay is the mesh size in the y-direction
At is the time step
ul s & u(tAz, jAy, nAt)
and fl', = f(iAx, jAy,nAt)
The Crank-Nicolson scheme is popular because of its second order accuracy both

spatially and temporally, i.e. the truncation error, 7.,

is given by

7 = O(Az)’ 4+ O(Ay)? + O(Al)?

27]

and also because it is unconditionally stable, i.e. no restriction need be placed on
the size of the time step used to ensure that the numerical solution is bounded.

Rearranging (5) by grouping the values at the current time step on the right hand

side gives
Ty Y S A R S ﬁ(nog ?%frl)
1,7 1,7 - 2Y 1,7 2 1,7 1,7
where
noo__ n n n n n
L= vl — vl s+ 2ve F vy ul; — veuliy = vpuly

At At
vy = () and v, = TENNE
If natural ordering is used to number the interior (i.e. non-boundary) nodes
in the region with the increment being faster in the y-direction, then the resulting

matrix system for the interior unknowns is
Au=f (6)

where A is a symmetric, strictly diagonally dominant, penta-diagonal matrix of

band-width N, (and N, is the number of interior nodes in the y-direction).

11

4.3 Details of Application of Method

A two domain overlapping partitioning (Figure 5) is used with the overlap

region being,
Ny ={l—y<a<l4y0<y<1} . >0

i.e. the overlap is symmetric about = = %

On the transputer system, only the overlap variables are passed between the
transputers, fulfilling the objective of low communication for a distributed mem-
ory machine if the overlap region is not large relative to the size of the whole

region.

The matrix systems (6) resulting from the discretisation are large, sparse,
symmetric and strictly diagonally dominant. These are solved using the precon-
ditioned conjugate gradient (CG) method [6], with the preconditioner being the
diagonal entries of the matrices. At each time step the previous non-updated
solution on each domain is used as the initial estimate in the CG iteration on

that domain; in the notation of (3) convergence is taken to have occurred when

| Aty — £ _7
[I44dt = Rilla
Ifill:

In the numerical tests in the remainder of this section, the mesh size is taken
as four times smaller in the a-direction than in the y-direction (this extra fineness
in the z-direction is used to ensure that the decay of the solution in the overlap
region on the two sub-regions is resolved). The size of the overlap is taken to be
a quarter of the size of the whole region (i.e. v = %).

Since the truncation error of the discretisation is second order both spatially
and temporally, then the time step is taken to be of the same order as the mesh
size. i.e. At = O(Az){= O(Ay)}. Various problem sizes (i.e. various numbers
of nodes in the discretisation) are used and the value of the exponential decay

parameter («) in the test problems is adjusted so that the solution is half its

original size after 10 time steps.

Figures 6 to 11 which follow show the solutions by the direct domain decom-
position method for a 1600 node case in both Problems A and B after 0,5, and
10 time steps. These figures show the expected form of the complete solution
(i.e. the original shape decays uniformly). The rapid decay of the solutions in

the overlap region on each domain region is also clearly shown.

12

P
A
[II
ittt
"””ll""""l"ll"l“lII
it
Ty

i mmlmll
it
L
s
s “
st
[
frmmm|
fmmm ||
ST
AT
[T

Domain 2

(i

i

Domain 1

0.0000

Complete Solution at t =
Figure 6: Initial Data for Problem A (1600 nodes)

Domain 2

|
Domain 1

0.0125

Complete Solution at t =

Figure 7: Solution for Problem A after 5 time steps

13

[T

===

[T

Domain 1

Domain 2

==

Complete Solutionatt= 0.0250

Figure 8: Solution for Problem A after 10 time steps

g
FHE

LTI
T
[ITHT TR
[T
T

FUTITIWHTTINTT
ITLVRLRURUARYRRR RN
fITATACACATAAAON |
] I ittt

g Sy

TR

[

Domain 1 Domain 2

Complete Solutionatt= 0.0000
Figure 9: Initial Data for Problem B (1600 nodes)

14

Domain 1

Figure 10: Solution for Problem B after 5 time steps

Ty

T
TRV
T
T
ST T
LAV RMRVAAAARRRRRRR AR
AR
HITTTTTETTTTTTATTTT
I|I||III\IIIII\\\\\\\\\\\\\\\\\\\\\
TETTTIETITTTATTT

i
Y

Domain 1

Complete Solution att =

AAIRMAARMARAY
AT
LTIV

i
T

[
Illllllllllllllllllllml"lll"’
[,
ittt
S i
Illlllllllllllllllllllmllllllll|l||

i
[

il
LTI

Domain 2

0.0125

I

==

%

I

Ee==

Domain 2

Complete Solution at t =

0.0250

Figure 11: Solution for Problem B after 10 time steps

4.4 Parallel Implementation on Transputer System

Three different solution approaches are used on the transputer system :

1. Solution without domain decomposition on a single transputer (CN).
The problem is coded as a single task (i.e. self-contained program),
spatially discretised by a single mesh over the whole region and the

resulting matrix system is solved by CG iteration at each time step.

2. Solution on two domains on a single transputer (DD;). The problem
is coded as a single task and the complete region is divided into two
overlapping domains, each of which is discretised and the resulting
matrix systems at each time step are solved separately and then the
overlap region in both domains is updated using the solution from the

other domain.

3. Solution on two domains on two transputers (DD,). The problem is
coded as two tasks, each of which is dedicated to solving the problem
on a single sub-domain and communicates the overlap variables to the

other for updating at the end of every time step.

In order to obtain the timing values for a single time step, the applications are run
several times for 10 time steps, then the average elapsed time is divided by the
number of time steps. The timing values for the three approaches on Problems

A and B are shown in Tables 1 and 2 respectively.

Problem | Solution Technique
Size CN DDy, | DD,
400 0.443 | 1.270 | 0.641
800 1.056 | 3.295 | 1.663
1600 2.667 | 8.409 | 4.234
3200 6.422 | 20.271 | 10.215
6400 | 15.872 | 48.875 | 24.615

Table 1: Execution time (in seconds) per time step for Problem A

From Table 1, it can be seen that for Problem A, the solution without do-
main decomposition (CN) is faster than the domain decomposition method, even
when this is implemented on two transputers (DD;). However assuming that the
communication overheads do not increase too much, these timing values suggest
that if the region were to be divided into four overlapping domains (instead of the

current two) and four transputers were used to solve the resulting matrix systems

16

Problem | Solution Technique
Size CN DDy, | DD,
400 1.270 | 1.305 | 0.644
800 3.023 | 3.433 | 1.673
1600 7.428 | 8.736 | 4.235
3200 | 17.628 | 21.294 | 10.360
6400 | 42.287 | 51.448 | 25.076

Table 2: Execution time (in seconds) per time step for Problem B

simultaneously, then the execution times with the domain decomposition method
would be comparable with those without domain decomposition. This has not
been attempted because the existing pipeline topology of the available transputer
system makes the implementation of applications on more than two transputers
unwieldy. It is planned that the hardware configuration of the transputers will
be adjusted in future to overcome this problem. Table 2 shows that the solution
on two transputers is faster than the solution without domain decomposition for
Problem B. Note that the execution time for DD, is approximately half the ex-
ecution time for DD; for both Problems A and B and all problem sizes, which
shows that the application is reasonably well balanced on the transputer system

- the domain decomposition method has been correctly parallelised.

If 5 is the ratio of the execution time of the two-transputer application to the

method with no domain decomposition, i.e.

Execution time for DD,

"= Execution time for CN

then the values of 1 for Problems A and B are given in Table 3.

Problem n
Size Problem A | Problem B
400 1.447 0.507
800 1.575 0.553
1600 1.588 0.570
3200 1.591 0.588
6400 1.551 0.593

Table 3: Execution Time Ratio for Parallel Implementation

17

Generally, n increases with problem size showing that the increase in com-
putational work is outweighed by the increase in communication (of the overlap
variables) between the transputers at each time step in DDy, resulting in the

performance of DD, decreasing relative to CN.

In terms of execution time, the domain decomposition method is less successful
on Problem A than on Problem B. This is because, in Problem A, the number
of CG iterations used per time step to solve the discretised equations on each
sub-domain is about 3-4 times greater than the number for the complete region
(Table 4). Even though the discrete problems on the sub-domains are smaller,
this manifests itself in DDy being about three times slower than CN (Table 1).
For Problem B, a comparable number of CG iterations is needed on each sub-
domain as on the complete region (Table 5), so the domain decomposition is more

effective.

Problem Region
Size | Domain 1 | Domain 2 | Complete Region
400 23 23 8
800 30 30 10
1600 37 37 13
3200 45 45 16
6400 54 54 21

Table 4: Number of CG iterations per time step for Problem A

Problem Region
Size | Domain 1 | Domain 2 | Complete Region
400 23 25 29
800 30 33 35
1600 37 41 42
3200 46 50 50
6400 55 60 60

Table 5: Number of CG iterations per time step for Problem B

The difference in the ratio of the number of CG iterations needed to solve on
the whole region and the number needed to solve on the sub-domains for the two
problems is caused by a special property of Problem A combined with the initial

iterate used at each time step in the CG iteration. Since the domain is a unit

18

square, then the homogeneous Dirichlet boundary condition in Problem A causes
the implicit part of the five-point discrete differential operator (i.e. the matrix A

in (6)) to have a fundamental eigenvector,
{e1}ir—1)n, = sin(erAz) sin(jrAy)

where
1< <N, and 1 <j <N,

This fundamental eigenvector is the same as the spatial components of both the
solution to the discrete problem and the right hand side of the discrete differential

equation.

From [6], at the k' iteration, the CG method finds an approximation, i, to

the solution, u, of the matrix system (6) by minimising the functional,
o(1y) = tu) Aw, — uff
over the Krylov space spanned by,
{ro, Arg, A’rg, ..., AF7'r)
where 1, is the residual vector defined by,
r, = Au, — f

As already stated in Section 4.3, the initial iterate at each time step is taken as
the solution from the previous time step. Hence for Problem A, 0y (and subse-
quently rg) also has the form of the eigenvector. So for the complete region in
Problem A, the CG method looks for the solution in the set of vectors which spans
the spatial component of the solution, which leads to extremely fast convergence.
When the region is decomposed into sub-domains, this property is no longer true

and the sub-problems require many more iterations for convergence.

This effect is observed even if the initial iterate is taken to be zero at all points
in the region because ry still has the form of the eigenvector. However, if 04 is
taken to be unity at all interior points, then ry no longer has the form of the
eigenvector and the CG method converges at the same rate for the problem on

the complete region as for the problems on the sub-domains.
Problem A is therefore an unfair test of the parallel performance of the domain

decomposition method because of the fast convergence properties of the problem

on the complete region.

19

4.5 Time Step Restriction

As already stated in Section 2, the error introduced by the domain decomposi-
tion should be of the same order as the error caused by the discretisation so that
the decomposition does not corrupt the numerical solution. Figure 12 shows the
ratio of the error in the discretisation (found by comparing the CN solution with
the exact solution) and the error in the decomposition solution (again found by
comparison with the exact solution) for all points in the region for both Prob-
lems A and B (and a problem size of 1600 nodes).

Problem A

—_—

150 150

100 100

\
x‘\\

l il
it ||i|HfHﬂ|'ll'|'|'l'l'l'ﬁ'l'l’ﬂ'nu
ittt

A I
° A\llll\lll\lll\lll‘lll‘lllll‘lll{llll“l}lllﬁIIH{Hllllﬂl,lllll'l,l'l'l,l,l,l'l,l,lllllllllllll o

Error Ratio (decomposition/discretisation)

Problem B

50

7l
oy
i,
A e
. \\\\\\\\\l\\\\\l\‘\‘\\“‘l\'l|||“|m|||h|||fHhnlummlllllllllll|IIIL .

Error Ratio (decomposition/discretisation)

100

Figure 12: Ratio of Decomposition Error to Discretisation Error after 10 time

steps

Table 6 shows the ratio of these errors for all the problem sizes. This ratio
increases with problem size (apart from the 6400 node case where, since all the
calculations were performed in single precision, the theoretical discretisation error
is not achieved due to machine round-off errors), showing that the error caused

by the decomposition decreases at a slower rate than the discretisation error.

As stated in Section 3.3, the feature of the discretised form of the PDFEs consid-

ered which causes the decay of the solutions for the sub-problems in the overlap

20

Probler | | 5ScEeios Ber ..
Size Problem A | Problem B
400 38.4 42.1
800 70.3 80.2
1600 160.6 195.6
3200 433.6 416.1
6400 45.2 51.7

Table 6: Ratio of Decomposition Error to Discretisation Error

regions is the strict diagonal dominance of the resulting matrices. Demko [5]
proved exponential decay for the inverses of banded, strictly diagonally dominant

matrices in the form of the following proposition.

PROPOSITION : Let A =1— B be a band matriz with b;; =0 if |t — 7| > m.
Assuming that |Bl|, = r < 1 for some 1 < ¢ < oo, then the entries, a;;, of A™
satisfy

li—=y]

T m
il < 37—+ where v < |[Bll,

The actual decay rate of the entries in the inverse for the matrices in Prob-
lems A and B will be faster than this result suggests because (i) the discretisa-
tion is such that the matrices are sparse (as well as being banded), and (ii) the
entries on the out-riding diagonals are smaller than those on the super- and sub-
diagonals. Neither of these additional matrix structures are taken in to account in
the bound above. For the partitioning used in these numerical experiments, the
decay rate required by the decomposition method is one such that the solution
in the middle of the overlap is only weakly connected by an entry in the inverse

to the solution at the edge of the overlap.

In general, m is determined by the mesh size and the distance of the inverse
entry of interest from the diagonal is determined by both the mesh size and the
size of the overlap. The required size of the entry is determined by the size of
the RHS vector, as seen in Figure 12, where the error is larger at the end of the

overlap from the ‘larger’ solution region in the asymmetric case (Problem B).

21

For a given size of overlap and mesh, the main influence on the decay is || B||,.
A value of || B||, within some tolerance, 6, is required for the connecting entry in

the inverse to be sufficiently small. For the matrix system resulting from (5),

1Bl = 4(vy + 1) = 2At ((Alm)2 n (Aly)Q) <0

Since Ay = 4(Ax) for the meshes used in the examples, it is sufficient that the

time step satisfies

At < O(Az)?

so that the domain decomposition solution does not corrupt the underlying finite
difference one. Figure 13 shows the same error ratio as Figure 12 but with a
time step of At = O(Ax)?. From this it can be seen that the discretisation error

is of the same size as the decomposition error when this time step restriction is

imposed.
Problem A
B -
N i
il i
o Ul | 0s Problem B
Error hatio (decomposition/discretiéation)
B —
N
W

Error Ratio (decomposition/discretisation)

Figure 13: Ratio of Decomposition Error to Discretisation Error after 10 time

steps

So, although the discretisation method is unconditionally stable and accuracy

considerations imply only a first order time step restriction, error results from the

22

implementation of the domain decomposition indicate a second order time step

restriction.

23

4.6 Position of Partition and Balancing of Application

Problem A is symmetric about the decomposition partitioning, hence the prob-
lem sizes are equal on the two sub-domains and the same number of CG iterations
are required to solve the problems on these sub-domains (Table 4). When this
problem is solved by DD, there is minimal latency time i.e. the time which one
transputer spends idle during a time step while waiting for the other transputer
to complete its computational task. DD, for Problem A is therefore a well bal-

anced application.

Problem B is asymmetric about the decomposition partitioning and, although
the problem sizes are equal on the two sub-domains, the solution on domain 2
requires more CG iterations (Table 5). Hence the transputer solving the problem
on domain 1 has to idly wait during each time step until the transputer solving

the problem on domain 2 has completed these extra iterations.

x co-ordinate of | Number of CG iterations | ||Decomposition Error/
centre of overlap | Domain 1| Domain 2 Discretisation Error||
0.4 37 42 216.8
0.5 37 41 195.6
0.6 38 40 183.3

Table 7: Effect of Overlap Position

Table 7 shows the number of CG iterations required in both sub-domains for
Problem B (with a problem size of 1600 nodes) for various overlap positions.
From this table it can be seen that it is possible to decrease the latency time by
moving the overlap from the centre (@ = 0.5) in the positive = direction. This
has the effect of increasing the size of the problem on domain 1 and decreasing it
on domain 2, so the problem on domain 1 requires more work per iteration (and
fewer iterations) than the problem on domain 2. A repositioning of the overlap
of this form could be made to improve the execution time efficiency of DDy on
Problem B still further but this avenue of investigation has not been pursued in

detail in this report.

Table 7 also shows the maximum value of the error ratio described in the pre-
vious section for various overlap positions. This shows that an added advantage
in the use of repositioning the overlap to decrease the latency time is that the

error ratio can be decreased.

24

5 Conclusions

A direct domain decomposition method for the numerical solution of boundary
value problems in which the discretisation leads to strictly diagonally dominant

matrices has been presented.

This method has been used to decrease the execution time for test problems by
allowing efficient implementation on a two-transputer parallel computer system.
However, it has also been demonstrated that, when using this method, a second
order time step restriction should be applied so that the error introduced by the
decomposition does not seriously add to the underlying discretisation error. With
this in mind, it may be preferable to use an explicit Euler temporal discretisa-
tion which requires less computational work since it does not need a (numerical)
matrix inversion at each time step. The scheme is then only first order accurate

in time but there is a second order time step restriction for stability.

The investigations carried out on the method in this report are by no means
exhaustive and many issues are open to research, e.g. the ‘optimal’ size and
position of the overlap for general problems and the effect of increasing the number

of domains (and also the number of transputers).

25

6 Acknowledgements

K.J. Neylon is supported financially by a NERC CASE studentship with the
collaborating body being the Institute of Hydrology, Wallingford. He wishes to
thank Dr. M.J. Baines and Dr. N.K. Nichols, of the Mathematics Department,

University of Reading, for their advice and assistance during this work.

All the parallel computations were carried out on a transputer system which
is currently on loan to the Mathematics Department and Construction Manage-
ment and Engineering Department, University of Reading, from the Rutherford
Appleton Laboratory as part of the SERC/DTTI Initiative in the Engineering Ap-
plication of Transputers (loan ref. TR1/217).

26

References

1]

Aves, M.A., (1991)
“Multigrid Multiblock Computation of Steady Compressible Flows”,
Ph.D. Thesis, University of Reading

Buzbee, B.L., Dorr, F.W., George, J.A., and Golub, G.H., (1971)
“The Direct Solution of the Discrete Poisson Equation on Irregular Regions”,

SIAM J. Numer. Anal., 8, pp 722-736

Carey, G.F., (1989)

“Parallel Sub-Domain and Element-by-Element Techniques”,

In Parallel Supercomputing : Methods, Algorithms and Applications,
(Ed. G.F. Carey), Wiley, pp 57-75

Chan, T.F., and Resasco, D.C., (1985)
“A Domain-Decomposed Fast Poisson Solver on a Rectangle”,

Research Report YALEU/DCS/RR-409

Demko, S., (1977)
“Inverses of Band Matrices and Local Convergence of Spline Projections”,

SIAM J. Numer. Anal., 14, pp 616-619

Golub, G.H., and Van Loan, C.F., (1989)
“Matrix Computations”, (2nd Edition),
John Hopkins University Press

Meurant, G., (1990)
“A Domain Decomposition Method for Parabolic Equations”,

To appear in a special issue of Applied Numerical Mathematics

Schwarz, H.A., (1869)
“Uber einige Abbildungsaufgaben”,
Ges. Math. Abh., 11, pp 65-83

Parallel FORTRAN User Guide, (1990)
3L Ltd., Software Version 2.1.3

27

