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Abstract

Flux difference splitting methods are widely used for the numerical ap-
proximation of homogeneous conservation laws where the flux depends only
on the conservative variables. However, in many practical situations this
is not the case. Not only are source terms commonly part of the mathe-
matical model, but the flux can vary spatially even when the conservative
variables do not. It is the discretisation of the additional terms arising
from these two situations which is addressed in this work, given that a
specific flux difference splitting method has been used to approximate the
underlying conservation law. The discretisation is constructed in a manner
which retains an exact balance between the flux gradients and the source
terms when this is appropriate.

The effectiveness of these new techniques, in both one and two di-
mensions, is illustrated using the shallow water equations, in which the
additional terms arise from the modelling of bed slope and, in one dimen-
sion, breadth variation. Roe’s scheme is chosen for the approximation of
the conservation laws and appropriate discrete forms are constructed for
the additional terms, not only in the first order case (which has been done
before) but also in the presence of flux limited and slope limited high res-
olution corrections. The method is then extended to two-dimensional flow

where it can be applied on both quadrilateral and triangular grids.



1 Introduction

There has been much research in CFD into the accurate and efficient solution of
homogeneous systems of conservation laws. More recently, as numerical models
become more complicated and the areas of application of these methods widens,
it has become important that other aspects of the discretisation be given due
attention. This is certainly true in the field of computational hydraulics where
the modelling can be dominated by the effects not only of source terms, but also
of quantities which vary spatially but independently of the flow variables.

It can be argued that the presence of these effects warrants the construction
of new numerical schemes which are appropriate to the nature of the equations,
not one of the many which have been constructed for the simple, homogeneous
case. However, this work is concerned with how the additional terms should
be discretised, given that a specific scheme has been used to approximate the
flux terms. This approach has been taken previously by a number of authors,
and applied in a variety of different situations. For example, Smolarkiewicz has
adapted his own MPDATA scheme to solve inhomogeneous equations arising from
geophysical flows [14], LeVeque has incorporated the modelling of source terms
for shallow water flows within his wave-propagation algorithm [9], and Roe’s
scheme [11] has been modified by a number of authors to include source terms,
the research of Glaister [6], Vazquez-Cendén [16], Bermudez and Vazquez [1] and
Bermidez et al. [2] being of particular relevance to this work.

In each of the aforementioned papers discussing Roe’s scheme, the discrete
form of the source terms has been deliberately constructed along similar lines to
the numerical fluxes. This is done to ensure that equilibria which occur in the
mathematical model are retained by the numerical model, and that in the absence
of additional terms, the conservative fluxes are retrieved for accurate modelling
of discontinuous solutions. However, all of the previous work deals only with
the first order scheme. The intention of this paper is to provide an extension of
these ideas to higher order Total Variation Diminishing (TVD) versions of Roe’s
scheme (using both flux limiting and slope limiting techniques) and to describe a

source term approximation which has each of the above properties on all types of



regular and irregular grids in any number of dimensions. Furthermore, following
on from [4], a new formulation is presented for the discretisation of the flux in
the case where it depends on a spatially varying quantity which is independent
of the solution.

The shallow water equations have been chosen to demonstrate the effectiveness
of these new techniques in one and two dimensions, by modelling the effects of
a sloping bed and, in one dimension only, the inclusion of breadth variation in
an open channel. The one-dimensional discretisation is described first, in Section
2, for a general system of conservation laws, followed by its application to the
shallow water equations and a wide selection of results to show its accuracy. In
Section 3 the generalisation to two dimensions, illustrated using unstructured
triangular grids, is presented and again applied to the shallow water equations.

The final section contains some brief conclusions obtained from the work.

2 One dimension

The one-dimensional equations representing a system of conservation laws with

source terms may be written

where U is the vector of conservative variables, F' is the conservative flux vec-
tor and S includes all of the source terms. In this section it is assumed that
F = F(U); in Section 2.2 the flux will be assumed to depend not only on the
conservative variables but also another independent, spatially varying quantity,
i.e. = F(U,B(x)).

Using the standard finite volume approximation of the flux terms in (2.1),
combined with a simple, forward Euler discretisation of the time derivative leads
to a difference scheme which can be written

At
S (2.2)
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in which [ represents a numerical flux evaluated at an interface between control

volumes and 8™ & [ S dx is a numerical source integral over the control volume,



which has yet to be approximated. For convenience, a cell centre scheme in which
the control volumes coincide with the mesh cells has been considered throughout
this work, although the ideas may be applied to other types of scheme in a similar
manner.

At first sight, the second term on the right hand side of (2.2) looks like a
discrete flux derivative for cell :. However, for the purposes of this work it is
more convenient to consider it from the point of view of the numerical fluxes
being constructed from an approximation to the integral of the flux derivatives
over dual cells and providing contributions to the cell updates (Axz; comes from
the integration of the original equations over the control volume).

Commonly, ST is evaluated pointwise, taking the value Az; S(U;), or split

symmetrically, giving an expression of the form

Al‘i

S; = (S(Wio1) +8(Uiy1)) (2.3)

but a more sophisticated approach is sought here, based on the approach of

Glaister [6], which accounts for the form of the numerical fluxes.
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Figure 2.1: Numerical fluxes and sources for the cell centre scheme.

Note that in the absence of source terms the scheme given by (2.2) reduces
to a conservative discretisation of the homogeneous system. Also, (2.2) has been
written with irregular grids in mind, and as a consequence the mesh spacing
Azx; = Tl — X1 relates to the cells, not the nodes (see Figure 2.1).

2 2
Roe’s scheme [11] is one of the most commonly used examples of the conserva-

tive finite volume method mentioned above. This is an upwind scheme which uses



an approximate Riemann solver to decompose the flux terms into characteristic
components by diagonalisation of the homogeneous part of a linearised form of
the system (2.1), which is

U, +AU, = 0, (2.4)

where A & is the linearised flux Jacobian of the system. The Riemann

[eb] Re)]
IS

problems arise at the interfaces between the control volumes (the mesh nodes in
this case) where discontinuities occur in the discrete representation of the solution.
Application of Roe’s Riemann solver results in a decoupling of the linearised
equations that splits the flux difference so that it can be written in a number of
equivalent forms, i.e. at an interface
~ ~ o~ o~ Ney ~
= (AAU);;1 = (RARTTAU) = (kzl &mﬁk) : (2.5)
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in which AF represents the jump in F across the edge of a control volume, R is
the matrix whose columns are the right eigenvectors 7, of A, A is the diagonal
matrix of eigenvalues S\k of A, and the components of R! AU(= AW) are the
‘strengths’ dy, associated with each component of the decomposition (W being the
vector of characteristic variables of the system). The final expression indicates
how the flux difference is decomposed into N, characteristic components (or
waves of the Riemann problem), where N, is the number of equations of the
system (2.4). In both (2.4) and (2.5), * denotes the evaluation of a quantity at
its Roe-average state [11, 5]. This is a special average state of the flow variables
which is constructed so that (2.5) is always satisfied for the given system.
Having obtained the decomposition (2.5), Roe’s scheme for a homogeneous

system of equations is constructed from (2.2) by taking the numerical fluxes to

be

. 1 P
Ey = b e - L(RARTAD) 26
where |[A| = diag(|]\¢]): the source terms have been temporarily ignored. A

similar expression can be written down for /7 ..

[N

Generally, * in (2.6) can represent any consistent approximation to the spec-
ified variables, and the resulting scheme will be conservative. However, forcing

it



Figure 2.2: Wave propagation directions in a control volume.

Choosing the Roe-average state (represented by *) to satisfy (2.5) means that
the resulting approximate Riemann solver is an exact solver for this local lineari-
sation of the Riemann problem. More importantly, in the context of this work,
when (2.5) is combined with (2.6) the nodal update scheme given by (2.2) is

equivalent to the fluctuation-signal scheme [12] given by

e e A

JRaR-an)  + (RARAD) |+ s )

2 2
in which

At — %([&i|]&|). (2.8)

This splits the update into contributions related to right-going (4) and left-going
(—) characteristics in the decomposition. It follows that the solution is updated
using only contributions from the wave perturbations of the Riemann problems
at the nodes which enter the cell under consideration, as illustrated in Figure 2.2.

It remains to choose an appropriate form for the numerical source term integral

S”.

2.1 Source terms

This work follows much recent research into source term discretisation, see for
example [5, 6, 1, 4], which has concentrated on the use of a characteristic de-
composition of the type shown in (2.5). This similarly projects the source term

integral onto the eigenvectors of the flux Jacobian A, so that in its linearised



form it can be expressed as

1+
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where Bk, the coefficients of the decomposition, are the components of the vector
R™'S. Note that the integral approximated in (2.9) is over a dual cell of the
mesh (associated with the interface ¢ + %), and can be easily incorporated within
the fluctuation-signal form of the finite volume scheme given by (2.7). ST will
be constructed out of contributions from both ends of the cell, with consistency
assured as long as the whole of each dual cell integral (2.9) is distributed.

It is useful (though less so than in higher dimensions) to note here that the
analytical form of the source term can be split up into components which can be

discretised separately, i.e.

057
— q0 1 J
S =S+ % 35 (2.10)

so that its integral can be approximated consistently by

[ sde w8, = (A:z;SO—I—ZﬁN} Asf) , (2.11)

and comparison with (2.9) leads directly to the coefficients 3, of the characteristic
decomposition of §i+%.

The terms within the sum on the right hand side of (2.11) may be called upon
to balance components of the flux difference AF (2.5) so they must be linearised

in the same way to ensure that, for the chosen equilibrium state,
F,—S=0 = AF,-8,1 =10 (2.12)

throughout the domain. This follows because at this equilibrium the decom-
positions (2.5) and (2.9) have been constructed to give AR'AU = R™!S (or
alternatively ch; = Bk) Hence - still represents the evaluation of a quantity at
the Roe-average state.

The first term on the right hand side of (2.11) contains only contributions
which provide no exact balance with the flux derivatives (e.g. bed friction terms

in the shallow water equations), so the precise form of their linearisation is not



prescribed by the above arguments. However, it seems sensible that they should
also be evaluated at the same state, given by the Roe-average.

As a result of the characteristic decomposition (2.9), the source terms may
be discretised in an ‘upwind’ manner (although, since none of the components
has an inherent upwind direction, this must be taken from the corresponding flux
component). This leads straightforwardly to an appropriate upwind fluctuation-
signal formulation for the first order scheme (2.7) with source terms, given by

At

Ty

Ut = U -

(RARTAL-TRTS))

+ (R(AR™AU - T*R™'S)) ] (2.13)

-3
in which I¥ = A~'A%. The correct balance follows immediately from (2.12).

It is not immediately clear though, how the discretisation of the source term
implied by (2.13) can be converted into a numerical source integral S so that
the same balance can be achieved within the flux-based form of the scheme (2.2),

particularly when it is extended to higher order. Previous attempts have only

proved successful for first order schemes.
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Figure 2.3: Flux and source distribution within a control volume.

The difficulties which arise (and the solution to the problem) can be high-
lighted by following the transformation of (2.13) into an equation corresponding

to (2.2). With a small amount of algebraic manipulation (2.13) becomes

At [y s o
n+1 __ n -1 -1
v [(R(AR AU -R7'S)).




— (RIAR™'AU — sgn(DR™'S)) ] (2.14)

in which sgn(I) = A~'|A]. Since (2.5) and (2.9) hold, and
AEH% + AEZ'—% = Ly +F)— (L + ), (2.15)

it follows that the scheme (2.14) can be simplified to

Ut = ur — LTS (2.16)

The numerical fluxes, E:-I—;— and Ej_;_, are precisely those defined by (2.6) and

the numerical source term integral of (2.2) is given by

S = §j+;_—+§j_%+, (2.17)
where
* = L/ N —1G DT-DP —1¢
i1 = 5(R(I—sgn(l))R 15)2»% = (RI'R 1§)Z+% (2.18)
and
1 /- L .
S .t = §(R(I—|—sgn(1))R_1§) _, = (RI'R7'S) | (2.19)

Note that because the numerical source integral cannot, in general, be written
as a difference, nothing similar to (2.15) can be applied to it to allow it to be
included within the numerical flux (2.6). This means that the balance which is
sought between flux derivatives and sources in the flux-based scheme can only
be obtained locally by balancing non-zero fluxes through the edges of a control
volume, and not by setting each edge flux to zero. One important consequence
of this is that the most sensible method of applying the boundary conditions to
the numerical scheme is through the addition of ghost cells, since this requires no
further correction to maintain the balance which is sought. The distribution of
the numerical fluxes and source term components is shown in Figure 2.3.

It is of course possible to overcome the above problem when the source term
takes the form of a derivative. If this is the case the source simply augments the

conservative flux in the scheme (2.2), i.e. given S = G, then
F* o oG (2.20)
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and S™ becomes obsolete. In some cases it may also be possible to incorporate
some part of the source term which can be expressed as a derivative within the
numerical flux, and then apply an appropriate discretisation to the remaining

component of the source.

2.1.1 Flux limited schemes

The approach presented in the previous section is no different to the standard
upwind technique for approximating source terms when a first order upwind flux
discretisation is being used [5]. The only new aspect is the way it has been
written, splitting the dual cell source integral into two parts. Usually though,
accuracy of higher than first order is required for practical calculations.

The accuracy of Roe’s scheme is improved, without introducing spurious os-
cillations into the solution, by the application of flux limiting techniques [15, §].
These ensure second order accuracy in smooth regions of the flow, whilst enforc-
ing a Total Variation Diminishing (TVD) property. It is achieved by including a

high order correction term in the numerical flux, which becomes [13]

* L s s N —
Fryy = 5+ £ = 5 (RAILRTAL) (2.21)

[N

L
2

in which L = diag(1 — L(rg)(1 — |vk])), where v = S\kAt/Al' is the Courant
number associated with the £ component of the decomposition, L is a nonlinear
flux limiter function, as described in [8, 15], and

~upwind
& P

rp = —o : (2.22)

~local
g

It is clear that a corresponding high order correction must also be made to the
source term approximation, and its form can be derived simply by comparing the
numerical sources of (2.18,2.19) with the numerical fluxes in (2.6), all of which
have been split into two parts which are balanced separately. The flux limiter is
only applied to the second part of the numerical flux, so the flux limited numerical
source which maintains the balance achieved by the first order discretisation takes

the form

(R(I—sgn(DL)R7'S) , .

L (2.23)

[N

*
5

NI
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with a similar expression for 87 ;17 in (2.17). Note that since (2.23) is an edge-

[N

based quantity, it is simple to evaluate with the fluxes and include within the
numerical model.

At this point it should be emphasised that the TVD condition which the flux
limiter has been constructed to satisfy applies to the homogeneous system of con-
servation laws, and the inclusion of source terms means that spurious oscillations
may appear in the final solution. The same is true of the slope limited schemes

of the next section. This problem has not been addressed in this work.

2.1.2 Slope limited schemes

The same balance is slightly more difficult to achieve when the high resolution
scheme is constructed using a MUSCL-type slope limiting approach [17]. This is
because the underlying representation of the solution is now taken to be linear
within each cell so that (2.15) is no longer true. It can though, be replaced by

the more general expression,

AP +AF 1 = (B + Ey) = (BL + B ) = 2(E, — FiLy), (224)

1
2

where the superscripts - and ¥ represent evaluation on, respectively, the right
and left hand sides of the interface indicated by the associated subscript (as shown

in Figure 2.4). The corresponding numerical flux is

£, (2.25)

1

= (L B -5 (RIARTAD)

2
in which the Roe-averages are now evaluated from the reconstructed piecewise lin-

ear solution. An appropriate correction must therefore be made to the numerical

source within each cell, and this leads to

St = (81,7 +8LuT) - S(UhL. Ut (2.26)

1
=i

[N

The first term on the right hand side is evaluated precisely as before, in (2.17),
except that the interface values are now those of the MUSCL reconstruction of
the solution within each cell. S is simply the source term integral approximated
over the mesh cell (¢f. (2.11)), and hence evaluated at the Roe-average of the left

and right states of the linear reconstruction of the solution within the cell. In

12



terms of the approximations (2.12) and (2.11) the extra term can be thought of
as a correction to the integral of the source term over the dual cell arising from

the linear variation of the approximation.

Figure 2.4: Flux and source evaluation for the MUSCL scheme.

2.2 Spatially dependent fluxes

In some situations the flux may depend on quantities other than the flow variables
and the numerical scheme needs to be modified appropriately. Only one extra
spatially varying quantity will be considered here but the approach is easily ex-
tended to any number. Returning to Equation (2.1) and taking £ = F(U, B(x)),
where B varies independently of U, requires a modification to the characteristic

decomposition, so that (2.5) becomes

AEH‘% - (A AU+ E)H-l
~ (RARTAU4RRT)
No N ’
= (Z AT + Y ’NYkﬁk) , (2.27)
k=1 k=1 i-I—;—

where V. =~ %AB and g, the coefficients of the decomposition of this extra
term, are the components of R™'V. (2.27) gives a set of N,, equations in N,, + 1
unknowns, which are taken to be a set of consistent Roe-averaged independent
variables from which Q and B (and all other variables) can be evaluated. This

leaves one degree of freedom which can be used by enforcing AF — S = 0 at an

13



appropriate state of equilibrium (¢f. (2.11) in which the equilibrium was achieved
automatically using the original averages).

Following the same steps as in Section 2 to transform the fluctuation-signal
scheme to the flux-based scheme, but including this extra term in the flux d-
ifference, leads to precisely the same form for the scheme when approximating
the homogeneous system as shown in (2.2), but with new expressions for the

numerical fluxes, given by

Fry = 3t £ — 5 (RIART AU+ Regn(MRT) (229
in the first order case,
Fr, = %(Em +F)— % (RIAILR™ AU + f{sgn(I)Lf{_lﬁ)i Lo (229)
when the flux limited high resolution scheme is being used, or
Fry o= S (ES, 4 F) - D (RIART AU + Rean(DR7T) L (230)

for the MUSCL scheme, where the averages are now calculated from the linearly
reconstructed solution. By including this extra term in the numerical flux it is

possible to avoid altering the form of the source term, as was suggested in [10].

2.3 Shallow water flows

The shallow water equations have been chosen as the system of equations to
illustrate the use of these new techniques. In one dimension, shallow water flow
through a rectangular open channel of varying breadth and bed slope. The effects
of bed friction may also be included and, as described in Section 2.1, are simple
to treat within the new framework without disturbing balance between the other
source terms and the flux derivatives. However, since it is this balance which the
new discretisation has been constructed to maintain, friction is not included in

the following discussion. The remaining system can be modelled by the equations

bd bdu 0
+ = ) (2.31)
bdu . bdu?® + %gbal2 i %gdzbl, + gbdh,
which, when compared with (2.1) to find U, F and S, ultimately leads to
or 0 1 oF 0
= — , — = . (2.32)
ou gd —u? 2u 9B —%ng
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In these equations d is the depth of the flow, A is the depth of the bed below a
nominal still water level, b = b(x) is the channel breadth, u is the flow velocity,

and ¢ is the acceleration due to gravity. These quantities are depicted in Figure

2.5.

Side view Plan view

Figure 2.5: The shallow water flow variables.

Equation (2.31) provides an example which includes source terms and a spatial
dependence on channel breadth which is independent of the flow. Furthermore,
the balance which has been sought in previous sections is illustrated by the steady
state represented by still water (d = h and v = 0), in which case the system (2.31)
reduces to

(%gbdz)gg . %gd%x + gbdh, . (2.33)
Previously it has only been possible to maintain this steady state numerically
when first order schemes have been used.

The characteristic decomposition (2.27) for the one-dimensional shallow water

equations (2.31) and (2.32) is completely defined by

. A(bd) 1 . . A(bd) 1 .
G = —— + % (A(bdu) —a A(bd)) , &z = % (A(bdu) — a A(bd))

M =tG4¢, A\ = a—2¢

END, (2.34)
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and it is easily shown that (2.27) is satisfied exactly when

 VIREGE VI (\/deR n \/deL)
u = , € = )
NN N/

which reduce to the Roe-averages for one-dimensional shallow water flow de-

(2.35)

scribed in [5] in the absence of breadth variation (i.e. when % = ). The

corresponding decomposition of the source terms (2.9) then leads to

1 1~ ~

In order for (2.18) and (2.19) to maintain the correct balance, i.e.
M+ =B =0 Yk (2.37)

or equivalently,

R(ARTAU+R'W-R™'S) = 0 (2.38)

when the flow is quiescent, b is constructed so that it satisfies
bAh = A(bh) — hAD, (2.39)

where h is evaluated in a similar manner to d,

- VBRAR 4 /bR
h —
VR 4+ VBl

so that d = h = d = h throughout the domain. Note that this also requires

(2.40)

that d and h are reconstructed in the same manner if the MUSCL high resolution

scheme is used.

2.3.1 Numerical results

The results presented in this section have been chosen to illustrate the improve-

ment in the approximation using the new techniques by focusing on the following:
e the ability to maintain quiescent flow,

e the accuracy of approximations to both continuous and discontinuous steady

state solutions,

e the accuracy of simple time-dependent approximations.

16



These have been studied using a variety of channel geometries.

The geometry for the first test case was proposed by the Working Group
On Dam-Break Modelling [3], and the bed and breadth variation of the channel
(of length 1500) are depicted in Figure 2.6. The upwind source term treatment
described in this paper is compared with a much simpler pointwise discretisations
in Figure 2.7 (using a uniform 600 cell grid, so that Az = 2.5), which show graphs
of water surface level and unit discharge for the numerical steady states which
result from quiescent initial conditions (p = d — h = 12.0 and v = 0.0), and
applying simple non-reflecting boundary conditions. In this case the initial (still

water) conditions should be maintained indefinitely by the numerical scheme.

30 12
20— 10+
104 8-
—— Channel bed
£ = —— Surface level
g o g 6
& a
10 4
-20 2
N B e o o S ——
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
x x

Figure 2.6: Breadth (left) and bed (right) variation for the ‘tidal flow’ test case.

The comparison is made between first order, slope limited and flux limited
schemes combined with pointwise and upwind source term discretisations: in al-
1 high resolution cases the Minmod limiter [15] has been applied. The upwind
source term discretisations always produce the correct steady state solution, ex-
act to machine accuracy and indistinguishable from the exact solution in the
graphs. This is not only true for the first order scheme (which has been achieved
previously) but also for the high resolution TVD schemes using any flux or slope
limiter on any grid in the presence of bed slope and breadth variations. The
pointwise discretisations show small discrepancies (a central discretisation of the
source term was also tried but produced even worse results than the pointwise

approximation and isn’t presented here), most notably in the unit discharge, a

17



quantity which depends on the flow velocity. In each case the method described

in Section 2.2 is used to discretise the fluxes where the channel breadth varies.

The second channel geometry which will be used in this work is defined over

the interval [0.0,3.0] and has a smoothly varying depth and breadth, given by

1.0 — (1.0 — by 2 —1.5 it — 1.5 < 0.5
o) - ( Jeostnle = 19) o e =13 S 05

1.0 otherwise,

where by, 1s the minimum channel breadth, and

1.0 — zmax cos?(m(z — 1.5)) for | —1.5] < 0.5
h(z) = (2.42)
1.0 otherwise,
in which 2.« 1s the maximum height of the bed above the level n = 0.0. This has
been chosen as a simple channel geometry for which exact steady state solutions
to the one-dimensional shallow water equations are available for comparison [7].
The parameters chosen to define the channel here are z,., = 0.1 and b,,;, = 0.9.

A uniform 150 cell grid has been used for each computation.

Three flows are compared:

o F, = 0.5, d, = 1.0, giving purely subcritical flow which is symmetric

about the throat of the constriction (the most narrow point, x = 1.5),

o I =0.6,d, = 1.0, giving transcritical low with a stationary hydraulic

jump downstream of the throat and a critical point at the throat,

o F = 1.7, d, = 1.0, giving purely supercritical low which is symmetric

about the throat.

The subscript -, represents the freestream flow values ‘at infinity’ which are
used in the application of simple characteristic boundary conditions at inflow
and outflow. The results of the comparisons for each of the schemes are shown
in Figures 2.8-2.10. The graphs show the variation of total discharge ¢) through
the channel, a quantity which should remain constant at the steady state.

In each case the upwinded source terms can be seen to model the solution bet-

ter than the pointwise evaluation. This is particularly noticeable in the subcritical
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Figure 2.7: Water surface level and unit discharge for quiescent flow in a channel

with variable bed and breadth, see Figure 2.6, for first order (top) and high

resolution slope limited (centre) and flux limited (bottom) schemes (¢ = 1000).
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case where the latter is unable to attain a symmetric solution. The position and
strength of the hydraulic jump is predicted accurately by all of the schemes, al-
though there is a small discrepancy in the discharge at the discontinuity in every
case. Note that in the second order case small oscillations appear in the ‘up-
winded’, slope limited solution. These are not prohibited by enforcing the TVD
condition because this only applies to the homogeneous equations, although they
appear in neither the first order nor the flux limited results. This indicates that
the correction term of (2.26) may require modification away from the still water

steady state.

In [16] it is shown that, for a ‘short’ channel (of length L, taken here to be

1500) and ‘low-speed’ flow, given the initial conditions
de,0) = he), g(e,0) = 0, (2.43)
where ¢ = du and h(x) is indicated in Figure 2.6, and the boundary conditions

A(0.1) = h(0)+6(1). q(L.1) = ¥(1), (2.44)

then a first order approximate solution to the equations (2.31) can be expressed

as

da,t) = h(e)+ 6(1)

g(z,t) = ¢(t)+—?gf;J£Lb(s)ds. (2.45)

The quiescent flow case considered earlier corresponds to taking ¢(t) = ¢ (t) = 0.

A time-dependent ‘tidal” flow test case was suggested in [16] for which

(2.46)

(t — 10800)7
21600

(t) = 4+ 4sin (
and ¥(t) = 0, the asymptotically exact solution being given by (2.45). The
‘exact” and numerical solutions (all computed on the same regular 600 cell grid)
to this problem when ¢t = 10800 are compared in Figure 2.11. The agreement
is very close for the first order and both of the higher order schemes when the
upwind source discretisation is used. The main disadvantage of the higher order

method is that there is a much stricter practical bound on the CFL number for
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24



the solution to remain free of unwanted oscillations (a value of 0.1 was used in the
second order case compared with 0.8 for the first order scheme). At higher CFL
numbers the accuracy of the solutions is comparable to the accuracy of those
obtained with the simpler source term discretisations. This is due to the fact
that the TVD condition only applies in the absence of source terms. Note though
that, as in the still water test, even though the pointwise source discretisation
gives a reasonable approximation to the depth, it is very poor at predicting the

flow velocity.

3 Higher dimensions

The following analysis is presented for the two-dimensional case but can be ap-
plied simply in three dimensions as well. The conservative form of a system of

conservation laws with additional source terms is expressed as

in which there are now two flux vectors, denoted by F = F(U) and G = G(U).
The case where the fluxes depend on a quantity other than the flow variables
is not presented here, having no obvious application to two-dimensional shallow
water flows, but can be dealt with in a similar manner to the one-dimensional
case presented in Section 2.2.

A combination of a standard finite volume approximation of the flux terms on
an arbitrary polygonal mesh (although only triangular and quadrilateral meshes
will be considered in the results) and a forward Euler discretisation of the time

derivative leads to the conservative difference scheme,

At Ne jan At *
Uit = Uy - v > La(F5,G) - fa + 7&2’ (3.2)

i =1
where V; is the area of the chosen control volume, N, is the number of edges it
has, it is the outward pointing unit normal to the edge common to cells ¢ and [
(where [ represents a generic neighbouring cell) and L;; is the length of that edge
(as shown for a triangular mesh cell in Figure 3.1). 8" ~ [[ ;.S dady is once

more a numerical approximation to the source integral over the control volume.
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For simplicity the scheme will again be assumed to be a cell centre discretisation
in which the control volumes coincide with the mesh cells, although the techniques
may also be applied to other types of scheme. The following analysis runs along

similar lines to that presented in previous sections for the one-dimensional case.

Figure 3.1: Numerical fluxes and sources for the cell centre scheme.

3.1 The first order scheme

The numerical fluxes which lead to the first order Roe’s scheme in two dimensions

are given by
jan 1 ~, 1 N~~~
(F5.G3) - = L(E+ FuGot G- — L (RARTIAD) . (33)

in which the eigenvectors and eigenvalues which are needed to construct R and

A are now those of the matrix C,, = (A, B) . 7%, where

A%a—ﬂ and BNaQ

o0 ~ o0 (3.4)

are the linearised flux Jacobians. It can be seen that the numerical flux is similar
in form to that used in one dimension (2.6). In particular, * again denotes the
evaluation of a quantity at its Roe-average state.

Since the two-dimensional scheme is based on Riemann solvers oriented per-
pendicular to the edges of the grid cells the decomposition also bears a strong

resemblance to the one-dimensional case. Once more, as long as the quantities
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denoted * are evaluated at the appropriate Roe-average state [11] then the flux

differences can be written in the decomposed form

A(F,G) -1 = C,AU = RART'AU = Y aphry (3.5)

from which it follows in much the same way as in one dimension that the scheme

(3.2) is equivalent to

At e L At
vt = ur——3%" L; (RATR'AU — 87, 3.6
v, = ‘/Z ; ) ( —) il + ‘/Z = ( )
where the superscript -~ now indicates the incoming characteristics at the ap-

propriate edge of the control volume (see Figure 3.2). It is easily seen that this

reduces to (2.7) when restricted to one dimension.

edge-cell il

. —
§li

Figure 3.2: Wave propagation directions (left) and source distribution (right)

within a triangular cell in two dimensions.

As in one dimension the analytical form of the source term can be split into

components to be integrated separately (¢f. (3.30)) so that
S = 843 SV (S5, 8Y). (3.7)
J

Hence, integrating over an edge-cell and applying the divergence theorem to the

terms within the sum leads naturally to the approximation
~ G _ NO Nl e g
//<> Sdrdy ~ 8; = (Voﬁ + zjjﬁj ¢ (7,5 dn) - (3.8)
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in which Vi is the area of the edge-cell. Now, given that the solution has already
been assumed to be constant in each part of the edge-cell for the purposes of the

Riemann solver, and hence the flux evaluation, the approximation reduces to
S, = (VQSO Z Sl A(S5,SY) H) ) (3.9)
il

where 77 is the normal to the edge, scaled by its length, see also (3.31). The terms
within the sum may again be required to balance the flux difference, so the same

Roe linearisation is used in their evaluation, and it follows that

throughout the domain: <;; is the edge-cell corresponding to the edge between
cells ¢ and [, as shown in Figure 3.2. The three-dimensional case is similar, with
all the approximations being carried out over a face-cell with the solution being
assumed constant on either side.

The two-dimensional source term can now be written as a characteristic de-
composition similar to that of the flux difference (3.5), i.e. its linearisation can

take the form

Ny
Si = (R R_lﬁ)” = La (;:1 ﬁkﬁk) : (3.11)
= il
Evaluating this at the same Roe-average state as the flux difference means that

the correct balance is attained because, at equilibrium, the decompositions give
LAR™'AU = R™'S. S will be constructed out of contributions from each edge
of the cell, with consistency assured as long as the whole of each edge-cell integral
(3.11) is distributed.

The decomposition has been carried out so that, when (3.6) is combined with
(3.11) to give
_ At % (R(LA"RT'AU - T'RT'S)) (3.12)

le

Ut = o

a precise balance can be achieved when one is sought between the sources and
the flux gradients.
The relationship between the two forms of the finite volume scheme, (3.2) and

(3.6), can now be exploited. Substituting for I™ in (3.12) gives

Uit = Ul -



QAVt 5 (R(LIARAU - sgn(DRT'S)) . (3.13)

ti=1

In addition, it is easily shown that

Ne Ne
SOAN(Fy, Gy) -t = > (Fi+ FL G+ G)) -1, (3.14)
=1 =1

in which AF;, = F, — I, is the jump in F across the I'® edge of cell 7 (and
similarly for ). Therefore, since * indicates evaluation at the Roe-average state,

(3.5) holds and (3.13) can be rewritten as

At e At
Uit = U - _Z F, G i+ Vﬁfa (3.15)
Z l 1 1

in which the numerical fluxes are given by (3.3) and the numerical source is

Ne

st = Ysi (3.16)

=1

where

Si” =3 (R(I—sgn(I)R7'S) = (RT'R7'S) . (3.17)
These expressions bear a close resemblance to the numerical fluxes and can be
incorporated into the flux-based scheme in a similar manner. Asin one dimension

it is not possible to combine the source term completely with the numerical fluxes.

3.2 High resolution schemes

When the accuracy of the scheme is increased by the use of a flux limiting tech-
nique the numerical flux takes the form
s 1 |
(£5.G5) -ty = (B + .G+ G ) -ty — 5 (RALR™'AU) . (3.18)

and the appropriate discretisation of the source term can be shown to be

SiT = % (R(I - sgn()L)R™'S) (3.19)

il

by similar arguments to those used in one dimension.

For a MUSCL-type slope limited higher order numerical scheme, the numerical
fluxes take the form

. 1 .

(L5, G5) - i = §(EH+EZ'L7QH+QZ'L) il (RAR AU) ;o (3:20)

[\Dl»—\
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in which the subscripts -;; and -;;, represent evaluation of the piecewise linear
reconstruction of the solution on, respectively, the inside and the outside of the
edge between cells ¢ and [/, relative to cell ¢ (indicated in Figure 3.3), giving new
values from which the Roe-averages at the interface are calculated. Now, instead

of (3.14) the flux differences satisfy the more general expression

Ne Ne
SOAFGy) it = Y (Fp+Fp,Gp+Gig) - ia
=1 =1

Ne
_QZ(EH — I, G — G- (3.21)
=1

Consequently, the numerical source term appropriate to this type of scheme is

given by

e

S =Y (85 - S(UnUy), (3.22)

=1

where © indicates the evaluation of the source term integral (¢f. (3.9)) at the
Roe-average of the specified conservative variables (taken from the linear recon-
struction at the midpoints of the cell edges) and S7; is taken directly from (3.17).
This can again be considered as applying a higher order correction to the integral

of the source term over the edge-cell.

Figure 3.3: Flux and source evaluations for a two-dimensional MUSCL-type

scheme on triangles.
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3.3 Shallow water flows

In two dimensions the shallow water equations including the effects of varying

bed slope are obtained by substituting

d du dv
U = du , I = du? 4+ % , G = duv , (3.23)
dv duv dv? + %

where v is the flow velocity in the y-direction in addition to the variables defined

for (2.31), and
0

gdh, (3.24)
gdh,

[
I

into (3.1). The matrix C, can be calculated simply from these for any edge
orientation.
When d = h and v = v = 0 (quiescent flow in two dimensions) the desired

balance is given by the equations

d? d?
(97) — gdh, (97) = gdh, . (3.25)
x Yy

The discretisation should satisfy (3.25) exactly in this special case.

The characteristic decomposition is now carried out on the eigenvectors of the

matrix (A, B)- 7%, which are

1 0 1
= | a+en® |, = | —en? | 03 = | u—cn” |, (3.26)
v+ en? cn”® v —cnY

in which (n”,n¥) = it and

. Jg(d® +db)
¢ = 72 ,
~ dRuR + /dLuL . deR + /dLvL
u = , 0 = : (3.27)

‘/dR—|—‘/dL ‘/dR—|—‘/dL
The superscripts -} and - indicate here the evaluation of a quantity on either side

of a cell edge, at its midpoint. The corresponding expressions for the eigenvalues

(wave speeds) are
M o= an® ot 4 &, A = an®4on¥, Ay = an® +on¥ —&,  (3.28)
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and the wave strengths,

Qp = % + % (A(du)n” + A(dv)n? — (an” + on¥)Ad)

Gy = % ((A(dv) — 2Ad) n” — (A(du) — uAd)nY)

. Ad 1 . N

Q3 = 5 "5 (A(du)n” + A(dv)n? — (an” + on¥)Ad) , (3.29)

complete the decomposition (3.5).
In this case, in order to provide the desired balance, the source term is written

in the form (3.7), giving

0 0
S =1 gd |[V-B,00+]| 0 |V-(0,h). (3.30)
0 gd

At first glance this seems counterproductive, but it immediately allows the source
term integral over an edge-cell to be approximated in a manner which will allow
the discrete balance with the flux integral, i.e. it can be approximated in the form

(3.9) via (3.8). This leads to
0
Sy = La| gdAhn® | (3.31)
gdAhnY

which is used to obtain the coeflicients which are used in the characteristic de-

composition (3.11). In this case these are
~ 1. ~ ~ 1.
61 == §CA}L 5 62 =0 5 63 == —§CA}L . (332)
By construction, it follows that é;\, — Bx = 0 for each k, i.e.
R(LART'AU-R™'S) = 0, (3.33)

when the flow is quiescent, and the numerical balance is assured.

3.4 Numerical results

The test cases presented in this section are essentially a subset of those de-

scribed in Section 2.3.1 for the one-dimensional schemes, but applied to the
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two-dimensional shallow water equations. For the purposes of presentation, com-
parisons will be made between breadth-averaged solutions for channel flows and
exact solutions to the corresponding one-dimensional problem. These will obvi-
ously differ slightly in the non-quiescent cases due to the simplifications inherent
in the one-dimensional model but still provide an accurate guide when the cross-

flow velocity is small, as it is in the results presented.
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Figure 3.4: Water surface level and unit discharge for the still water test case for

first order (top) and high resolution slope limited (bottom) schemes (¢ = 1000).

The ability of the new techniques to maintain the still water steady state
is illustrated using the geometry of Figure 2.6 and a triangular grid with 4854
cells and 2738 nodes (giving about 300 cells along the channel, roughly half the

one-dimensional grid resolution). As in one dimension, the upwind source term
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Figure 3.5: Water surface level and unit discharge for the tidal flow test case for

first order (top) and high resolution slope limited (bottom) schemes.
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discretisation maintains still, flat water indefinitely to machine accuracy in both
the first order and the high resolution cases, see Figure 3.4. This is true of all of
the channel shapes which were tested and each of the schemes described earlier in
the text. The pointwise evaluation of the source term is clearly unable to match
this.

Results for the tidal flow test case described in Section 2.3.1 are shown in
Figure 3.5 for the same triangular grid. Again, the advantage of using the upwind
source term discretisation is clearly visible and here, unlike in one dimension, the
CFL number used to obtain the results is still 0.8. When the source terms are
upwinded the results from the high resolution scheme are almost oscillation-free
(although it must be remembered that the averaging across the channel breadth
does produce a small amount of smoothing). Generally, it has been seen that the
properties exhibited by the schemes in one dimension are carried over into higher

dimensions.

4 Conclusions

In this paper a new method has been presented for the discretisation of source
terms when they appear as part of a nonlinear system of conservation laws. Specif-
ically, the correct approximation to the source terms is sought, given that a
particular finite volume scheme has been used for the discretisation of the flux
terms. Roe’s scheme has been chosen here as the underlying numerical scheme,
but the philosophy underlying the source term approximation (that the source
terms must, in some sense, be discretised in the same manner as the flux deriva-
tives) may also be applied to other finite volume methods. The discretisation
builds on the work of many previous authors [5, 6, 1, 4], who approximated their
source terms in a manner which took into account the flux discretisation and, as
a consequence, allowed the numerical model to maintain specific equilibria which
are satisfied by the mathematical model. The new aspect of this work is the
generalisation of these techniques to high order TVD versions of Roe’s scheme
(using both flux limiters and slope limiters) and to arbitrary polygonal meshes

in any number of dimensions. The methods have been designed specifically for
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source terms which provide some sort of balance with the flux derivatives. Even
s0, the same techniques can easily be applied to other source terms (such as those
which model bed friction in the shallow water equations) which do not exhibit a
precise balance, but the advantages over the simple pointwise discretisation are
less obvious.

The effectiveness of these techniques has been illustrated using the one- and
two-dimensional shallow water equations (the extension to three-dimensional sys-
tems of equations is straightforward, though not described here in detail), in which
source terms are used to model variations in the bed topography and (in one di-
mension) channel breadth. Particular attention has been paid to the special case
of still water, and the schemes have been constructed so that they maintain this
state. In fact, the improved accuracy of the new ‘upwind’ discretisation of the
source terms is also shown in the approximation of other steady state solutions,
particularly in one dimension when flux limiters have been used, and to a great
extent by time-dependent test cases as well. The improvement is less marked for
slope limited schemes, indicating that a more sophisticated approximation to the
source term may be necessary away from the still water steady state. This has
been shown by comparison with a selection of test cases for which exact solutions
are available. The advantages over the commonly-used pointwise discretisation-
s are particularly apparent when quantities depending on the flow velocity are
compared. At this stage of the research, the main problem with the new tech-
nique (a problem which also applies to the old methods) is in the modelling of
time-dependent problems. Here, in order to avoid spurious oscillations in the high
resolution results a low CFL number has to be imposed (0.1 in the cases tested
here), and in some cases the unphysical oscillations cannot be removed complete-
ly. This is because the TVD condition which is satisfied by the scheme is only
valid for the homogeneous equations. The possible construction of a TVD condi-
tion in the presence of source terms is a topic for future research. In the meantime
it may prove beneficial to apply a Flux-Corrected Transport approach since it is
clear from the techniques presented in this paper how the source terms should be
treated for both upwind and Lax-Wendroff schemes, and the first order upwind

scheme appears to be robust enough to eradicate the unwanted oscillations.
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An alternative method has also been proposed for the discretisation of the
flux term in the case where it varies spatially but independently of the flow
variables (as with one-dimensional models of shallow water flow through a channel
of variable breadth). It has been shown that, in combination with the source
term approximation, the method produces accurate solutions for a wide variety

of steady state and time-dependent test cases.
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