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Abstract

For the very large nonlinear dynamical systems that arise in a wide
range of physical, biological and environmental problems, the data
needed to initialize a numerical forecasting model are seldom avail-
able. To generate accurate estimates of the expected states of the
system, both current and future, the technique of ’data assimilation’ is
used to combine the numerical model predictions with observations of
the system measured over time. Assimilation of data is essentially an
ill-posed inverse problem. In four dimensional variational assimilation
schemes, the dynamical model equations provide constraints that act
to spread information into data sparse regions, enabling the state of
the system to be reconstructed accurately. The mechanism for this
is not well understood. Singular value decomposition techniques are
applied here to analyse the critical features in this process. Simpli-
fied models are used to demonstrate how information is propagated
from observed regions into unobserved areas. The impact of the size
of the observational noise and the temporal position of the observa-
tions is examined. The best signal-to-noise ratio needed to extract the
most information from the observations is estimated using Tikhonov
regularization theory.

Keywords: Large-scale inverse problems; variational data assimilation;
nonlinear dynamical systems; weather, ocean and climate models; singular
vectors; Tikhonov regularization

1 INTRODUCTION

Accurate prediction of the behaviour of very large evolutionary systems
requires both accurate numerical models for simulating the system dynamics
and accurate data for initializing the forecast. In practice, precise data
describing the current state of a system are not available, and uncertainties
in the initial data lead to significant errors between the predicted states
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and the actual states of the system. To generate improved estimates of the
expected states, both current and future, the technique of ’data assimilation’
is used to combine numerical model predictions with observations of the
system measured over time. The data assimilation problem can be expressed
as:  Given a discrete model of the dynamics of a system, a (noisy) estimate
of the current state and (noisy) observations of the system over time, find
accurate estimates of the system states.

Variational data assimilation techniques are attractive because they de-
liver the best statistically linear unbiased estimate of the system states given
the available observations and their error covariances [1, 2]. The problem is
formulated as an optimization problem where the objective function mea-
sures the mismatch between the model predictions and the observed system
states, weighted by the inverse of the error covariance matrices. In four-
dimensional schemes, the objective function is minimized over a time inter-
val, and the model equations are treated as strong constraints [3]. These
variational assimilation schemes are applicable to a wide range of physical
modelling problems, including oil recovery, coastal flow and sediment trans-
port, flood prediction, and traffic flow problems. With the proliferation of
observational data from expensive satellites and other instruments, tech-
niques of data assimilation are needed increasingly to extract the best value
from the information provided.

For the very large systems that arise in meteorology and oceanography,
the data assimilation problem is an ill-posed inverse problem. The available
observations are not generally sufficient to determine all of the degrees of
freedom in the problem, and often there are data sparse areas where good
state estimates are needed. In four dimensional variational assimilation
schemes (4DVar), the dynamical model equations act to spread information
into unobserved regions [4], but the mechanism for this is not well under-
stood. Here we apply singular value decomposition (SVD) techniques to
analyse the critical features in this process. Idealized model studies are
used to demonstrate how information is propagated from observed regions
into unobserved regions.

Using identical twin experiments with a two-dimensional Eady model
[5], we show that by observing only the lower level temperature at two
points in time, 4DVar can reconstruct the upper level temperature wave
needed for the growth or decay of a baroclinic wave. Using the SVD, the
optimal state estimate is written as a linear combination of the right singular
vectors of the observability matrix. The properties of the SVD are then
used to understand how information is propagated from observed regions
to unobserved regions. The impact of varying the relative weight given to
the background (predicted) states, the noise on the observations and the
position of the observations in the assimilation time interval is examined.
By writing the problem in the form of a Tikhonov regularization problem,
it is shown that the best signal-to-noise ratio needed to extract the most



information from the observations can be determined.

In the next section we present the variational data assimilation method.
In Section 3 we describe the test model and show experimental results ob-
tained by variational assimilation. In Section 4 the information content of
the observations is analysed and the critical features of the mechanism for
reconstructing the states of the system are examined. In Sections 5 and 6,
the application of Tikhonov regularization to the problem is described and
conclusions are drawn.

2 FOUR DIMENSIONAL VARIATIONAL DATA
ASSIMILATION

Variational Data assimilation schemes are described here for a system mod-
elled by the discrete nonlinear equations

Xk+1:fk-(xk>7 k‘:O,...,N—l, (1)

where x;, € IR" is the model state vector and f;, : R x R™ — IR" is a
nonlinear function describing the evolution of the states from time ¢; to time

Tht1-
The observations are related to the system state by the equations

Yk:hk(xk)+5ka k=0,...,N—1, (2)

where y;, € IRP* is a vector of p; observations at time t; and hy, : IR™ — IRP*
is a nonlinear function that includes transformations and grid interpolations.
The observational errors d; € IRP* are assumed to be unbiased, serially un-
correlated, Gaussian random vectors with covariance matrices Ry, € IRPk*Pk,

A prior estimate, or ‘background estimate,’ Xg of the initial state xq is
assumed to be known and the initial random errors (xo—x3) are assumed to
be Gaussian with covariance matrix By € IR™*"™. The observational errors
and the errors in the prior estimates are assumed to be uncorrelated.

The aim of the data assimilation is to find the maximum likelihood
Bayesian estimate of the system states given the observations and the prior
estimate of the initial state. This problem reduces to minimizing the square
error between the model predictions and the observed system states, weighted
by the inverse of the covariance matrices, over the assimilation interval [1].
The model is assumed to be ‘perfect’ and the system equations are treated as
strong constraints on the objective function. The model states that satisfy
the system equations are uniquely determined on the assimilation interval
by the initial states of the system. The initial states can thus be treated
as the required control variables in the optimization. The data assimilation
problem is defined explicitly as follows.



Problem 1 Minimize, with respect to xg, the objective function

N-1
> (hy(x) —y) " Ry (hy(x;) —y;) (3)
§=0

| =

1 _
T = L) By oo )+

subject to the system equations (1).

In practice the constrained minimization problem is solved iteratively
by a gradient method. The problem is first reduced to an unconstrained
problem using the method of Lagrange. Necessary conditions for the solution
to the unconstrained problem then require that a set of adjoint equations
together with the system equations must be satisfied. The adjoint equations
are given by

Ay =0, (4)

Ak = Fl (xi) Ak — HE R (hy(xk) —yx), k=N-1,...,0, (5)

where A, € R", 7 =0,..., N, are the adjoint variables and F}, € IR"*"™ and
H;, € R™*Pk are the Jacobians of f;, and hy, with respect to xy.

The gradient of the objective function (3) with respect to the initial data
Xg is then given by

Vo = Byt(x0 — x5) — Xo. (6)

At the optimal, the gradient (6) is required to be equal to zero. Otherwise
this gradient provides the local descent direction needed in the iteration
procedure to find an improved estimate for the optimal initial states. Each
step of the gradient iteration process requires one forward solution of the
model equations, starting from the current best estimate of the initial states,
and one backward solution of the adjoint equations. The estimated initial
conditions are then updated using the computed gradient direction. This
process is expensive, but it is operationally feasible, even for very large
systems, such as weather and ocean systems, which may involve as many as
107 state variables.

3 APPLICATION TO THE EADY MODEL

The success of the 4DVar assimilation technique is largely due to the ac-
tion of the dynamical model equations, which spread information from the
available observations into sparse data regions, enabling the states to be re-
constructed accurately everywhere in the domain. To investigate the critical
features of the reconstruction process, we conduct identical twin experiments
using a simple two-dimensional Eady model of baroclinic instability. The
model describes the evolution of perturbations to a basic state, given by a
linear zonal wind shear with height in a domain between two rigid horizontal



boundaries. The density, static stability and Coriolis parameter are taken to
be constants, and it is assumed that the interior quasi-geostrophic potential
vorticity is zero.

Perturbations to the basic state are advected zonally by the basic shear
flow. The system dynamics are described by the non-dimensional equations

0 0 oY 1
(a"‘Z%)b— %7 fOI' Z—j:§, T € [O,X], (7)
where b is the buoyancy and the geostrophic streamfunction 1 satisfies
0% 0% 11
el W—Oa ZE[—§7§L z € [0, X1, (8)
with boundary conditions
oY 1
_— = f = :I:— X .
o b, or z 5 %€ [0, X] 9)

The buoyancy and streamfunction are assumed to be periodic in z on [0, X].

3.1 Experiments

The aim of the experiments is to reconstruct the buoyancy wave on the
upper boundary of the region from observations of the buoyancy on the lower
boundary at the beginning and end of the assimilation interval using 4DVar.
The model equations are obtained by discretizing the system equations (7)
- (9) using a leap-frog advection scheme with 11 vertical levels and 40 grid
points in the horizontal. Perfect observations representing the ‘truth’ are
generated by model runs over a time interval corresponding to 6 hours,
initiated with the most rapidly growing (or decaying) normal mode of the
system. The initial fields have a tilt with height that is associated with
vertical coupling between the upper and lower waves, leading to exponential
growth (or decay) of the solution. Uncorrelated random noise with variance
0, = 1 is added to the observations. The prior estimate of the state at time
to, known as the initial background state, is equal to the true state with a
phase shift. This represents a displacement in the estimate of the current
system state. The resulting background errors are assumed to be random
and uncorrelated with variance o3. In the objective function (3) of the 4DVar
scheme, the covariance matrices are thus defined to be B - oy 2], and
Rj_l = 0,21, j =0,1. The error variance ratio is defined to be y? = 02/o?.

In practice, the error characteristics of the observations are generally
known quite well from the instrumentation data and the positioning of the
observations. Much less confidence can be placed in the error statistics
assumed for the initial background state. We investigate here the effects on
the estimated states, known as the analysis, produced in 4DVar assimilation
by changes in the variance ratio and in the positions of the observations in
time.
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Figure 1: 4DVar analyses (solid line) shown at the final time of the assim-
ilation interval in the cases (a)-(b) u? = 0.1 and (c)-(d) u? = 0.01. The
truth and the background state are shown by the dotted and the dashed
lines, respectively. In both cases perfect observations, shown by the circles,
are given at the beginning and end of the interval.

3.2 Results

In Figure 1, the background and analysis of the buoyancy are shown in the
case where the observations are exact. The variance ratio is selected to be
u? = 0.01 (Figure 1(a)) and p? = 0.1 (Figure 1(b)). The lower boundary
wave, where the solution is measured, is estimated accurately in both cases.
The upper boundary is also reconstructed accurately in the first case, but
where a larger weight is placed on the background, the amplitude and phase
of the upper wave are estimated less accurately, and the growth rate is no
longer determined well. We see that weighting the background too heavily
causes useful information to be lost.

In Figure 2, the effects of noise on the background and analysis are shown
in the cases where p?2 = 0.08 and 2 = 0.01. In the first case the weights
are statistically correct and the lower wave is reconstructed accurately, but
the reconstructed upper wave contains phase and amplitude errors, again
due to the weighting on the background term. If less weighting is applied to
the background now, however, the noise on the observations leads to small
oscillations in the reconstructed lower wave, and causes a non-physical wave
to be generated by the assimilation on the upper boundary. We see that
with less weighting on the background, the results become sensitive to the
noise in the observations.

The effects of positioning the observations at different times in the as-
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Figure 2: 4DVar analyses (solid line) shown at the final time of the assimila-
tion interval in the cases (a)-(b) u? = 0.08 and (c)-(d) u? = 0.01. The truth
and the background are shown by the dotted line, and the dashed line, re-
spectively. In both cases, observations, shown by the circles, are given at the
beginning and end of the interval and contain random noise with a Gaussian
distribution and standard deviation o, = 1.
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Figure 3: Euclidean norm of the streamfunction for 4DVar analyses and
forecasts in the case of the most rapidly (a) growing and (b) decaying normal
modes. Observations are given at ¢ = ¢y, the end of the assimilation interval
and at either ¢ = 0 (dotted) or at ¢ = (3/4)t; (dashed). The noise on
the observations has standard deviation o, = 1.0 and the variance ratio is
specified as u? = 0.04. The ’truth’ (solid) is also shown.



similation interval are shown in Figure 3. The observations are assimilated
over an interval of length ¢, corresponding to twelve hours, and a forecast
over a time interval corresponding to 24 hours is produced from the analysis
at time t;, the end of the assimilation interval. Observations at the end
time ¢t = t; are used, together with observations at either the initial time
t =0, or at the time t = (3/4)t;. The norm of the streamfunction is plotted
for the case where the model is initiated by a growing mode (Figure 3(a))
and by a decaying mode (Figure 3(b)). It can be seen that the results of the
assimilation are more accurate in both cases for observations more widely
separated in time. Moreover, when the observations are close together in
time, the decaying mode is very badly reconstructed, and in the forecast the
analysis is actually growing rather than decaying.

3.3 Summary

The conclusions of the experiments are summarized as follows.

(i) Weighting the background state too heavily may filter information
needed to reconstruct the state in unobserved regions.

(ii) In unobserved regions, the analysis may be sensitive to noise in the
observations if the background is not weighted heavily enough.

(iii) Selecting the appropriate value for u? = 02 /o7 is critical for extracting
the maximum amount of useful information from the observations.

(iv) A better analysis is achieved if the observations are placed as far apart
as possible in the assimilation time interval.

In the next section we analyse the mechanism producing these effects,
using a singular vector approach.

4 INFORMATION CONTENT OF OBSERVATIONS
IN 4D-VAR

To analyse the critical features in the 4DVar assimilation process, we use
a singular value decomposition technique. The model and observation op-
erators are assumed to be linear and the prior (background) error and ob-
servational errors are assumed to be uncorrelated with fixed variance. We
write

Xp+1 = M (tgs1, U)X, (10)
Yk = Hpxp + O, (11)
for k=0,...,N — 1. The objective function (3) is written as

1 _ 1 4 A 1 .
J = §(X0 —x5) By (%0 — x5) + i(HXO -9 R M (Hxy - y), (12)



where

H = [H],(HiM(t1,t0))", ..., (HN—IM(tN—latO))T]Ta (13)

yT = [yga yglra LR y%—1}7 (14)

and R is a block diagonal matrix with diagonal blocks equal to R;. The
matrix H is known as the observability matrix ([6, 7]). The solution to the
optimization problem is then given explicitly by

xo=xb+ (B +ATROE) T ATRA, A= (y-Ax). (1)

4.1 Singular Value Decomposition

We assume now that By = 071 and R = o2l and define the singular value
decomposition of the observability matrix H to be

H=UAVT, (16)

where A = diag{\;}. The scalars \; are the singular values of H, and the

left and right singular vectors v; and u; are given by the columns of V and

U, respectively. Applying the SVD in (15) enables us to write the optimal
analysis as

A2 ufd
b J J
= ——V,. 17
- XO+;M2+& YIS (7

The increments made to the prior estimate acg by the assimilation process
are thus given by a linear combination of the right singular vectors of H,
weighted by the two factors

2 T3
)\j u; d

c; = ——— . (18)

fj:lug_i_)\jza J i

If there is no background (prior) estimate constraining the solution, so
that pu? = 0, then the filter factor’ f; =1, Vj , and the weight ¢; given to
each singular vector in the increment is proportional to the angle between the
‘innovation’ vector d and the corresponding left singular vector u;. Large
c; indicates that the corresponding singular vector contributes significantly
to the correct reconstruction of the system state.

If a background (prior) estimate is given, so that u? > 0, then the weight-
ing on each singular vector is reduced by the corresponding filter factor f;.
For noisy observations, where p? >> )\?, the contribution to the analysis
from the singular vector is damped and the observational information is
strongly filtered. This filtering is a vital aspect of the assimilation process,
as both background and observations contain errors. The choice of the spec-
ified value of the variance ratio p? is then crucial to enable the extraction
of the maximum information available in the observations.

10
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Figure 4: Figure (a) shows for the Eady model the values of the coefficients
¢; (as defined in (18)) for perfect (dashed line) and noisy (thin solid line)
observations taken at the beginning and end of the assimilation interval.
Figure (b) shows the singular values of the second pair of significant singular
values plotted as a function of the time when the first set of observations
are made. In all cases, the final observations are made at the end of the
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Figure 5: The streamfunction field for the right singular vectors correspond-
ing to the two pairs of singular vectors that are significant in the reconstruc-
tion of the state of the Eady system. The corresponding singular values for
the two cases are (a) A = 1.45 and (b) A = 0.27.
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4.2 Interpretation of Experimental Results

We now apply the SVD theory to interpret the experimental results of Sec-
tion 3. In Figure 4(a) we show the coefficients ¢; for the singular value
decomposition of the Eady model. For perfect observations there are two
pairs of singular vectors that are significant for the reconstruction of the so-
lution. The corresponding right singular vectors are shown in Figure 5. The
singular vectors associated with the larger pair of singular values are seen
to contribute primarily to the accurate estimation of the lower boundary
wave, where the observations are given. The second set, associated with the
smaller pair of singular values, contributes to the accurate reconstruction
of the upper wave. For noisy observations, the weights c¢; are seen to grow
as the singular values decay. If the corresponding singular vectors are not
sufficiently filtered, then the estimated states may be very inaccurate due
to the noise. In this case, however, unless the variance ratio p? is carefully
specified, important information contained in the second set of significant
singular vectors may be filtered out, causing the reconstructed upper wave
to lose accuracy as seen in Figures 1 and 2.

In Figure 4(b) we show the magnitude of the second set of singular
values as a function of the time when the first observations are made within
an assimilation interval corresponding to 12 hours. In all cases the second
(final) set of observations is made at the end of the interval. We see that
the farther apart that the observations are taken, the larger is the second
pair of significant singular values. Therefore, important information in the
observations is less likely to be lost if the observations are taken as far apart
as possible in time, as seen in Figure 3.

4.3 Summary

We may summarize the results of the theoretical analysis as follows.

(i) The right singular vectors with small singular values contain informa-
tion needed to reconstruct the state in unobserved regions.

(ii) The background state is needed to filter the right singular vectors that
correspond to noise, but may also filter significant information needed
to reconstruct the states accurately unless the variance ratio p? is
specified carefully.

(iii) The singular values associated with the singular vectors that contain
significant information in unobserved regions increases as the obser-
vations are moved farther apart in time, thus increasing the useful
information that can be extracted from the observations.

12



5 TIKHONOV REGULARIZATION

In Section 4 we have demonstrated the importance of the value of the vari-
ance ratio p?, between the variances of the background and observational
errors, in maximizing the information that can be extracted from the obser-
vations. Good choices for u? can be determined by using Tikhonov regular-
ization theory [8].

We first reformulate the objective function (3) for the variational as-
similation problem by making a change of variable. We let Cp and Cpg be
such that By = 07Cp, R = 02Cpg, and define x = Cg/2<X0 —x3). For the
linear model (11), minimizing the objective function (3) is then equivalent
to minimizing the function

f~4 —1/2145 —1/25 1/2
J(x) = 1?|x|3 + |C5' 2 - ¢ ACy X |12, (19)

where p? = 02 /02

We see that if pu? = 0, that is, if there is no background constraint
specified, then the problem is ill-posed in practice, since there are fewer
observations than degrees of freedom in the initial states. The problem is
then an under-determined least squares problem, which does not have a
unique solution. To ensure that the problem is well-posed, an additional
condition is added in order to regularize the problem and to constrain the
solution in the null space. Generally this additional constraint requires the
least-square (weighted) length of the solution also to be minimized. The
complete problem is then written in the form (19).

For noisy data the regularized problem is still likely to be ill-conditioned,
and therefore the solution may be very sensitive to the noise. In this case
we aim to select a value for p? to maximize the conditioning and minimize
the sensitivity. We are thus able to extract the maximum information from
the noisy data by making a good choice for the variance ratio. Several
techniques for determining ;2 are given in the literature. A simple (although
still expensive) method is the L-curve technique, illustrated in Figure 6.
Here the logs of the two separate least-square objective functions in (19)
are plotted against each other for various values of ;2. The point at which
the curve has maximum curvature is known to give the optimal choice for
u? [9]. For the Eady problem examined here, we see that the optimal value
should be in the region p? ~ 0.08 — 1.0, which is the range for the best
values found by experiment. For more precise computation, the Generalized
Cross Validation (GCV) technique provides an algorithm for determining
the point of maximum curvature ([10]). An efficient implementation of the
algorithm can be achieved using a Lanczos process ([11]).

13
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Figure 6: The L-curve: a parametric plot of the values of log ||x%(u) — x°||2
and log ||y — Hx®(u)||2 for different values of p?, which are written beside
each point.

6 CONCLUSIONS

We describe here the four dimensional variational data assimilation (4DVar)
technique for combining numerical model predictions with noisy observa-
tions in order to generate the optimal estimate of the expected states of a
system. This technique is currently used for numerical weather forecasting
in various operational centres. We demonstrate, with a simple model of a
baroclinic instability, that the 4DVar method is able to use a time sequence
of observations to reconstruct the state of the system in unobserved regions.
The reconstructed states are shown to be sensitive to noise, which is filtered
by the constraint on the solution imposed by a ’prior’, or background, es-
timate of the initial state. We demonstrate also that for the most accurate
reconstruction of the states, the observations should be taken as far apart
as possible in time, within the assimilation window.

An analysis of the 4DVar assimilation procedure using a singular value
decomposition (SVD) technique is presented, and the results of the exper-
iments are interpreted in terms of the singular values and singular vectors
of the ’observability’ matrix of the system. We show that the filtering effect
of the background is controlled by a ’regularization’ parameter, which may
be considered as the variance ratio between the observation and background
error variances. We also establish that a good choice of the regularization pa-
rameter can improve the reconstruction of the states in unobserved regions.
Applicable techniques for selecting a good choice of this parameter based on

14



Tikhonov regularization theory are also described and demonstrated. More
details of this work can be found in [12, 13].
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