THE UNIVERSITY OF READING
DEPARTMENT OF MATHEMATICS

A note on permutations for quadratic
programming problems

H. S. Dollar

Numerical Analysis Report 5/06

May 17, 2006



A NOTE ON PERMUTATIONS FOR QUADRATIC PROGRAMMING
PROBLEMS

H. S. DOLLAR!

Abstract

Saddle-point problems frequently arise in many applications in science
and engineering. Dollar, Gould, Schilders and Wathen recently proposed
the use of implicit factorization constraint preconditioners for use within
iterative methods when (approximately) solving saddle-point problems.
Such a preconditioner may we require a preprocessing step which carries
out a (symmetric) permutation of the saddle-point problem. We investi-
gate several permutations which are motivated by the properties of saddle-
point matrices arising in a class of constrained optimization problems.

1 Introduction

Suppose we wish to solve saddle-point problems of the form

where H € R™*" is symmetric, and A € R™*™ has full rank m. There are many
applications in which the solution of such systems is required, [1]. We shall
concentrate on the application of quadratic programming problems:

1
min §xTQx + g%z subject to Az —d=0, z<0. (2)

Such problems can be solved by interior point methods and every iteration
of such a method will require the solution of a system of the form (1) where
H = Q+07"! and O is a diagonal matrix with strictly positive elements. As the
interior point method approaches the solution of (2), some of the entries of @1
grow as O(u) and others as O(i), where p > 0 is called the barrier parameter
and tends towards zero as the optimal solution is approached, [2].

When solving such saddle-point systems, we’d like to use a projected precon-
ditioned conjugate gradient (PPCG) method with a constraint preconditioner
of the form

0 o0 AT
P=| 0 Hyp AL |, (3)
A Ay 0

1Department of Mathematics, University of Reading, Whiteknights, P.O. Box 220, Read-
ing, Berkshire, RG6 6AX, U.K. (H.S.Dollar@reading.ac.uk) .



where A; € R™*™ is nonsingular, A = [ A A ] yand Hog = Hppy1:m,m+41:n €
R(r=m)x(n=m) Clearly, when using this preconditioner we will only need to
solve much smaller systems involving A; (and its transpose) and Hss. Such a
preconditioner forms one of the implicit factorization preconditioners proposed
by Dollar, Gould, Schilders and Wathen [4]; all of these preconditioners require
Aj to be nonsingular. In practice, we know that A is of full rank but we certainly
cannot assume that the first m columns of A are linearly independent. However,
by the assumption that A is of full rank and m < n, we can always find an n by
n permutation matrix IT such that AIl = A and the first m columns of A are
linearly independent. Letting

H =1nrgT,

we then solve

H AT Tz e

~ = 4

MR @

N ~——
and set
r = IIz.

We will then use a preconditioner of the form

R 0 0 AT
P=| 0 Hy AT |. (5)
A A, 0

In the following sections we will consider the desirable properties of such
a permutation and propose several methods for obtaining them. We will also
compare these methods numerically by solving a set of quadratic programming
problems.

2 Desirable properties of the permutation

In the D.Phil thesis of Dollar [3], she investigated some of the desirable proper-
ties of the permutation II. In particular, she found that the permutation should
aim to move the large diagonal entries of H into Hay since the preconditioned
system P~'H has

e an eigenvalue at 1 with multiplicity 2m,

e n — m eigenvalues defined by the generalized eigenvalue problem

<H22 —|—A A H11A 1A2 — A A TH21 HQlA\l_lA\Q) Ty, = )\ﬁggxz.
(6)



The above statements follow from [6, Theorem 2.1] in which we use the funda-
mental nullspace basis of A:
5 _ [ —ATtA
Z= Lo
]
Remark 2.1. Finding such a permutation closely relates to the problem of

finding a nullspace basis of A, since if A1 is nonsingular, then we can form the
fundamental nullspace.

If the permutation IT moves all the large diagonal entries of H into ﬁzg,
then the eigenvalues of (6) will start to cluster around 1 as we move towards the
optimal solution of (2) and the preconditioned system will be well conditioned.
Conversely, if all large diagonal entries of H were moved into H 11, the eigenval-
ues of (6) would have magnitude O(%L) and the preconditioned system will be
very ill-conditioned.

3 Permutation methods

Dollar [3] firstly found a permutation II; such that the diagonal entries of
ﬁlTHﬁl are sorted in non-decreasing order. A permutation II, was then ob-

tained by carrying out an LU factorization of IT' AT with threshold row pivot-
ing. The hope was that by using a threshold we could reduce the number of
large diagonal entries of H that were moved back into Hiy, where IT = II;115.
Unfortunately II, was frequently far from being the identity so many of the
large entries ended up in Hy;.

In an attempt to improve on this method she also looked at finding a permu-
tation IT; such that the diagonal entries of HfH IT are sorted in non-increasing

order. As before, a permutation Il is obtained by carrying out an LU fac-
torization of HT~AT with threshold row pivoting. The resulting permutations
ITI = 11115 and IT = II;I1, are then compared and II chosen by carrying out the

following steps:
dy = diag(IT7 HIT)
dy = diag(ﬁTHﬁ)
mean(d; (m+1:m+n))
m(e;n((dl—i(_ll:.m)—i)_ N
r2 = mea2n(d2(1:.m))
if 7 > ry then
I=1II
else

T =

n=10
end if
Although carrying out such a method to find a permutation was generally a
lot more effective than choosing a permutation which either ignores the diagonal
entries of H, or just automatically sets II = II or II = II without comparing



the two, the numerical tests carried out in the thesis [3] imply that there might
be another method to find a permutation II which, for convenience, can be
coded using standard MATLAB® functions and is more effective than the above
method.

Let us consider how the LU factorization command [L,U,P] = 1u(A,thresh)
works in MATLAB®. The variable thresh is a pivot threshold in [0,1]. Pivoting
occurs when the diagonal entry in a column has magnitude less than thresh
times the magnitude of any sub-diagonal entry in that entry. In our code, we
carry out the command [L,U,Pi] = 1lu(A’,thresh). We would like the rows
of AT that correspond to large entries of H to be avoid being chosen by the LU
threshold method, so we would like to scale these rows so that their entries are
small relative to those corresponding to small diagonal entries in H. There are
two obvious ways to do this scaling:

e set A= AD™! find II by carrying out an LU factorization with threshold
pivoting on ZT;

o set A= AD*%, find IT by carrying out an LU factorization with threshold
pivoting on ZT;
where D = diag(H).

The first idea comes from simply scaling the columns of A by a value in-

versely proportional to the corresponding diagonal entry in H. The second idea

was obtained by symmetrically scaling the original saddle-point system so that
resulting (1,1)-block has unit diagonal entries:

D :HD : D 3AT | [ %] [ D :n%c
AD~3 0 vyl d ’

Hp
and x = D—311Z. Let

A\T

[N

D~:GD~: D-

Pp = AD% 0

The eigenvalues of the preconditioned system P "M p will be clustered around

1 if the entries in the last n — m columns of AD~% are all small.
Let us compare the different methods over a subset of QP problems from
the CUTETr test set [5]. We shall record:

e k, the number of interior point iterations carried out;

e Y;, the total number of PPCG iterations carried out to find the predictor
steps;

e Y, the total number of PPCG iterations carried out to find the corrector
steps.



Table 1: Comparison of interior point and PPCG iterations for the LUH, LUD
and LUDsq permutations.

LUH LUD LUDsq
Name m n k 21 22 k 21 EQ k 21 22
AUG2DQP 1600 | 3280 || 436 | 2292 | 553 || 20 | 1397 | 1524 || 21 | 1427 | 1536
AUG2DCQP | 1600 | 3280 87 | 3591 | 5001 || 22 | 1508 | 1651 || 20 | 1407 | 1535
AUG3DQP 1000 | 3873 12 | 847 | 882 | 11 419 | 425 || 28 | 1311 | 1137
AUG3DCQP | 1000 | 3873 131 896 | 946 || 11 701 704 || 20 | 1336 | 1206
CONT-050 2401 | 2597 6 20 19 6 20 19 6 20 19
CVXQP1-M 500 | 1000 9| 792 | 811 91 353 | 357 9| 294 | 298
CvXQP2.-M 250 | 1000 11 222 | 231 | 11 378 | 382 | 11 253 | 258
CVXQP3-M 750 | 1000 10 766 774 || 10 | 247 | 252 || 10 | 214 | 214
DUALC1 215 | 223 15 53 62 | 11 39 41 || 11 37 37
DUALC2 229 | 235 31 174 181 7 26 25 7 26 25
DUALCSH 278 | 285 6 15 15 6 19 19 6 20 20
DUALCS 503 | 510 17| 144 | 165 8 35 35 8 35 35
KSIP 1001 | 1021 10 32 33 9 29 30 9 29 30
MOSARQP1 700 | 3200 10 | 738 | 743 | 12| 232 | 235 || 12 | 454 | 458
PRIMALI1 85 | 410 10| 369 | 367 | 10 | 359 | 358 || 10 | 337 | 331
PRIMAL2 96 745 12 544 | 549 || 12 625 | 620 || 12 549 | 549
PRIMALS 111 | 856 9| 534 | 532 9] 600 | 602 9| 563 | 562
PRIMAL4 75 | 1564 7| 565 | 561 7| 424 | 426 7| 402 | 403
PRIMALC1 91 239 31 126 | 134 || 27 | 102 | 113 || 27 97 | 106
PRIMALC2 71 238 40 64 87 | 21 56 99 || 21 o7 o7
STCQP2 2052 | 4097 14 14 14 || 14 14 14 || 14 14 14

We note that each iteration of the PPCG method will be comparable in CPU
time and memory usage for each of the different permutation methods. The
method used in my thesis to find the permutation will be denoted by LUH, and
the ideas presented in this note will be denoted by LUD and LUDsq respectively.

The results are given in Table 1. We observe that the methods LUD and LUDsq
are generally using a significantly reduced number of PPCG iterations to solve
the QP problems compared with the LUH method. To help us further analyze
the results the total number of PPCG iterations used are compared using a per-
formance profile, Figure 1. We observe that, as expected, the methods LUD and
LUDsq are generally performing significantly better than the LUH method. The
LUD and LUDsq methods are performing similarly for around 75% of the prob-
lems, but LUD is generally performing better for the remaining problems. This
is because LUD method is more likely to “detect” columns in A corresponding
to large diagonal entries in H early on in the interior point method.




l T I T

0-2 e | UH
0.1} o LUD |
r= = | UDsq
O L L L L L
1 2 3 4 5 6

Figure 1: Performance profile comparing the total number of PPCG iterations.

4 Conclusions

We have shown how the choice of permutation used to obtain a non-singular A,
can have a dramatic effect on the number of PPCG iterations required during
a run of an interior point method for solving quadratic programming problems
and that, for certain choices of preconditioner, taking the entries of the H into
account when forming A; can be advantageous.

The currently proposed methods will not be suitable for very large problems
so the next stage of this work will be to develop a similar method which is also
suitable for large values of n and m.

References

[1] M. BENnzi, G. H. GoLUB, AND J. LIESEN, Numerical solution of saddle
point problems, Acta Numerica, 14 (2005), pp. 1-137.

[2] L. BERGAMASCHI, J. GONDZIO, AND G. ZILLI, Preconditioning indefinite

systems in interior point methods for optimization, Comput. Optim. Appl.,
28 (2004), pp. 149-171.

[3] H. S. DOLLAR, lterative Linear Algebra for Constrained Optimization, Doc-
tor of Philosophy, Oxford University, 2005.



[4]

H. S. DorLLar, N. I. M. GouLp, W. H. A. SCHILDERS, AND A. J. Wa-
THEN, Implicit-factorization preconditioning and iterative solvers for regular-
ized saddle-point systems, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 170—
189.

N. I. M. GouLp, D. OrBAN, AND P. L. ToiNnT, CUTEr (and SifDec), a
constrained and unconstrained testing environment, revisited, ACM Trans-
actions on Mathematical Software, 29 (2003).

C. KELLER, N. I. M. GouLD, AND A. J. WATHEN, Constraint precondi-
tioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000),
pp. 1300-1317.



