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Abstract

There is an established framework that describes a class of ensemble Kalman

filter algorithms as square root filters (SRFs). These schemes carry out anal-

yses by updating the ensemble mean and a square root of the ensemble co-

variance matrix. The matrix square root of the forecast covariance is post-

multiplied by another matrix to give a matrix square root of the analysis

covariance. The choice of post-multiplier is not unique, but can be multi-

plied by any orthogonal matrix to give another scheme that also fits into this

framework.

In this work we re-examine the ensemble SRF framework. The key result

is that not all filters of this type bear the desired relationship to the forecast

ensemble: there can be a systematic bias in the analysis ensemble mean and

consequently an accompanying shortfall in the spread of the analysis ensemble

as expressed by the ensemble covariance matrix. This points to the need for a

restricted version of the notion of an ensemble SRF, which we call an unbiased

ensemble SRF. We have established a set of necessary and sufficient conditions

for the scheme to be unbiased. Many (but not all) published ensemble SRF

algorithms satisfy them. Whilst these conditions are not a cure-all and cannot

deal with independent sources of bias such as model and observation errors,

they should be useful to designers of ensemble SRFs in the future.
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1 Introduction

Data assimilation seeks to solve the following problem: given an imperfect discrete

model of the dynamics of a system and noisy observations of the system, find esti-

mates of the state of the system. Sequential data assimilation techniques break this

problem into a cycle of alternating forecast and analysis steps. In the forecast step

the system dynamical model is used to evolve an earlier state estimate forward in

time, giving a forecast state at the time of the latest observations. In the analysis

step the observations are used to update the forecast state, giving an improved state

estimate called the analysis. This analysis is used as the starting point for the next

forecast.

Sequential data assimilation techniques include the optimal linear Kalman filter

(KF) and its nonlinear generalisation, the extended Kalman filter (EKF) (Gelb,

1974; Jazwinski, 1970). As well as an estimate of the state of the system, these

filters maintain an error covariance matrix that acts as a measure of the uncertainty

in the estimate. This covariance matrix is updated with every analysis to reflect

the new information provided by the observations, and is evolved along with the

state estimate from the time of an analysis to the time of the next forecast. This

maintenance of a flow-dependent covariance matrix is a significant advantage of

Kalman-type filters over variational data assimilation techniques such as 4D-Var that

are popular in operational numerical weather forecasting (NWP) systems. However,

the EKF rose to prominence in aerospace applications where the dimension of the

state space for the model is relatively small, typically nine or less. Directly extending

the filter to NWP systems where the state space dimension may be 107 is beyond the

capabilities of current computer technology. The EKF also shares with 4D-Var the

need to implement tangent linear operators (Jacobians) for the nonlinear forecast

model and the model of how observations are related to the state of the system.

This is a laborious activity for a large, complicated system such as an NWP model.

The ensemble Kalman filter (EnKF) is an attempt to overcome the drawbacks

of the EKF. Two of its key ideas are to use an ensemble (statistical sample) of state

estimates instead of a single state estimate and to calculate the error covariance

matrix from this ensemble instead of maintaining a separate covariance matrix. If
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the ensemble size is small, but not so small that it is statistically unrepresentative,

then the extra work needed to maintain an ensemble of state estimates is more than

offset by the work saved through not maintaining a separate covariance matrix. The

EnKF also does not use tangent linear operators, which eases implementation and

may lead to a better handling of nonlinearity. The KF aspect of the EnKF appears

in the analysis step, which is designed so that the implied updates of the ensemble

mean and ensemble covariance matrix mimic those of the state vector and covariance

matrix in the standard KF.

The EnKF was originally presented in Evensen (1994). An important subsequent

development was the recognition by Burgers et al. (1998) (and independently by

Houtekamer and Mitchell (1998)) of the need to use an ensemble of pseudo-random

observation perturbations to obtain the right statistics from the analysis ensemble.

Deterministic methods for forming an analysis ensemble with the right statistics have

also been presented. The former approach to the EnKF is comprehensively reviewed

in Evensen (2003), whilst previously-published variants of the latter approach are

placed in a uniform framework in Tippett et al. (2003). These variants include the

ensemble transform Kalman filter (ETKF) of Bishop et al. (2001), the ensemble

adjustment Kalman filter (EAKF) of Anderson (2001), and the filter of Whitaker

and Hamill (2002). Filters that fit into the general framework are known as ensemble

square root filters (SRFs).

This paper extends the results of Tippett et al. (2003) in two directions. Firstly,

it explicitly shows that the ensemble SRF framework is sufficiently general to en-

compass all possible deterministic formulations of the analysis step of the EnKF,

not just the specific cases considered by those authors. Secondly, and more impor-

tantly, it shows that the ensemble SRF framework also encompasses filters in which

the analysis ensemble statistics do not bear the desired KF-like relationship to the

forecast ensemble: there can be a systematic bias in the analysis ensemble mean

and an accompanying shortfall in the spread of the analysis ensemble as expressed

by the ensemble covariance matrix. This points to the need for a restricted version

of the notion of an ensemble SRF, which we call an unbiased ensemble SRF. The

unbiased ensemble SRF framework is still general enough to include all deterministic
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formulations of the analysis step of the EnKF whilst excluding those filters that do

not have the desired analysis ensemble statistics.

This paper adopts a formal style of presentation with explicitly stated definitions

and theorems. The purpose of the definitions is to clarify key concepts, especially

the distinctions between the different types of filter. The theorems are stated ex-

plicitly to help distinguish them from the rest of the text. Section 2 introduces some

notation and defines what is meant by a deterministic analysis step for an EnKF.

The definition is formulated in a way that makes sense for nonlinear observation

operators as well as linear ones; care is taken to maintain this generality throughout

the paper. Section 3 defines an ensemble SRF and shows that every EnKF with de-

terministic analysis step is an ensemble SRF. The bias issue is discussed in section 4,

which shows how biased filters can arise within the ensemble SRF framework. The

notion of an unbiased ensemble SRF is introduced in section 5, where it is shown

that every EnKF with unbiased analysis step is an unbiased ensemble SRF and con-

versely. Section 6 presents conditions for an ensemble SRF to be unbiased. These

conditions should be useful to workers devising new filters within the ensemble SRF

framework. Filters within the ensemble SRF framework create a matrix of per-

turbations from the analysis ensemble mean by post-multiplying the corresponding

matrix for the forecast ensemble. An alternative approach (used, for example, in the

EAKF) is to pre-multiply the matrix of perturbations. This approach is discussed in

section 7 and its relation to the unbiased ensemble SRF framework shown. Section 8

examines various published filter algorithms for bias, and shows that whilst many

are unbiased some are not. Some concluding remarks are made in section 9.

2 Semi-deterministic EnKFs

This section introduces some notation and defines what is meant by a deterministic

analysis step for an EnKF. An EnKF with a deterministic analysis step will be

called semi-deterministic in this paper—‘semi’ because such a filter may still have

stochastic elements in its forecast step.

Let {xi} (i = 1, . . . , m) be an m-member ensemble in an n-dimensional state

4



space. The ensemble mean is the vector defined by

x =
1

m

m∑

i=1

xi. (1)

The ensemble perturbation matrix is the n × m matrix defined by

X =
1√

m − 1

(
x1 − x x2 − x . . . xm − x

)
. (2)

The ensemble covariance matrix is the n × n matrix defined by

P = XX
T =

1

m − 1

m∑

i=1

(xi − x)(xi − x)T . (3)

If the members of {xi} are drawn independently from the same probability distri-

bution, then x is an unbiased estimate of the population mean and P is an unbiased

estimate of the population covariance matrix. The first equality in (3) may be ex-

pressed by saying that X is a matrix square root of P. Note that this use of the

term ‘square root’ is inconsistent with its most common use in the mathematical

literature, where a square root of the matrix P is often defined to be a matrix X

such that P = X
2 (see, for example, Golub and Van Loan (1996, section 4.2.10)).

However, the usage is well-established in the engineering literature (as in Andrews

(1968) and Gelb (1974, section 8.4)) and has more recently been taken over into

geophysical data assimilation (as in Tippett et al. (2003)).

Let y be an observation of the system in a p-dimensional observation space, let H

be the observation operator (possibly nonlinear) mapping state space to observation

space, and let R be the p × p observation error covariance matrix. Let forecast

quantities be denoted by the superscript f and analysis quantities by the superscript

a. There is no need for a notation to distinguish quantities at different times because

this paper is concerned purely with the analysis step, which happens all at one time.

The analysis step of an ensemble filter updates the ensemble {xf
i } resulting from

the previous forecast to give a new ensemble {xa
i } (the analysis ensemble) that will

be used as the starting point for the next forecast. This update of the ensemble

implies an update of the ensemble mean and the ensemble covariance matrix. In an

EnKF the analysis step is designed so that these implied updates mimic the update

of the state vector and covariance matrix in the KF. If the analysis algorithm includes

stochastic elements, the resemblance to the KF may only be in some sort of mean
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sense. This paper is confined to filters in which the resemblance is exact (in a sense

to be made concrete in definition 1 below). In the case of a linear observation

operator represented by the p× n matrix H, the updates of the ensemble mean and

ensemble covariance matrix are required to satisfy

xa = xf + K(y −Hxf), (4)

P
a = (I − KH)Pf , (5)

where K is the Kalman gain matrix defined by

K = P
f
H

T (HP
f
H

T + R)−1. (6)

These are just the update equations of the standard KF with the state vector re-

placed by the ensemble mean and the covariance matrix by the ensemble covariance

matrix. The matrix inverted in the definition of the Kalman gain is of such frequent

occurrence in what follows that it is convenient to introduce a special notation for

it:

D = HP
f
H

T + R. (7)

The above equations may be generalised to the case of a nonlinear observation

operator by rewriting them in terms of a forecast observation ensemble {yf
i } defined

by

y
f
i = H(xf

i ). (8)

The vector y
f
i is what the observation would be if the true state of the system

were x
f
i and there were no observation noise. Like any other ensemble, the forecast

observation ensemble has an ensemble mean yf and an ensemble perturbation matrix

Y
f . In the case of a linear observation operator, yf = Hxf and Y

f = HX
f . Using

these relationships and the relationship P
f = X

f(Xf )T , equations (4)–(7) may be

rewritten in a form that does not mention the linear operator H. These rewritten

equations form the basis of the following definition, which applies regardless of

whether the observation operator is linear or nonlinear.

Definition 1 The analysis step of an EnKF is deterministic if the updates of the

ensemble mean and ensemble covariance matrix exactly satisfy

xa = xf + K(y − yf ), (9)
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P
a = (Xf −KY

f )(Xf)T , (10)

K = X
f (Yf )T

D
−1, (11)

D = Y
f(Yf )T + R. (12)

An EnKF is semi-deterministic if its analysis step is deterministic.

There is an alternative approach to extending an EnKF from linear to nonlinear

observation operators, described in, for example, Evensen (2003, section 4.5). In

this approach the state vector is augmented with a diagnostic variable that is the

predicted observation vector:

x̂ =




x

H(x)


 (13)

and a linear observation operator is defined on augmented state space by

Ĥ




x

y


 = y. (14)

The analysis step is then carried out in augmented state space using x̂ and Ĥ in

place of x and H. However, any filter that satisfies the analogues of (4)–(7) in

augmented state space also satisfies the equations of definition 1 in unaugmented

state space. The unaugmented state space approach will be used wherever possible

in this paper. The only place where it cannot be used is in the formulation of some

of the specific semi-deterministic EnKF algorithms in section 8, certain of which

require a linear observation operator and thus an augmented state space must be

used when applying them to nonlinear observation operators.

3 Ensemble square root filters

This section defines the notion of an ensemble SRF as introduced by Tippett et al.

(2003). It goes beyond those authors by explicitly proving that every semi-deterministic

EnKF is an ensemble SRF. It will be seen in section 4 that the converse to this state-

ment is not generally true.
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Definition 2 An ensemble square root filter is an ensemble filter in which the

analysis ensemble is obtained by adding a column n-vector x̃ to the columns of a

n × m matrix
√

m − 1X̃ where x̃ and X̃ satisfy

x̃ = xf + K(y − yf), (15)

X̃ = X
f
T, (16)

TT
T = I − (Yf )T

D
−1

Y
f . (17)

There is an obvious resemblance between (15) and the update (9) of the ensemble

mean in a semi-deterministic EnKF. However, in an ensemble SRF the vector x̃

need not be the mean of the analysis ensemble. More will be said about this in

section 4. A further point of resemblance between the semi-deterministic EnKF and

the ensemble SRF is given by the following theorem, which should be compared to

(10). It is the reason for the matrix square root condition (17) in the definition of

an ensemble SRF.

Theorem 1 In an ensemble SRF, X̃X̃
T

= (Xf − KY
f)(Xf)T .

Proof.

X̃X̃
f

= X
f
TT

T (Xf)T

= X
f (I − (Yf)T

D
−1

Y
f )(Xf)T

= (Xf −X
f (Yf )T

D
−1

Y
f)(Xf )T

= (Xf −KY
f)(Xf )T . (18)

2

If X̃ were equal to X
a, then theorem 1 would imply that the ensemble covariance

matrix in the ensemble SRF updates as in the semi-deterministic EnKF. However,

as x̃ need not equal xa, so X̃ need not equal X
a. Again, more will be said about this

in section 4.

The following two theorems are necessary preliminaries for the main result of

this section (theorem 7). The first is a simple consequence of the matrix square root

condition (17) and is already present in Tippett et al. (2003).
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Theorem 2 If T satisfies the matrix square root condition (17) and U is an m×m

orthogonal matrix, then TU also satisfies (17).

Proof. Recall that an orthogonal matrix satisfies U
T
U = UU

T = I. Thus (TU)(TU)T =

TUU
T
T

T = TT
T and so TU satisfies (17) if T does. 2

Theorem 3 If X1 and X2 are two n × m matrices such that X1X
T
1

= X2X
T
2
, then

there exists an orthogonal matrix U such that X2 = X1U.

Proof. This proof makes use of the singular value decomposition (SVD) of a matrix;

see, for example, Golub and Van Loan (1996, section 2.5). Start by taking the SVD

of X1:

X1 = FGW
T (19)

where G is an n × m diagonal matrix (in the sense that gij 6= 0 if i 6= j) and F and

W are orthogonal matrices of sizes n × n and m × m respectively. Without loss of

generality it may be assumed that G can be expressed in the form

G =




G0 0

0 0


 (20)

where G0 is a nonsingular diagonal matrix of size r × r for some r. The orthogonal

matrix F can then be expressed in the form

F =
(

F0 F1

)
(21)

where F0 and F1 are column-orthogonal matrices of sizes n × r and n × (n − r)

respectively (a column-orthogonal matrix is one in which the column vectors are

orthonormal and thus the matrix satisfies F
T
0
F0 = I). Similarly, W can be expressed

in the form

W =
(

W0 W1

)
(22)

where W0 and W1 are column-orthogonal matrices of sizes m× r and m× (m− r)

respectively. It may be verified by substitution in (19) that

X1 = F0G0W
T
0
. (23)
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Let ran(X1) denote the range of X1 (the space of all n-vectors of the form X1u

where u is an arbitrary m-vector). It follows from (23) that ran(X1) ⊆ ran(F0G0).

Furthermore, since any r-vector v can be written in the form v = W
T
0
u by setting

u = W0v, it follows that ran(X1) = ran(F0G0).

Let P = X1X
T
1
. Then P = F0G0W

T
0
W0GF

T
0

= F0G
2

0
F

T
0
. Thus ran(P) ⊆

ran(F0G0). Furthermore, since any r-vector v can be written in the form v = G0F
T
0
u

by setting u = F0G
−1

0
v, it follows that

ran(P) = ran(F0G0) = ran(X1). (24)

By the hypothesis of the theorem P = X2X
T
2

as well. Therefore

ran(X2) = ran(P) = ran(F0G0). (25)

It follows that every column of X2 can be expressed as a linear combination of the

columns of F0G0. Thus there exists an m × r matrix W̃0 such that

X2 = F0G0W̃
T

0
. (26)

Now

F0G
2

0
F

T
0

= P = X2X
T
2

= F0G0W̃
T

0
W̃0G0F

T
0
. (27)

Pre-multiplying the first and last terms of this chain of equations by G
−1

0
F

T
0

and

post-multiplying by F0G
−1 gives I = W̃

T

0
W̃0. Thus W̃0 is a column-orthogonal

matrix and may be extended to a full m × m orthogonal matrix

W̃ =
(

W̃0 W̃1

)
. (28)

It may be verified by substitution that

X2 = FGW̃
T

(29)

and thus

X2 = X1WW̃
T
. (30)

Here W and W̃ are orthogonal matrices, and so therefore is WW̃
T
. Thus the theorem

is proven by setting U = WW̃
T
. 2
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The following three theorems establish some useful facts about the matrix square

root condition (17) that will be used later. In particular, theorem 6 establishes that

there is always at least one solution T of (17), which fact will be used in the proof

of the main result of this section (theorem 7).

Theorem 4 The RHS of (17) is symmetric positive definite.

Proof. The RHS of (17) may be written

I − (Yf)T
D

−1
Y

f = (I + (Yf)T
R

−1
Y

f )−1. (31)

(This follows from Tippett et al. (2003, equation (15)) or may be verified by direct

multiplication.) Since I + (Yf )TR
−1

Y
f is symmetric positive definite, so is I −

(Yf)TD
−1

Y
f . 2

Theorem 5 Any solution of (17) is nonsingular.

Proof. Suppose that T is singular. Then TT
T is singular. But by theorem 4, TT

T

is symmetric positive definite and therefore nonsingular. This contradiction implies

that T is nonsingular. 2

Theorem 6 There is a unique symmetric positive definite solution to (17).

Proof. This follows from theorem 4 and the theorem in linear algebra that a

symmetric positive definite matrix has a unique symmetric positive definite square

root (see, for example, Halmos (1974, section 82)). 2

The following theorem is the main result of this section and shows the importance

of the ensemble SRF framework to the EnKF.

Theorem 7 Every semi-deterministic EnKF is an ensemble SRF.

Proof. It suffices to prove that X
a in a semi-deterministic EnKF can be expressed

in the form X
a = X

f
T where T satisfies (17). Let T0 be a solution of (17) (such

as the positive definite solution that exists by theorem 6) and let X̃ = X
f
T0. Then

by theorem 1, X̃X̃
T

= X
a(Xa)T . Therefore by theorem 3 there exists an orthogonal
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matrix U such that X
a = X̃U. Let T = T0U. Then X

a = X
f
T and T satisfies (17)

by theorem 2. 2

The results of this section make it possible to characterise the structure of the

set of all ensemble SRF filters in terms of a well-known group of matrices; see

appendix A for details.

4 Bias

A fact that appears to have been overlooked by Tippett et al. (2003) is that the

ensemble SRF framework encompasses filters that are not EnKFs. To see this,

suppose that an arbitrary ensemble SRF is a semi-deterministic EnKF. Then it

follows from (9) and (15) that x̃ equals the analysis ensemble mean xa and that X̃

equals the analysis ensemble perturbation matrix X
a. However, (2) implies that the

sum of the columns of an ensemble perturbation matrix must be zero, and this does

not necessarily follow from (16) and (17), which are the only constraints on X̃. To

see this, let T be a particular solution of (17). Then by theorem 2 a more general

solution is TU where U is an arbitrary m×m orthogonal matrix. The corresponding

general value of X̃ is

X̃ = X
f
TU. (32)

Now let 1 be a column m-vector in which every element is 1; that is

1 =




1
...

1




. (33)

The sum of the columns of X̃ is

X̃1 = X
f
TU1. (34)

Thus X̃ is a valid ensemble perturbation matrix if and only if U1 lies in the null

space1 of X
f
T. The vector U1 is nonzero and can be made to point in any direction

by an appropriate choice of U. Therefore, unless X
f
T = 0 (in which case the analysis

1The null space of an n × m matrix M is the set of all column m-vectors u such that Mu = 0.
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ensemble collapses to a point), there will be at least some choices of U that give

X̃1 6= 0 and hence an X̃ that is invalid as an ensemble perturbation matrix. In these

cases the ensemble SRF cannot be a valid semi-deterministic EnKF.

To see the effect of treating an ensemble SRF that is not a valid semi-deterministic

EnKF as though it were, let x′

i denote the ith column of
√

m − 1X̃, and let xa and

P
a denote the analysis ensemble mean and covariance matrix that result from a valid

semi-deterministic EnKF. The members of the analysis ensemble from the ensemble

SRF are

xi = x̃ + x′

i = xa + x′

i. (35)

The mean of this ensemble is

x = xa + x′. (36)

But x′ = (
√

m − 1/m)X̃1 6= 0 (because X̃ is invalid as an ensemble perturbation

matrix), and so there is a bias in the ensemble mean. Furthermore, the ensemble

covariance matrix of the ensemble {xi} is

P =
1

m − 1

m∑

i=1

(xi − x)(xi − x)T = P
a − m

m − 1
x′ x′

T
. (37)

Therefore P 6= P
a and in particular the ensemble standard deviation will be too

small for any coordinate in which there is also a bias in the mean. Thus the analysis

is not only biased but overconfident as well. This can lead to several problems that

are discussed in section 9.

An example of output from a biased filter is shown in Fig. 1. The dynamical

system is the two-dimensional swinging spring with nonlinear normal mode initiali-

sation described in Lynch (2003) and summarised in appendix B. The coordinates

are polar coordinates r, θ and the corresponding generalised momenta pr, pθ. The

filter is an ETKF (see Bishop et al. (2001) or section 8.1) with ensemble size m = 10.

The model used in the forecast step is the same as the model used to generate the

true trajectory. The model noise is taken to be zero. All coordinates are observed.

The first observation is at time 0.1 and subsequent ones follow at intervals of 0.1.

Although the actual observation errors are zero, the covariance matrix R passed to

the filter is that of observations having uncorrelated errors with standard deviations

in θ, pθ, r, and pr of 0.1, 0.3, 7 × 10−4, and 5 × 10−3 respectively. These standard

13



0 1 2 3 4 5 6
−0.1

0

0.1

t

θ
−

θ
t

0 1 2 3 4 5 6
−2

0

2
x 10

−3

t

r
−

r
t

Figure 1: Output of ETKF with ensemble size m = 10 for swinging spring system

with perfect observations. Coordinates are plotted relative to truth. Three lines

show ensemble mean and ensemble mean ± ensemble standard deviation. Filter has

a time-varying bias and is overconfident.
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deviations are close to one-tenth of the amplitude of the oscillations in the truth.

The same covariance matrix is used in generating a random initial ensemble, centred

on the true initial state.

Fig. 1 shows the difference between the filter and the truth for θ and r. There are

considerable intervals of time during which the true state of the system (represented

by zero on the vertical axis) is outside the band defined by the ensemble mean ±
ensemble standard deviation. This suggests that the ensemble statistics may be

inconsistent with the actual error. This is confirmed by computing the fraction of

analyses having an ensemble mean within one ensemble standard deviation of the

truth for each coordinate. For unbiased, normally-distributed, analysis errors with

standard deviation equal to the ensemble standard deviation, one would expect this

fraction to be about 0.68. The actual errors need not be normally-distributed, but

this is still a useful guide. In the case shown in Fig. 1 the actual fractions are 0.43

and 0.23 for θ and r respectively. Further confirmation is provided by running the

filter 100 times with different random initial ensembles and computing the same

fractions. The results for θ, pθ, r, and pr are 0.31, 0.32, 0.32, and 0.29 respectively.

5 Unbiased ensemble SRFs

Section 4 points to the need to supplement the ensemble SRF framework with an

additional condition to rule out filters that do not have the desired KF-like analysis

ensemble statistics. This leads to the following definition.

Definition 3 An unbiased ensemble SRF is an ensemble SRF in which X̃1 = 0.

The following theorem shows that an unbiased ensemble SRF is the same thing

as a semi-deterministic EnKF.

Theorem 8 Every semi-deterministic EnKF is an unbiased ensemble SRF, and

conversely every unbiased ensemble SRF is a semi-deterministic EnKF.

Proof. Suppose that a filter is a semi-deterministic EnKF. By theorem 7 the filter

is an ensemble SRF as well. In this ensemble SRF, X̃ = X
a where X

a is an ensemble
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perturbation matrix and thus has columns that sum to zero. Therefore X̃1 = 0 and

the ensemble SRF is unbiased.

Suppose conversely that a filter is an unbiased ensemble SRF. Unbiasedness

implies that x̃ is the mean of the analysis ensemble and X̃ is the analysis ensemble

perturbation matrix. Equation (15) implies that xa satisfies (9) in the definition of

a semi-deterministic EnKF, whilst theorem 1 implies that P
a satisfies (10) in the

same definition. Therefore the filter in a semi-deterministic EnKF. 2

6 Conditions for an unbiased ensemble SRF

Definitions 2 and 3 in conjunction with theorem 8 reduce the problem of construct-

ing a semi-deterministic EnKF to finding a solution T of the matrix square root

condition (17) and checking that the matrix X̃ defined by (16) satisfies X̃1 = 0. It

would be useful to replace this condition on X̃ with one on T, so that the problem

of finding a semi-deterministic EnKF is reduced to one of finding T satisfying cer-

tain conditions. Such conditions for T are provided in this section. It is assumed

throughout that T satisfies the matrix square root condition (17). The first the-

orem gives an additional sufficient condition for the resulting ensemble SRF to be

unbiased.

Theorem 9 If 1 is an eigenvector of T, then the ensemble SRF is unbiased.

Proof. By hypothesis T1 = λ1 for some scalar λ. Therefore X̃1 = X
f
T1 = λX

f1 =

0. Therefore the filter is unbiased. 2

An important special case is that of a symmetric T. This is the subject of the

following theorem and its corollary.

Theorem 10 If T is symmetric, then 1 is an eigenvector of T.

Proof. Since Y
f is an ensemble perturbation matrix, it satisfies Y

f1 = 0. Therefore

it follows from (17) that T
21 = 1 for symmetric T. Thus 1 is an eigenvector of T

2.

But the eigenvectors of the square of a symmetric matrix are the same as those of

the original matrix. Therefore 1 is an eigenvector of T. 2
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Corollary 11 If T is symmetric, then the ensemble SRF is unbiased.

Although not as general as theorem 9, corollary 11 provides a particularly simple

test for unbiasedness. However, it will be seen in section 8 that there exist unbiased

filters for which T is not symmetric.

To state a partial converse to theorem 9 it is necessary to introduce the concept

of a nondegenerate ensemble perturbation matrix. The columns of an ensemble

perturbation matrix X are not linearly independent because there is at least one

linear relation between them (they sum to zero). Thus the rank of X is at most

m − 1.

Definition 4 An n × m ensemble perturbation matrix is nondegenerate if it has

rank m − 1.

Roughly speaking, X is nondegenerate if the ensemble perturbation vectors ex-

plore the state space to the maximum extent permitted by the ensemble size. Note

that the nondegeneracy condition is equivalent to the null space of X being equal

to the one-dimensional space spanned by 1. The following theorem states that the

sufficient condition for unbiasedness in theorem 9 is also a necessary condition when

X
f is nondegenerate.

Theorem 12 If X
f is nondegenerate and the ensemble SRF is unbiased, then 1 is

an eigenvector of T.

Proof. Because the filter is unbiased, 0 = X̃1 = X
f
T1. Therefore T1 is in the null

space of X
f . Because X

f is nondegenerate, this implies T1 = λ1 for some scalar λ.

Therefore 1 is an eigenvector of T. 2

The following theorems assume that the ensemble SRF with post-multiplier ma-

trix T is unbiased and consider the ensemble SRF with post-multiplier matrix TU

where U is orthogonal.

Theorem 13 If the ensemble SRF with matrix T is unbiased and 1 is an eigenvector

of U, then the ensemble SRF with matrix TU is unbiased.
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Proof. By hypothesis X
f
T1 = 0 and U1 = λ1 for some scalar λ. Therefore

X
f
TU1 = λX

f
T1 = 0. Therefore the ensemble SRF with matrix TU is unbiased.

2

Theorem 14 If X
f is nondegenerate and the ensemble SRFs with matrices T and

TU are unbiased, then 1 is an eigenvector of U.

Proof. Theorem 12 implies that 1 is an eigenvector of both T and TU. Since T is

invertible by corollary 5, 1 is also an eigenvector of T
−1

TU = U. 2

See appendix C for theorems on the structure of the set of all unbiased ensemble

SRFs.

7 Pre-multiplier filters

Some semi-deterministic EnKFs (such as the EAKF of Anderson (2001)) have been

presented in the pre-multiplier form X
a = AX

f instead of the post-multiplier form

X
a = X

f
T used by the ensemble SRF framework. However, it follows from theorem 8

that such EnKFs can be written in post-multiplier form as well. The following two

theorems show that the ability to write an ensemble SRF in pre-multiplier form

provides an alternative to the tests for unbiasedness of section 6..

Theorem 15 If the analysis step of an ensemble SRF can be written in the form

X̃ = AX
f , then the ensemble SRF is unbiased.

Proof. X̃1 = AX
f1 = 0. 2

Theorem 16 If X
f is nondegenerate and an ensemble SRF is unbiased, then the

analysis step of the ensemble SRF can be written in the form X̃ = AX
f .

Proof. Let x
′f
i and x′

i denote the ith columns of
√

m − 1Xf and
√

m − 1X̃ re-

spectively. By the nondegeneracy of X
f there is a linearly independent set of m− 1

members of {x′f
i }. Assume (without loss of generality) that these vectors correspond

to the subscripts i = 1, . . . , m − 1. Because these vectors are linearly independent,
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they can be mapped onto an arbitrary set of m−1 vectors by a linear transformation.

In particular there exists a matrix A such that

x′

i = Ax
′f
i for i = 1, . . . , m − 1. (38)

Since X
f1 = 0 and X̃1 = 0 it follows that

x′f
m = −

m−1∑

i=1

x
′f
i , (39)

x′

m = −
m−1∑

i=1

x′

i. (40)

Therefore

Ax′f
m = −

m−1∑

i=1

Ax
′f
i = −

m−1∑

i=1

x′

i = x′

m. (41)

Equations (38) and (41) together imply X̃ = AX
f . 2

In view of these theorems the reader may wonder whether a framework based on

a pre-multiplier update of the ensemble perturbation matrix would be preferable to

the ensemble SRF framework. Such a framework would be devoid of bias problems

and theorem 16 implies that it would cover most semi-deterministic EnKFs of inter-

est. However, an obstacle to formulating such as framework is the lack of a useful

equivalent for A of the matrix square root condition (17) for T. Also, in typical

applications n is much larger than m and hence the n × n matrix A is very much

larger than the m × m matrix T.

8 Applications to specific filters

This section examines some published deterministic formulations of the analysis step

of the EnKF from the point of view of bias. The filters discussed are the ensemble

transform Kalman filter (ETKF) of Bishop et al. (2001), the ensemble adjustment

Kalman filter (EAKF) of Anderson (2001), the filter of Whitaker and Hamill (2002),

and the revised ETKF of Wang et al. (2004). The first three of these are placed

in the ensemble SRF framework in Tippett et al. (2003), but without consideration

of bias. This section, as well as containing a treatment of bias, also expands and

extends the argument of that paper in a few places.
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There is one further filter discussed in Tippett et al. (2003) that will not be

considered in detail here. This is the direct method that consists of computing the

RHS of (17) and then using some numerical method to find the matrix square root T.

The reason for not considering this method further is that its unbiasedness depends

on the numerical method chosen, so that no general statement may be made. The

filters discussed here all adopt a more indirect approach to finding T, and indeed

in many cases never find it at all in a practical implementation, its existence and

relation to the filter merely being on a theoretical and analytical level.

8.1 The ensemble transform Kalman filter

The ensemble transform Kalman filter (ETKF) was originally introduced in Bishop

et al. (2001), which describes its use to make rapid assessment of the future effect on

error covariance of alternative strategies for deploying observational resources. The

filter is placed within the ensemble SRF framework in Tippett et al. (2003). This

original version of the ETKF starts by computing the m × m matrix (Yf )TR
−1

Y
f .

It then computes the eigenvalue decomposition

(Yf)T
R

−1
Y

f = CΓC
T (42)

where C is orthogonal and Γ is diagonal. It follows from the identity (31) that

I − (Yf)T
D

−1
Y

f = C(I + Γ)−1
C

T (43)

and hence that a solution of (17) is

T = C(I + Γ)−
1

2 . (44)

Using this T in (16) gives the original version of the ETKF. It is not obvious that

such a T will always yield an unbiased filter. The experiment of Fig. 1 suggests that

it may not and theorem 17 below shows that it rarely does. This issue of bias is

addressed in the context of the ensemble generation problem in Wang et al. (2004),

where two revised versions of the ETKF are proposed. The first such revision (Wang

et al., 2004, appendix Ca) is equivalent to post-multiplying (44) by C
T to give

T = C(I + Γ)−
1

2 C
T . (45)
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Since C
T is orthogonal, this is a solution of (17) by theorem 2, and since this T is

symmetric, using it in (16) yields an unbiased filter by corollary 11.

The unbiasedness of this revised ETKF enables the conditions under which the

original ETKF is unbiased to be clarified.

Theorem 17 If X
f is nondegenerate and the ETKF is unbiased, then Y

f = 0.

Proof. Since (44) may be obtained from (45) by post-multiplying by the orthogonal

matrix C, theorem 14 implies that 1 is an eigenvector of C. Let C1 = λ1. Then,

by (42), Γ1 = C
T (Yf )TR

−1
Y

f
C1 = λC

T (Yf)TR
−1

Y
f1 = 0. But Γ1 is the column

vector of diagonal elements of the diagonal matrix Γ. Thus Γ = 0 and, by (42)

again, (Yf)T
R

−1
Y

f = 0. Since R
−1 is positive definite, it follows that Y

f = 0. 2

In words, the necessary condition Y
f = 0 for unbiasedness in theorem 17 says

that there is no observable difference between the members of the forecast ensemble.

Thus an unbiased filter will be of rare occurrence for observation operators that

supply useful information. When the necessary condition does occur, it follows

from (42) that Γ = 0 and C is arbitrary, and thus that the original ETKF reduces

to X
a = X

f
C where C is an arbitrary orthogonal matrix. Note that in this case

P
a = P

f .

Repeating the experiment of Fig. 1 using the revised ETKF gives the results

shown in Fig. 2. There is no sign of the bias present in the earlier experiment,

the ensemble mean remaining within one ensemble standard deviation of the truth

throughout. Running the filter 100 times with different random initial ensembles

and computing the fraction of analyses with ensemble mean within one ensemble

standard deviation of the truth gives 1.00 for each coordinate. The excess over the

0.68 expected for normally-distributed analysis errors is due to the perfect observa-

tions.

8.2 The ensemble adjustment Kalman filter

The ensemble adjustment Kalman filter (EAKF) was originally introduced in An-

derson (2001). It is a pre-multiplier filter of the type discussed in section 7 and

thus automatically unbiased. It also assumes a linear observation operator, so an
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Figure 2: Output of revised ETKF with ensemble size m = 10 for swinging spring

system with perfect observations. Plotting conventions as in Fig. 1. The bias evident

in that figure is absent here.
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augmented state space of the type discussed at the end of section 2 must be used to

apply it to a nonlinear observation operator. Tippett et al. (2003, section 3a) outline

how the EAKF may be expressed in post-multiplier form (16), but the demonstra-

tion glosses over a few details2. Therefore an alternative proof is presented here.

This proof is based on the SVD of X
f instead of on the eigenvalue decomposition of

P
f as in Tippett et al. (2003).

The first step is to construct the reduced SVD of X
f as in the proof of theorem 3:

X
f = F0G0W

T
0

(46)

where G0 is an r × r diagonal matrix of the nonzero singular values of X
f and F0

and W0 are column-orthogonal matrices of sizes n × r and m × r respectively. The

next step is to compute the eigenvalue decomposition

(HF0G0)
T
R

−1
HF0G0 = C̃0Γ̃0C̃

T

0
(47)

where C̃0 is orthogonal, Γ̃0 is diagonal, and both are r×r. The pre-multiplier matrix

for the EAKF is defined by

A = F0G0C̃0(I + Γ̃0)
−

1

2 G
−1

0
F

T
0
, (48)

which on substitution into X
a = AX

f gives

X
a = F0G0C̃0(I + Γ̃0)

−
1

2 W
T
0
. (49)

In typical applications where n is much larger than r, it will be more efficient to

directly calculate X
a in the form above rather than to calculate A and multiply by

X
f .

To reformulate the EAKF in post-multiplier form it is necessary to use the full

SVD

X
f = FGW

T (50)

where G is an n×m diagonal matrix and F and W are orthogonal matrices of sizes

n × n and m × m respectively. As in the proof of theorem 3, G, F, and W are

2In particular, although it is mentioned that Gk (in the notation of that paper) may have to

be of reduced size to ensure that G
−1

k exists, the consequences of this reduction are not followed

through and the supposedly orthogonal matrix G
−1

k F
T
k Z

f
k finally obtained for converting the ETKF

post-multiplier matrix into that for the EAKF need not be square.
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related to G0, F0, and W0 by (20), (21), and (22). The eigenvalue decomposition

(47) extends to

(HFG)T
R

−1
HFG = C̃Γ̃C̃

T
(51)

where C̃ is orthogonal, Γ̃ is diagonal, and both are m × m. This is achieved by

setting

C̃ =




C̃0 0

0 C̃1


 , (52)

Γ̃ =




Γ̃0 0

0 0


 , (53)

where C̃1 is an (m−r)×(m−r) orthogonal matrix. It may be verified by substitution

that (51) is satisfied. Similarly it follows by substitution that X
a defined by (49)

also satisfies

X
a = FGC̃(I + Γ̃)−

1

2W
T = X

f
T (54)

where

T = WC̃(I + Γ̃)−
1

2 W
T . (55)

This gives the EAKF in post-multiplier form. To see that T satisfies (17) recall that

W and C̃ are orthogonal, and so

TT
T = WC̃(I + Γ̃)−1

C̃
T
W

T

= (I + WC̃Γ̃C̃
T
W

T )−1

= (I + W(HFG)T
R

−1
HFGW

T )−1

= (I + (HZ
f )T

R
−1

HZ
f )−1

= (I + (Yf)T
R

−1
Y

f)−1

= I − (Yf)T
D

−1
Y

f . (56)

where the last step uses the identity (31).

8.3 The filter of Whitaker and Hamill

Another filter given in pre-multiplier form, and thus unbiased, is the filter of Whit-

aker and Hamill (2002). The filter is formulated in terms that initially appear to
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require a linear observation operator, but it will be shown below that this restriction

can be eliminated. The filter is given by

X
a = (I − K̃H)Xf (57)

where K̃ is a solution of

(I − K̃H)Pf(I − K̃H)T = (I − KH)Pf , (58)

K being the standard Kalman gain defined by (6). This equation ensures that the

ensemble covariance matrix updates as in (5). A solution of (58) is given in Whitaker

and Hamill (2002), based on Andrews (1968). This solution is

K̃ = P
f
H

T

[(√
HP

f
H

T + R

)T
]
−1 (√

HP
f
H

T + R +
√

R

)
−1

= X
f(Yf )T

(√
D

T
)
−1 (√

D +
√

R

)
−1

(59)

where, given a symmetric positive definite p × p matrix V, the square root
√

V

stands for a p × p matrix such that
√

V
√

V
T

= V. The general solution (59) is not

considered in Tippett et al. (2003), which instead concentrates on the case of scalar

observations where p = 1. However, it is not difficult to show that the more general

form fits into the ensemble SRF framework. To do this, expand (57) and substitute

(59) to obtain

X
a = X

f − K̃Y
f

= X
f − X

f(Yf )T

(√
D

T
)
−1 (√

D +
√

R

)
−1

Y
f

= X
f
T (60)

where

T = I − (Yf )T

(√
D

T
)
−1 (√

D +
√

R

)
−1

Y
f . (61)

Note that the linear operator H does not explicitly appear in this post-multiplier

form of the filter, which may therefore be applied when the observation operator is

nonlinear. It may be shown that T satisfies (17) as follows (which adapts a proof of

Andrews (1968)):

TT
T =

[
I − (Yf)T

(√
D

T
)
−1 (√

D +
√

R

)
−1

Y
f

]
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×
[
I − (Yf)T

(√
D

T
)
−1 (√

D +
√

R

)
−1

Y
f

]T

= I − (Yf)T

(√
D

T
)
−1 (√

D +
√

R

)
−1

×
[√

D

(√
D +

√
R

)T
+

(√
D +

√
R

)√
D

T − Y
f (Yf)T

]

×
[(√

D +
√

R

)T
]
−1 √

D
−1

Y
f

= I − (Yf)T

(√
D

T
)
−1 (√

D +
√

R

)
−1

×
[(√

D +
√

R

) (√
D +

√
R

)T
]

×
[(√

D +
√

R

)T
]
−1 √

D
−1

Y
f

= I − (Yf)T

(√
D
√

D
T
)
−1

Y
f

= I − (Yf)T
D

−1
Y

f . (62)

Although it was stated earlier that the filter is unbiased, this statement depended on

the pre-multiplier form (57) in which the linear operator H appears. Unbiasedness

follows in the general post-multiplier case by noting that T1 = 1 (because Y
f1 = 0)

and using theorem 9. Thus the general form of the filter of Whitaker and Hamill

(2002) fits into the unbiased ensemble SRF framework.

9 Summary and discussion

Since its original presentation by Evensen (1994), several alternative formulations of

the EnKF have been published. Some of these make use of an ensemble of pseudo-

random observation perturbations in the analysis step, others do not. The ensemble

SRF framework of Tippett et al. (2003) is a uniform framework encompassing several

variants of the latter (deterministic) approach. This paper extends the results of

Tippett et al. (2003) in two directions. Firstly, it explicitly shows that the ensemble

SRF framework is sufficiently general to encompass all deterministic formulations

of the analysis step of the EnKF (section 3). Secondly, it shows that the ensemble

SRF framework also encompasses filters in which the analysis ensemble statistics do

not bear the desired KF-like relationship to the forecast ensemble (section 4). In

particular, there can be a systematic bias in the analysis ensemble mean.
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The analysis ensemble statistics produced by a biased ensemble SRF are unde-

sirable for a number of reasons beyond the simple fact that a biased mean tends to

put the filter’s best state estimate in the wrong place. Such a bias would not be

too great a problem if it were accompanied by an increase in the size of the error

estimate provided by the filter’s covariance matrix. Users of the output would then

be aware of the increased error, although they would remain unaware that part of

the error is systematic rather than random. However, as is shown in section 4, there

is actually a decrease in the size of the error estimate rather than an increase, and

the worse the bias, the worse the overconfidence of the error estimate. A biased

and overconfident analysis has the potential to create problems at later times in any

Kalman-type filter. Such an analysis is likely to lead to a biased and overconfident

forecast. The filter will then give more weight than it should to the forecast in the

next analysis step and less to the observation. This will prevent the observation

from properly correcting the bias in the forecast and the next analysis will be bi-

ased and overconfident as well. In extreme cases the filter may become increasingly

overconfident until it is in effect a free-running forecast model diverging from the

truth and taking no notice of observations.

To avoid the problems of a biased analysis ensemble, this paper introduces a

restricted version of the ensemble SRF framework called the unbiased ensemble SRF

framework (section 5). This is still sufficiently general to include all deterministic

formulations of the analysis step of the EnKF, yet excludes filters with a biased

analysis ensemble. Tests are provided in sections 6 and 7 that will enable designers

of ensemble SRFs to test their algorithms for bias. Particularly simple tests are

corollary 11 and theorem 15, which respectively state that a filter is unbiased if its

post-multiplier matrix is symmetric or if it can be written in pre-multiplier form.

Of the filters discussed by Tippett et al. (2003), the EAKF and the filter of

Whitaker and Hamill (2002) are unbiased, whilst the ETKF is biased. However, the

more recent revised ETKF of Wang et al. (2004) is unbiased.

In this paper it has been assumed that the ensemble provides both a best state

estimate (the ensemble mean) and a measure of the uncertainty in this estimate (the

ensemble covariance matrix). However, an alternative approach is possible in which
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a best state estimate is maintained separately from the ensemble, which still pro-

vides the measurement of estimation error. The forecast and analysis perturbation

matrices are taken relative to the forecast and analysis best state estimates rather

than the ensemble means. It is not necessary for the columns of these matrices to

sum to zero and hence there is no need to impose an unbiasedness condition in the

analysis step: the ensemble perturbation matrices may be updated using X
a = X

f
T

where T is any solution of the matrix square root condition (17). An example of

such a filter is the maximum likelihood ensemble filter (MLEF) of Zupanski (2005),

in which the analysis step updates the best state estimate using 3D-Var (with a cost

function that uses the forecast ensemble covariance matrix instead of a static back-

ground error covariance matrix) and updates the ensemble perturbations using the

ETKF. Although that paper references the original ETKF of Bishop et al. (2001),

it is in fact the revised ETKF of Wang et al. (2004) that is used3.

Finally, it must be stated the the type of bias discussed in this paper is not the

only type of bias that may be encountered with an EnKF. Inconsistent ensemble

statistics have been observed in formulations of the EnKF other than the origi-

nal ETKF. Houtekamer and Mitchell (1998) present results showing problems with

a stochastic EnKF and Anderson (2001) discusses the issue in the context of the

EAKF. The causes of the inconsistencies in these cases must be different to that

of the ETKF bias established in section 8.1. The authors attribute them to the

use of small ensembles and to other approximations made in the course of deriving

the filters. Various solutions to the problem have been proposed in the literature.

Houtekamer and Mitchell (1998) use a pair of ensembles with the covariance cal-

culated from each ensemble being used to assimilate observations into the other.

The justification for such an approach is discussed further in van Leeuwen (1999)

and Houtekamer and Mitchell (1999). Anderson (2001) uses a tunable scalar co-

variance inflation factor. The more fundamental problems of model and observation

biases are not addressed here. Such biases may be estimated using data assimilation

with an augmented state vector (e.g., Nichols (2003)). The incorporation of these

3By Zupanski (2005, (10) and (12)) the post-multiplier matrix is V(I+Λ)−1/2V
T in the notation

of that paper, which corresponds to (45) in this paper
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techniques into the ensemble SRF framework is left for future work.
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A Structure of the set of ensemble SRFs

This appendix uses the results of section 3 to describe the set of all ensemble SRFs

in terms of a well-known group of matrices.

Theorem 18 Let T1 be a solution of the matrix square root condition (17). Then

any solution of (17) may be uniquely expressed in the form T = T1U where U is

orthogonal.

Proof. Start with the special case T1 = Ts where Ts is the unique symmetric

positive definite solution that exists by theorem 6. Recall that T is nonsingular

by theorem 5. By a theorem in linear algebra (see, for example, Halmos (1974,

section 83)) T has a unique polar decomposition T = T2U where T2 is symmetric

positive definite and U is orthogonal. Since T is a solution of (17),

I − (Yf)T
D

−1
Y

f = TT
T = T2T

T
2
. (63)

Thus T2 is a symmetric positive definite solution of (17), which by theorem 6 implies

T2 = Ts. This establishes the theorem in the case T1 = Ts.

Now consider the general case. By the special case above there exist orthogonal

U1 and U2 such that T1 = TsU1 and T = TsU2. Thus T = TsU2 = T1U
−1

1
U2.

Since U
−1

1
U2 is orthogonal this establishes the existence of U in the general case.

To show the uniqueness of U in the general case, suppose that there exists an

orthogonal matrix U3 such that T1U = T1U3. Since T1 is nonsingular it may be
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cancelled from both sides of this equation to give U = U3. Therefore U is unique.

2

Theorems 2 and 18 imply the following description of the set of all solutions T

of (17) in terms of the group O(m) of all m × m orthogonal matrices.

Corollary 19 Let T1 be a solution of (17). Then U ↔ T1U defines a one-to-one

correspondence between O(m) and the solutions T of (17).

Thus the set of all ensemble SRFs is in one-to-one correspondence with O(m).

B The Two-Dimensional Swinging Spring

The two-dimensional swinging spring (Lynch, 2003) consists of a heavy bob of mass

m suspended from a fixed point in a uniform gravitational field of acceleration g

by a light spring of unstretched length `0 and elasticity k. The bob is constrained

to move in a vertical plane. The system coordinates are polar coordinates r, θ (r

measured from the point of suspension, θ measured from the downward vertical)

and the corresponding generalised momenta pr, pθ. The equations of motion are

θ̇ =
pθ

mr2
, (64)

ṗθ = −mgr sin θ, (65)

ṙ =
pr

m
, (66)

ṗr =
p2

θ

mr3
− k(r − `0) + mg cos θ. (67)

The equilibrium length ` of the spring satisfies k(` − `0) = mg. Following Lynch

(2003) the parameter values used for the experiments in sections 4 and 8.1 are

m = 1, g = π2, k = 100π2, and ` = 1. The initial conditions are (θ, pθ, r, pr) =

(1, 0, 0.99540, 0), which is a case of nonlinear normal mode initialisation and largely

suppresses the high frequency radial oscillations of the system.

C Structure of the set of unbiased ensemble SRFs

This appendix uses the results of section 6 and appendix A to describe the set of all

unbiased ensemble SRFs in terms of a well-know group of matrices.
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Theorem 20 Suppose that X
f is nondegenerate and that T1 is the post-multiplier

matrix of an unbiased ensemble SRF. Then U ↔ T1U defines a one-to-one cor-

respondence between the subgroup of all matrices U in O(m) that have 1 as an

eigenvector and the set of post-multiplier matrices of unbiased ensemble SRFs.

Proof. This follows from corollary 19 and theorems 13 and 14. 2

The subgroup in theorem 20 is given more concrete form by the following theo-

rem.

Theorem 21 There is a one-to-one correspondence between the subgroup of all ma-

trices in O(m) that have 1 as an eigenvector and the group O(1) × O(m − 1).

Proof. Let W be an orthogonal matrix in which the first column is a scalar multiple

of 1. Then U ↔ W
T
UW is a one-to-one correspondence between O(m) and itself.

Under this correspondence, matrices U that have 1 as an eigenvector correspond to

matrices that have the coordinate vector

e1 =




1

0
...

0




(68)

as an eigenvector. The latter matrices are those of the form



U1 0

0 U2


 (69)

where U1 is an element of O(1) (that is to say U1 = ±1) and U2 is an element of

O(m − 1). This establishes the required correspondence. 2

Thus, in the case of nondegenerate X
f , the set of all unbiased ensemble SRFs is

in one-to-one correspondence with O(1) × O(m − 1).
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