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1. Introduction

The testing of numerical methods for computing the steady flow in an open chan-
nel has been hindered by the fact that, until now, there have been no readily
available non-trivial test problems with known analytic solutions. Here we shall
introduce a simple technique for constructing such test problems, including so-
lutions with hydraulic jumps. To carry out the construction, we in effect invert
the problem and ask the following question: Given a hypothetical depth profile
throughout the channel, what must the slope of the channel be in order for this
profile to be a steady solution of the Saint-Venant equations.

2. Smooth Solutions

In smooth regions of flow, steady solutions of the Saint-Venant equations satisfy
a differential equation of the form

dy _ Sole) = le9)
dx Y2(2,y)

, (2.1)

where y(x) is the depth at distance @ along the channel. If z(x) is the height of
the channel bottom above some horizontal datum, then Sp() is the slope of the
channel given by

dj
dz’

The particular form of 74 and 73, for a general channel, is not important; however,

Sy = (2.2)

note that these functions are independent of z, and in general are well defined for
all positive y.

The crux of our method is the following observation. Suppose we have some
interval [z1, 23] and we choose some shape of channel for this interval; this fixes
~1 and 7,. Now let the slope of the channel be given by

So(x) = (e () i) 7 (. ()), (23

where § is some positive function in C'[z;,z,]. By definition an exact solution
to equation (2.1) for the stretch of channel in this interval is y(a) = g(x).

For simplicity we apply this method only to uniform rectangular channels here,
although the method is not restricted to such simple channels. In our examples
we use a channel in the interval [0, L] where L = 100m. The channel has width
B = 10m and discharge Q = 20m®s™! and we use Manning’s friction law, with
friction coefficient n = 0.03. Under these circumstances we have (see Chow[l])

(2y + B)*?

n(z,y) = Se(x,y) = QlQ|n (By )07

(2.4)

and

Ylry)=1- (yy)g (2.5)



where y. is the critical depth, given by

_ o @7
Ye = g?v (26)

and ¢ is the acceleration due to gravity. For our examples below, y. = 0.741617m.

Example 1 Suberitical Flow
Here we take g of the form

g(x) = ye (1 + aexp [—ﬂQ (i — ;)ZD : (2.7)

5 and 3 = 2. Figure la shows g as well as the corresponding channel
slope, calculated from equation (2.3). Figure 1b shows the profile of the chan-

where o =

nel bottom, z(x), obtained by numerically solving equation (2.2) with boundary
condition, z(L) = 0. This figure also shows g(x) + z(x), the profile of the free
surface.

Example 2 Supercritical Flow

This example is the same as example 1, except that the flow is rendered super-
critical by taking a = —%. Figure 2a shows ¢ and the corresponding channel
slope. Figure 2b shows the channel bottom and free surface profiles.

Example 3 Transcritical Flow

A critical point is a point along the channel where the channel slope changes
from mild to steep, smoothly. Flow can change smoothly from subcritical to
supercritical at such a point. At any point where  passes from subcritical to
supercritical, the slope calculated from equation (2.3) will automatically give a
critical point. We can also create solutions which change smoothly from super-
critical to subcritical using this method, although these are not very useful. Here

i(2) = v (1—21L<:1:—§)—|-31L2<x—§)2). (2.8)

Figure 3a shows g and the corresponding channel slope. Figure 3b shows the

channel bottom and free surface profiles. Here the critical point is at x = %

we put

3. Discontinuous Solutions

We cannot substitute a discontinuous ¢ into equation (2.3). However, if we wish
to construct a solution containing one hydraulic jump, at * = 2*, say, we can
divide the solutions into two C* functions 47, and §g, the solutions on the left and
right of the jump. We can use these two functions to calculate the channel slope
on both sides of the jump. We must ensure that the hydraulic jump is valid, i.e.
that the Specific Force is continuous across the jump (see Chow[l]).

In general, under the above construction, the resulting bed slope will be dis-
continuous at *. However, by choosing the appropriate values for the derivatives
of yy;, and yr at =*, we can ensure any required amount of smoothness in the



channel slope. This assumes that we have enough smoothness from ~;, v, 91
and g to be able to differentiate equation (2.3) enough times. It is up to per-
sonal choice how much smoothness to require, if any. The problems here were
created to test certain techniques and theory requiring the channel slope to be

C' (see MacDonald[2]).
Here, for simplicity, we take g, and yr to be the polynomials

nL

JL = ye ) oz — o) (3.9)
and .
JR = Ye Z Br(x — ™). (3.10)
r=0

The first thing to note is that ay and fy are not independent. For a rectangular
channel, the hydraulic jump is only valid if ag, 3y satisty

By = % (m— 1) (3.11)

Bo 8
a0 =13 ( L+ 55 - 1). (3.12)

For the channel slope to be continuous at =*, we require the following to hold:

or the equivalent relation

72(1;*7 ach)alyc + 71(17*7 aoyc) = 72(1;*7 50%)51% + 71(‘1;*7 50%)- (313)

If ag, By are known, then this condition is just a linear relationship between
ay and ;. For @ to be continuous, differentiating equation (2.3) gives us the

condition
079 0
( 81 (l’ aoyc) —I_ Qa1Ye a?j ($*, Oéoyc)) a1Ye —I_ 72(1;*7 Oéoyc)QOézyc (314)
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If ag, By, a1 and By are known, then this Condltlon is just a linear relationship
between ay and 3.

We now show, with some examples, how easy it is to satisfy the above condi-
tions.



Example 4 In this example we specity 75, completely and then choose an ap-

propriate yg to satisty our three conditions. We take z* = % and let

i(e) = e (;L - i) - 109L2 (¢ — %) (3.15)

Equation (3.11) now gives us 3y = 1.4305. Using equation (3.13) we get ) =
0.14492 and finally equation (3.14) gives us 3 = —0.00217112. These coefficients
define a quadratic, but if we just use this quadratic as yr, we have no control
over what the right side of the solution looks like (it may become negative). To
give us control we can arbitrarily add higher order terms; here we make g a
quartic (ngp = 4). Now we must make a choice for 33 and 3. For this example
we take (3 = 0.674202/ L% and B4 = 0.674202/L*. Figure 4a shows the resulting
depth profile for the channel, as well as the corresponding channel slope. Figure 5
shows the channel bottom profile and the free surface profile. The resulting flow
is subcritical at outflow, jumps to supercritical two thirds the way along the
channel, and then returns to subcritical at * = 45.13m.

Example 5 In this example we specify jg first and then choose an appropriate
yr,. We take z* = % and let

5 L—ux 4
in(z) = y. (6+ — )+ e D - 2) (3.16)
In this case our three conditions give us oy = 0.850042, oy = 0.031725 and
ay = 0.00179329. We make 5, a quartic, and choose as = 18.8777/L% and
ay = —10.7872/L*. Figure 5a shows the depth profile, as well as the channel
slope. Figure 5b shows the channel bottom profile and the free surface profile.
The flow in this example behaves oppositely to that in example 4. The flow is
supercritical at inflow, jumps to subcritical and the returns to supercritical at

x = 55.93m.

4. Concluding Remarks

Although the examples chosen here are very simple, they should demonstrate
to the modeller how to construct test problems with the characteristics they
require. With careful choice of the free parameters, it is possible to achieve such
goals as keeping the channel slope small or keeping it positive The method is even
more useful in the case of non-rectangular and non-prismatic channels. Here the
behaviour of the solutions and numerical schemes is less well understood and
there are many methods for approximating the channel geometry. We now have
a concrete way to evaluate these different methods. The method could also be
useful for networks of channels, where a test network can be constructed with a
known solution.

Altogether, we now have a method of constructing test problems that can be
used to measure and compare, exactly, the performance of different numerical
methods. The test problems given here are summarised in the Appendix.
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Appendix

For convenience we summarise the details of the examples given in the main text.
For each problem, we state the appropriate boundary conditions.

Example 1 Suberitical Flow
A rectangular channel, 0 < x < 100m, has width 10m and a discharge of 20m?s™".
The slope of the channel is given by

N v 1y
J = |- 14+ = 4 =
() (g) ( T l (100 2) D ’
, NP1 e 1 v 1\?
glx)=—1- (—)exp —4(—) :
g 25 \100 2 100 2
Manning’s friction coefficient for the channel is 0.03. The flow is subcritical at

outflow, with depth ¢(100), and subcritical at inflow.
The exact solution for this problem is y(x) = y(«) and is shown in figure 1.

where

and

Example 2 Supercritical Flow
A rectangular channel, 0 < z < 100m, has width 10m and a discharge of 20m?®s~!.
The slope of the channel is given by

()" (-l B])

where



and

= ()" a2

Manning’s friction coefficient for the channel is 0.03. The flow is supercritical at
inflow, with depth ¢(0) and supercritical at outflow.
The exact solution for this problem is y(x) = y(«) and is shown in figure 2.

Example 3 Transcritical Flow
A rectangular channel, 0 < z < 100m, has width 10m and a discharge of 20m?®s~!.
The slope of the channel is given by

501 = (1= ) 90+ s (3 )
where
=5 (- )
and

= ()" (3 )

Manning’s friction coefficient for the channel is 0.03. The flow is subcritical at
inflow and supercritical at outflow.
The exact solution for this problem is y(x) = y(«) and is shown in figure 3.

Example 4 Sub-Super-Subcritical Flow with Hydraulic Jump
A rectangular channel, 0 < z < 100m, has width 10m and a discharge of 20m?®s~!.
The slope of the channel is given by

40N, 9 11\
sote) = (1= 355) 91+ e 5+ 707)
where
(57 (5 = s0) — st (355 3) v
g
g)(l‘) = 1/3 4 3 s
(4) (0.674202 (25— 2) +0.674202 (55— 2) = > 20
—217112 (255 - 2) 4 10492 (5 - 2) + 1.4305)
and
(1) = 5o (355 3) v
ﬁ/(x) - 1/3 3 2
(4) (0.02696808 (5 — %) +0.02022606 (2 — 2)" 2> 20
—0.434224 (155 — 2) +0.14492)

Manning’s friction coefficient for the channel is 0.03. The flow is subcritical at
outflow, with depth ¢(100), and subcritical at inflow.
The exact solution for this problem is y(x) = y(«) and is shown in figure 4.
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Example 5 Super-Sub-Supercritical Flow with Hydraulic Jump
A rectangular channel, 0 < z < 100m, has width 10m and a discharge of 20m?®s~!.
The slope of the channel is given by

4\ 9 11\
soe) = (1= 50 0+ i 5+ 7).
where
(1) (—10.7872 (i~ 1) + 188777 (55 - 1) e<®
+17.9329 (25— 1)" #3725 (25— 1) + 0.850042)
y(x) = 7
OG- -y e
and
(1) (—0.431488 (12— 1) +0.566331 (25— 1)° @< 10
o +0.358658 (%5 — 3 +0.031725)
J'(x) =
5 ()" 4 st (- 3) v

Manning’s friction coefficient for the channel is 0.03. The flow is supercritical at
inflow, with depth ¢(0) and supercritical at outflow.
The exact solution for this problem is y(x) = y(«) and is shown in figure 5.



1.2

Depth \, 7
0.2 —= CthneI Slope *100 \, 7
N e
« s
. /./
0.0 | | | | |
0 20 40 60 80 100
X

Figure 1la: Depth, g, and bed slope, Sy, for example 1
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Figure 1b: Channel bottom, z, and free surface, § + z, for example 1
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Figure 2a: Depth, 3, and bed slope, Sy, for example 2
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Figure 2b: Channel bottom, z, and free surface, § + z, for example 2
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Figure 3b: Channel bottom, z, and free surface, § + z, for example 3
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Figure 3a: Depth, 3, and bed slope, Sy, for example 3
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Figure 4a: Depth, 3, and bed slope, Sy, for example 4
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Figure 4b: Channel bottom, z, and free surface, § + z, for example 4
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Figure 5a: Depth, 3, and bed slope, Sy, for example 5
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Figure 5b: Channel bottom, z, and free surface, § + z, for example 5

12



