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Abstract. In this paper we consider the problem of time-harmonic acoustic scattering in two
dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering
problems have a computational cost that grows at least linearly with respect to the frequency of the
incident wave. Here we present a novel Galerkin boundary element method, with an approximation
space consisting of the products of plane waves with piecewise polynomials supported on a graded
mesh, with smaller elements closer to the corners of the polygon. We demonstrate via both a
rigorous error analysis and numerical results that the number of degrees of freedom required to
achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Our
boundary element method is a discretisation of a well-known second kind combined-layer-potential
integral equation. We provide a proof that this equation and its adjoint are well-posed in a Sobolev
space setting for general Lipschitz domains.
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1. Introduction. The scattering of time-harmonic acoustic waves by bounded
obstacles is a classical problem that has received much attention in the literature
over the years. Much effort has been put into the development of efficient numerical
schemes, but an outstanding question yet to be fully resolved is how to achieve an
accurate approximation to the scattered wave with a reasonable computational cost
in the case that the scattering obstacle is large compared to the wavelength of the
incident field.

The standard boundary or finite element method approach is to seek an approxi-
mation to the scattered field from a space of piecewise polynomial functions. However,
due to the oscillatory nature of the solution, such an approach suffers from the limita-
tion that a fixed number of degrees of freedom M are required per wavelength in order
to achieve a good level of accuracy, with the accepted guideline in the engineering lit-
erature being to take M = 10 (see for example [44] and the references therein). A
further difficulty, at least for the finite element method, is the presence of “pollution
errors”, phase errors in wave propagation across the domain, which can lead to even
more severe restrictions on the value of M when the wavelength is short [9, 36].

Let L be a linear dimension of the scattering obstacle, and set k = 2π/λ, where
λ is the wavelength of the incident wave, so that k is the wave number, proportional
to the frequency of the incident wave. Then a consequence of fixing M is that the
number of degrees of freedom will be proportional to (kL)d, where d = N in the
case of the finite element method (FEM), d = N − 1 in the case of the boundary
element method (BEM), and N = 2 or 3 is the number of space dimensions of the
problem. Thus, as either the frequency of the incident wave or the size of the obstacle
grows, so does the number of degrees of freedom, and hence the computational cost of
the numerical scheme. As a result, the numerical solution of many realistic physical
problems is intractable using current technologies. In fact, for some of the most
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powerful recent algorithms for three-dimensional scattering problems (e.g. [13, 21]),
the largest obstacles for which numerical results have been reported have diameter
not more than a few hundred times the wavelength.

For boundary element methods, the cost of setting up and solving the large lin-
ear systems which arise can be reduced substantially through a combination of pre-
conditioned iterative methods [4, 22, 34] combined with fast matrix-vector multiply
methods based on the fast multipole method [5, 26, 21] or the FFT [13]. However,
this does nothing to reduce the growth in the number of degrees of freedom as kL in-
creases (linear with respect to kL in 2D, quadratic in 3D). Thus computations become
infeasible as kL→ ∞.

To achieve a dependence of the number of degrees of freedom on kL which is
lower than (kL)d, it seems essential to use an approximation space better able to
replicate the behaviour of the scattered field at high frequencies than piecewise poly-
nomials. To that end, much attention in the recent literature has focused on enriching
the approximation space with oscillatory functions, specifically plane waves or Bessel
functions.

A common approach (see e.g. [8, 16, 27, 35, 44]) is to form an approximation
space consisting of standard finite element basis functions multiplied by plane waves
travelling in a large number of directions, approximately uniformly distributed on the
unit circle (in 2D) or sphere (in 3D). Theoretical analysis (e.g. [8]) and computational
results (e.g. [44]) suggest that these methods converge rapidly as the number of plane
wave directions increases, with a significant reduction in the number of degrees of
freedom required per wavelength, compared to standard finite and boundary element
methods. But the number of degrees of freedom is still proportional to (kL)d, and
serious conditioning problems occur when the number of plane wave directions is large.

A related idea is to attempt to identify the important wave propagation directions
at high frequencies, and to incorporate the oscillatory part of this high frequency
asymptotic behaviour into the approximation space. This is the idea behind the finite
element method of [31] and the boundary element method of [33, 29]. This idea has
been investigated most thoroughly in the case that the scattering obstacle is smooth
and strictly convex. In this case the leading order oscillatory behaviour is particularly
simple on the boundary of the scattering obstacle, so that this approach is perhaps
particularly well-adapted for boundary element methods. If a direct integral equation
formulation is used, in which the solution to be determined is the trace of the total
field or its normal derivative on the boundary, the most important wave direction to
include is that of the incident wave (see for example [1, 25, 12, 28]). This approach
is equivalent to approximating the ratio of the total field to the incident field, with
physical optics predicting that this ratio is approximately constant on the illuminated
side and approximately zero on the shadow side of the obstacle at high frequencies.

In [1], Abboud et. al. consider the two dimensional problem of scattering by a
smooth, strictly convex obstacle. They suggest that the ratio of the scattered field
to the incident field can be approximated with error of order N−ν + ((kL)1/3/N)ν+1

using a uniform mesh of piecewise polynomials of degree ν, so that the total number
of degrees of freedom N only needs to be proportional to (kL)1/3 in order to maintain
a fixed level of accuracy. In fact this paper appears to be the first in which the depen-
dence of the error estimates on the wave number k is indicated, and the requirement
that the number of degrees of freedom is proportional to (kL)1/3 is a big improvement
over the usual requirement for proportionality to kL. This approach is coupled with
a fast multipole method in [25], where impressive numerical results are reported for
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large scale 3D problems.

The same approach is combined with a mesh refinement concentrating degrees of
freedom near the shadow boundary in [12]. The numerical results in [12] for scattering
by a circle suggest that, with this mesh refinement, both the number of degrees
of freedom and the total computational cost required to maintain a fixed level of
accuracy remain constant as kL → ∞. In [28] a numerical method in the spirit of
[12] is proposed, namely a p-version boundary element method with a k-dependent
mesh refinement in a transition region around the shadow boundary. A rigorous error
analysis, which combines estimates using high frequency asymptotics of derivatives
of the solution on the surface with careful numerical analysis, demonstrates that
the approximation space is able to represent the oscillatory solution to any desired
accuracy using a number of degrees of freedom which remains fixed as the wave
number increases. This theoretical result is confirmed by numerical experiments using
this approximation space as the basis of a Galerkin method. The method of [12] has
recently been applied to deal with each of the multiple scatters which occur when
a wave is incident on two, separated, smooth convex 2D obstacles [33]. Numerical
experiments have also recently been presented in [29] where the convergence of this
iterative approach to the multiple scattering problem is analysed.

In this paper, we consider specifically the problem of scattering by convex poly-
gons. This is, in many respects, a more challenging problem than the smooth convex
obstacle since the corners of the polygon give rise to strong diffracted rays which
illuminate the shadow side of the obstacle much more strongly than the rays that
creep into the shadow zone of a smooth convex obstacle. These creeping rays decay
exponentially, so that it is enough to remove the oscillation of the incident field to
obtain a sufficiently simple field to approximate by piecewise polynomials.

This approach does not suffice for a scatterer with corners. In brief, our algorithm
for the convex polygon is as follows. From the geometrical theory of diffraction, one
expects, on the sides of the polygon, incident, reflected and diffracted ray contribu-
tions. On each illuminated side, the leading order behaviour as k → ∞ consists of
the incident wave and a known reflected wave. The first stage in our algorithm is to
separate this part of the solution explicitly. (On sides in shadow this step is omitted.)
The remaining field on the boundary consists of waves which have been diffracted at
the corners and which travel along the polygon sides. We approximate this remaining
field by taking linear combinations of products of piecewise polynomials with plane
waves, the plane waves travelling parallel to the polygon sides. A key ingredient in
our algorithm is to design a graded mesh to go on each side of the polygon for the
piecewise polynomial approximation. This mesh has larger elements away from the
corners and a mesh grading near the corners depending on the internal angles, in such
a way as to equidistribute the approximation error over the subintervals of the mesh,
based on a careful study of the oscillatory behaviour of the solution.

Our algorithm and analysis are closely related to those in recent work of the au-
thors [20, 39] on the specific problem of 2D acoustic scattering by an inhomogeneous,
piecewise constant impedance plane. In [20, 39] a Galerkin boundary element method
for this problem is proposed, in which the leading order high frequency behaviour as
k → ∞, consisting of the incident and reflected ray contributions, is first subtracted
off. The remaining scattered wave, consisting of rays diffracted by discontinuities
in impedance, is expressed as a sum of products of oscillatory and non-oscillatory
functions, with the non-oscillatory functions being approximated by piecewise poly-
nomials supported on a graded mesh, with larger elements away from discontinuities
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in impedance. For the method in [20] it was shown in that paper that the number of
degrees of freedom needed to maintain accuracy as k → ∞ grows only logarithmically
with k. This result was improved in [39] where it was shown, via sharper regularity
results and a modified mesh, that for a fixed number of degrees of freedom the error
is bounded independently of k, the first such result supported by a rigorous error
analysis for any scattering problem.

The major results of the paper are as follows. We begin in §2 by introducing
the exterior Dirichlet scattering problem that we will solve numerically via a sec-
ond kind boundary integral equation formulation. Our boundary integral equation is
well known (e.g. [23]), obtained from Green’s representation theorem. The boundary
integral operator is a linear combination of a single-layer potential and its normal
derivative, so that the integral equation is precisely the adjoint of the equation pro-
posed independently for the exterior Dirichlet problem by Brakhage and Werner [11],
Leis [40], and Panic [43]. However, as noted recently in [14], there exists no account
of these standard formulations for Lipschitz domains (the treatment in [23] is for do-
mains of class C2). We remedy this gap in the literature in §2, showing that our
operator is a bijection on the boundary Sobolev space Hs−1/2(Γ) and the adjoint
operator of [11] a bijection on Hs+1/2(Γ), both for |s| ≤ 1/2. Our starting points are
known results on the (Laplace) double-layer potential operator on Lipschitz domains
[47, 30] coupled with mapping properties of the single-layer potential operator [41].
Of course the results we obtain apply in particular to a polygonal domain in 2D.

The design of our numerical algorithm depends on a careful analysis of the oscilla-
tory behaviour of the solution of the integral equation (which is the normal derivative
of the total field on the boundary Γ). This is the content of §3 of the paper. In
contrast e.g. to [28], where this information is obtained by difficult high frequency
asymptotics, we adapt a technique from [20, 39], where explicit representations of the
solution in a half-plane are obtained from Green’s representation theorem. In the
estimates we obtain of high order derivatives, we take care to obtain as precise infor-
mation as possible, with a view to the future design of alternative numerical schemes,
perhaps based on a p- or hp-boundary element method.

Section 4 of the paper contains, arguably, the most significant theoretical and
practical results. In this section we design an approximation space for the normal
derivative of the total field on Γ. As outlined above, on each side we represent this
unknown as the sum of the leading order asymptotics (known explicitly, and zero on
a side in shadow) plus an expression of the form exp(iks)V+(s) + exp(−iks)V−(s),
where s is arc-length distance along the side and V±(s) are piecewise polynomials.
We show, as a main result of the paper, that the approximation space based on this
representation has the property that the error in best approximation of the normal
derivative of the total field is bounded by Cν(1 + log(kL))ν+3/2M−ν−1

N , where MN

is the total number of degrees of freedom, L is the length of the perimeter, ν is the
polynomial degree, and the constant Cν depends only on ν and the corner angles of
the polygon. This is a strong result, showing that the number of degrees of freedom
need only increase like log3/2(kL) as kL→ ∞ to maintain accuracy.

In §5 we analyse a Galerkin method, based on the approximation space of §4.
We show that the same bound holds for our Galerkin method approximation to the
solution of the integral equation, except that an additional stability constant is intro-
duced. We do not attempt the (difficult) task of ascertaining the dependence of this
stability constant on k. In §6 we present some numerical results which fully support
our theoretical estimates, and we discuss, briefly, some numerical implementation is-
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sues, including conditioning and evaluation of the integrals that arise. We finish the
paper with some concluding remarks and open problems.

We note that the Galerkin method is, of course, not the only way to select a
numerical solution from a given approximation space. In [6] we present some results for
a collocation method, based on the approximation space results in §4. The attraction
of the Galerkin method we present in §5 is that we are able to establish stability, at
least in the asymptotic limit of sufficient mesh refinement, which we do not know how
to do for the collocation method.

2. The boundary value problem and integral equation formulation.

Consider scattering of a time-harmonic acoustic plane wave ui by a sound-soft convex
polygon Υ, with boundary Γ :=

⋃n
j=1 Γj , where Γj , j = 1, . . . , n are the n sides of

the polygon with j increasing anticlockwise, as shown in figure 2.1. We denote by
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Fig. 2.1. Our notation for the polygon.

Pj := (pj , qj), j = 1, . . . , n, the vertices of the polygon, and we set Pn+1 = P1, so
that, for j = 1, . . . , n, Γj is the line joining Pj with Pj+1. We denote the length of
Γj by Lj := |Pj+1 − Pj |, the external angle at each vertex Pj by Ωj ∈ (π, 2π), the
unit normal perpendicular to Γj and pointing out of Υ by nj := (nj1, nj2), and the
angle of incidence of the plane wave, as measured anticlockwise from the downward
vertical, by θ ∈ [0, 2π). Writing x = (x1, x2) and d := (sin θ,− cos θ), we then have

ui(x) = eik(x1 sin θ−x2 cos θ) = eikx.d.

We will say that Γj is in shadow if nj · d ≥ 0 and is illuminated if nj · d < 0. If ns is
the number of sides in shadow, it is convenient to choose the numbering so that sides
1, . . . , ns are in shadow, sides ns + 1, . . . , n are illuminated.

We will formulate the boundary value problem we wish to solve for the total
acoustic field u in a standard Sobolev space setting. For an open set G ⊂ RN ,
let H1(G) := {v ∈ L2(G) : ∇v ∈ L2(G)} (∇v denoting here the weak gradient
of v). We recall [41] that, if G is a Lipschitz domain then there is a well-defined
trace operator, the unique bounded linear operator γ : H1(G) → H1/2(∂G) which
satisfies γv = v|∂G in the case when v ∈ C∞(Ḡ) := {w|Ḡ : w ∈ C∞(RN )}. Let
H1(G; ∆) := {v ∈ H1(G) : ∆v ∈ L2(G)} (∆ the Laplacian in a weak sense), a Hilbert
space with the norm ‖v‖H1(G;∆) := {

∫

G
[|v|2 + |∇v|2 + |∆v|2]dx}1/2. If G is Lipschitz,
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then [41] there is also a well-defined normal derivative operator, the unique bounded
linear operator ∂n : H1(G; ∆) → H−1/2(∂G) which satisfies

∂nv =
∂v

∂n
:= n · ∇v,

almost everywhere on Γ, when v ∈ C∞(Ḡ). H1
loc(G) denotes the set of measurable

v : G→ C for which χv ∈ H1(G) for every compactly supported χ ∈ C∞(Ḡ).
The polygonal domain Υ is Lipschitz as is its exterior D̄ := R2 \ Ῡ. Let γ+ :

H1(D) → H1/2(Γ) and γ− : H1(Υ) → H1/2(Γ) denote the exterior and interior trace
operators, respectively, and let ∂+

n : H1(D; ∆) → H−1/2(Γ) and ∂−n : H1(Υ; ∆) →
H−1/2(Γ) denote the exterior and interior normal derivative operators, respectively,
the unit normal vector n directed out of Υ. Then the boundary value problem we seek
to solve is the following: given k > 0 (the wave number) find u ∈ C2(D) ∩H1

loc(D)
such that

∆u+ k2u = 0 in D,(2.1)

γ+u = 0 on Γ,(2.2)

and the scattered field, us := u− ui, satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2

(

∂us

∂r
(x) − ikus(x)

)

= 0,(2.3)

where r = |x| and the limit holds uniformly in all directions x/|x|.
Theorem 2.1. (see e.g. [41, theorem 9.11]). The boundary value problem (2.1)–

(2.3) has exactly one solution.
Suppose that u ∈ C2(D)∩H1

loc(D) satisfies (2.1)–(2.3). Then, by standard elliptic
regularity estimates [32, §8.11], u ∈ C∞(D̄ \ ΓC), where ΓC := {P1, . . . , Pn} is the
set of corners of Γ. It is, moreover, possible to derive an explicit representation for u
near the corners. For j = 1, . . . , n, let Rj := min(Lj−1, Lj) (with L−1 := LN). Let
(r, θ) be polar coordinates local to a corner Pj , chosen so that r = 0 corresponds to
the point Pj , the side Γj−1 lies on the line θ = 0, the side Γj lies on the line θ = Ωj ,
and the part of D̄ within distance Rj of Pj is the set of points with polar coordinates
{(r, θ) : 0 ≤ r < Rj , 0 ≤ θ ≤ Ωj}. Choose R so that R ≤ Rj and ρ := kR < π/2, and
let G denote the set of points with polar coordinates {(r, θ) : 0 ≤ r < R, 0 ≤ θ ≤ Ωj}
(see figure 2.2). The following result, in which Jν denotes the Bessel function of the
first kind of order ν, follows by standard separation of variables arguments.

Theorem 2.2 (representation near corners). Let g(θ) denote the value of u at the
point with polar coordinates (R, θ). Then, where (r, θ) denotes the polar coordinates
of x, it holds that

u(x) =
∞
∑

n=1

anJnπ/Ωj
(kr) sin

(

nθπ

Ωj

)

, x ∈ G,(2.4)

where

an :=
2

ΩjJnπ/Ωj
(kR)

∫ Ωj

0

g(θ) sin

(

nθπ

Ωj

)

dθ, n ∈ N.(2.5)

Remark 2.3. The condition ρ = kR < π/2 ensures that Jnπ/Ωj
(kR) 6= 0,

n ∈ N, in fact (see (3.12)) that |anJnπ/Ωj
(kr)| ≤ C(r/R)−n, where the constant C is
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Fig. 2.2. Neighbourhood of a corner.

independent of n and x, so that the series (2.4) converges absolutely and uniformly
in G. Thus u ∈ C(D̄). Moreover, from this representation and the behaviour of the
Bessel function Jν (cf. theorem 3.3) it follows that, near the corner Pj, ∇u(x) has
the standard singular behaviour that

|∇u(x)| = O
(

rπ/Ωj−1
)

as r → 0.(2.6)

From [24, theorem 3.12] and [41, theorems 7.15, 9.6] we see that, if u satisfies the
boundary value problem (2.1)–(2.3), then a form of Green’s representation theorem
holds, namely

u(x) = ui(x) −
∫

Γ

Φ(x,y)∂+
n u(y) ds(y), x ∈ D,(2.7)

where n is the normal direction directed out of Υ and Φ(x,y) := (i/4)H
(1)
0 (k|x−y|) is

the standard fundamental solution for the Helmholtz equation, with H
(1)
0 the Hankel

function of the first kind of order zero. Note that, since u ∈ C∞(D̄ \ ΓC) and the
bound (2.6) holds, we have in fact that ∂+

n u = ∂u/∂n ∈ L2(Γ) ∩ C∞(Γ \ ΓC).
Starting from the representation (2.7) for u, we will obtain the boundary integral

equation for ∂u/∂n which we will solve numerically later in the paper. This inte-
gral equation formulation is expressed in terms of the standard single-layer potential
operator (S) and the adjoint of the double-layer potential operator (T ), defined, for
v ∈ L2(Γ), by

Sv(x) := 2

∫

Γ

Φ(x,y)v(y) ds(y), T v(x) := 2

∫

Γ

∂Φ(x,y)

∂n(x)
v(y) ds(y), x ∈ Γ\ΓC .

(2.8)
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We note that both S and T are bounded operators on L2(Γ). In fact, more generally
[41], S : Hs−1/2(Γ) → Hs+1/2(Γ) and T : Hs−1/2(Γ) → Hs−1/2(Γ), for |s| ≤ 1/2, and
these mappings are bounded. We state the integral equation we will solve in the next
theorem. Our proof of this theorem is based on that in [23] for domains of class C2,
modified to use more recent results on layer potentials on Lipschitz domains.

Theorem 2.4. If u ∈ C2(D) ∩ H1
loc(D) satisfies the boundary value problem

(2.1)–(2.3) then, for every η ∈ R, ∂+
n u = ∂u

∂n ∈ L2(Γ) satisfies the integral equation

(I + K)∂+
n u = f on Γ,(2.9)

where I is the identity operator, K := T + iηS, and

f(x) := 2
∂ui

∂n
(x) + 2iηui(x), x ∈ Γ \ ΓC .

Conversely, if v ∈ H−1/2(Γ) satisfies (I + K)v = f , for some η ∈ R \ {0}, and u is
defined in D by (2.7), with ∂+

n u replaced by v, then u ∈ C2(D)∩H1
loc(D) and satisfies

the boundary value problem (2.1)–(2.3). Moreover, ∂+
n u = v.

Proof. Suppose first that v ∈ H−1/2(Γ) satisfies (I + K)v = f and define u by
u := ui − Sv where

Sv(x) :=

∫

Γ

Φ(x,y)v(y) ds(y), x ∈ R
2 \ Γ.

Then [41, theorem 6.11, chapter 9] u ∈ C2(R2 \ Γ) ∩ H1
loc(R

2) and satisfies (2.1) in
R2 \ Γ and (2.3). Thus u satisfies the boundary value problem as long as γ+u = 0.
Now, standard results on boundary traces of the single-layer potential on Lipschitz
domains [41] give us that

2γ±Sv = Sv, 2∂±n (Sv) = (∓I + T )v.(2.10)

On the other hand, we have that (I + T + iηS)v = f . Thus

2∂−n u = 2
∂ui

∂n
− (I + T )v = iηSv − 2iηγ+u

i = −2iηγ−u.

Applying Green’s first identity [41, theorem 4.4] to u ∈ H1(Υ; ∆) we deduce that

−η
∫

Γ

|γ−u|2 ds = Im

∫

Γ

∂−n u γ−ūds = 0.

Thus γ+u = γ−u = 0, so that u satisfies the boundary value problem (2.1)–(2.3).
Further, ∂−n u = 0 and ∂+

n u = v + ∂−n u = v.
Conversely, if u satisfies the boundary value problem, in which case ∂+

n u = ∂u
∂n ∈

L2(Γ) ⊂ H−1/2(Γ) and (2.7) holds, then, applying the trace results (2.10), we deduce

2γ+u
i = S∂+

n u, 2
∂ui

∂n
= (I + T )∂+

n u.

Hence equation (2.9) holds.
The above theorem, together with theorem 2.1, implies that the integral equation

(2.9) has exactly one solution in H−1/2(Γ), provided we choose η 6= 0.
Remark 2.5. The idea of taking a linear combination of first and second kind

integral equations to obtain a uniquely solvable boundary integral equation equivalent
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to an exterior scattering problem for the Helmholtz equation dates back to Brakhage
and Werner [11], Leis [40], and Panich [43] for the exterior Dirchlet problem and
Burton and Miller [15] for the Neumann problem. In fact, the integral equation in
[11, 40, 43] is precisely the adjoint of equation (2.9) (see the discussion and corollary
2.7 below). The above proof is based on that in [23]. But, while Colton and Kress
[23] restrict attention to the case when Γ is sufficiently smooth (of class C2), the
proof given above is valid for arbitrary Lipschitz Γ, and in an arbitrary number of
dimensions. (Note however that, for general Lipschitz Γ, T v, for v ∈ H−1/2(Γ), must
be understood as the sum of the normal derivatives of Sv on the two sides of Γ [41,
Chapter 7]. This definition of T v is equivalent to that in (2.8) when Γ is Lyapunov
in a neighbourhood of almost every point on Γ, e.g. if Γ is a polyhedron, and if v is
sufficiently smooth, e.g. v ∈ L∞(Γ) [41, theorem 7.4].)

The following theorem, which shows that the operator I + K is bijective on a
range of Sobolev spaces, holds for a general Lipschitz boundary Γ (with T defined as
in remark 2.5 in the general case), in any number of space dimensions ≥ 2.

Theorem 2.6. Let A := I + K and suppose that η ∈ R \ {0}. Then, for
|s| ≤ 1/2, the bounded linear operator A : Hs−1/2(Γ) → Hs−1/2(Γ) is bijective with
bounded inverse A−1.

Proof. It is enough to show this result for s = ±1/2; it then follows for all s by
interpolation [41]. We note first that, since H1(Γ) is compactly embedded in L2(Γ),
so that L2(Γ) is compactly embedded in H−1(Γ), and since S is a bounded operator
from H−1(Γ) to L2(Γ), it follows that S is a compact operator on H−1(Γ) and L2(Γ).
Let T0 denote the operator corresponding to T in the case k = 0; explicitly, in the
case when Γ is a 2D polygon, T0v, for v ∈ L2(Γ), is defined by (2.8) with Φ(x,y)
replaced by Φ0(x,y) := −(2π)−1 log |x − y|. Then T0 − T is a bounded operator
from H−1(Γ) to L2(Γ) and so a compact operator on H−1(Γ) and L2(Γ). (To see
the boundedness of T0 − T it is perhaps easiest to show that the adjoint operator,
T ′

0 −T ′, is a bounded operator from L2(Γ) to H1(Γ), which follows since D(T ′
0 −T ′)

is a bounded operator on L2(Γ). Here D is the surface gradient operator, T ′ and T ′
0

are standard double-layer potential operators [41, theorem 6.17], in particular

T ′v(x) :=

∫

Γ

∂Φ(x,y)

∂n(y)
v(y)ds(y), x ∈ Γ,

and the boundedness of the integral operator D(T ′
0 − T ′) follows since its kernel is

continuous or weakly singular.) Thus A, as an operator on Hs−1/2(Γ), s = ±1/2, is a
compact perturbation of I+T0. But it is known that I+T ′

0 is Fredholm of index zero
on Hs+1/2(Γ), for |s| ≤ 1/2 (see [47, 30]), from which it follows from [41, theorem
6.17] that the adjoint operator I + T ′

0 is Fredholm of index zero on Hs−1/2(Γ), for
|s| ≤ 1/2. Thus A is Fredholm of index zero on Hs−1/2(Γ), s = ±1/2. Since A is
Fredholm with the same index on H−1(Γ) and L2(Γ), and L2(Γ) is dense in H−1(Γ),
it follows from a standard result on Fredholm operators (see e.g. [45, §1]) that the
null-space of A, as an operator on H−1(Γ), is a subset of L2(Γ). But it follows from
theorems 2.1 and 2.4 that Av = 0 has no non-trivial solution in H−1/2(Γ) ⊃ L2(Γ).
Thus A : Hs−1/2(Γ) → Hs+1/2(Γ) is invertible for s = ±1/2.

We have observed in remark 2.5 that an alternative integral equation formulation
for the exterior Dirichlet problem was introduced in [11, 40, 43]. In this formulation
one seeks a solution to the exterior Dirichlet problem in the form of a combined single-
and double-layer potential with some unknown density φ̃ and arrives at the boundary
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integral equation A′φ̃ = 2γ+u
i, where

A′ = I + T ′ + iηS

is the adjoint of A in the sense that the duality relation holds that 〈Aφ,ψ〉Γ =
〈φ,A′ψ〉Γ, for φ ∈ H−1/2(Γ), ψ ∈ H1/2(Γ), where 〈φ, ψ〉Γ :=

∫

Γ
φ(y)ψ(y)ds(y) [41,

theorems 6.15, 6.17]. It is known that A′ maps Hs+1/2(Γ) to H1/2(Γ) and this
mapping is bounded, for |s| ≤ 1/2 [41]. This, the duality relation, and theorem
2.6 imply the invertibility of A′. Precisely, we have the following result.

Corollary 2.7. For |s| ≤ 1/2 and η ∈ R \ {0}, the mapping A′ : Hs+1/2(Γ) →
Hs+1/2(Γ) is bijective with bounded inverse A′−1

.
In the remainder of the paper we will focus on the properties of A as an operator

on L2(Γ). We remark that the result that I + T ′
0 is Fredholm of index zero on L2(Γ)

dates back to [46] in the case when Γ is a 2D polygon. Letting ‖ · ‖2 denote the norm
on L2(Γ), the technique in [46] (or see [17]) is to show that T ′

0 = T ′
1 + T ′

2 , where
‖T ′

1‖2 < 1. Since taking adjoints preserves norms and compactness, and since S and
T − T0 are compact operators on L2(Γ), it holds in the case of a 2D polygon that
A = I +K = I +K1 +K2, where ‖K1‖2 < 1 and K2 is a compact operator on L2(Γ).

Through the remainder of the paper we suppose that η ∈ R with η 6= 0, so that
A is invertible, and let

CS := ‖A−1‖2 = ‖(I + K)−1‖2.(2.11)

We note that CS is a function of k, η, and the geometry of Γ; in particular it depends
on k in an unspecified way. We remark that recently it has been shown, in the case
when Γ is a circle and the choice η = k is made, that CS ≤ 2 [28]. There exist no
rigorous estimates of CS for more general obstacles, except that, recently [19], the
analogous operator to A has been studied when Γ is an unbounded scattering surface,
the graph of a bounded, Lipschitz continuous function which has Hölder continuous
gradient. In this case Rellich lemma-type arguments have been applied to establish
that CS ≤ 5(1 + L)2, where L is the Lipschitz constant, when η = k/2.

3. Regularity results. In this section we aim to understand the behaviour of
∂u/∂n, the normal derivative of the total field on Γ, which is the unknown function in
the integral equation (2.9). Precisely, we will obtain bounds on the surface tangential
derivatives of ∂u/∂n in which the dependence on the wave number is completely
explicit. This will enable us in §4 to design a family of approximation spaces well-
adapted to approximating ∂u/∂n.

To understand the behaviour of ∂u/∂n near the corners Pj our technique will be
to use the explicit representation (2.4). To understand the behaviour away from the
corners we will need another representation for ∂u/∂n which we now derive.

Our starting point is the observation that, if U = {x = (x1, x2), x1 ∈ R, x2 > 0}
is the upper half-plane, and v ∈ C2(U) ∩ C(Ū) satisfies the Helmholtz equation in U
and the Sommerfeld radiation condition, then [18, theorem 3.1]

v(x) = 2

∫

∂U

∂Φ(x,y)

∂y2
v(y) ds(y), x ∈ U.(3.1)

The same formula holds [18] if v is a horizontally or upwards propagating plane wave,
i.e. if v(x) = eikx.d with d = (d1, d2), |d| = 1, and d2 ≥ 0.

To make use of this observation, we make the following construction. Extend
the line Γj to infinity in both directions; the resulting infinite line comprises Γj and
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ui

Pj

Pj+1

Υ

Dj

Γj

Γ+
j

Γ−
j

Fig. 3.1. Extension of Γj, for derivation of regularity estimates.

the half-lines Γ+
j and Γ−

j , above Pj and below Pj+1, respectively, see figure 3.1. Let
Dj ⊂ D denote the half-plane on the opposite side of this line to Υ.

Now consider first the case when Γj is in shadow, by which we mean that nj .d ≥ 0.
Then it follows from (3.1) that

us(x) = 2

∫

Γ+

j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
us(y) ds(y), x ∈ Dj ,(3.2)

and also that

ui(x) = 2

∫

Γ+

j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y), x ∈ Dj .(3.3)

Since u = ui + us and u = 0 on Γ, we deduce that

u(x) = 2

∫

Γ+

j ∪Γ−

j

∂Φ(x,y)

∂n(y)
u(y) ds(y), x ∈ Dj .

In the case when Γj is illuminated (nj .d < 0), (3.2) holds but (3.3) is replaced by

ui(x) = −2

∫

Γ+

j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y), x ∈ R

2\D̄j .(3.4)

Now let ur(x) := −ui(x′), for x ∈ Dj, where x′ is the reflection of x in the line
Γ+

j ∪ Γj ∪ Γ−
j . (The physical interpretation of ur is that it is the plane wave that

would be reflected if Γj were infinitely long.) From (3.4), for x ∈ Dj ,

ur(x) = 2

∫

Γ+

j ∪Γj∪Γ−

j

∂Φ(x′,y)

∂n(y)
ui(y) ds(y) = −2

∫

Γ+

j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y),

and adding this to (3.2) we find that

u(x) = ui(x) + ur(x) + 2

∫

Γ+

j ∪Γ−

j

∂Φ(x,y)

∂n(y)
u(y) ds(y), x ∈ Dj .
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Thus on an illuminated side it holds that

∂u

∂n
(x) = 2

∂ui

∂n
(x) + 2

∫

Γ+

j ∪Γ−

j

∂2Φ(x,y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γj .(3.5)

The same expression, but without the term 2∂ui

∂n (x), holds when Γj is in shadow. The
high frequency Kirchhoff or physical optics approximation to ∂u/∂n is just ∂u/∂n =
2∂ui/∂n on the illuminated sides and zero on the sides in shadow. Thus the integral in
(3.5) is an explicit expression for the correction to the physical optics approximation.

The representation (3.5) is very useful in understanding the oscillatory nature of
the solution on a typical side Γj . In particular we note that, in physical terms, the
integral over Γ+

j can be interpreted as the normal derivative on Γj of the field due to

dipoles distributed along Γ+
j . The point is that the field due to each dipole has the

same oscillatory behaviour eiks on Γj . To exhibit this explicitly, we calculate, using
standard properties of Bessel functions [2], that, for x ∈ Γj , y ∈ Γ±

j , with x 6= y,

∂2Φ(x,y)

∂n(x)∂n(y)
=

ikH
(1)
1 (k|x − y|)
4|x − y| =

ik2

4
eik|x−y|µ(k|x − y|),(3.6)

where µ(z) := e−izH
(1)
1 (z)/z, for z > 0. The function µ(z) is singular at z = 0 but

increasingly smooth as z → ∞, as quantified in the next theorem (cf. [20, lemma 2.5]).
Theorem 3.1. For every ǫ > 0,

|µ(m)(z)| ≤ Cǫ(m+ 1)! z−3/2−m,

for z ≥ ǫ and m = 0, 1, . . ., where

Cǫ =
2 4
√

5(1 + ǫ−1/2)

π
.(3.7)

Proof. From [42, equation (12.31)], µ(z) = (−2i/π)
∫ ∞

0 (t2 − 2it)1/2e−zt dt, for

Rez > 0, where the branch of (t2 − 2it)1/2 is chosen so that Re(t2 − 2it)1/2 ≥ 0. Thus

µ(m)(z) = (−1)m+1 2i

π

∫ ∞

0

tm+1/2(t− 2i)1/2e−zt dt

and hence

|µ(m)(z)| ≤ 2

π

∫ ∞

0

tm+1/2(t2 + 4)1/4e−zt dt.

Now, for t ∈ [0, 1], (t2 + 4)1/4 ≤ 51/4 and, for t ∈ [1,∞), (t2 + 4)1/4 ≤ 51/4t1/2. So

π

2 4
√

5
|µ(m)(z)| ≤

∫ ∞

0

tm+1/2e−zt dt+

∫ ∞

0

tm+1e−zt dt

= Γ(m+3/2)z−3/2−m+Γ(m+2)z−2−m ≤ (1+ǫ−1/2)Γ(m+2)z−3/2−m,

for z ≥ ǫ.
To make use of the above result, let x(s) denote the point on Γ whose arc-length

distance measured anticlockwise from P1 is s. Explicitly,

x(s) = Pj +
(

s− L̃j−1

)

(

Pj+1 − Pj

Lj

)

, for s ∈ [L̃j−1, L̃j], j = 1, . . . , n,
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where L̃0 := 0 and, for j = 1, . . . , n, L̃j :=
∑j

m=1 Lm is the arc-length distance from
P1 to Pj+1. Define

φ(s) :=
1

k

∂u

∂n
(x(s)), for s ∈ [0, L],(3.8)

where L := L̃n, so that φ(s) is the unknown function of arc-length whose behaviour
we seek to determine. Let

Ψ(s) :=

{

2
k

∂ui

∂n (x(s)), if s ∈ (L̃ns
, L)

0, if s ∈ (0, L̃ns
),

so that Ψ(s) is the physical optics approximation to φ(s), and set ψj(s) := u(x̃j(s)),
s ∈ R, where x̃j(s) ∈ Γ+

j ∪ Γj ∪ Γ−
j is the point

x̃j(s) := Pj +
(

s− L̃j−1

)

(

Pj+1 − Pj

Lj

)

, −∞ < s <∞.

From (3.5) and (3.6) we have the explicit representation for φ on the side Γj , that

φ(s) = Ψ(s) +
i

2
[eiksv+

j (s) + e−iksv−j (s)], s ∈ [L̃j−1, L̃j], j = 1, . . . , n,(3.9)

where

v+
j (s) := k

∫ L̃j−1

−∞

µ(k|s− t|)e−iktψj(t) dt, s ∈ [L̃j−1, L̃j], j = 1, . . . , n,

v−j (s) := k

∫ ∞

L̃j

µ(k|s− t|)eiktψj(t) dt, s ∈ [L̃j−1, L̃j], j = 1, . . . , n.

The terms eiksv+
j (s) and e−iksv−j (s) in (3.9) are the integrals over Γ+

j and Γ−
j , respec-

tively, in equation (3.5), and can be thought of as the contributions to ∂u/∂n on Γj

due to the diffracted rays travelling from Pj to Pj+1 and from Pj+1 to Pj , respectively,
including all multiply diffracted ray components.

So the equation we wish to solve is (2.9), and we have the explicit representa-
tion (3.9) for its solution. At first glance this may not appear to help us, since the
unknown solution u appears (as ψj) on the right hand side of (3.9). However, (3.9)
is extremely helpful in understanding how φ behaves since it explicitly separates out
the oscillatory part of the solution. The functions v±j are not oscillatory away from
the corners, as the following theorem quantifies. In this theorem and hereafter we let

uM := sup
x∈D

|u(x)| <∞(3.10)

and note that ‖ψj‖∞ ≤ uM , j = 1, . . . , n.
Theorem 3.2 (solution behaviour away from corners). For ǫ > 0, j = 1, . . . , n,

and m = 0, 1, . . ., it holds for s ∈ [L̃j−1, L̃j] that

|v+
j

(m)
(s)| ≤ 2Cǫm!uMkm(k(s− L̃j−1))

−1/2−m, k(s− L̃j−1) ≥ ǫ,

|v−j
(m)

(s)| ≤ 2Cǫm!uMkm(k(L̃j − s))−1/2−m, k(L̃j − s) ≥ ǫ,

where Cǫ is given by (3.7).
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Proof. From theorem 3.1, for s ∈ [L̃j−1 + ǫ/k, L̃j],

|v+
j

(m)
(s)| = km+1

∣

∣

∣

∣

∣

∫ L̃j−1

−∞

µ(m)(k|s− t|)e−iktψj(t) dt

∣

∣

∣

∣

∣

≤ Cǫ(m+ 1)!km+1‖ψj‖∞
∫ L̃j−1

−∞

(k|s− t|)−3/2−m dt

= Cǫ
(m+ 1)!

(m+ 1/2)
k−1/2‖ψj‖∞(s− L̃j−1)

−1/2−m

≤ 2Cǫm!uMkm(k(s− L̃j−1))
−1/2−m.

The bound on v−j
(m)

(s) is obtained similarly.
The above theorem quantifies precisely the behaviour of ∂u/∂n away from the

corners. Complementing this bound, using theorem 2.2 we can study the behaviour of
∂u/∂n near the corners. To state this result it is convenient to extend the definition
of φ from [0, L] to R by the periodicity condition φ(s+ L) = φ(s), s ∈ R.

Theorem 3.3 (solution behaviour near corners). If kRj = min(kLj−1, kLj) ≥
π/4, for j = 1, . . . , n, then, for j = 1, . . . , n and 0 < k|s− L̃j−1| ≤ π/12, it holds that

∣

∣

∣
φ(m)(s)

∣

∣

∣
≤ CuM

√

m+
1

2
m!km(k|s− L̃j−1|)−αj−m, m = 0, 1, . . . ,

where

αj := 1 − π

Ωj
∈ (0, 1/2)(3.11)

and C = 72
√

2 π−1 e1/e+π/6.

Proof. To analyse the behaviour of u using (2.4) we will use the representation
for the Bessel function of order ν [2, (9.1.20)],

Jν(z)=
2(z/2)ν

π1/2Γ(ν + 1/2)

∫ 1

0

(1 − t2)ν−1/2 cos(zt) dt, for Rez > 0, ν > −1/2,

where the branch of (z/2)ν is chosen so that (z/2)ν > 0 for z > 0 and (z/2)ν is
analytic in Rez > 0. This representation implies that

cos z ≤ Jν(z)π1/2Γ(ν + 1/2)

2(z/2)ν
∫ 1

0 (1 − t2)ν−1/2 dt
≤ 1, 0 ≤ z ≤ π/2.(3.12)

Recalling the definitions of R and G before theorem 2.2 and the definition (2.5) of the
coefficient an, we have that ρ := kR < π/2 and

|an| ≤
2uM

Jnπ/Ωj
(ρ)

.(3.13)

Thus, for 0 < r < R,

∣

∣anJnπ/Ωj
(kr)

∣

∣ ≤ 2uM

cos ρ

( r

R

)nπ/Ωj

,(3.14)



HIGH FREQUENCY SCATTERING BY CONVEX POLYGONS 15

confirming that the series (2.4) converges for 0 ≤ r < R. Further, the bound (3.14)
justifies differentiating (2.4) term by term to get that, for x ∈ Γj−1 ∩ G, ∂u

∂n (x) =
kF (kr), where

F (z) :=
π

Ωjz

∞
∑

n=1

nanJnπ/Ωj
(z), Rez > 0, |z| < ρ.(3.15)

Since | cos z| ≤ e|Imz|, z ∈ C, so that | cos zt| ≤ e|Imz| for z ∈ C, 0 ≤ t ≤ 1, we see
from (3.13) that, for Rez > 0,

∣

∣nanJnπ/Ωj
(z)

∣

∣ ≤ 2uMn

cos ρ
e|Imz|

( |z|
ρ

)nπ/Ωj

.(3.16)

So the series (3.15) is absolutely and uniformly convergent in Rez > 0, |z| < ρ0, for
every ρ0 < ρ, and F is analytic in Rez > 0, |z| < ρ. Further, from (3.16), and since,
for 0 ≤ α < 1,

∑∞
n=1 nα

n = α d
dα

∑∞
n=1 α

n = α
(1−α)2 , we see that, for Rez > 0, |z| < ρ,

|F (z)| ≤ π

Ωj |z|
2uM

cos ρ

e|Imz|

(1 − |z/ρ|π/Ωj)2

( |z|
ρ

)π/Ωj

.

We can use this bound to obtain bounds on derivatives of F , and hence bounds
on derivatives of ∂u/∂n. For 0 < t ≤ ρ/3, 0 < ε < t, from Cauchy’s integral formula
we have that

|F (m)(t)| =
m!

2π

∣

∣

∣

∣

∫

Γε

F (z)

(z − t)m+1
dz

∣

∣

∣

∣

,

where Γε is the circle of radius ε centred on t, which lies in Rez > 0, |z| < ρ. Since

|F (z)| ≤ 2πuMe|Imz|(t− ε)π/Ωj−1

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj )2
,

for z ∈ Γε, we see that

|F (m)(t)| ≤ 2πuMet(t− ε)π/Ωj−1ε−mm!

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj)2
.(3.17)

Now, for α > 0, β > 0, (t−ε)−αε−β is minimised on (0, t) by the choice ε = βt/(α+β).
Setting ε = mt/(m+ 1 − π/Ωj) in (3.17) we see that

|F (m)(t)| ≤ 2πuMetm!(m+ 1 − π/Ωj)
m+1−π/Ωj tπ/Ωj−1−m

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj )2mm(1 − π/Ωj)1−π/Ωj
.

Now

(m+ 1 − π/Ωj)
m+1−π/Ωj

mm
≤ (m+ 1/2)m+1/2

mm
=

(

1+
1

2m

)m
√

m+
1

2
≤ e1/2

√

m+
1

2
,

2π

Ωj(1 − π/Ωj)1−π/Ωj (1 − (2/3)π/Ωj )2
≤ 18

(1 − π/Ωj)1−π/Ωj
≤ 18e1/e,

and hence

|F (m)(t)| ≤ 18e1/e+1/2+t
√

m+ 1/2m!uM

ρπ/Ωj cos ρ
tπ/Ωj−1−m, 0 < t ≤ ρ/3.(3.18)
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Since ∂u
∂n(x) = kF (kr), this implies that

∣

∣

∣

∣

∂(m)

∂rm

[

∂u

∂n
(x)

]
∣

∣

∣

∣

≤ C̃uM km+1(kr)π/Ωj−1−m, 0 < r ≤ R/3 <
π

6k
,

where C̃ = (18e1/e+1/2+π/6
√

m+ 1/2m!)/(ρπ/Ωj cos ρ). Choosing ρ = π/4 the result
follows.

From theorems 3.2 and 3.3, and equation (3.9), which gives that

v±j (s) = −2ie∓iks(φ(s) − Ψ(s)) − e±2iksv∓j (s),

we deduce the following corollary, in which αn+1 := α1.
Corollary 3.4. Suppose that kRj = min(kLj−1, kLj) ≥ π/4, for j = 1, . . . , n.

Then, for m = 0, 1, . . ., there exists Cm > 0, dependent only on m, such that, if
j ∈ {1, . . . , n}, then

|v+
j

(m)
(s)| ≤ CmuMkm(k(s− L̃j−1))

−αj−m, 0 < k(s− L̃j−1) ≤ π/12,

|v−j
(m)

(s)| ≤ CmuMkm(k(L̃j − s))−αj+1−m, 0 < k(L̃j − s) ≤ π/12.

The following limiting case suggests that the bounds in theorem 3.2 and corollary
3.4 are optimal in their dependence on k, s− L̃j−1, and L̃j − s, in the sense that no
sharper bound holds uniformly in the angle of incidence. Suppose that Υ lies in the
right hand half-plane with P1 located at the origin and d · n1 = 0, and consider the
limit min(kL0, kL1) → ∞ and Ω1 → 2π. In this limit α1 → 1/2 and it is plausible that
u(x) → uk.e.(x), where uk.e. is the solution to the following “knife edge” diffraction
problem: where Γk.e. := {(x1, 0) : x1 ≥ 0}, given the incident plane wave ui, find the
total field uk.e. ∈ C2(R2 \ Γk.e.) ∩ C(R2) such that ∆uk.e. + k2uk.e. = 0 in R

2 \ Γk.e.,
uk.e. = 0 on Γk.e., and uk.e. − ui has the correct radiating behaviour. The solution
to this problem which satisfies the physically correct radiation condition is given by
[10, equation (8.24)]. This solution implies that ϕ(s) := 1

k
∂uk.e.

∂n ((s, 0)) = ±eiksv(s),
where the +/− sign is taken on the upper/lower surface of the knife edge and v(s) :=
ĉ(ks)−1/2, where ĉ = e−iπ/4

√

2/π. The function v(s) and its derivatives satisfy the
bounds on v+

1 in theorem 3.2 and corollary 3.4 (with αj = 1/2), but do not satisfy

any sharper bounds in terms of dependence on k or s− L̃j−1.

4. The approximation space. Our aim now is to use the regularity results
of §3 to design an optimal approximation space for the numerical solution of (2.9).
We begin by rewriting (2.9) in parametric form. Defining, for j = 1, . . . , n,

aj :=
pj+1 − pj

Lj
, bj :=

qj+1 − qj
Lj

, cj := pj − ajL̃j−1, dj := qj − bjL̃j−1,

and noting that nj1 = bj , nj2 = −aj , we can rewrite (2.9) as

φ(s) +

∫ L

0

κ(s, t)φ(t) dt = f(s), s ∈ [0, L],(4.1)

where, for x(s) ∈ Γl, y(t) ∈ Γj , i.e. for s ∈ (L̃l−1, L̃l), t ∈ (L̃j−1, L̃j),

κ(s, t) := −1

2

[

ηH
(1)
0 (kR) + ik [(albj − blaj)t+ bl(cl − cj) − al(dl − dj)]

H
(1)
1 (kR)

R

]

,
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with R = R(s, t) :=
√

(als− ajt+ cl − cj)2 + (bls− bjt+ dl − dj)2 and f ∈ L2(0, L)
defined by

f(s) := 2i[bl sin θ + al cos θ + (η/k)]eik((als+cl) sin θ−(bls+dl) cos θ).

The first step in our numerical method is to separate off the explicitly known
leading order behaviour, the physical optics approximation Ψ(s). Thus we introduce
a new unknown,

ϕ := φ− Ψ ∈ L2(0, L).(4.2)

Substituting into (4.1) we have

ϕ+Kϕ = F,(4.3)

where the integral operator K : L2(0, L) → L2(0, L) and F ∈ L2(0, L) are defined by

Kψ(s) :=

∫ L

0

κ(s, t)ψ(t) dt, 0 ≤ s ≤ L, F := f − Ψ −KΨ.

Equation (4.3) is the integral equation we will solve numerically. By theorem 2.6,
(4.3) has a unique solution in L2(0, L) and ‖(I +K)−1‖2 = CS , CS defined in (2.11).

We will design an approximation space to represent ϕ based on (3.9). The novelty
of the scheme we propose is that on each side Γj , j = 1, . . . , n, of the polygon, we
approximate v±j by conventional piecewise polynomials, rather than approximating

ϕ itself. This makes sense since, as quantified by theorem 3.2, the functions v±j are
smooth (their higher-order derivatives are small) away from the corners Pj and Pj+1.
To approximate v±j we use piecewise polynomials of a fixed degree ν ≥ 0 on a graded
mesh, the mesh grading adapted in an optimal way to the bounds of theorems 3.2
and 3.3. In [20] the 2D problem of scattering of a plane wave by a straight boundary
of piecewise constant surface impedance was considered. We will construct a similar
mesh on each side of the polygon as was used on each interval of constant impedance
in [20], except that we use a different grading near the corners, with the grading near
each corner dependent on the angle at that corner.

To construct this mesh we choose a constant c∗ > 0 (we take c∗ = 1 in the
numerical examples in §6) and set λ∗ := c∗/k. Next, for every A > λ∗, we define a
composite graded mesh on [0, A], with a polynomial grading on [0, λ∗] and a geometric
grading on [λ∗, A] (note that the mesh on [0, λ∗] is similar to that classically used near
corners (e.g. [17], [7]) for solving Laplace’s equation on polygonal domains).

Definition 4.1. For A > λ∗, N = 2, 3, . . ., ΛN,A,q := {y0, . . . , yN+NA,q
} is the

mesh consisting of the points

yi = λ∗
(

i

N

)q

, i = 0, . . . , N, and yN+j := λ∗
(

A

λ∗

)j/NA,q

, j = 1, . . . , NA,q,(4.4)

where NA,q := ⌈N∗⌉, i.e. NA,q is the smallest integer greater than or equal to N∗,
and

N∗ :=
− log(A/λ∗)

q log(1 − 1/N)
.
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This choice of N∗ ensures a smooth transition between the two parts of the mesh.
In particular, in the case that NA,q = N∗, it holds that yN+1/yN = yN/yN−1, so that
yN−1 and yN are points in both the polynomial and the geometric parts of the mesh.
By the mean value theorem, − log(1− 1/N) = 1/(ξN) for some ξ ∈ (1− 1/N, 1), and
hence

NA,q <
N log(kA/c∗)

q
+ 1.(4.5)

For a < b let ‖·‖2,(a,b) denote the norm on L2(a, b), ‖f‖2,(a,b) := {
∫ b

a
|f(s)|2ds}1/2.

Similarly, for f ∈ C[a, b], let ‖f‖∞,(a,b) := supa<s<b |f(s)|. For A > λ∗, ν ∈ N ∪ {0},
q ≥ 1, let ΠN,ν ⊂ L2(0, A) denote the set of piecewise polynomials

ΠN,ν := {σ : σ|(yj−1,yj) is a polynomial of degree ≤ ν, for j = 1, . . . , N +NA,q},

and let P ∗
N be the orthogonal projection operator from L2(0, A) to ΠN,ν, so that

setting p = P ∗
Nf minimises ‖f − p‖2,(0,A) over all p ∈ ΠN,ν.

Theorem 4.2. Suppose that f ∈ C∞(0,∞), kA > c∗, and α ∈ (0, 1/2), and that
for m = 0, 1, 2, . . . there exist constants cm > 0 such that

|f (m)(s)| ≤
{

cmk
m(ks)−α−m, ks ≤ 1,

cmk
m(ks)−1/2−m, ks ≥ 1.

(4.6)

Then, with the choice q := (2ν + 3)/(1 − 2α), there exists a constant Cν , dependent
only on c∗, ν, and α, such that, for N = 2, 3, . . .,

‖f − P ∗
Nf‖2,(0,A) ≤

Cν c̃ν(1 + log(kA/c∗))1/2

k1/2Nν+1
,

where c̃ν := max(c0, cν+1).
Proof. Throughout the proof let Cν denote a positive constant whose value de-

pends on ν, c∗, and α, not necessarily the same at each occurrence. For 0 ≤ a < b ≤ A,
let pa,b,ν denote the polynomial of degree ≤ ν which is the best approximation to f
in the L2 norm on (a, b). Then it follows from Taylor’s theorem that

‖f − pa,b,ν‖2,(a,b) ≤ Cν(b− a)ν+3/2‖f (ν+1)‖∞,(a,b).(4.7)

Now

‖f − P ∗
Nf‖2

2,(0,A) =

N+NA,q
∑

j=1

∫ yj

yj−1

|f − P ∗
Nf |2 ds =

N+NA,q
∑

j=1

ej ,(4.8)

where ej := ‖f − pyj−1,yj,ν‖2
2,(yj−1,yj)

. From the definition (4.4) we see that

e1 ≤
∫ y1

0

|f(s)|2 ds ≤ c20k
−2α

∫ λ∗/Nq

0

s−2α ds ≤ Cνc
2
0

kN2ν+3
.(4.9)

Using (4.7) we have, for j = 2, 3, . . . , N +NA,q,

ej ≤ Cν(yj − yj−1)
2ν+3‖f (ν+1)‖2

∞,(yj−1,yj)
.(4.10)

Further, for j = 2, . . . , N ,

yj − yj−1 =
c∗

kN q
[jq − (j − 1)q] ≤ c∗qjq−1

kN q
,(4.11)
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and, using (4.6) and since N/(j − 1) ≤ 2N/j,

‖f (ν+1)‖∞,(yj−1,yj) ≤ cν+1k
−αy−α−ν−1

j−1 ≤ cν+1k
ν+1

(

2N

j

)q(α+ν+1)

.(4.12)

Combining (4.10)-(4.12) we see that, for j = 2, . . . , N ,

ej ≤ Cνc
2
ν+1

kN2ν+3
.(4.13)

For j = N + 1, . . . , NA,q, recalling (4.4) and the choice of N∗, and then using (4.11),

yj − yj−1 = yj−1

(

yj − yj−1

yj−1

)

≤ yj−1

(

yN − yN−1

yN−1

)

≤ yj−1
q

N − 1
≤ 2yj−1

q

N
.

Also, from (4.6),

‖f (ν+1)‖∞,(yj−1,yj) ≤ cν+1k
−1/2y

−ν−3/2
j−1 .

Using these bounds in (4.10), we see that the bound (4.13) holds also for j = N +
1, . . . , N +NA,q. Combining (4.8), (4.9), and (4.13),

‖f − P ∗
Nf‖2

2,(0,A) ≤
Cν c̃

2
ν(N +NA,q)

kN2ν+3
≤ Cν c̃

2
ν(1 + log(kA/c∗))

kN2ν+3
,

using (4.5). Hence the result follows.
We assume through the remainder of the paper that c∗ > 0 is chosen so that

kLj ≥ c∗, j = 1, . . . , n.(4.14)

For j = 1, . . . , n, recalling (3.11), we define qj := (2ν + 3)/(1 − 2αj), and the two
meshes

Γ+
j := L̃j−1 + ΛN,Lj,qj

, Γ−
j := L̃j − ΛN,Lj,qj+1

.

Letting e±(s) := e±iks, s ∈ [0, L], we then define

VΓ+

j ,ν := {σe+ : σ ∈ ΠΓ+

j ,ν}, VΓ−

j ,ν := {σe− : σ ∈ ΠΓ−

j ,ν},

for j = 1, . . . , n, where

ΠΓ+

j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−1+ym−1,L̃j−1+ym) is a polynomial of degree ≤ ν,

for m = 1, . . . , N +NLj,qj
, and σ|(0,L̃j−1)∪(L̃j,L) = 0},

ΠΓ−

j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−ỹm,L̃j+ỹm−1)
is a polynomial of degree ≤ ν,

for m = 1, . . . , N +NLj,qj+1
, and σ|(0,L̃j−1)∪(L̃j,L) = 0},

with 0 = y0 < y1 < . . . < yN+NLj,qj
= Lj the points of the mesh ΛN,Lj,qj

, and

0 = ỹ0 < ỹ1 < . . . < ỹN+NLj,qj+1
= Lj the points of the mesh ΛN,Lj,qj+1

. We define

P+
N and P−

N to be the orthogonal projection operators from L2(0, L) onto ΠΓ+,ν and
ΠΓ−,ν , respectively, where ΠΓ±,ν denotes the linear span of

⋃

j=1,...,n ΠΓ±

j ,ν . We also

define the functions v± ∈ L2(0, L) by

v+(s) := v+
j (s), v−(s) := v−j (s), L̃j−1 < s < L̃j, j = 1, . . . , n.
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We then have the following error estimate, in which uM is as defined in (3.10) and we
abbreviate ‖ · ‖2,(0,L) by ‖ · ‖2.

Theorem 4.3. There exists a constant Cν > 0, dependent only on c∗, ν, and Ω1,
Ω2, . . . , Ωn, such that

‖v+ − P+
N v+‖2 ≤ CνuM

n1/2(1 + log(kL̄/c∗))1/2

k1/2Nν+1
,

where L̄ := (L1 . . . Ln)1/n, with an identical bound holding on ‖v− − P−
N v−‖2.

Proof. From theorem 3.2, corollary 3.4, and theorem 4.2,

‖v+ − P+
N v+‖2

2 =

n
∑

j=1

‖v+
j − P+

N v
+
j ‖2

2,(L̃j−1,L̃j)
≤ n

C2
νu

2
M (1 + log(kL̄))

kN2ν+2
,

and the result follows.
Our approximation space VΓ,ν is the linear span of

⋃

j=1,...,n

{VΓ+

j ,ν ∪ VΓ−

j ,ν}.

The dimension of this approximation space, i.e. the number of degrees of freedom, is

MN = 2(ν + 1)

n
∑

j=1

(N +NLj,qj
) < 2(ν + 1)nN(1 +N−1 + log(kL̄/c∗))(4.15)

by (4.5). We define PN to be the operator of orthogonal projection from L2(0, L)
onto VΓ,ν . It remains to prove a bound on ‖ϕ− PNϕ‖2, showing that our mesh and
approximation space are well adapted to approximating ϕ.

To use theorem 4.3 we note from (3.9) and (4.2) that ϕ = i
2 (e+v+ + e−v−). But

e+P
+
N v+ +e−P

−
N v− ∈ VΓ,ν and PNϕ is the best approximation to ϕ in VΓ,ν . Applying

theorem 4.3 we thus have that

‖ϕ− PNϕ‖2 ≤ ‖ϕ− i

2
(e+P

+
N v+ + e−P

−
N v−)‖2

=
1

2
‖e+(v+ − P+

N v+) + e−(v− − P−
N )‖2

≤ ‖e+‖∞‖v+ − P+
N v+‖2 + ‖e−‖∞‖v− − P−

N v−‖2

≤ CνuM
n1/2(1 + log1/2(kL̄))

k1/2Nν+1
.

Combining this bound with (4.15) we obtain the following main result of the paper.
We remind the reader that we are assuming throughout that (4.14) holds.

Theorem 4.4. There exist positive constants Cν and C′
ν , depending only on c∗,

ν, and Ω1, Ω2, . . . , Ωn, such that

k1/2‖ϕ− PNϕ‖2 ≤ CνuM
n1/2(1 + log(kL̄/c∗))1/2

Nν+1
≤ C′

νuM
(1 + log(kL̄/c∗))ν+3/2

Mν+1
N

.

A comment on the factor k1/2 on the left hand side is probably helpful. Reflecting
that the solution of the physical problem must be independent of the unit of length
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measurement and that we are designing our numerical scheme to preserve this prop-
erty, it is easy to see that the values of both k1/2‖ϕ‖2 and k1/2‖ϕ − PNϕ‖2 remain
fixed as k changes, if we keep kLj fixed for j = 1, . . . , n (and also, of course, keep
Ωj , j = 1, . . . , n, c∗, and ν fixed). Thus inclusion of the factor k1/2 ensures that the
value of k1/2‖ϕ−PNϕ‖2 is independent of the unit of length measurement as are the
bounds on the right hand side.

5. Galerkin method. Theorem 4.4 has shown that it is possible to approximate
accurately the solution of the integral equation (4.3) with a number of degrees of free-
dom that grows only very modestly as the wave number increases. To select an approx-
imation, ϕN , from the approximation space VΓ,ν we use the Galerkin method. Let (·, ·)
denote the usual inner product on L2(0, L), defined by (χ1, χ2) :=

∫ L

0
χ1(s)χ̄2(s) ds,

so that ‖χ‖2 = (χ, χ)1/2. Then our Galerkin method approximation ϕN ∈ VΓ,ν is
defined by

(ϕN , ρ) + (KϕN , ρ) = (F, ρ), for all ρ ∈ VΓ,ν ;(5.1)

equivalently

ϕN + PNKϕN = PNF.(5.2)

Our goal now is to show that (5.2) has a unique solution ϕN , to establish a bound
on the error ‖ϕ−ϕN‖2 in this numerical method, and to relate this error to the best
approximation error ‖ϕ−PNϕ‖2. We begin by establishing that I+PNK is invertible
if N is large enough. We remind the reader (see the end of §2) that we are assuming
that η ∈ R, the coupling parameter in the integral equation, is chosen with η 6= 0
which ensures that I +K is invertible.

Theorem 5.1. For all v ∈ L2(0, L), ‖PNv − v‖2 → 0 as N → ∞.
Proof. Since ‖PN‖2 = 1 it is enough to show that PNv → v in L2(0, L) for all

v ∈ C∞[0, L], a dense subset of L2(0, L). But this follows from theorem 4.2 and the
definition of PN .

Theorem 5.2. There exists a constant N∗ ≥ 2, dependent only on Γ, k, and η,
such that, for N ≥ N∗, the operator I + PNK : L2(0, L) → L2(0, L) is bijective with

Cs := sup
N≥N∗

‖(I + PNK)−1‖2 <∞,(5.3)

so that (5.2) has exactly one solution for N ≥ N∗.
Proof. Recalling the discussion at the end of §2, we note that it holds that

K = K1 + K2, where ‖K1‖2 < 1 and K2 is a compact operator on L2(0, L). Since
‖PNK1‖2 ≤ ‖K1‖2 < 1, I+PNK1 is invertible and ‖(I+PNK1)

−1‖2 ≤ (1−‖K1‖2)
−1.

Since K2 is compact and I +K is injective, it follows from theorem 5.1 and standard
perturbation arguments for projection methods (e.g. [7, theorem 8.2.1], [17]) that
(I + PNK)−1 exists and is uniformly bounded for all N sufficiently large.

From (4.3) and (5.2) it follows that ϕ−ϕN = (I+PNK)−1(ϕ−PNϕ), and hence

‖ϕ− ϕN‖2 ≤ ‖(I + PNK)−1‖2‖ϕ− PNϕ‖2.(5.4)

Combining (5.3) and (5.4) with theorem 4.4 we obtain our final error estimate.
Theorem 5.3. There exist positive constants Cν and C′

ν , depending only on c∗,
ν, and Ω1, Ω2, . . . , Ωn, such that

k1/2‖ϕ−ϕN‖2 ≤ CsCνuM
n1/2(1 + log(kL̄/c∗))1/2

Nν+1
≤ CsC

′
νuM

(1 + log(kL̄/c∗))ν+3/2

Mν+1
N

,
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for N ≥ N∗, where N∗ and Cs are as defined in theorem 5.2.

Note that we will take c∗ = 1 and η = k in all our numerical calculations in
the next section. Note also that, while the constants Cν and C′

ν , from the best
approximation theorem 4.4, depend only on c∗, ν and the corner angles of Γ, the
numbers N∗ and Cs depend additionally on k, L1, L2, . . . , Ln and η. We do not
attempt the difficult task of elucidating this dependence in this paper. We note only
that, very recently, for the boundary integral equation formulation (2.9) applied to
scattering by a circle, Dominguez et al. [28] have shown that I+K is elliptic if η = k, so
that every Galerkin method is automatically stable; specifically, (5.3) holds for every
N∗ if PN is the orthogonal projection from L2(0, L) onto the Galerkin approximation
space. Further it is shown in [28] that Cs = O(k1/3) as k → ∞. Our numerical results
in §6 will suggest the stronger result that, for our particular scheme and geometry,
the bound of theorem 5.3 holds with a constant Cs independent of k.

Of course our aim in approximating ϕ by ϕN is to approximate ∂+
n u and hence,

via (2.7), the solution u of the scattering problem. Clearly, from (3.8) and (4.2), an
approximation to ∂u/∂n is

∂u

∂n
(x(s)) ≈ k(Ψ(s) + ϕN (s)), 0 ≤ s ≤ L.

Using this approximation in (2.7), we conclude that

u(x) ≈ uN (x) := ui(x) − k

∫ L

0

Φ(x,x(s))[Ψ(s) + ϕN (s)] ds, x ∈ D.(5.5)

Theorem 5.3 implies the following error estimate.

Theorem 5.4. There exist positive constants Cν and C′
ν , depending only on c∗,

ν, and Ω1, Ω2, . . . , Ωn, such that

supx∈D |u(x) − uN(x)|
supx∈D |u(x)| ≤ CsCν

n(1 + log(kL̄/c∗))

Nν+1
≤ CsC

′
ν

n1/2(1 + log(kL̄/c∗))ν+2

Mν+1
N

,

for N ≥ N∗, where N∗ and Cs are as defined in theorem 5.2.

Proof. From (2.7) and (5.5),

|u(x) − uN(x)| = k

∣

∣

∣

∣

∣

∫ L

0

Φ(x,x(s)) [ϕ(s) − ϕN (s)] ds

∣

∣

∣

∣

∣

≤ k

4

{

∫ L

0

|H(1)
0 (k|x − x(s)|)|2 ds

}1/2

‖ϕ− ϕN‖2

≤ k

4







2

n
∑

j=1

∫ Lj/2

0

|H(1)
0 (kt)|2 dt







1/2

‖ϕ− ϕN‖2

≤ Cνk
1/2n1/2(1 + log(kL̄/c∗))1/2‖ϕ− ϕN‖2,

where we have used that |H(1)
0 (t)| is a monotonic decreasing function of t on (0,∞)

and that |H(1)
0 (t)| = O(t−1/2) as t → ∞ (see e.g. [2]). The result now follows from

theorem 5.3.
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6. Numerical results. There has been much work on the optimal choice of
the parameter η in (2.9) (see e.g. [3, 37]). Here we choose η = k as in [28]. We
also set c∗ = 1 and restrict attention to the case ν = 0. For higher values of ν the
implementation of the scheme is similar. Note that, with c∗ = 1 and ν = 0, there are
approximately N degrees of freedom used to represent the solution on the intervals
of length k−1 on each side adjacent to a corner.

The equation we wish to solve is (5.1) with ν = 0. Writing ϕN as a linear
combination of the basis functions of VΓ,0, we have

ϕN (s) =

MN
∑

j=1

vjρj(s), 0 ≤ s ≤ L,

where ρj is the jth basis function and MN is the dimension of VΓ,0. For p = 1, . . . , n,
where n is the number of sides of the polygon, we define n±

p to be the number of
points in the mesh Γ±

p , so n+
p = N +NLp,qp

, n−
p = N +NLp,qp+1

, and we denote the

points of the mesh Γ±
p by s±p,l, for l = 1, . . . , n±

p , with s±p,1 < . . . < s±
p,n±

p

. Setting

n1 := 0, np :=
∑p−1

j=1(n+
j + n−

j ), for p = 2, . . . , n− 1, we define, for p = 1, . . . , n,

ρnp+j(s) :=







eiksχ(s+

p,j−1
,s+

p,j)
(s)/

√

s+p,j − s+p,j−1, j = 1, . . . , n+
p ,

e−iksχ(s−

p,j−1
,s−

p,j)
(s)/

√

s−p,j − s−p,j−1, j = n+
p + 1, . . . , n+

p + n−
p ,

where χ(y1,y2) denotes the characteristic function of the interval (y1, y2). From (4.15),

MN =
∑n

j=1(n
+
j + n−

j ) < 2nN(3/2 + log(kL̄/c∗)).

Equation (5.1) with ν = 0 is equivalent to the linear system

MN
∑

j=1

vj((ρj , ρm) + (Kρj, ρm)) = (F, ρm), m = 1, . . . ,MN .(6.1)

In order to set up this linear system we need to determine the integrals (ρj , ρm),
(Kρj , ρm) and (F, ρm). We note that many of the integrals (Kρj , ρm) and (F, ρm)
are highly oscillatory, in particular all these integrals become highly oscillatory in
the limit as k → ∞ with N fixed. The efficient calculation of these integrals is an
aspect of the numerical scheme which requires further research. But note that explicit
formulae for the analytic evaluation of some of these integrals, and a consideration
of the quadrature techniques required to evaluate the rest of them numerically, are
presented in [38].

Another important issue is the conditioning of the linear system. Standard anal-
ysis of the Galerkin method for second kind equations [7] implies that, where M :=
[(ρj , ρm)] is the mass matrix (which is necessarily Hermitian and positive definite) and
A = [(ρj , ρm) + (Kρj, ρm)] is the whole matrix, it holds that cond2A ≤ Cscond2M ,
where Cs is defined by (5.3). Thus theorem 5.2 implies that cond2A is bounded as
N → ∞ if the mass matrix is well-conditioned. Unfortunately, it appears that, as
N → ∞ with k fixed, M must ultimately become badly conditioned. However, the
results below will show only moderate condition numbers of A even for large values of
N (see table 6.1). More positively, in the limit as k → ∞ with N fixed, cond2M → 1.
To see this we observe that, if (ρj , ρm) is a non-zero off-diagonal element of the mass
matrix (in which case the supports of ρj and ρm are overlapping subintervals of the
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meshes Γ+
p and Γ−

p , for some side p), it holds that |(ρj , ρm)| = sin(ko)
√

o/(kS1S2),
where S1 and S2 are the lengths of the two-subintervals, o the length of the overlap.

As a numerical example, we consider the problem of scattering by a square with
sides of length 2π. In this case n = 4 and Ωj = 3π/2, j = 1, 2, 3, 4. The corners of the
square are P1 := (0, 0), P2 := (2π, 0), P3 := (2π, 2π), P4 := (0, 2π), and the incident
angle is θ = π/4, so the incident field is directed towards P4, with P2 in shadow (as
shown in figure 6.1, where the total acoustic field is plotted for k = 10).

Fig. 6.1. Total acoustic field, scattering by a square, k = 10. Incident field is directed from the
top left corner towards the bottom right corner.

In figure 6.2 we plot |ϕN (s)| against s for k = 10 and N = 4, 16, 64, 256. As we
expect, |ϕN (s)| is highly peaked at the corners of the polygon, s = 0, 2π, 4π, 6π
and 8π (which is the same corner as s = 0), where ϕ(s) is infinite. Except at these
corners, |ϕN (s)| appears to be converging pointwise as N increases. (We do not plot
ϕN (s) itself which is highly oscillatory.)

In order to test the convergence of our scheme, we take the “exact” solution to be
that computed with a large number of degrees of freedom, namely with N = 256. For
k = 5 and k = 320 the relative L2 errors ‖ϕN −ϕ256‖2/‖ϕ256‖2 are shown in table 6.1
(all L2 norms are computed by approximating by discrete L2 norms, sampling at
100000 evenly spaced points around the boundary of the square). For this example,
theorem 5.3 predicts that, for N ≥ N∗, ‖ϕ− ϕN‖2 ≤ CN−1, where C is a constant.
Thus theorem 5.3 predicts that, for N > N∗, the average rate of convergence,

EOC :=
log(‖ϕ− ϕN‖2/‖ϕ− ϕN∗‖2)

log(N/N∗)
≥ 1 − Ĉ

log(N/N∗)
∼ 1

as N → ∞, where Ĉ := log(‖ϕ−ϕN‖2/C). This behaviour is clearly seen in the EOC
values (defined with N∗ = 8) in table 6.1, for both values of k. We also show in ta-
ble 6.1 the 2-norm condition number, cond2A, of the matrix A = [(ρj , ρm)+(Kρj, ρm)]
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Fig. 6.2. |ϕN (s)| plotted against s, various N , for scattering by a square of side length ten
wavelengths.

k N MN k1/2‖ϕN − ϕ256‖2 ‖ϕN − ϕ256‖2/‖ϕ256‖2 EOC cond2A
5 8 88 5.7339×10−1 2.4426×10−1 9.5×100

16 176 3.7454×10−1 1.5955×10−1 0.6 4.6×101

32 360 1.6176×10−1 6.8909×10−2 0.9 2.6×101

64 712 7.7267×10−2 3.2916×10−2 1.0 2.4×102

128 1416 3.3541×10−2 1.4289×10−2 1.0 1.5×103

320 8 120 7.0765×10−1 3.6736×10−1 2.4×102

16 240 5.9792×10−1 3.1040×10−1 0.2 6.9×102

32 472 1.9668×10−1 1.0211×10−1 0.9 8.1×102

64 944 7.5808×10−2 3.9354×10−2 1.1 1.1×103

128 1888 4.8814×10−2 2.5341×10−2 1.0 3.8×103

Table 6.1
Errors and relative L2 errors, various N , k = 5 and k = 320.

for each example. Unlike methods where the approximation space is formed by mul-
tiplying standard finite element basis functions by many plane waves, travelling in a
large number of directions [27, 44, 35], the condition number does not grow signifi-
cantly as the number of degrees of freedom increases.

In table 6.2 we fix N = 64 and show ‖ϕ64−ϕ256‖2/‖ϕ256‖2 and k1/2‖ϕ64−ϕ256‖2

for increasing values of k. Both measures of errors remain approximately constant in
magnitude as k increases. Recall that, keeping N fixed as k increases corresponds to
keeping the number of degrees of freedom per wavelength fixed near each corner and
increasing the total number of degrees of freedom, MN , approximately in proportion
to log(kL̄). Thus these results are supportive of the approximation error estimate
of theorem 4.2 and the Galerkin error estimate, theorem 5.3, which suggest that
increasing MN proportional to log3/2(kL̄) is enough to keep the error bounded. Note
that the condition number of the coefficient matrix A only increases modestly as k
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increases, and is approximately constant for k ≥ 40.

k MN k1/2‖ϕ64 − ϕ256‖2 ‖ϕ64 − ϕ256‖2/‖ϕ256‖2 cond2A
5 712 7.7267×10−2 3.2916×10−2 2.4×102

10 752 6.6373×10−2 2.8702×10−2 8.4×101

20 792 3.8309×10−1 1.6914×10−1 5.1×103

40 824 1.3162×10−1 5.9856×10−2 1.2×103

80 864 7.4315×10−2 3.4801×10−2 2.7×103

160 904 7.0884×10−2 3.4570×10−2 1.4×103

320 944 7.5808×10−2 3.9354×10−2 1.1×103

640 984 6.4280×10−2 3.5693×10−2 1.5×103

Table 6.2
Errors and relative L2 errors, various k, N = 64.

In table 6.3 we show numerical convergence of the total field uN(x) at the three
points x = (−π, 3π) (illuminated), x = (3π, 3π), and x = (3π,−π) (shadow), for
k = 5 and k = 320. The errors are consistent with the estimate of theorem 5.4. As
might be expected for the computation of linear functionals of ϕN , the relative errors
in table 6.3 are a lot smaller and converge to zero more rapidly than the relative errors
in the computation of the boundary data in tables 6.1 and 6.2.

k N x = (−π, 3π) x = (3π, 3π) x = (3π,−π)
5 4 1.9587×10−2 1.0071×10−3 1.5885×10−2

8 4.2629×10−3 2.8031×10−3 2.3215×10−3

16 3.6284×10−4 3.1410×10−4 1.3513×10−3

32 6.7523×10−5 2.9803×10−5 1.7939×10−5

64 1.2675×10−5 5.9626×10−6 4.6158×10−6

320 4 2.2938×10−3 2.9350×10−3 2.0897×10−2

8 4.3176×10−3 1.5157×10−3 1.1652×10−2

16 3.3908×10−3 9.6409×10−4 9.3922×10−3

32 3.3898×10−4 1.6984×10−4 9.0526×10−4

64 1.0022×10−4 9.6493×10−5 2.6204×10−4

Table 6.3
Relative errors, |uN (x) − u256(x)|/|u256(x)|, as a function of N , at three points x.

7. Conclusions. In this paper we have described a novel Galerkin boundary
integral equation method for solving problems of high frequency scattering by convex
polygons. In §2 we have shown that the standard second kind boundary integral
equations for the exterior Dirichlet problem for the Helmholtz equation are well-
posed for general Lipschitz domains. We have understood very completely in §3 the
oscillatory behaviour of the normal derivative of the field on the boundary of the
polygon. We have then used this understanding to design an optimal graded mesh
for approximation of the diffracted field by products of piecewise polynomials and
plane waves. Our error analysis and supporting numerical results demonstrate that
the number of degrees of freedom required to achieve a prescribed level of accuracy
grows only logarithmically with respect to the wave number k as k → ∞.

There are very many open problems in extending the results of this paper to more
general scatterers. In this extension we expect that our mesh design and parts of our
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analysis will have relevance for representing certain components of the total field. For
example, in the case of 2D convex curvilinear polygons, something close to the mesh
grading we use may be appropriate on each side of the polygon, especially at higher
frequencies when the waves diffracted by the corners become more localised near the
corners. In the case of three-dimensional scattering by convex polyhedra it seems to
us likely that the mesh we propose will be useful in representing the variation of edge
scattered waves in the direction perpendicular to the edge.
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