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A.S. Lawless, N.K. Nichols, C. Boess and A. Bunse-Gerstner

Abstract

Incremental four-dimensional variational assimilation is a method of data assim-
ilation that requires the minimization of a series of simplified cost functions. These
simplified functions are usually derived from a spatial or spectral truncation of the
full system being approximated. In this paper we propose a new method for deriving
these simplified problems, based on model reduction. We show how this method can
be combined with incremental 4D-Var to give an assimilation that retains more of the
dynamical information of the full system. Numerical experiments are used to illustrate
the superior performance to standard truncation methods.

1 Introduction

Data assimilation forms an important component of all numerical weather prediction sys-
tems. Since the first discoveries of Lorenz in the 1960s it has been known that small errors
in the initial state of a numerical model can lead to large errors in its forecasts [18]. Such
an effect is seen in operational weather prediction, where large forecast errors can often be
traced to errors in the initial conditions [24]. For this reason much effort has been put into
the development of good observational systems and good data assimilation techniques to
provide the best use of the observations.

Most early data assimilation techniques consisted of an approximate combination of a
model state and a set of observations at a given point in time, considering observations
from nearby times to have been made at that time [6, Section 1.6]. A disadvantage with
such methods is that they do not use the evolution of the model dynamics as a constraint
on the assimilation process. Thus it is not possible to extract information contained
in a time series of observations. More recently, advanced assimilation methods have been
developed which account for the time dimension of the system. Such methods fall into two
catagories - variational methods and Kalman filter methods. In the variational methods,
such as four-dimensional variational assimilation (4D-Var), the assimilation treats a set
of observations over a given time window in one assimilation step. The problem then
reduces to an optimization problem over this time window, where the optimization is
constrained by the nonlinear dynamical model [23], [27], [28]. The Kalman filter methods
on the other hand perform an assimilation step at each observation time. In these methods
information from previous observations is carried forward in time by an explicit update of
the background error covariance matrix [5], [12].

In practice approximations must be made to implement these advanced methods for
a large numerical weather prediction system. In the case of the Kalman filter, there have
been many efforts to develop simplified filters (for example [22], [29], [7]), but as yet there
is no operational system using this method. For 4D-Var assimilation, operational imple-
mentation was made possible by the introduction of the incremental method [4]. In this
method the minimization of the full nonlinear cost function is approximated by the min-
imization of a series of linearized cost functions, constrained by the linearization of the
dynamical model. This linear model is then approximated, which allows a computationally

2



efficient algorithm to be obtained. This method is currently operational in several forecast-
ing centres, for example the European Centre for Medium-range Weather Forecasting, the
Met Office and the Meteorological Service of Canada [25], [26], [14]. However, even with
the approximations discussed, incremental 4D-Var assimilation is a major contribution to
the computational effort required to produce a weather forecast.

A disadvantage with incremental 4D-Var as currently implemented is that the approx-
imations in the linear model are made on the basis of practical considerations, without
necessarily taking into account whether the most important parts of the system are being
retained. In fact, usually the major simplification is to run the linear model at a lower
spatial resolution or spectral truncation than the nonlinear model, where the resolution or
truncation is chosen by what can be afforded computationally. With such a method it is
difficult to quantify how much information is being lost through the approximation of the
model. In this paper we propose a new method for deriving an approximate linear model
for use in an incremental 4D-Var system. This method is based on the ideas of model
reduction, which has been successfully used to approximate very large dynamical systems
in the field of control theory [1], [8]. The advantage of our method is that it produces a
lower order version of the original linear model and observation operator, while retaining
their most important properties. Such model reduction methods have been applied to data
assimilation in the context of the Kalman filter under certain simplifying assumptions [7].
However the method has not previously been used within incremental 4D-Var, where the
use of a tangent linear model gives a natural context for model reduction techniques. In
this paper we develop the theory of how model reduction may be used within incremental
4D-Var. Preliminary numerical results are then presented to illustrate the potential ben-
efit of this technique. In simple experiments with a shallow water system we show that
provided that the low order system is calculated correctly, with proper account taken of
the observation operator and the background error covariance matrix, then we may obtain
a better solution of the inner loop problem than if low resolution operators were used.

The paper is arranged as follows. In the next section we explain in detail the incre-
mental 4D-Var method and indicate how approximate linear models are used. Section 3
then sets out the theory of model reduction and the particular method of balanced trun-
cation which we use in this paper. In Section 4 we put together the ideas of incremental
4D-Var and reduced order modelling and derive the appropriate inner loop cost function.
In Section 5 we present some numerical experiments which compare the reduced order
approach with the low resolution approach. The importance of taking into account the
background error covariance matrix is also illustrated. Finally in Section 6 we summarise
our findings and indicate some of the questions that remain to be answered.

2 Incremental 4D-Var

We present the data assimilation problem in the context of a general nonlinear dynamical
system. We write the discrete system equations for the state vectors xi ∈ Rn at time levels
ti in the form

xi+1 = Mi(xi), (1)

where Mi is the nonlinear model operator that propagates the state from time ti to time
ti+1 for i = 0, 1, . . . , N − 1. We assume that we have imperfect observations yi ∈ Rpi of
the system that are related to the model state at times ti by

yi = Hi(xi) + ηi, (2)
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where the operators Hi : Rn → Rpi map the system state to observation space. The
observation errors ηi are assumed to be unbiased, serially uncorrelated, random Gaussian
errors with known covariance matrices Ri.

For the data assimilation problem we assume that we have an a priori or background
estimate xb of the expected value of the state x0 at the initial time t0 with errors εb, so
that

x0 − xb = εb. (3)

The background errors εb are assumed to be unbiased, Gaussian errors, described by
a known covariance matrix B0. These errors are assumed to be uncorrelated with the
observational errors. Then the problem of data assimilation is to find the maximum prior
likelihood estimate of the expected value of x0, which we refer to as the analysis xa, given
all the available information [19].

In a full nonlinear 4D-Var system this problem is solved by directly minimizing the
cost function

J [x0] =
1
2
(x0 − xb)TB−1

0 (x0 − xb) +
1
2

N∑

i=0

(Hi[xi]− yi)TR−1
i (Hi[xi]− yi) (4)

with respect to x0, subject to the states xi satisfying the discrete nonlinear forecast model
(1). The incremental formulation of 4D-Var solves this data assimilation problem by a
sequence of minimizations of convex quadratic cost functions linearized around the present
estimate of the model state. Recently it has been shown that this procedure is equivalent
to applying an inexact Gauss-Newton method to the nonlinear cost function (4), where the
convex minimization problems are each solved approximately. If the exact Gauss-Newton
method is locally convergent, then the incremental method will also be locally convergent
to the solution of (4) provided that each successive minimization is solved to sufficient
accuracy [17].

To formulate the incremental 4D-Var algorithm we first write the linearization of the
nonlinear system (1) and (2) as

δxi+1 = Miδxi, (5)
di = Hiδxi, (6)

where
di = yi −Hi[xi] (7)

and Mi and Hi are the linearizations of the operators Mi and Hi, respectively, around
the state xi, and are referred to as the tangent linear operators. Then the algorithm is
given by the following steps:

• Set first guess x(0)
0 = xb.

• Repeat for k = 0, . . . , K − 1

– Find linearization states x(k)
i by integrating the nonlinear model (1) forward

from initial state x(k)
0 and find innovations d(k)

i using (7).

– Minimize

J̃ (k)[δx(k)
0 ] =

1
2
(δx(k)

0 − [xb − x0
(k)])TB−1

0 (δx(k)
0 − [xb − x0

(k)])

+
1
2

N∑

i=0

(Hiδx
(k)
i − d(k)

i )TR−1
i (Hiδx

(k)
i − d(k)

i ) (8)
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with respect to δx(k)
0 , subject to the states δx(k)

i satisfying the discrete tangent
linear model (5).

– Update x(k+1)
0 = x(k)

0 + δx(k)
0 .

• Set analysis xa = x(K)
0 .

In practice this algorithm is still computationally too expensive to use in an operational
system and so a further simplification is made. We introduce linear restriction operators
UT

i ∈ Rr×n that restrict the model variables δxi to the space Rr with r < n, and we
define variables δx̂i ∈ Rr such that δx̂i = UT

i δxi. We also define prolongation operators
Vi ∈ Rr×n that map from the lower dimensional space to the original space. We can then
write a restricted version of the linear system (5), (6) in Rr of the form

δx̂i+1 = M̂iδx̂i, (9)
d̂i = Ĥiδx̂i, (10)

with

M̂i = UT
i MiVi, (11)

Ĥi = HiVi. (12)

The simplified incremental 4D-Var algorithm is then defined such that the inner minimiza-
tion is performed in the lower dimensional space. We obtain the following algorithm:

• Set first guess x(0)
0 = xb.

• Repeat for k = 0, . . . , K − 1:

– Find linearization states x(k)
i by integrating the nonlinear model (1) forward

from initial state x(k)
0 and find innovations d(k)

i using (7).

– Minimize

Ĵ (k)[δx̂(k)
0 ] =

1
2
(δx̂(k)

0 −UT
0 [xb − x0

(k)])TB̂−1
0 (δx̂(k)

0 −UT
0 [xb − x0

(k)])

+
1
2

N∑

i=0

(Ĥiδx̂
(k)
i − d(k)

i )TR−1
i (Ĥiδx̂

(k)
i − d(k)

i ) (13)

with respect to δx̂(k)
0 , subject to the states δx̂(k)

i satisfying the discrete linear
model of the reduced space (9). Here the matrix B̂0 = UT

0 B0U0 models the
background error statistics in the reduced space.

– Update x(k+1)
0 = x(k)

0 + V0δx̂
(k)
0 .

• Set analysis xa = x(K)
0 .

We note that the restriction operators UT
i are examples of the simplification operators

of incremental 4D-Var, as presented in [11], with Vi being the corresponding generalised
inverses. In practice the restriction operators are usually defined as projections to lower
spatial resolution for finite-difference models, or as spectral truncations for spectral models.
In the remainder of this paper we propose a new method of choosing the restriction
operators UT

i and the prolongation operators Vi, that takes account of the properties of
the underlying dynamical model and assimilation system. First, we introduce the basic
theory of model reduction on which our method is based, concentrating on the technique
of balanced truncation which we use in this study.
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3 Model reduction using balanced truncation

In this section we give a short introduction to model reduction as it is used for linear
dynamical systems. The aim is to find a low order model that accurately approximates the
output response of the system to the input data over a full frequency range. The response
of the system is represented by its Hankel matrix [1]. We focus here on the balanced
truncation method [21] for finding the reduced order model. This method ensures that
the first singular values of the Hankel matrix of the reduced system exactly match the
corresponding singular values of the full system Hankel matrix. A global error bound on
the expected error between the frequency responses of the full and reduced systems, based
on the neglected Hankel singular values, then exists [1]. The quality of the approximation
found by the balanced truncation method is usually very good and the method is therefore
appropriate for investigating the potential benefit from using model reduction techniques
in data assimilation. Here we describe the method for time-invariant systems, but the
method can be extended directly to linear time-varying systems [3].

We consider the discrete-time linear model

z0 = 0,

zi+1 = Mzi + GB
1
2
0 wi,

di = Hzi

(14)

over the time window [t0, tN ], where zi ∈ Rn and di ∈ Rp are the state and output
(observation) vectors at time ti, respectively, and wi ∈ Rn are uncorrelated white noise
inputs, normally distributed with mean zero and covariance matrix equal the identity.

The matrix B0 ∈ Rn×n represents the covariance of the random inputs ui = B
1
2
0 wi,

and the matrices M ∈ Rn×n, G ∈ Rn×n and H ∈ Rp×n are system matrices describing
the dynamics, input and output behaviour of the system. We remark that this is not a
unique description of the system. By a change of co-ordinate variables the system can
be transformed into an equivalent system represented by different system matrices. The
response of the system is not altered by such a transformation.

The aim of the model reduction is to design a model of order r < n of the form

ẑ0 = 0,

ẑi+1 = M̂ẑi + ĜB
1
2
0 wi,

d̂i = Ĥẑi,

(15)

with inputs {wi}, outputs (observations) {d̂i} and model matrices M̂ ∈ Rr×r, Ĝ ∈ Rr×n,
Ĥ ∈ Rp×r, such that the expected value of the distance between the original observations
and the reduced order model observations, written as

lim
i→∞

E
{
‖d̂i − di‖2

2

}
= lim

i→∞
E

{[
d̂i − di

]T [
d̂i − di

]}
, (16)

is minimized over all inputs of normalized unit length, with limi→∞ E
{

1
n‖wi‖2

2

}
= 1,

where E{·} denotes the expected value.
Necessary conditions for such a minimum are established in [2]. It is not practicable to

find the optimal reduced model matrices that satisfy these conditions, however, as large
systems of nonlinear equations must be solved. Instead the method of balanced truncation
is used here, which gives an approximation to the optimal solution. The difference between
the optimal output error (16) and the output error of the approximate reduced system is
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bounded in terms of the Hankel singular values of the full system [1] and the approximate
solution is expected to be close to optimal.

In the balanced truncation method the model is directly reduced by removing or ‘trun-
cating,’ those states that are least influenced by the inputs and those that have least effect
on the outputs, that is, those states which are least correlated through the inputs and
which are least correlated through the outputs. In general these states do not coincide
and it is necessary to transform the co-ordinate variables so that the states to be eliminated
are the same in both cases. This is achieved by a ‘balancing’ transformation.

The balancing transform simultaneously diagonalizes the state covariance matrices P
and Q associated with the inputs and outputs, respectively. These symmetric positive-
definite matrices satisfy the two Stein equations

P = MPMT + GB0GT , (17)
Q = MTQM + HTH. (18)

The non-singular balancing transformation Ψ ∈ Rn×n is such that Ψ−1PΨ−T = ΨTQΨ =
Σ is diagonal and Ψ−1PQΨ = Σ2. We remark that the transformation Ψ is thus given
by the matrix of eigenvectors of PQ and the diagonal of Σ contains the Hankel singular
values of the full system.

To obtain the reduced order model, the system (14) is first transformed into balanced
form and then the last n− r states of the balanced system, corresponding to the smallest
singular values of the transformed covariance matrices, are eliminated. The reduced system
state ẑ is then defined to be ẑ = UT z and the reduced order system matrices are given by

M̂ = UTMV, Ĝ = UTG, Ĥ = HV, (19)

where

UT = [Ir,0]Ψ−1, V = Ψ
[

Ir

0

]
. (20)

The restriction and prolongation operators UT and V satisfy UTV = Ir and VUT is a
projection operator. Efficient and accurate numerical techniques are available for finding
the restriction and prolongation operators in both time-invariant and time-varying systems
of moderately large size [10],[15],[3]. For very large systems Krylov subspace methods [8]
or approximate balanced truncation (rational interpolation) methods are available [9].

We now explain how these ideas can be used to design restriction and prolongation
operators for application in incremental 4D-Var.

4 Combining model reduction with incremental 4D-Var

In order to apply a model reduction method to the inner loop of incremental 4D-Var we
have to identify an appropriate dynamical system of the form (14). From Section 2 we
see that the inner loop is solved subject to the linear dynamical system given by (5) and
(6). The initial perturbation state δx0 is assumed to be normally distributed white noise
with mean zero and covariance B0. Thus there exists a normally distributed white noise

ω ∈ Rn with mean zero and covariance identity such that δx0 = B
1
2
0 ω. The dynamical

system (5)–(6) that constrains incremental 4D-Var may therefore be written equivalently
in the form

δx−1 = 0,

δxi+1 = Miδxi + B
1
2
0 wi,

di = Hiδxi

(21)
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with white noise inputs {wi} satisfying

wi :=
{

ω ∼ N (0, In), for i = −1
0, for i ≥ 0.

(22)

The balanced truncation method may then be applied to the system (21) to obtain re-
striction and prolongation matrices UT

i and Vi that may be used to reduce the system to
the form (9)–(10) for use in a simplified incremental 4D-Var scheme. The error between
di and d̂i, as defined in (16), will then be small for all possible inputs {w(k)

i }, and thus
the error will also be small for our special input (22). Since here the restriction and pro-
longation operators are calculated using dynamical information from the full system, we
may expect a more accurate solution to the assimilation problem than that obtained from
schemes based on other simplifications.

In the time-invariant case, the model and observation matrices Mi =: M, Hi =: H, for
i = −1, . . . , N −1, are all constant. The restriction and prolongation operators UT and V
determined by the balanced truncation procedure are also constant and the reduced order
model matrices are given by M̂ = UTMV, Ĝ = UT In, Ĥ = HV. The restricted state
variables are defined by δx̂i = UT δxi. The reduced order model (9)–(10) is then given by

δx̂i+1 = UTMVδx̂i, (23)
d̂i = HVδx̂i, (24)

(where the input is defined by (22)), and on the inner loop of the incremental 4D-Var
method we minimize

Ĵ (k)[δx̂(k)
0 ] =

1
2
(δx̂(k)

0 −UT [xb − x0
(k)])T(UTB0U)−1(δx̂(k)

0 −UT [xb − x0
(k)])

+
1
2

N∑

i=0

(HVδx̂(k)
i − d(k)

i )TR−1(HVδx̂(k)
i − d(k)

i ),

subject to the states δx̂(k)
i satisfying the reduced order linear model (23). The prolongation

operator V is then used to lift the solution δx̂(k)
0 back into the full space in the outer loop

update step.
As derived in [17], the minimization problem is equivalent to the linear least squares

problem

‖




R− 1
2 HV

R− 1
2 HVUTMV

...
R− 1

2 HV(UTMV)N−1

(UTB0U)−
1
2




δx̂(k)
0 −




R− 1
2 d(k)

0

R− 1
2 d(k)

1
...

R− 1
2 d(k)

N−1

(UTB0U)−
1
2 (xb − x(k)

0 )



‖2 = min!, (25)

which can be solved numerically by linear algebraic techniques.
In the next sections we investigate the potential benefit of using model reduction

in data assimilation for the special case of a time invariant system model. The aim is
to determine whether the reduced order method can lead to more efficient assimilation
methods than those currently used in practice.

5 Numerical experiments

We now perform some numerical experiments to illustrate the benefit obtained from using
low order models within the inner loop of incremental 4D-Var. To do this we set up an inner
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loop least squares problem of the form (8) with a known solution. An approximate solution
is then found by solving a simplified problem of the form (13) and using the prolongation
operator to lift the solution back to the full space. The accuracy of the solution found
using the standard restriction operator of a spatial interpolator is then compared with
that found using the restriction operator derived from the balanced truncation approach.
In all cases we solve the linear least squares problem via the QR factorization. We now
set out the system we use for the experiments and the details of the experimental design.

5.1 Experimental design

The system we use for this study is the one-dimensional shallow water equations for the
flow of a fluid over an obstacle in the absence of rotation. We define the problem on a
domain x ∈ [0, L] and let h̄(x) be the height of the orography, u(x, t) be the velocity of the
fluid and φ(x, t) = gh(x, t) be the geopotential of the fluid, where g is the gravitational
constant and h(x, t) is the height of the fluid above the orography. Then the system is
described by the equations by

Du

Dt
+

∂φ

∂x
= −g

∂h̄

∂x
, (26)

D(lnφ)
Dt

+
∂u

∂x
= 0, (27)

with
D

Dt
=

∂

∂t
+ u

∂

∂x
. (28)

The system is discretized using a semi-implicit semi-Lagrangian integration scheme as
described in [16].

In order to apply the balanced truncation method we need the linearization of the
discrete nonlinear model in matrix format rather than as an operator. Although we cannot
derive an analytical expression for this, we are able to calculate it numerically for a given
linearization state. We first find the tangent linear model from the discrete nonlinear
model using the standard automatic adjoint techniques, as described in [16]. The matrix
of the linear operator can then be calculated from n runs of the tangent linear model using
the unit vectors as input, where n is the dimension of the model. To see this we note that
if we define ek to be kth unit vector, then given any matrix M the operation Mek picks
out the kth column of M. Hence applying the tangent linear model to the unit vectors e1

to en will give the n columns of the linear model system matrix. Although this method
would be impractical for a large system, in practice other model reduction methods would
be used in such cases, as was mentioned in Section 3. However the method we use here is
sufficient to illustrate the potential benefit of combining model reduction techniques with
incremental 4D-Var.

The initial data for the linearization state are taken from Case II of [17]. These data
consist of a developing shock solution in the wind and height fields at initial time. The
model domain is defined over 200 grid points, separated by a spatial step of 0.01 m.
The time step is 0.0092 s and the gravitational constant is set to g = 10 ms−1. The
remaining model parameters are set as in [17]. For the experiments performed in this
study, observations are taken every 10 time steps over a 50 time step window. The matrix
M is therefore obtained by running the tangent linear model for 10 time steps. We assume
that this matrix remains constant for successive 10 time step windows, so that effectively
each 10 time step window is linearized around the same nonlinear state. This avoids the
need to recalculate the low order models for each 10 time step period.
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Figure 1: Solution to least squares problem lifted back to full state space. The solid line
is the true solution, the dashed line is from the reduced order approach and the dotted
line is from the low resolution approach.

We define the true solution of the linear least squares problem to be the difference
between the linearization state and this state shifted by 0.5 m. The innovation vectors
d are then the observations for this problem, which are generated from the true solution.
Where imperfect observations are used, then Gaussian random noise is added to the true
solution, with standard deviations of 0.1 ms−1 for the u field and 0.2 m2s−2 for the φ
field, corresponding to approximately 10% of the mean field values. The observation error
covariance matrix R is then defined as a diagonal matrix of these variances. In order to
generate a sensible background error covariance matrix we use the approach of [13] and
define the inverse covariance matrix using a second-derivative smoothing operator with a
length scale of 0.2 m.

5.2 Comparison of low order and low resolution inner loop

We begin the numerical experiments with a comparison of the low resolution and reduced
order approaches using perfect observations. For the low resolution approach the lower
spatial resolution is taken to be half that of the full resolution. Hence the low resolution
grid has a total of 100 values of u and of φ, making the low order system of order 200. In
this case the restriction operator is defined by mapping every second grid point of the high
resolution grid onto the low resolution grid, while the prolongation operator is defined by
a linear interpolation. We compare the solution to the linear least squares problem with
that found using the reduced order approach, where the reduced order system is also taken
to be of size 200, so that the low resolution and reduced order systems are of the same
size. For the experiments of this section observations are taken to be at every second grid
point of the full resolution grid, corresponding to every grid point on the low resolution
grid.

In Figure 1 we plot the true solution of the least squares problem and the solutions
from the low resolution and low order approaches, lifted back into the full order space of
200 grid points. In this plot and all similar plots the first 200 points of the solution vector
correspond to values of the perturbation δu and the last 200 points correspond to values
of δφ. The error in these solutions, calculated as the difference from the true solution, is
plotted in Figure 2. We see that for this problem the solution using the reduced order
method is more accurate by approximately two orders of magnitude than the standard
method of using a low resolution system of the same size.

Rather than considering how much more accurate the low order approach is for a
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Figure 2: Error in solutions to least squares problem lifted back to full state space for
reduced order approach (dashed line) and low resolution approach (dotted line).

0 50 100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

10
1

vector components

er
ro

r

 

 

Figure 3: Error in solutions to least squares problem lifted back to full state space for
reduced order approach of size 80 (dashed line) and low resolution approach of size 200
(dotted line).

given size of reduced system, we may consider the question of how small we can make
the reduced order system and still match the accuracy of the low resolution approach. To
test this the least squares problem was solved with low order models of various sizes. In
Table 1 the error norms of the solutions from these tests are summarized. We find that
even with a reduced order system of size 80 the error norm of the solution is less than
that using the low resolution model of size 200. In Figure 3 we plot the error field in the
lifted solution from these two experiments. We see that the errors obtained using the low
resolution system and the much smaller low order system are of comparable magnitude
in all components of the solution vector. Thus for this experiment, using the low order
approach allows the use of a much smaller system than the low resolution approach to
obtain a given level of accuracy.

In order to test whether the same conclusions hold when the observations contain
errors, we add random Gaussian noise to the observations, as described in Section 5.1. We
compare the solution of the simplified linear least squares problem using the low resolution
approach with that obtained using the low order model of the same size. The errors,
calculated as the difference from the exact solution of the problem with these observations,
are shown in Figure 4. We see that, as for the case with perfect observations, the model
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Figure 4: Error in solutions to least squares problem with imperfect observations lifted
back to full state space for reduced order approach (dashed line) and low resolution ap-
proach (dotted line).

reduction approach gives a more accurate answer by two orders of magnitude. Again we
find that if the reduced order model is reduced to size 80, the solution is still as accurate
as with the low resolution model of size 200.

In order to understand why the low order approach shows such a benefit when com-
pared with the low resolution approach, we examine the eigenstructure of the low order
and low resolution model matrices of size 200. In Figure 5 we compare the eigenvalues of
these two matrices with the eigenvalues of the full unapproximated model matrix. We see
that the structure of the eigenvalues is approximated much more accurately by the low
order matrix than by the low resolution matrix. Hence it appears that the generation of
the simplified system by model reduction acts in such a way as to preserve characteristics
of the eigenstructure of the original matrix, which is not the case in the low resolution ap-
proach. This preservation of eigenstructure allows a solution closer to the original problem
to be obtained.

reduced order low resolution
l=200 0.0027 0.2110
l=150 0.0134 —
l=100 0.0623 —
l=90 0.1015 —
l=80 0.1726 —
l=70 0.2327 —

Table 1: Comparison of error norms for the low resolution and the reduced order method

5.3 Incorporation of the background covariance in the model reduction
procedure

In the derivation of the balanced truncation method of Section 3 we started from a dy-
namical system with white noise inputs including their covariance. This leads to the
incorporation of the background covariance matrix in the Stein equation (17). We now
consider how important this is for the model reduction procedure. We repeat the per-
fect observation experiment of the previous section using a low order system of size 200,
but this time the balanced truncation is performed without incorporating the covariance
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Figure 5: Eigenvalues of full matrix (top left), reduced order matrix (top right) and low
resolution matrix (bottom).

13



0 50 100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

10
1

vector components

er
ro

r

 

 

Figure 6: As Figure 2, but without incorporating the covariance matrix into the model
reduction procedure.

matrix in the Stein equation, i.e. instead of (17), (18) we solve

P = MPMT + GGT ,

Q = MTQM + HTH.

The error covariance matrix B0 in the least squares problem remains the same as in
Section 5.2; the modification is only in the calculation of the reduced order system.

In Figure 6 we compare the errors in the final solution from this experiment with
the errors from the solution using the low resolution approach. We see that now the
errors using the two approaches are of the same magnitude. A comparison with Figure 2
shows that not incorporating the covariance B0 in the balanced truncation procedure has
increased the error in the solution from the reduced order method by approximately two
orders of magnitude. Thus the numerical results support the theory that it is important
to incorporate the covariance information in the reduction process.

5.4 Different observation positions

In the experiments described so far we have assumed that observations of δu and δφ are
available at every second grid point. We now test whether the above conclusions continue
to hold when the observing network is changed. We first consider a case in which imperfect
observations of the δu field are taken at every grid point of the full resolution grid, but no
observations of δφ are taken. In Figure 7 we show the errors in the computed solutions
of the least squares problem using the low resolution approach and the model reduction
approach, where both low order systems are of size 200. Recalling that the first half of the
state vector corresponds to values of δu we see that the solution of the δu variable is much
more accurate using the reduced order model than using the low resolution model. For the
δφ variable, which is not observed, the error in the low order model solution is higher than
for the δu variable, but it is still lower than that found using the low resolution approach.

When imperfect observations are taken of δφ only, then the errors are of more similar
magnitude for both the δu and δφ variables, but with slightly higher errors in the unob-
served δu field. The error plot for this experiment is shown in Figure 8. As for all the
previous experiments, the low order approach to solving the problem yields a much more
accurate solution than the low resolution approach. Thus we conclude that the results of
Section 5.2 remain valid when the observation network is changed.
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Figure 7: Error in solutions to least squares problem lifted back to full state space with ob-
servations of δu only, for reduced order approach (dashed line) and low resolution approach
(dotted line).

6 Conclusions

When incremental 4D-Var data assimilation is applied to large-scale systems a simplifica-
tion of the inner loop problem is usually necessary. In this work we have proposed a new
method of simplifying this problem using model reduction ideas from control theory. This
approach is designed to approximate the full dynamical system while retaining its essential
properties. We have shown how this method naturally fits into the theory of incremental
4D-Var with an alternative definition of the restriction and prolongation operators. In the
numerical experiments performed we have demonstrated that the reduced order approach
to incremental 4D-Var is more accurate than the low resolution approach for the same
size of reduced system. This conclusion has been shown to hold for perfect and noisy
observations, and for different observation configurations. However, as expected from the
theory, the accuracy depends on the correct inclusion of the covariance information in the
model reduction procedure. If care is not taken to include this, then the results may not
improve on the reduced resolution approach.

This paper has presented only a preliminary study of combining model reduction and
incremental 4D-Var, and many questions remain to be answered before the method can be
applied to an operational assimilation system. The model reduction approach of balanced
truncation used in this study is not appropriate for such large scale systems and other more
appropriate reduction methods need to be investigated. Efficient methods for including
the variation of the system in time, as well as between outer loop iterates, also need to
be studied in detail. Nevertheless the results from this initial study are encouraging and
indicate that reduced order incremental 4D-Var has the potential to give an improvement
over existing approaches.
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Figure 8: Error in solutions to least squares problem lifted back to full state space with ob-
servations of δφ only, for reduced order approach (dashed line) and low resolution approach
(dotted line).
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