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Abstract

This report gives a brief introduction to data assimilation, and a sum-
mary of the calculus of variations and its application to optimal control
theory. It then considers how data assimilation can be expressed as an
optimal control problem.

An algorithm is described for the numerical solution of the optimal
control problem, which involves using the model and its adjoint to find the
gradient of the cost functional. This gradient is then used in a descent
algorithm to produce an improved estimate of the control variable.

The algorithm is tested for a simple ODE and a simple PDE model. For
each model different discretisations are considered, and the corresponding

discrete adjoint equations are found directly.
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1 Introduction to Data Assimilation

Data assimilation is a process for integrating observed data into a forecast model.
The crudest such method would be direct substitution of the observed values to
replace the predicted values they represent. However, if the value at an observa-
tion point is changed in this way, it no longer agrees with values at neighbouring
grid points. Data assimilation schemes therefore aim to modify the model pre-
dictions so that they are consistent with the observations.

Data assimilation has been widely used in various forms in meteorological
and oceanographic modelling since the 1950’s. The various forms use ideas from
different branches of mathematics; notably probability theory, optimization and
control theory. It is interesting, however, that although the problem may be
formulated using different disciplines of mathematics, the resulting schemes have
many common features and properties. (See [6] for an overview of different data
assimilation techniques, and an extensive list of references.)

The different approaches to data assimilation could be categorised in many
different ways, but choosing just three categories, data assimilation techniques
can be classed as simple correction schemes, statistical schemes and variational

schemes.

Simple correction schemes

The simple correction schemes invlove weighting functions to add some proportion
of a correction to grid points surrounding an observation, the “correction” being
the difference between the observation and the corresponding model value. In
the simplest cases, these weights depend on distance from the observations alone

(see [5] and [3] for examples).

Statistical schemes

Statistical schemes, for example statistical interpolation or optimal interpolation
(see [9]), use the error covariances of the observations and of the model predictions
to find the “most likely” linear combination of the two. The Kalman filter provides
perhaps the most sophisticated approach to this, but is very expensive to run and

is not easily extended for use in nonlinear models.



Variational schemes

The idea behind variational data assimilation is to minimize some “cost func-
tional” expressing the distance between observations and the corresponding model
values using the model equations as constraints. The result is the model solution
which fits “closest” to the observations, with the measure of closeness defined by
the cost function (see [8], [11] and [12]).

In the case of data assimilation for a meterological forecast model for example,
variational data assimilation would provide means for choosing initial conditions
in such a way that the resulting “analysis” (model output) is as close as possible
to the specified observed values, whilst satisfying the model equations. Varia-

tional schemes are based on optimal control theory.

Section 2 presents some results from the calculus of variations as background
to optimal control theory. Section 3 introduces optimal control theory in the con-
text of data assimilation, and describes an algorithm for the numerical solution of
optimal control problems. Then in Sections 4 and 5, this theory is applied to two
simple models, and in each case different discretisations are considered. Finally,

Section 6 gives conclusions and suggestions for further work.



2 Overview of the Calculus of Variations

The aim of this section is to give some background results in the calculus of vari-
ations which are used in optimal control theory. For a more thorough treatment
of the subject, see any text book on optimal control or the calculus of variations,
eg [1], [2], [7], and [10]. The theorems and definitions quoted below can also be

found in these texts, although set out in a different way.

2.1 Cost Functionals

The “fundamental problem of the calculus of variations” is:
Find the function y(¢) in the set of admissible functions A which minimizes
the cost functional

t1

7= [Pyt (2.1)

to

Note that maximizing the functional 7 is equivalent to minimizing —7. The
admissible set A may be defined differently for different problems; for example,
there might be bounds on y, or we may require y to be fixed at the end points
to and 1. In general, though, we require that y must be piecewise continuously

differentiable on [tg, t1].

2.2 Variation of the Cost Functional

The total variation of the cost functional 7 is defined to be
AT =Tty +oy,y +8y') =Tty y'). (2-2)

By Taylor’s series we have

iNg oT

and the first variation of J is defined to be

§y' + 0(6y*) + O(8y"™), (2.3)

iNg oT

oy’ (2.4)

2.3 Extremals

A maximizer or minimizer of the cost functional J is called an extremal The

following definition characterises an extremal:
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Definition 1:

The functional J(y) has an extremal at g if 3¢ > 0 such that J(y) — J(y) has
just one sign ¥V y such that ||y — g|| < e.

Theorem 1:

A necessary condition for y€A to be an extremal is that 67 = 0 for all choices

of 6y and déy'.

2.4 Necessary Conditions for an Extremal

Any necessary conditions ensuring that 67 = 0 give necessary conditions for an
extremal. However, to avoid evaluating the variation of (often complicated) cost
functionals, the Euler Lagrange equations give the required necessary conditions

for many problems in a neat form.

The Euler Lagrange Equations

The first variation of 7 is:

t QF oF
0T = — oy + ——6y'dt. 2.
J Ny y+ oY (2.5)
Therefore
t QF oF tod (OF
0T = dydt 1) — — | — | dydt 2.
A +[a/y] /todt(ay’)y7 (2:6)
and hence
t (JF oF oF
0T = dydt : 2.
= G () in] e
From this it can be seen that for 67 = 0 we require
oF
1) =0 2.8
E yL 25)
and
oF oF
- _ = 0 2.9
dy (934) ’ 2

which is known as the Fuler Larange FEquation.



Notice that if A restricts admissible functions y to those with fixed end points,
y(to) = yo, y(t1) = y1, then dy(to) =0 = 6y(t1), and so
ar 1"
—0 = 0. 2.10
5, (2.10)
Otherwise, at a “free end”, we must enforce

oF
— = 0. 2.11

Simplified forms of the Euler Lagrange equations can be derived in the case

where J does not depend on t explicitly, or when 7 is independent of ¢ and y.

The Vector Case

If the functional J is defined in terms of an N dimensional vector y(#) and its
derivative y'(1), so that
t1
J= [ Fty(),y(t)d, (2.12)

to

then we have N Euler Lagrange equations

oF d [OF
" @ ( ) =0, n=1,2..N. (2.13)

dy},

2.5 Constraints and the Method of Lagrange Multipliers

Suppose we wish to minimize the functional J = ft? F(t,y,y")dt subject to the
constraint G(¢,y,y") = 0.

Theorem 2:

If y(t) €Ais twice continuously differentiable and an extremal of J over members
of A satisfying G(y) = 0, then IAER such that y is an extremal of the functional

t1
L= [ F(ty,y")+AG(t,y,y')dt. (2.14)

to
Notes:

1 If ¥y minimizes [J, then we don’t know that y minimizes £, just that it

extremizes L.

2 A\ is called a Lagrange multiplier,



3 L is called the augmented functional.

In general, if we have N constraints, G,...Gy, Theorem 2 holds with N

Lagrange multipliers Ay,...A\xy and the augmented functional becomes:

11 N
L= /t Fltyy) + 3 AGalt,y. ). (2.15)

n=1
Necessary Conditions for Extremals, Adjoint Equations

The same analysis as for the unconstrained case can now be applied to the aug-
mented functional.
With the notation H = F 4+ AG, (H is sometimes called the “Hamiltonian”),

we have the following necessary conditions for an extremal y of L:

Gly) =0, (2.16)
oOH d (0H

o i () =0 o
oH 1"

) = 0. 2.18

[ay, yL (2.18)

The second condition, the Euler-Lagrange equation, is sometimes called an

adjoint equation, and Lagrange multiplier A is sometimes called an adjoint vari-

able.



3 Optimal Control Theory and Data Assimila-
tion

In this section the theory of the calculus of variations is applied to optimal control
theory. In general, the Euler Lagrange equations can not be solved analytically,
so a numerical algorithm is needed. Section (3.2) introduces a suitable algorithm
which involves using the model and adjoint equations to find the gradient of
the cost functional with respect to the control variable. The gradient found for
a particular choice of control variable can be used in a descent algorithm to
improve the guess of the control variable. Section (3.3) briefly discusses how data

assimilation can be posed as an optimal control problem.

3.1 Overview of Optimal Control Theory

The fundamental problem of optimal control may be expressed in the following
manner:
Find the control u out of a set of admissible controls U which minimizes the cost
functional
7= t“ F(t, e, u)dt (3.1)
0

subject to

&= f(t,x,u). (3.2)
For the theory of Section 2 to apply, we must require that  and u are piecewise
continuously differentiable on [tg, #1].

Using the theory from the calculus of variations, necessary conditions for an

extremal are:

aa—[j +A=0 (3.3)
%—[Z =0 (3.4)

& — f(t,z,u)=0 (3.5)
[Aéa] =0 (3.6)

Optimal control theory also deals with extensions of this theory with restric-

tions on the control, for example bounded or discontinuous controls (see [1] and

[4])-
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3.2 Numerical Solution of the Optimal Control Problem

We need a numerical method for choosing the control variable so that the resulting
model state satisfies the necessary conditions for an extremal. Therefore, given
a first guess for the control and the resulting model output, we need a way to
change the control that brings 6L closer to zero. The method described here is
discussed at length in [7].

We suppose that £ = L(x,u), where x is the model state and u is the control

variable. The first variation of the augmented functional £ is then

OL =<V, L, 0x >y + < VL, 6u >y, (3.7)

where VL represents the gradient of £ with respect to the variable z, and <, >y
and <, > are the relevant inner products for x and for u respectively. If we now

enforce

< V.L, 6z >y=0, (3.8)

then we are left with

8L =< VL, 6u >y . (3.9)

So now, for a given guess of the control variable u, we have an expression for
V.L , the gradient of £ with respect to u. This gradient information can be used
in an iterative method such as the “steepest descent” method to find successively
better guesses for v which brings V, £ and hence 6L closer to zero. The form

that V, L takes for specific examples is discussed in Sections 4 and 5.

3.3 Data Assimilation Formulated as an Optimal Con-

trol Problem

The problem of data assimilation is to bring the model state closer to a given set
of observations. If the vector x denotes a 4D model state variable, and y is a
vector of observations, then this may be expressed in terms of minimizing some
cost functional of the following form;

t1

7= [ty - Kx)'Wly - K(x))d. (3.10)

to

11



where K interpolates the model states to the observations and W is a weighting
matrix, which might for example weight components of y — K(x) according to
the error covariances of the observations and of the interpolation.

We wish to find the vector x that minimizes [J, so x acts as the control
variable here. If x is also required to satisfy the forecast model, then the problem
is one of constrained minimization with the forecast model as a constraint. In
general, this constrained minimization needs to be carried out numerically, and
minimizing the augmented functional with respect to each component of a 4D
state could generate a huge number of equations to be solved.

For this reason we choose some other control variable from which the entire
4D model state can be uniquely determined, a technique refered to as “reducing
the control variable” in [8]. Choosing to use initial conditions as the control
variable reduces the problem to that of minimizing 7 with respect to the initial
conditions and using these to find the optimal 4D state.

Necessary conditions for the optimal control variable can be found by forming
the augmented functional and requiring that its variation should vanish. This is

best illustrated in some simple examples.
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4 An ODE Example

This section develops a method for solving the data assimilation problem in the
case of a simple ODE model. In Section 4.1 the example is presented, and an
algorithm based on the concepts given in Section 3.2 is developed to solve the
problem. In Sections 4.2 and 4.3 the problem is tackled from a slightly different
angle. For two different discretisations of the same model, the optimal control
problem is solved by finding the adjoint equations directly for the discrete model
equations. The example is concluded in Section 4.4, with a discussion of the

results.

4.1 The ODE model

We suppose that our model is

y(t) = ay(t) te[tovtl]v (4'1)
with
y(0) = a, (4.2)

and that we have a set of observations corresponding to y(¢) which can be rep-
resented by the continuous function g(¢). If we choose to represent the distance
between y and gy using the L, norm, then with « as the control variable, the
optimal control problem is:

Choose o to minimize
7= [ i)~ o) (1.3)
subject to
ay — 4 =0, (4.4)

y(0) = o (4.5)

The augmented functional is

c= [t 2 () (ay (1) — (1)), (4.6)

and taking the first variation gives

5L = / (1)) + A(t)ay(1))8y — A(£)85(1))dt, (4.7)

13



or

oL = /OI(Z(y(t) — (1)) + Mt)a)dydt — [A()oy(t))]s + /01 Ay (1))dt.  (4.8)

From this the adjoint equation is found to be

with

—A=a)+2(y — ), (4.9)

A1) = 0 = A(0), (4.10)

so the control problem can be written:

Find a = y(0) so that

and

with

y(t) = ay(l), (4.11)
—A=ar+2(y—17), (4.12)
A1) =0,  X0)=0. (4.13)

In certain cases this problem can be solved analytically. For example if

then

O =

i) =t. (1.14)

2 (a+e—1), (4.15)

and from the control «, the solution y(?) is given by

y(t) = ae. (4.16)

In general, though, it is not possible to find an analytic solution to the problem,

and so a numerical method such as that described in Section 3.2 is needed.

If we look again at the first variation (4.8) and this time enforce

j = ay, (4.17)

14



and

— A =a)+2(y — ), (4.18)
but this time with just
A(l) =0, (4.19)
then we are left with
oL = A(0)oy(0). (4.20)

From this it can be seen that the gradient of £ with respect to the control y(0)
is A(0), and that we need this to be zero for an optimal control.

This gives a method for finding the optimal control o = y(0) numerically. we

first discretise (4.1) and (4.9), letting y;~y(jAz) and \;mA(jAz), for j = 0,1,..J,

where J = ﬁ, and then use the following algorithm.

Algorithm 1
1 Guess a.
2 From yo = « calculate y;, 5 =1,..J.
3 Using y; and starting from Ay = 0, calculate A; =0, 5 =J—1,..0.

4 Use the gradient Ay in a descent algorithm to guess a new «, and repeat

from 2 until |Ag| is small enough.

From the “optimal” « found, the required approximation to the optimal y(¢) can

be determined for t € [tg, 1]

Comments:

1) Ao is only an approximation to A(0), the gradient of £ with respect to the
control.
2) The discretised version of the adjoint equation may not be the true adjoint of

the discretised version of (4.1). This point inspires the work of Section 4.2.
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4.2 Euler’s method applied to a simple ODE

As mentioned in Section 4.1, the discretized version of the adjoint equations may

no longer be the true adjoint for the discrete version of the original equation.

This section describes how optimal control theory may be applied directly to

the discretised ODE and PDE equations. The discrete adjoint equations derived

in this way can be compared with the continuous ones derived previously. Test

cases for these methods to find the “optimal control” solving a data assimilation

type of problem are then described.
Euler’s scheme discretises (4.1) with (4.2) as follows:

yir1 = (1 +alt)y;,
yo = Q.

We suppose we have observations y; approximating (4.14),
y; =3At for j57=0,1,..0J — 1

The control problem is:

choose a = yo to minimize

subject to

yi+1 — (1 +alt)y; =0,
o = Q.

The augmented functional is

J-1
L= (y; —3;)°At = X1 (yje1 — (1 + aAt)y;).
7=0

Taking the first variation gives

J-1
oL = Z 2(y; — 9;)Atoy; — Ajp1 (6yj41 — (1 + aAt)dy;),
7=0
which implies

16
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5L = Z J)AE+ A (1 + aAb)y;) — Z)\ 8y;

J-1

(4.29)

= [2(yo—50) AL+ (14+aAt)]6yot+ D [2(y;—7;) At A1 (1+aAt) =16y~ A by.s.

i=1

So if we enforce

Yir1 = (1 + aAt)y; for 7=0,1,..0 —1,

and

)\]‘ = (1 —|— ClAt))\]‘_H —|— Q(y]‘ — ]j]‘)At fOI’ j = J — 1, ..1,

with

Ag

Il
=

then we are left with

so the gradient of £ with respect to the control a = yq 1s

The adjoint equations (4.32) with (4.33) are consistent with (4.

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

1) as At — 0.

Algorithm 1 can now be used with these discretized equations, and with the

steepest descent algorithm, which is described below.

Steepest Descent Algorithm with decreasing stepsize

An algorithm to find a new control o**! using the gradient of £ with respect to

the old control o is

M =af — sV L.

(4.36)

In this case VL is the value of Ao obtained using o, denoted below as A%).
g 0

17



The steplength s is taken to be 1 originally, but if a**! is not better than

oF, that is, if \*| > A

, the previous iteration is repeated with the stepsize

halved, and the method continued using the smaller stepsize. This is carried out

until ‘ozk"'l — ozk‘ is small enough (in this example until ‘)\’8‘ is small enough).
In this way, the largest corrections are made to « on the first iterations, and

then finer corrections are made as the iteration converges to the optimal «.

Implementation

A FORTRAN program was written implement Algorithm 1 using the Euler’s
scheme and its adjoint, with the steepest descent algorithm. The iteration is
continued until [Ag] < 1072. Table 1 presents the results from this program with
a = —2, showing the solutions found and the number of iterations taken for
different choices of stepsize and different starting guesses yo. The corresponding

solution of the continuous problem, from (4.15) is y(0) = 0.6051.

Table 1

At | first guess of yo | number of iterations | final value of yq

s 0.6 4 0.5907

0.5 7 0.5879

1.0 9 0.5910

0.0 9 0.5881

10 14 0.5906

—10 14 0.5879

1000 21 0.5904

— 0.6 2 0.6017

0.5 7 0.6017

1.0 9 0.6053

10 14 0.6049

= 0.6 7 0.4559

0.5 6 0.4555

1.0 9 0.4556

18



4.3 Fourth Order Runge-Kutta Method for the ODE

problem

In this section, the method described in Section 4.2 is repeated using the fourth
order Runge-Kutta discretisation of (4.1) with (4.2), which is

h h
Yip1 = (%(6 + ah(3 + ah(1 + “Z) + 1) yi,  j=0,1,.J—1, (437

with
Yo = «. (4.38)
Employing the same method as for the Euler example, we find that the adjoint

equations are:

N = (C;—h((i + ah(3 4 ah(1 + %) + 1) N+t + 2(y; — )AL, =J—1,.1
(4.39)
with
Ay =0, (4.40)

which is consistent with (4.9) as At — 0. The gradient of £ with respect to
o = 1Yo 18 Ag as before.
In this case the results for the same problem, which has analytic solution

a = 0.6051, are given in table 2.

19



Table 2

At | first guess of yo | number of iterations | final value of yq
llﬁ 0.6 4 0.5916
0.5 7 0.5890
1.0 9 0.5920
10 14 0.5915
10% 0.6 2 0.6018
0.5 7 0.6018
1.0 9 0.6054
10 14 0.6050
102)00 0.6 3 0.6037
0.5 7 0.6003
1.0 9 0.6038

4.4 Discussion of the results

Table 1 in Section 4.2 shows the results from the Euler discretisation, and Table 2
in Section 4.3 gives the results from the fourth order Runge-Kutta discretisation.
These values of y are subject to two sources of inaccuracy as approximations to
the optimal control y(0) of the continuous ODE (4.1). The first is the inaccuracy
of each discretisation as an approximation to the continuous ODE. The iteration
procedure endevours to find the optimal 3o of the discrete problem; which is
different for each discretisation, and different for each value of At. However, as
At tends to zero, the solution of the discrete problem converges to that of the
continuous, and hence we expect the the optimal yo to tend to the optimal y(0)

as At tends to zero. The results show that the values of 5 do in general converge

to y(0) as At decreases. Table 2 shows worse results for At = 101W than for
At = 1()1%7 which is probably due to the effect of computer round-off error, since

these results are from a fourth order scheme.

The second source of inaccuracy is the failure of the iteration to find exactly
the optimal solution yq to the discrete problem. From the theory, we know that
to find the optimal value 1y, we must ensure that the corresponding value \q is

exactly zero. Since we are only requiring |A\g| to be less than some tolerence, we

20



can expect inaccuracies in yo of an unknown size. Since Tables 1 and 2 show
that the rate of convergence of yo to y(0) decreases for smaller vaues of At, it
seems that the errors in the iteration scheme dominate over the errors of the
discretisation when At is small. This suggestion is backed up by the fact that
the forth order Runge Kutta scheme should give a much better approximation to
the analytic solution than the Euler scheme, and yet the results for both schemes
are of similar accuracy for the same value of At.

The results could be improved by continuing the iteration until |A\g| satisfied a
stricter tolerence. A more efficient descent algorithm could also be used to reduce
the number of iterations needed. This is important in the context of data assim-
ilation, because each iteration of the descent algorithm involves an integration
of the model and of its adjoint. Since forecast models are very large, this will
involve a lot of work. Therefore, the overall efficiency of any data assimilation

scheme of this type will depend heavily on the number of iterations needed.
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5 A PDE Example

In this section the model used is the linear advection equation in one dimension.
This section follows a similar development to Section 4. Section 5.1 presents the
problem, conditions for its solution and an algorithm for the numerical solution of
the problem. Sections 5.2 and 5.3 treat two different discretisations of the linear
advection equation, and describe the implementation of the given algorithm in

each case. Section 5.4 discusses the results.

5.1 The PDE model

Suppose now that our model is the linear advection equation

Uy + cuy = 0, (5.1)

with
u(z,0) = alx), and  w(0,t) = u(1,1), (5.2)

where v = u(x,t), with €[0,1] and t€[0, 1].

Suppose we have observations corresponding to u(x,t) which can be represented
by the continuous fuction @(x,t). Again, the initial condition a(x) uniquely
defines a solution u(x,t) and so can be used as the control variable.

Using the Ly norm to define a cost function, we have the optimal control problem:

Choose a(x) to minimize

11
Jz/ / (u(x,t) — ufw, 1)) dvdt, (5.3)
o Jo
subject to the constraint ( 5.1) with ( 5.2).

The augmented functional is

L= /01 /Ol(u(x,t) ~ (e, ) 4 Ma, Owle, ) + cup(e,t))dedt. (5.4)

Taking the first variation gives

s /01 /01 2u(x,t) —alx,t))ou(x, t) + AMa, 1) (dulx, t) + couy(x,t))dedt, (5.5)
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5L = // A - )5ud:1;dt—|—/ I6u]l de+/ [eASu]L_ydt. (5.6)

Necessary conditions for 6L = 0 are:

At + edy = 2(u — a), (5.7)
with
Az, 1)=0 and  A(0,%) = A(1,1). (5.8)
The control problem is now:
Find a(x) = u(x,0) so that
At + edy = 2(u — a), (5.9)
with
Az, 1) =0, Alz,0) =0, and A0,1) = A(1,1), (5.10)
and
U + cuy = 2(u — a), (5.11)
with
u(0,1) = u(l,1). (5.12)

We need a numerical scheme to do this. Following the development in section

(3.2), we take

At + Xy =2(u — 1) (5.13)

with just
Az, 1)=0 and  A(0,%) = A(1,1), (5.14)

where u satisfies ( 5.1) and ( 5.2), so that we are left with

5L = —/01 Az, 0)6u(, 0)da. (5.15)

Since the control variable u(x,0) is a continuous function for = € [0,1], the
“relevant inner product” in (3.9) is the Ly inner product for « € [0, 1].
Hence, the gradient of £ with respect to the control a(x) = u(x,0) is —A(x,0).

After discretising the original equation and its adjoints:
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uiru(jAr, nAt) and Ni~A(jAz,nAt) for j =0,1,..J and n = 0,1,..N
Algorithm 2 can be used to find the optimal control:
Algorithm 2

1 Guess «; for each j =1,...,J — 1.

2 From u? = a; calculate u?, j=1,.J, n=1,.N

3 Using the u7 and starting from )\év = 0, calculate A7, ;7 =0,1,..J,
n=N-—-1,..0.

4 Use A to guess new «j, and repeat from step 2 until [|A\°[] = 32, ‘)\?Al“ is

small enough.

As in Section 5.2, rather than finding the adjoint equation of the continu-
ous model equation and then discretising the model and adjoint equations, the
discrete adjoint equations are found directly from a discretisation of the model.
Algorithm 2 is then applied to the following test problem to examine the perfor-

mance of the data assimilation.

5.1.1 A test problem for this scheme

Suppose the “observations” are given by the analytic solution v(x, 1) to v;+cv, = 0

with v(0,1) = v(1,¢) and with one of the following sets of initial conditions:

1.
—0.5 x < 0.25
v(,0) =14 05 025 <az<0.5 (5.16)
—0.5 x> 0.5
2.
0 x < 0.25
v(z,0) = COS2(%) 025 <2 <05 (5.17)
0 x> 0.5
3.
0 x < 0.25
v(z,0) = I 98 < 4 < 0.5 (5.18)
0 x> 0.5
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If the optimal control problem iteration is started with u? =0fory =0,1,..J—
1, then the effectiveness of the scheme can be tested by seeing how close the final

solution u7 at each grid point is to the corresponding “true” solution v(jAz,nAt).

5.2 The Upwind Scheme for the Linear Advection Equa-
tion

The upwind scheme for the linear advection equation (5.1) with (5.2) is

un+1_un: —c—(un—un )7 ] :0717J—17 n:(),l,N—l, (519)
or

At

(] = = c—
( Iu CA:E7

(5.20)

,u)u? + ,uu?_l \ where

with

u, = ul and u? = oz?. (5.21)

Suppose there is an observation @7 correponding to every grid point value u7.
Then the control problem is:

Choose «; to minimize

N-1J-1

T=> > (uf —uf VP AzAt, (5.22)

n=0 j=0

subject to:

u}“’l — (1 = pjuf — pul_| =0, J=0,1,.J—-1, n=0,1,.N—=1, (5.23)
with
u? = aj. (5.24)

The augmented functional is

N-1J
L= PAzAL 4+ N (i — (1 — p)ul — pul_y). (5.25)

=0 0

|
-

3
[
Il
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After similar manipulations to those in the Euler example, we find (after a lot

of fiddly algebra) that if we take as adjoint equations

MW =0 for j=0,1,..0 —1, (5.26)

J

A= (=) N N —2(ul =) Az AL, for j=0,1,..J-1, n=N-1,.1,0;
(5.27)
then the gradient of £ with respect to the component of the control «; = y; is

— (1 = )N} = pAlyy 4 2(u) — @) AxAt = =), (5.28)

J

These discrete adjoint equations are consistent with their continuous counter-
part (5.13) as At, Az — 0. With these discrete versions of the linear advection
equation and its adjoint, and the descent algorithm described with |Ag| replaced
by [|A°]| where [|X°|| = Z}]:_& ‘)\?Al“ and o replaced by of for j =0,1,..,J — 1
we can apply Algorithm 2.

A FORTRAN program was written to implement this, which produces graph-
ics plots of the computed “optimal solution”. The results from running this
program using the sets of initial conditions and different values of Az and At,
are shown in Figures la-lc, 3 and 4. Figure 2 illustrates the upwind scheme
when started using the analytic solution for the initial conditions, and so shows
the usual behaviour of the upwind scheme (for the given values of Az and At)

without data assimilation.
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5.3 The Lax Wendroff Scheme for the Linear Advection
Equation

The work of Section 5.2 is now repeated using the Lax Wendroff scheme.
For the linear advection equation u; + cu, = 0 with u(0,¢) = wu(l1,?), the Lax

Wendrofl discretisation is:

u'th = viul_y + vpul + vauly g, J=0,1,.J—-1; n=0,1,.N—-1 (5.29)

J

with u? =« and  w®, =wuj_y, ufj =uf, (5.30)
where

_ A + AL (5.31)

LT 9Ar T 2Ag? '

At?

Vg = 1— @, (532)
A At (5.33)

BT OA2 T 2AL '

The control problem is therefore:

choose o = u? to minimize

J =2 > (uj —uf) AcAt (5.34)

subject to the discrete equations (5.29) and (5.30)

The augmented functional in this case is

VArAt + )\”"'1( ntl —viul_ — vaul — V3U?+1). (5.35)

||M|

Using the same techniques as in the previous examples; we find that the adjoint

equations are:

for y=0,1,..0 -1, (5.36)

and

A\ = 1/3)\?1'11 + 1/2)\?"'1 + 1/1)\?_"'_'11 — 2(u — )A:L'At, (5.37)

J
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for J=01.J—-1, n=0,1,.N —1,

and the gradient of £ with respect to the j%* component of the control, a; = u?
is —)\?.

The same test problem was carried out here as in the upwind scheme example.
The results from using different values of Az and At in this program are shown in
Figures 5a-5¢, and Figure 6 illustrates the behaviour of the Lax Wendroff scheme
in the absense of data assimilation, with the analytic solution given for the initial

condition.

5.4 Discussion of the results

The Upwind Scheme

The dissipation typical of the upwind scheme for % = % is clearly seen in the
solution. The data assimilation proceedure produces a vector of initial conditions
for the upwind scheme, and inevitably, no matter what these are, dissipation will
occur.

In Figures la-1c, it can be seen that the “optimal” initial condition produced
by the assimilation over-exaggerates the corners of the square wave, so that after
the dissipation occurs, the numerical scheme at later times is not so bad. Figure
3 shows similar effects for the different set of initial conditions. As typical with
the upwind scheme, there is less dissipation when Af¢ and Az are decreased,
keeping % = % Figure 2 shows the usual performance of the upwind scheme if
the analytic solution is used for the initial conditions when Ax and At are the
same as in Figure la. Comparing Figures la and 2 shows that instead of a good
approximation for ¢ close to the initial time and a bad one for ¢ close to the end
time, as usual for the upwind scheme; the assimilation scheme produces a solution
which is on average not too far from the observations. This is what we expect as
the solution to the optimal control problem: a numerical solution with minimum
distance from the observations over the whole time interval.

The number of iterations needed is large, and increases as At and Az decrease.
When the tolerance on |[A|| is 1072, then 58 iterations are needed in the case
At = 81—0 and Az = 41—0, and 320 were needed when At = 31%, and Az = llﬁ.

The assimilation has not resolved very well the fine features of the small spike

in the third set of data, as Figure 4 shows. This indicates that the stopping
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criterion for the assimilation is too weak, and a smaller tolerance should be used.

The Lax Wendroff scheme

The results of the Lax Wendroff scheme with the first set of initial data for differ-
ent values of At and Ax is shown in Figures Ha-5c. Again, the data assimilation
produces initial conditions which modify the undesirable effects of the numerical

solution at later times. Without data assimilation, the Lax Wendroff scheme with

At
Az

= % produces spurious oscillations behind a shock, as Figure 6 shows. The
spurious oscillations produced when data assimilation is included are smaller, and
now occur ahead of the shock for the initial time and behind the shock at the end
time. Comparing Figure H¢ with Figure 6 indicates the difference between using
the optimal value of y, found by the data assimilation and using the analytic
solution. The number of iterations needed increases as At and Az decrease, and
is similar to the number of iterations needed with the upwind scheme.

For both schemes, the results given here illustrate how the data assimilation
scheme can use observations to counter some effects of model error. In the upwind
scheme, the model error takes the form of dissipation, and in the Lax Wendroff
scheme the model error consists of the spurious oscilations produced behind a

shock. Both of these undesirable effects were modified in the solution by the

choice of control variable.
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6 Conclusions and Suggestions for Further Work

The test problem for the ODE examples showed the data assimilation scheme
to produce solutions yo to the discrete problem which converge to the analytic
solution y(0) as the timestep decreases. It seems, however, that inaccuracies in
the implementation of the iteration procedure dominate over discretisation errors
when the timestep is small. Different and perhaps stricter stopping criteria for
the descent algorithm should be tried out, and alternative descent algorithms
investigated to reduce the number of iterations needed.

In both discretisations of the PDE example, the assimilation modifies the
worst features of the numerical schemes (severe dissipation or oscillations behind
a shock), so that the scheme is on average closer to the observations. In this
way the data assimilation modifies the effect of what may be regarded as model
error. The number of iterations needed is high, however, and again there is a lack
of accuracy which could perhaps be improved by altering the descent algorithm
used, as discussed for the ODE example.

The adjoints found for the discretised equations in Sections 4 and 5 were
different for the different discretisations of the same equation, and would not
necessarily be thought of as the “natural” way to discretise the continuous adjoints
to the original differential equation. Whether it is better to find the discrete
adjoints directly or to discretise the continuous adjoint equation therefore needs
further investigation.

It would now be interesting to apply the above techniques to a simple nonlinear
differential equation, or system of differential equations, and to test the assimila-
tion scheme in less simplistic cases. Other areas to investigate include the choice
of cost functional, particularly in the case where observations are not available
at every grid point, which is of course important for a practical implementation
of data assimilation. It would also be possible to develop cost functionals which
weight more strongly the distance between the observations and model solutions
at the end time, to produce a solution which fits the observations more closely
at the end time. This would be important, for example, if a good estimate of the

end time were needed to start up a a forecast model run.
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List of Figures

Figure 1a: The upwind scheme with data assimilation;

using the first set of initial conditions, and At = 81—0, Ax = 41—0

Figure 1b: The upwind scheme with data assimilation;

using the first set of initial conditions, and At = o=, Az = &

Figure 1c: The upwind scheme with data assimilation;

using the first set of initial conditions, and At = =5, Axr = 7

Figure 2: The upwind scheme: usual performance without data assimilation;

using the first set of initial conditions, and At = 81—0, Az = 5

Figure 3: The upwind scheme with data assimilation;

using the second set of initial conditions, and At = 81—0, Ar = 4

Figure 4: The upwind scheme with data assimilation;

using the third set of initial conditions, and At = 81—0, Azr =L

Figure 5a: The Lax Wendroff scheme with data assimilation;

using the first set of initial conditions, and At = 81—0, Ax = 41—0

Figure 5b: The Lax Wendroff scheme with data assimilation;

using the first set of initial conditions, and At = &, Az = &

Figure 5c: The Lax Wendroff scheme with data assimilation;

using the first set of initial conditions, and At = =5, Axr = 7
Figure 6: The Lax Wendroff scheme: usual performance without data assimi-

lation: using the first set of initial conditions, and At = 31%, Ar = 555
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Figure 1la: The upwind scheme with data assimilation;

using the first set of initial conditions, and At=4, Azx=
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Figure 1b: The upwind scheme with data assimilation;

using the first set of initial conditions, and At =5, Axr=
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Figure 1c: The upwind scheme with data assimilation;

using the first set of initial conditions, and Al =L, Ar= 5
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Figure 2: The upwind scheme: usual performance without

data assimilation;

using the first set of initial conditions, and At=4, Azx=
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Figure 3: The upwind scheme with data assimilation;

using the second set of initial conditions, and At=4, Ax=
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Figure 4: The upwind scheme with data assimilation;

using the third set of initial conditions, and At =g, Azr=
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Figure 5a:

The Lax Wendroff scheme with data assimilation;

using the first set of initial conditions, and At=4, Azx=
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Figure 5b:

The Lax Wendroff scheme with data assimilation;

using the first set of initial conditions, and Al =, Az=
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Figure 5c:

The Lax Wendroff scheme with data assimilation;

using the first set of initial conditions, and Al =, Az=
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Figure 6: The Lax Wendroff scheme: usual performance

without data assimilation;

using the first set of initial conditions, and Al =L, Ar= 5
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