
THE UNIVERSITY OF READING

School of Mathematics, Meteorology & Physics

A Moving Mesh Method for the Discontinuous Galerkin

Finite Element Technique

Alison Brass

August 2007

Funded by the Natural Environment Research Council (NERC)

This dissertation is a joint MSc in the Departments of Mathematics &

Meteorology and is submitted in partial fulfilment of the requirements for the

degree of Master of Science.

Acknowledgements

I would like to thank my supervisors Pete Sweby and Mike Baines for their many

thoughts and ideas, and also, my friends and family for their support and encour-

agement when everything seemed to be going wrong. Thank you :)

Declaration

I confirm that this is my own work and the use of all material from other sources

has been properly and fully acknowledged.

Alison Brass

i

Abstract

In this dissertation, velocity-based moving mesh methods for the discontinuous

galerkin finite element technique are investigated and applied to solving linear

and nonlinear conservations laws with periodic boundary conditions. Two main

approaches for the method are considered. The first approach is cell-based and

uses a conservation principle on each cell to derive the boundary speeds. The

second approach is boundary-based, finding boundary speeds dependent on the

local discontinuity in the numerical solution at each boundary. In both cases,

the numerical solution to the conservation equation is then found on the updated

mesh, using Lax Friedrichs numerical fluxes at the discontinuities when required.

The latter method is then extended to the 1D system of shallow water equations

and applications to simple tidal bore and dam-break problems are considered.

ii

Contents

1 Introduction 1

2 The Stationary RKDG Method 4

2.1 History . 4

2.2 Stationary RKDG Derivation in 1D 5

2.2.1 Spatial Discretisation . 5

2.2.2 Time Integration . 9

2.3 RKDG Results on a Stationary Mesh 10

2.3.1 Linear Advection . 10

2.3.2 Inviscid Burgers . 11

2.3.3 Stability . 12

3 Moving Mesh Methods 13

3.1 Mapping-based moving mesh techniques 14

3.2 Velocity-based moving mesh techniques 14

3.2.1 Cell-based techniques . 15

3.2.2 Boundary-based techniques 15

4 Cell-based Moving Mesh Methods 16

4.1 Method A: a partial-DG technique 17

4.1.1 The inclusion of boundary speeds 17

4.1.2 The weak formulation . 18

iii

Contents

4.1.3 Time integration . 21

4.1.4 Results . 22

4.2 Method B: a non-DG technique . 24

4.2.1 The weak formulation . 24

4.2.2 Time integration . 26

4.2.3 Results . 27

4.3 Combined Methods . 28

4.4 Conclusions . 30

5 A Boundary-based Moving Mesh Method 31

5.1 Derivation of a full-DG Method 31

5.1.1 The inclusion of boundary speeds 32

5.1.2 The weak formulation . 33

5.1.3 Time integration . 34

5.2 Boundary Speed Selection . 35

5.2.1 Selecting non-zero boundary speeds 35

5.2.2 Controlling cell distribution 35

6 Numerical Results for the full-DG Method 38

6.1 Reversion to the Stationary DG Method 38

6.2 Moving mesh for linear advection 41

6.3 Moving mesh for nonlinear motion with controlled cell distribution 42

6.3.1 Adjustments through speed averaging 44

6.3.2 Adjustments through adopting a fixed speed 46

7 Shallow Water Equations 49

7.1 Application of the full-DG Method to the Shallow Water System . 50

7.1.1 The inclusion of boundary speeds 51

7.1.2 The weak formulation . 52

7.1.3 Choosing boundary speeds 55

7.1.4 Time integration . 55

iv

Contents

8 Numerical Results for Shallow Water Equations 57

8.1 A Dam-Break . 57

8.1.1 Our problem . 58

8.1.2 Results . 59

8.2 A Tidal Bore . 61

8.2.1 Our problem . 62

8.2.2 Results . 62

8.3 Conclusions . 63

9 Summary and Further Work 65

9.1 Summary . 65

9.2 Extensions . 67

v

List of Figures

2.1 Spatial discretisation into N cells. 5

2.2 Discontinuity in the numerical solution uh at cell boundaries. . . . 6

2.3 The solution of linear advection problem at t = 0.335 using RKDG

on an equi-distributed stationary mesh with dx = 0.05 and dt = 0.005. 10

2.4 The solution of inviscid burgers problem at t = 0.25 using RKDG

on equi-distributed stationary meshs of different resolutions, taking

dt = 0.0005 in both cases. 11

4.1 The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) using the partial-DG method with global matrix ap-

proach at t = 0.01 taking ∆x = 0.1 and ∆t = 0.01. 23

4.2 The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) + 5 using the partial-DG method with global matrix ap-

proach at t = 0.15 taking ∆x = 0.1 and ∆t = 0.01. 24

4.3 The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) using the non-DG method at t = 0.15 taking ∆x = 0.1

and ∆t = 0.01. 27

4.4 The solution for the nonlinear problem f(u) = 1
2u2, u(x, 0) =

3 sin(2πx) using the non-DG method at t = 0.03 taking ∆x = 0.1

and ∆t = 0.01. 28

vi

List of Figures

4.5 The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) using the partial-DG method with boundary speed in-

terpolations, at t = 0.02 taking ∆x = 0.1 and ∆t = 0.01. 29

4.6 The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) using the partial-DG method with additional speeds us-

ing the non-DG method, at t = 0.02 taking ∆x = 0.1 and ∆t = 0.01. 29

5.1 The removal of small cells through merging with larger cells. . . . 36

5.2 Averaging boundary speeds for cells below the minimum width. . . 37

5.3 Fixed boundary speeds taken as the approximate shock speed. . . 37

6.1 The solution of inviscid burgers problem f(u) = 1
2u2 at t = 0.25

taking ∆x = 0.05 and ∆t = 0.0005. 39

6.2 The absolute difference in solution between the 2nd order RKDG

method and the full-DG method with ẋ = 0, for the inviscid

burgers problem f(u) = 1
2u2 at t = 0.25 taking ∆x = 0.05 and

∆t = 0.0005. 40

6.3 The solution for the linear advection problem f(u) = 3u at t = 0.1

using the full-DG method taking the boundary speeds to be the

local shock speeds, and with ∆x = 0.05 and ∆t = 0.0005. 41

6.4 The solution for the linear advection problem f(u) = 3u at t = 1.25

using the full-DG method taking the boundary speeds to be the

local shock speeds, and with ∆x = 0.05 and ∆t = 0.25. 42

6.5 The solution for the problem f(u) = 1
2u2 at the last timestep before

any intervention is required to control boundary movement. 43

6.6 The solution at t ≈ 0.185 for the average speed technique, showing

difficulties in fully capturing the shock. 44

6.7 The solution at t ≈ 1 for the average speed technique shows sharp

shock capture when it is no longer possible for any boundaries to

move. 45

vii

List of Figures

6.8 The solution for the stationary shock test problem using fixed speed

adjustments at t ≈ 0.185. 47

6.9 The solution for the moving shock problem (u(x, 0) = 3 sin(2πx)+1)

using fixed speed adjustments at t ≈ 0.185. 48

7.1 Shallow water variables: h is the height of water above the river

bed B; u is the horizontal velocity of water. 50

8.1 Taken from [17] Fig.2 p1528, Mean depth for the one-dimensional

dam-break at t = 0.1 s of analytical solution and solutions obtained

from various DG FEM methods. 58

8.2 The height of the water in the dam-break problem at t = 0.002,

found using the full-DG method with stationary boundaries. . . . 60

8.3 The height of the water in the dam-break problem at t ≈ 0.002,

found using the full-DG method with some boundary movement. . 61

8.4 The height of the water in the tidal bore problem at t = 0.002, found

using the full-DG method with zero boundary speeds, dt = 0.00001,

and dx = 0.005. 63

viii

Chapter 1

Introduction

Many equations used in atmosphere and ocean modelling, including the Euler

equations of gas dynamics and the shallow water equations, are conservation laws

derived assuming the conservation of a particular quantity. Increasingly, Finite

Element Methods (FEM) are being employed to solve such equations due to their

ability to handle complex geometries. Research is ongoing into ways to improve

the accuracy of the numerical solution without significantly increasing the com-

putational cost and generally follows one of two routes.

Conservation laws often have discontinuous numerical solutions even if the initial

data is smooth and continuous. Using standard FEM which work in the contin-

uous domain, there is a limitation on how well sharp gradients and shocks can

be captured, so it would seem natural to model the solution in a discontinuous

manner. The Discontinuous Galerkin (DG) method developed by Reed and Hill

[15] is an example of such a technique.

The other approach commonly used is to apply grid adaptation techniques to

the standard FEM. Such techniques may include mesh refinments or the use of

higher order polynomial approximations in the region of the shock, and Arbitrary

Lagrangian-Eulerian (ALE) methods [16], also known as moving meshes, which

1

Introduction

cluster nodes around the feature and follow the feature as it moves over time.

In more recent years, research has looked at combining these two approaches

to provide even better results, incorporating grid adaptation techniques into the

discontinuous FEM. The use of a moving mesh algorithm with the DG technique

was investigated by Li and Tang [14] who looked at mapping-based methods. We

shall also consider the use of moving mesh algorithms but choose to focus on

velocity-based methods instead.

In this dissertation we firstly look at the stationary DG method and in Chapter 2

we consider the Runge-Kutta Discontinuous Galerkin (RKDG) method developed

by Cockburn and Shu [11]. In Chapter 3 we discuss various grid adaptation tech-

niques before progressing to include some velocity-based moving mesh algorithms

into the DG method in Chapters 4 and 5.

In Chapter 4, we focus on cell-based methods and derive the boundary velocities

through imposing a conservation principle on each cell. We derive a cell-based

method, and some variations, using the local Lax Friedrichs numerical flux at cell

boundaries. Additionally, we derive a cell-based method where no flux calculations

are required. Through solving simple linear and nonlinear test cases, we evaluate

the success of these cell-based methods.

In Chapter 5, we derive a moving DG method without the use of the conservation

principle seen in Chapter 4. In this method, the velocities may be obtained from

an external source, and we consider a boundary-based method where the boundary

speeds may be taken as the notional shock speed associated with the discontinuity

in the numerical solution. The results of numerical tests are given in Chatper 6

where we also consider the case of zero boundary speeds and compare with the

stationary RKDG method from Chapter 2.

Application of the boundary-based moving mesh method to a 1D system of non-

2

Introduction

linear equations is considered in Chapter 7, where the method is derived for the

shallow water equations. Some results of preliminary tests for the tidal bore prob-

lem and dam-break problem are given in Chapter 8.

Finally, in Chapter 9, we make some general conclusions and consider possible

future work.

3

Chapter 2

The Stationary RKDG Method

2.1 History

The Discontinuous Galerkin (DG) method falls within the category of finite el-

ement techniques, using local basis functions to approximate the exact solution

on each element. Developed by Reed and Hill [15] for solving the linear neutron

transport equation σu+∇(au) = f where σ is real and a is linear, the DG method

is noteably different from continuous methods in that it allows the numerical so-

lution to be discontinuous across element boundaries.

Having been used for linear problems, the DG method was then extended to

solve nonlinear problems including hyperbolic conservation laws which required

the introduction of time-stepping algorithms. Early research by Chavent and

Salzano [3] aimed to retain the elementwise calculations that were possible for the

linear system, but in doing so, they encountered very restrictive stability criteria

making the method impractical. Further research into the method included the

introduction of slope limiters and TVD time-stepping algorithms to improve on

the early results.

In particular, Cockburn and Shu [9] developed a high-order accurate Runge-Kutta

4

The Stationary RKDG Method

Discontinuous Galerkin (RKDG) scheme and it is this which we will be using as

the basis of our investigations into moving mesh algorithms. The scheme generates

a block diagonal matrix, allowing the system to be solved element-by-element with

little data transfer required between neighbouring elements, making it ideal for

use on parallel processing computer systems.

2.2 Stationary RKDG Derivation in 1D

We follow the derivation of the RKDG method as given by Cockburn [5] and

consider solving the conservation law

ut + f(u)x = 0 on [0, 1] × [0, T] (2.1)

u(x, 0) = u0(x) on [0, 1] (2.2)

with periodic boundary conditions.

2.2.1 Spatial Discretisation

The spatial domain is partitioned into N cells, denoting the jth cell interval as

Ij = (xj−1/2, xj+1/2) and the corresponding cell width as ∆j = xj+1/2 −xj−1/2. The

cell node xj is centered within the corresponding interval.

0 1xj−1/2 xj+1/2

xj

∆j

Figure 2.1: Spatial discretisation into N cells.

To solve for the approximate solution uh, we must first find the weak formation

for the problem on each cell by multiplying the equation (2.1) by an arbitrary,

5

The Stationary RKDG Method

smooth function v(x) and integrating over the cell interval:

∫

Ij

(

∂u

∂t
+

∂f(u)

∂x

)

v dx = 0.

Using integration by parts we obtain

∫

Ij

∂u

∂t
v dx −

∫

Ij

f
∂v

∂x
dx + fv

∣

∣

∣

∣

∣

xj+1/2

xj−1/2

= 0. (2.3)

Defining the finite dimensional subspace Vh to be

Vh =
{

v ∈ L1(0, 1) : v|Ij
∈ P k(Ij) , j = 1, . . . , N

}

,

where P k is the set of all polynomials up to degree k, we now replace the smooth

v(x) with a test function vh ∈ Vh and the exact solution u is replaced by an

approximate solution uh.

The Discontinuous Galerkin method does not require uh to be continuous across

a boundary. Instead, uh may have two values; u−
h derived from the cell to the left

of the boundary and u+
h derived from the cell to the right of the boundary. This

discontinuity and duplicity of values means that the analytical flux f(uh) is not

uniquely defined at cell boundaries and so must be replaced by a numerical flux

h(u−
h , u+

h) which is derived from both values of uh at that point.

xj−1/2 xj+1/2

uh(xj−1/2)
−

uh(xj−1/2)
+ uh(xj+1/2)

−

uh(xj+1/2)
+

Figure 2.2: Discontinuity in the numerical solution uh at cell boundaries.

6

The Stationary RKDG Method

The numerical flux may be calulated in many ways, with the Lax-Friedrichs

and Godunov schemes providing typical forumlae. Although the accuracy of the

schemes may vary, Cockburn [5] suggest that as the degree of the approximate

solution increases, the significance of the choice of numerical flux diminishes, al-

lowing the choice of flux to be based on ease of computation.

For the implementation of the stationary RKDG method, we shall take the local

Lax-Friedrichs flux given in [5] by

h (a, b) =
1

2
[f(a) + f(b) − c(b − a)] ,

c = max
min(a,b)≤s≤max(a,b)

|f ′(s)|.

For simplicity, we will denote the numerical flux h(uh(xj+1/2)
−, uh(xj+1/2)

+) by

h(xj+1/2), and similarly for xj−1/2.

The weak formulation of the problem may now be written as

∀j = 1 . . . N,

∫

Ij

∂uh

∂t
vh dx −

∫

Ij

f
∂vh

∂x
dx + vh(xj+1/2)h(xj+1/2) − vh(xj−1/2)h(xj−1/2) = 0

∫

Ij

uh(x, 0)vh dx =

∫

Ij

u0(x)vh dx.

Introducing Legendre polynomials Pl as basis functions, we can represent the

numerical solution uh as a summation

uh(x, t) =
k

∑

l=0

wl
j(t)φl(x)

where φl(x) = Pl

(

2(x−xj)
∆j

)

and wl
j are coefficients to be found.

The orthogonality property of the Legendre polynomials allows the weak form to

be rewritten as

7

The Stationary RKDG Method

∀j = 1 . . . N,

(

∆j

2l + 1

)

∂wl
j

∂t
−

∫

Ij

f
∂φl

∂x
dx +

{

h(xj+1/2) − (−1)lh(xj−1/2)
}

= 0 (2.4)

∆j

2l + 1
wl

j(0) =

∫

Ij

u0φl dx. (2.5)

If we consider the first Legendre polynomial P0 = 1, in each cell (2.4, 2.5) become

∆j
∂

∂t
w0

j = −
{

h(xj+1/2) − h(xj−1/2)
}

∆jw
0
j (0) =

∫

Ij

u0 dx.

Similarly, for P1 = x we obtain

∆j

3

∂

∂t
w1

j = −
{

h(xj+1/2) + h(xj−1/2)
}

+

∫

Ij

2

∆j
f dx

∆j

3
w1

j (0) =

∫

Ij

u0

(

2(x − xj)

∆j

)

dx.

Using 2-point Gaussin Quadrature to approximate the integrals, and writing in

vector form, the weak form (2.4, 2.5) becomes

∀j = 0 . . . N,





∆j 0

0
∆j

3





d

dt





w0
j (t)

w1
j (t)



 = −





h(xj+1/2) − h(xj−1/2)

h(xj+1/2) + h(xj−1/2)



 (2.6)

+





0

f(uh(xj+1/2
√

3)) + f(uh(xj−1/2
√

3))





with




w0
j (0)

w1
j (0)



 =





1
2

{

u0

(

xj+1/2
√

3

)

+ u0

(

xj−1/2
√

3

)}

√
3

2

{

u0

(

xj+1/2
√

3

)

− u0

(

xj−1/2
√

3

)}



 . (2.7)

We may solve (2.7) on each cell to obtain the initial coefficients w(0), and hence

the initial numerical approximation uh(t = 0).

8

The Stationary RKDG Method

2.2.2 Time Integration

We may rewrite (2.7, 2.7) as

duh

dt
= Lh(uh) in [0, T]

uh(0) = uh0,

and partition [0, T] into M equal intervals of size ∆t.

To step through time and find uh(t = T), we will use the total variation dimin-

ishing (TVD) Runge-Kutta scheme given in [5].

For m = 0, . . . , M − 1 compute um+1
h from um

h as follows:

• set u0
h = uh(t = 0)

• For m = 0, . . . , M − 1, compute um+1
h from um

h as follows:

– set u
(0)
h = um

h ;

– for i = 1, . . . , k + 1 compute

u
(i)
h =

{

i−1
∑

l=0

αilu
(l)
h + βil∆tLh(u

(l)
h)

}

;

– set um+1
h = u

(k+1)
h

where the paramters of α and β may be taken from Table 2.1.

αij βij

1 1

1
2

1
2 0 1

2

Table 2.1: Second order TVD RK coefficients(taken from Cockburn [5])

9

The Stationary RKDG Method

2.3 RKDG Results on a Stationary Mesh

2.3.1 Linear Advection

We consider the RKDG method applied to the simple linear advection problem

ut + (3u)x = 0 on [0, 1] × [0, 0.335]

u(x, 0) = 3 sin(2πx) + 1 on [0, 1]

with periodic boundary conditions.

At t = 0.335 s, we would expect the intial data to have completed slightly more

than a single revolution as the wave speed = 3, and as the data should be simply

advected, we expect no change in the amplitude of the sine wave. Figure 2.3 shows

that the stationary RKDG method has been able to acurately capture the wave

speed, advecting the intial data with no significant loss of amplitude.

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

4

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

4

0 0.5 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

4

 exact initial data

 u
h
 at t = 0

 u
h
 at t = 0.335

Figure 2.3: The solution of linear advection problem at t = 0.335 using RKDG on

an equi-distributed stationary mesh with dx = 0.05 and dt = 0.005.

10

The Stationary RKDG Method

2.3.2 Inviscid Burgers

As a second test case, we consider the stationary RKDG method applied to the

nonlinear advection problem

ut + (
1

2
u2)x = 0 on [0, 1] × [0, 0.25]

u(x, 0) = 3 sin(2πx) on [0, 1]

with periodic boundary conditions.

Algebraic solution of this problem shows that a moving shock will form which we

wish to capture accuratly. As demontrated in Figure 2.4, when dx is small and

the nodes are densly packed, the DG method captures the vertical shock capture

well, but the accuracy decreases as cell widths increase.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 exact initial data

 u
h
 at t = 0

 u
h
 at t = 0.25

(a) The solution with dx = 0.01.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 exact initial data

 u
h
 at t = 0

 u
h
 at t = 0.25

(b) The solution with dx = 0.05

Figure 2.4: The solution of inviscid burgers problem at t = 0.25 using RKDG on

equi-distributed stationary meshs of different resolutions, taking dt = 0.0005 in

both cases.

The stationary DG method does not require nodes to be equi-distibuted so it

is possible to use small cells near the shock, and larger cells in other regions to

reduce the computational cost. However, typically a shock will not be stationary,

11

The Stationary RKDG Method

and so will eventually move out of the region of densly packed nodes into a region

covered by larger cells and the accuracy of the shock capture will decrease. This

provides the motivation for our investigations into a moving mesh method which

would alow the mesh to move with the shock over time.

2.3.3 Stability

For the linear advection problem where f(u) = cu, using linear polynomial approx-

imations and the 2nd order RKDG method, Chavent and Cockburn [4] showed

the stability condition to be given by

c
∆t

∆x
≤ 1

3
. (2.8)

The results of numerical investigations for our linear advection test case showed

the method was stable for ∆t
∆x ≤ 0.1, which, as c = 3, is consistent with (2.8).

For our nonlinear inviscid burger test case, numerical investigation also showed

stable results for ∆t
∆x ≤ 0.1. For our initial data, |f ′(u)| = |u| ≤ 3 so the general

stability condition would be approximately given by

|f ′(u)| ∆t

∆x
≤ 1

3
.

12

Chapter 3

Moving Mesh Methods

Grid adaptation is becoming increasing popular in numerical modelling as it allows

local level mesh refinements to caputre features of interest without excessive in-

creases to the overall computational cost. Adaptation techniques can be split into

three main categories known as h-refinement, p-refinement and r-refinement, each

of which takes a different approach to improving the accuracy of the numerical

solution.

By changing the node-connectivities and introducing new nodes, h-refinement in-

creases the resolution of the grid in a localised area. A common technique is

to subdivide a large ‘parent’ cell into smaller ‘child’ cells, which may be done

isotropically to increase the resolution equally in both the x and y directions, or

anistropically to allow a finer resolution in one spatial direction.

Methods falling under the p-refinement classification keep the number of nodes

and connectivity unchanged and instead increase the order of the polynomial ap-

proximations used in regions of interest. For example, a method may use 4th

order polynomials near the feature and only 2nd order polynomials away from the

feature.

In application to the stationary DG method, we will be looking at methods falling

13

Moving Mesh Methods

under the category of r-refinement, which are also commonly known as moving

meshes. In these methods, the number of nodes is kept constant but they are

redistbuted so that they are clustered around features of interest. There are two

main approaches to moving mesh methods; one is based on mappings, the other

on velocities.

3.1 Mapping-based moving mesh techniques

Mapping-based moving mesh methods have three main features. Firstly, there is

a 1:1 mapping between nodes in the logical or computational domain, which are

equally spaced, to the nodes in the physical domain, where they may be clusted

in areas of interest. Li and Tang [14] give this mapping as

ξ : x 7→ ξ, Ω 7→ Ωc,

where Ω denotes the physical domain, Ωc denotes the logical domain, and where

ξ may be found by solving the elliptic system

∇x(m∇xξ) = 0.

Here, m is a monitor function, the second key feature of the method, which is used

to guide the cell redistiubution. The third feature is interpolation of the numerical

solution on the old mesh to obtain values at the nodes in the new mesh.

3.2 Velocity-based moving mesh techniques

Velocity-based methods, also known as Arbitrary Lagrangian-Eulerian (ALE)

methods physically relocate the nodes as the numerical solution develops, allowing

the mesh to ‘follow’ the feature of interest. In is common to use a cell-based tech-

nique and derive the boundary speeds through use of a conservation principle. We

will investigate both this and a boundary-based method, which does not assume

a conservation principle.

14

Moving Mesh Methods

3.2.1 Cell-based techniques

In Chapter 4, we look at some cell-based techniques, where the boundary speeds

may be derived directly from the conservation law by imposing a conservation

principle on each cell such as

∫

Ij

Mdx = constant in time ,

where M is chosen by the user. For example, Wells et al. [16] set M = ρ, the

density of the fluid.

3.2.2 Boundary-based techniques

In Chapter 5, we consider a boundary-based approach, which does not rely on

the cell-based conservation principle. The boundary speeds may be taken from

an external source e.g. velocity of the fluid or the shock speed associated with

the discontiunity in uh at each boundary, and the numerical solution is updated

accordingly.

This method, in its basic form, does not provide a monitor funciton to control cell

distriubution, so this must be added seperately.

15

Chapter 4

Cell-based Moving Mesh

Methods

We now combine a cell-based moving mesh grid adaptation technique with a DG

method similar to the RKDG method seen in Chapter 2.

The conservation law problem

ut + f(u)x = 0 on [0, 1] × [0, T] (4.1)

u(x, 0) = u0(x) on [0, 1] (4.2)

is now solved with periodic boundary conditions on a moving mesh.

For a cell-based moving mesh method, we make use of a conservation principle

on each cell and, following the example of Baines et al. [2], seek to move the cell

boundaries such that
d

dt

∫ xj+1/2

xj−1/2

vu dx = 0 (4.3)

holds for all time.

In the stationary DG method, we derived and solved a weak form of our conserva-

tion law problem for uh. Now, we will instead derive a weak form of the problem in

16

Cell-based Moving Mesh Methods

terms of boundary speed ẋ which we will solve and then use with the conservation

principle (4.3) to determine uh.

4.1 Method A: a partial-DG technique

We derive a moving mesh method which will make use of the numerical flux

calculations at cell boundaries, as seen in the stationary DG method.

4.1.1 The inclusion of boundary speeds

To derive the problem for ẋ, we firstly follow the stationary DG derivation from

Chapter 2, partitioning the spatial domain into N cells and multiplying the prob-

lem (4.1) by an arbitrary, smooth function v(x). Integrating over the cell and

using integration by parts, we obtain
∫ xj+1/2

xj−1/2

∂u

∂t
v dx = −fv|xj+1/2

xj−1/2
+

∫ xj+1/2

xj−1/2

f
∂v

∂x
dx. (4.4)

As the method is now for a moving mesh, we allow the cell boundaries xj−1/2 and

xj+1/2 to vary in time.

Secondly, we use Leibnitz rule

d

dt

∫ xj+1/2

xj−1/2

mdx = mẋ|xj+1/2
− mẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂m

∂t
dx

to derive an expression for our conservation quantity (4.3).

Taking m = vu where v(x) moves with dx
dt , we have

d

dt

∫ xj+1/2

xj−1/2

vu dx = vuẋ|xj+1/2
− vuẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂

∂t
vu dx

=

∫ xj+1/2

xj−1/2

∂

∂x
(vuẋ) dx +

∫ xj+1/2

xj−1/2

∂

∂t
(vu) dx

=

∫ xj+1/2

xj−1/2

[

v
∂

∂x
(uẋ) +

∂v

∂x
uẋ + v

∂u

∂t
+

∂v

∂t
u

]

dx

=

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(uẋ) +

∂u

∂t

]

dx +

∫ xj+1/2

xj−1/2

u

[

∂v

∂t
+ ẋ

∂v

∂x

]

dx.

17

Cell-based Moving Mesh Methods

Due to the conservation principle (4.3) and the fact that v(x) moves with dx
dt , this

simplifies to give

0 =

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(uẋ) +

∂u

∂t

]

dx. (4.5)

Combining (4.5) with (4.4), we obtain

−
∫ xj+1/2

xj−1/2

v
∂

∂x
(uẋ) dx = −fv|xj+1/2

xj−1/2
+

∫ xj+1/2

xj−1/2

f
∂v

∂x
dx.

Our problem now consists of three equations on each cell:

∀j = 0 . . . N,

−
∫ xj+1/2

xj−1/2

v
∂

∂x
(uẋ) dx = −fv|xj+1/2

xj−1/2
+

∫ xj+1/2

xj−1/2

f
∂v

∂x
dx. (4.6)

d

dt

∫ xj+1/2

xj−1/2

vu dx = 0 (4.7)

∫ xj+1/2

xj−1/2

u(x, 0)v dx =

∫ xj+1/2

xj−1/2

u0(x)v dx. (4.8)

4.1.2 The weak formulation

Defining the finite dimensional subspace Vh to be

Vh =
{

v ∈ L1(0, 1) : v|Ij
∈ P k(Ij) , j = 1, . . . , N

}

,

where P k is the set of all polynomials up to degree k, we now replace the smooth

v(x) with a test function vh ∈ Vh and the exact solution u is replaced by a

numerical approximation uh.

The weak formulation of our new problem (4.6, 4.7, 4.8) is then given by

∀j = 1 . . . N,

−
∫ xj+1/2

xj−1/2

vh
∂

∂x
(uhẋ) dx = −fvh|

xj+1/2
xj−1/2

+

∫ xj+1/2

xj−1/2

f
∂vh

∂x
dx, (4.9)

18

Cell-based Moving Mesh Methods

d

dt

∫ xj+1/2

xj−1/2

vhuh dx = 0 (4.10)

∫ xj+1/2

xj−1/2

uh(x, 0)vh dx =

∫ xj+1/2

xj−1/2

u0(x)vh dx. (4.11)

The analytic flux f is not defined at cell boundaries due to the discontinuity in uh,

so we introduce a numerical flux scheme h(x) = h(uh(x)−, uh(x)+) ≈ f(uh(x)). As

for the stationary DG method, we choose to use the local Lax Friedrichs formula

given in [5] as

h (a, b) =
1

2
[f(a) + f(b) − c(b − a)] ,

c = max
min(a,b)≤s≤max(a,b)

|f ′(s)|.

We take the test functions vh(x) to be Legendre polynomials and express the

numerical solution uh as a sum of Legendre polynomial basis functions:

uh(x, t) =
k

∑

l=0

wl
j(t)φl(x)

where φl(x) = Pl

(

2(x−xj)
∆j

)

and wl
j are coefficients to be found.

The right-hand side of (4.9) can be taken directly from the standard DG derivation

(2.7) to be approximated by

−fvh|
xj+1/2
xj−1/2

+

∫ xj+1/2

xj−1/2

f
∂vh

∂x
dx =

−





h(xj+1/2) − h(xj−1/2)

h(xj+1/2) + h(xj−1/2)



 +





0

f(uh(xj+1/2
√

3)) + f(uh(xj−1/2
√

3))



 .

To derive formulae for the left-hand side of (4.9), we use integration by parts to

obtain

−
∫ xj+1/2

xj−1/2

vh
∂

∂x
(uhẋ) dx = −vhuhẋ|xj+1/2

xj−1/2
+

∫ xj+1/2

xj−1/2

∂vh

∂x
uhẋ dx.

19

Cell-based Moving Mesh Methods

For the simple case when vh = 1, the first Legendre polynomial, this becomes

−
∫ xj+1/2

xj−1/2

vh
∂

∂x
(uhẋ) dx = −

[

uh(xj+1/2)ẋ(xj+1/2) − uh(xj−1/2)ẋ(xj−1/2)
]

.

For vh =
2(x−xj)

∆j
, the second Legendre polynomial, we use 2-point Gaussian

quadrature to evaluate the integral term and get

−
∫ xj+1/2

xj−1/2

vh
∂

∂x
(uhẋ) dx = −

[

uh(xj+1/2)ẋ(xj+1/2) + uh(xj−1/2)ẋ(xj−1/2)
]

+
[

uh(xj+1/2
√

3)ẋ(xj+1/2
√

3) + uh(xj−1/2
√

3)ẋ(xj−1/2
√

3)
]

.

By assuming ẋ to be linear over each cell, we may obtain values for ẋ at xj−1/2
√

3

and xj+1/2
√

3 using linear interpolation between the values at cell boundaries.

Similarly we apply the properties of Legendre polynomials to (4.10, 4.11), the

weak forms of the conservation principle and the initial conditions respectively.

The weak formulation of problem (4.9, 4.10, 4.11) is then given in matrix form as

∀j = 1 . . . N,




























uh(xj−1/2
) −uh(xj+1/2

)



















−uh(xj−1/2
)+

(1 + 1
2
√

3
− 1

2)uh(xj−1/2
√

3
)

+(1
2 − 1

2
√

3
)u(xj+1/2

√

3
)





































−u(xj−1/2
)+

(1
2 − 1

2
√

3
)u(xj−1/2

√

3
)

+(1 + 1
2
√

3
− 1

2)u(xj+1/2
√

3
)











































































ẋ(xj−1/2
)

ẋ(xj+1/2
)





























= −





























h(xj+1/2
) − h(xj−1/2

)

h(xj+1/2
) + h(xj−1/2

)





























+





























0

f(uh(xj+1/2
√

3
)) + f(uh(xj−1/2

√

3
))





























(4.12)

20

Cell-based Moving Mesh Methods





∆j(t) 0

0 1
3∆j(t)









w0
j (t)

w1
j (t)



 =





∆j(t = 0)w0
j (t = 0)

1
3∆j(t = 0)wl

j(t = 0)



 (4.13)





w0
j (0)

w1
j (0)



 =





1
2

{

u0

(

xj+1/2
√

3

)

+ u0

(

xj−1/2
√

3

)}

√
3

2

{

u0

(

xj+1/2
√

3

)

− u0

(

xj−1/2
√

3

)}



 . (4.14)

The weak formulation provides cell-by-cell matrix systems for determining the

boundary speeds ẋ, which we may then use to find the updated numerical approx-

imation uh. We consider two ways of solving for the boundary speeds:

The first approach solves each cell-by cell matrix system seperately to find the

boundary speeds for each cell. We then average the two values obtained for each

cell boundary to obtain a single speed for that boundary.

The second approach is to combine the information for all cells to obtain a global

matrix system, allowing all cell-by-cell matrix systems to be solved simultaneously

to find the boundary speeds.

4.1.3 Time integration

We partition [0, T] into M intervals of size ∆t and use an Euler timestepping

algorithm to step through time and find uh(t = T):

• Solve (4.14) to obtain w0
j (0) and w1

j (0) and hence find uh(t = 0);

• For m = 0, . . . , M − 1,

– Solve (4.12), either as a global matrix system over all cells, or on each

cell individually followed by averaging, and obtain ẋ for each boundary;

– Compute the new position x of each boundary using

x(t = m + 1) = x(t = m) + ∆t × ẋ

– Find the new interval sizes and node positions based on the new bound-

ary positions;

21

Cell-based Moving Mesh Methods

– Solve (4.13) to obtain w0
j (m + 1) and w1

j (m + 1) and hence find

uh(t = m + 1);

4.1.4 Results

If we choose to use only constant basis vectors for our numerical approximation uh,

each cell matrix system reduces to a single equation giving insufficient information

to solve on each cell individually. The global matrix formed by combining each of

the cell matrices has the form






















u1 −u1

u2 −u2

. . .
. . .

uN−1 −uN−1

−uN uN























which is singular and cannot be inverted to solve the global matrix system. We

therefore conclude that this moving mesh method is not suitable for the constant

basis vector case.

Using linear basis vectors, it is still possible for the numerical approximation uh to

be constant or nearly constant on a cell. If this occurs, we are unable to solve the

cell matrix system for that cell but in general, the global matrix is not singular,

so we may use this approach.

We use the the global matrix approach to solve the linear advection test problem

ut + (3u)x = 0 on [0, 1] × [0, T]

u(x, 0) = 3 sin(2πx) on [0, 1]

with periodic boundary conditions.

For this linear advection problem, we would expect the initial data to be moved,

unchanged, with a wavespeed of 3. We can see from Figure 4.1, that whilst a

22

Cell-based Moving Mesh Methods

solution to uh(t) may be obtained using the global matrix approach, it provides

a poor representation of the exact solution after the first time step and quickly

breaking down completly.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 exact initial data

 u
h
 at t = 0

 u
h
 at t = 0.01

 initial mesh

 new mesh

Figure 4.1: The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) using the partial-DG method with global matrix approach at t = 0.01

taking ∆x = 0.1 and ∆t = 0.01.

On closer examination of the calculated boundary speeds, it is clear that the

boundary speeds significantly different to the majority occur where u+
h = 0 or

u−
h = 0.

We therefore consider the linear advection test case with new initial data u(x, 0) =

3 sin(2πx) + 5, so that such values may be avoided. Figure 4.2 shows that for this

new problem, the initial data is advected at approximately the right wave speed

for early timesteps, but some growth can be seen and the accuracy of the results

decreases over time. After less than the time required for a single revolution, the

solution breaks down.

23

Cell-based Moving Mesh Methods

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

 initial mesh

 new mesh

 exact initial data

 u
h
 at t = 0

 u
h
 at t =0.15

Figure 4.2: The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx)+5 using the partial-DG method with global matrix approach at t = 0.15

taking ∆x = 0.1 and ∆t = 0.01.

4.2 Method B: a non-DG technique

As an alternative to Method A, we derive another moving mesh algorithm that is

able to find boundary speeds in regions with constant numerical approximations.

As this method does not make use of a numerical flux at the cell boundaries it is

seen to be missing a major component of the DG structure and so is refered to as

a non-DG method.

4.2.1 The weak formulation

As seen in Method A, we may apply Leibniz rule to the conservation principle

(4.3), and taking v(x) to move with dx
dt , we may obtain (4.5):

0 =

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(uẋ) +

∂u

∂t

]

dx.

24

Cell-based Moving Mesh Methods

We may define the finite dimensional subspace Vh to be

Vh =
{

v ∈ L1(0, 1) : v|Ij
∈ P k(Ij) , j = 1, . . . , N

}

,

where P k is the set of all polynomials up to degree k, and we now replace the

smooth v(x) with a test function vh ∈ Vh and the exact solution u by a numerical

approximation uh.

From the original conservation law (4.1), we may replace ∂uh
∂t and obtain

0 =

∫ xj+1/2

xj−1/2

vh

[

∂

∂x
(uhẋ) − ∂f(uh)

∂x

]

dx.

Alternatively, this may be written as

0 =

∫ xj+1/2

xj−1/2

vh [(uhẋ) − f(uh)]x dx. (4.15)

One possible solution for equation (4.15) is to take

ẋ =
f(uh)

uh
.

We may use this formula twice at each boundary, once using the values from the

cell to the left, and once using the values from the cell to the right. Then, in a

similar manner as the cell-by-cell approach in Method A, we average to obtain a

single speed for that boundary.

For the occasions when uh ≈ 0, we use L’Hopital’s rule and take the boundary

speed to be

ẋ = lim
uh→0

f(uh)

uh
=

f ′(uh)

u′
h

= f ′(uh)

The full weak formulation of the problem, including initial conditions is given by

∀j = 1 . . . N,










ẋ(xj+1/2) =
f(uh(xj+1/2))

uh(xj+1/2)

ẋ(xj−1/2) =
f(uh(xj−1/2))

uh(xj−1/2)

(4.16)

25

Cell-based Moving Mesh Methods





∆j(t) 0

0 1
3∆j(t)









w0
j (t)

w1
j (t)



 =





∆j(t = 0)w0
j (t = 0)

1
3∆j(t = 0)wl

j(t = 0)



 (4.17)





w0
j (0)

w1
j (0)



 =





1
2

{

u0

(

xj+1/2
√

3

)

+ u0

(

xj−1/2
√

3

)}

√
3

2

{

u0

(

xj+1/2
√

3

)

− u0

(

xj−1/2
√

3

)}



 . (4.18)

4.2.2 Time integration

The time integration is essentially unchanged from Method A, requiring only a

different method for calculating the boundary speeds ẋ. The method is included

here for completeness.

We partition [0, T] into M intervals of size ∆t and use an Euler timestepping

algorithm to step through time and find uh(t = T):

• Solve (4.18) to obtain w0
j (0) and w1

j (0) and hence find uh(t = 0);

• For m = 0, . . . , M − 1,

– Compute (4.16) for each cell and averege to obtian the boundary speeds;

– Compute the new position x of each boundary using

x(t = m + 1) = x(t = m) + ∆t × ẋ;

– Find the new interval sizes and node positions based on the new bound-

ary positions;

– Solve (4.17) to obtain w0
j (m + 1) and w1

j (m + 1) and hence find

uh(t = m + 1);

26

Cell-based Moving Mesh Methods

4.2.3 Results

The non-DG method is first applied to a linear advection test problem where we

seek to solve

ut + (3u)x = 0 on [0, 1] × [0, T] (4.19)

u(x, 0) = 3 sin(2πx) on [0, 1] (4.20)

with periodic boundary conditions.

The results obtained, as shown in Figure 4.3, are very good with the initial data

being advected at approximately the right wave speed and with no significant

growth or decay.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 initial mesh
 new mesh

 exact initial data
 u

h
 at t = 0

 u
h
 at t =0.15

Figure 4.3: The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) using the non-DG method at t = 0.15 taking ∆x = 0.1 and ∆t = 0.01.

We therefore consider this method applied to a nonlinear test case and solve

ut + (
1

2
u2)x = 0 on [0, 1] × [0, T]

u(x, 0) = 3 sin(2πx) on [0, 1]

with periodic boundary conditions.

27

Cell-based Moving Mesh Methods

For the nonlinear problem, the non-DG method initially copes well as seen in

Figure 4.4, but as the shock begins to form, boundaries begin overtaking and the

solution breaks down. The problem of cell distibution may not be simple to solve

here as any direct modification to the boundary speeds to restrict cell widths,

would enforce a restriction on the numerical solution by equation (4.17).

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 initial mesh

 new mesh

 exact initial data

 u
h
 at t = 0

 u
h
 at t =0.03

Figure 4.4: The solution for the nonlinear problem f(u) = 1
2u2, u(x, 0) =

3 sin(2πx) using the non-DG method at t = 0.03 taking ∆x = 0.1 and ∆t = 0.01.

4.3 Combined Methods

We have seen that Method A cannot be used cell-by-cell if any numerical approx-

imation is constant or nearly constant on a cell. For these cells, we now consider

obtaining the boundary speeds through alternative methods including using the

non-DG method B and interpolation between known boundary velocities.

When applied to the linear advection test case (4.19, 4.20), we see in Figures 4.5

and 4.6 that neither method generates an accurate representation of the exact

solution, with the values being significantly higher or lower depending on the cell

widths.

28

Cell-based Moving Mesh Methods

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 initial mesh

 new mesh

 exact initial data

 u
h
 at t = 0

 u
h
 at t = 0.02

Figure 4.5: The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) using the partial-DG method with boundary speed interpolations, at

t = 0.02 taking ∆x = 0.1 and ∆t = 0.01.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 initial mesh

 new mesh

 exact initial data

 u
h
 at t = 0

 u
h
 at t = 0.02

Figure 4.6: The solution for the linear advection problem f(u) = 3u, u(x, 0) =

3 sin(2πx) using the partial-DG method with additional speeds using the non-DG

method, at t = 0.02 taking ∆x = 0.1 and ∆t = 0.01.

29

Cell-based Moving Mesh Methods

4.4 Conclusions

We have seen from the results, that Method A used cell-by-cell, and it’s modifi-

cations, have all failed to model linear advection to a suitable level of accuracy.

This may be due to an inconsitency in the use of the conservation principle.

The conservation principle is used to obtain boundary speed values on each cell,

which we then proceed to average so that we have only a single boundary speed

for each boundary. In calculating the new coefficients w0
j and w1

j , we use the new

boundary positions, as found using the averaged boundary speeds, but then apply

the conservation principle which would only hold on each cell if the exact, rather

than the averaged, boundary speeds had been used.

The global matrix approach for Method A, solves for the boundary speeds of all

cells simultaneously, so there is no averaging to introduce the inconsistency seen

in the cell-by-cell approach. However, the boundary speeds obtained for linear

advection are still not uniform across all cells, as would be required for smooth

advection of the initial data by this method. This may be due to the inclusion of

the numerical flux in boundary speed calculations.

Method B, the non-DG method, works well for linear advection, but experiences

cell distribution issues for the non-linear motion. In desiging a method to control

cell distribution, it is the conservation principle appied through equation (4.17)

that creates difficulties by directly linking boundary speeds, which may need to

be modified, with the numerical solution.

The difficulties experienced with these cell-based methods which use the conser-

vation principle (4.3) provide the motivation to use a different approach to the

moving mesh method. We therefore consider a boundary-based technique which

does not rely on the conservation principle (4.3).

30

Chapter 5

A Boundary-based Moving

Mesh Method

In the previous moving mesh methods investigated in Chapter 4, the boundary

speeds have been derived based on the conservation principle (4.3) and this has

directly linked cell width to the value of the numerical solution on that cell by

(4.13). If we wish to overwrite boundary speeds with alternative values e.g. to pre-

vent boundary overtaking, we must therefore derive a new moving mesh algorithm

which does not depend on the conservation principle (4.3).

5.1 Derivation of a full-DG Method

The conservation law problem

ut + f(u)x = 0 on [0, 1] × [0, T]

u(x, 0) = u0(x) on [0, 1]

is again solved with periodic boundary conditions on a moving mesh.

31

A Boundary-based Moving Mesh Method

5.1.1 The inclusion of boundary speeds

To include boundary speeds ẋ we use Leibniz rule

d

dt

∫ xj+1/2

xj−1/2

mdx = mẋ|xj+1/2
− mẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂m

∂t
dx

to expand
d

dt

∫ xj+1/2

xj−1/2

vu dx

which is no longer assumed to be zero for all time.

Taking m = vu where v(x) moves with dx
dt , we have

d

dt

∫ xj+1/2

xj−1/2

vu dx = vuẋ|xj+1/2
− vuẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂

∂t
vu dx

=

∫ xj+1/2

xj−1/2

∂

∂x
(vuẋ) dx +

∫ xj+1/2

xj−1/2

∂

∂t
(vu) dx

=

∫ xj+1/2

xj−1/2

[

v
∂

∂x
(uẋ) +

∂v

∂x
uẋ + v

∂u

∂t
+

∂v

∂t
u

]

dx

=

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(uẋ) +

∂u

∂t

]

dx +

∫ xj+1/2

xj−1/2

u

[

∂v

∂t
+ ẋ

∂v

∂x

]

dx.

As v(x) moves with dx
dt , the last integral term is zero and substituting in for ∂u

∂t

from our orginal conservation law, we obtain

d

dt

∫ xj+1/2

xj−1/2

vu dx =

∫ xj+1/2

xj−1/2

v (ẋu − f)x dx.

It may be possible to solve this equation by using quadrature to evaluate the

integral on the right-hand side directly. However, we choose to follow the ideas of

the stationary RKDG derivation and use integration by parts to obtain

d

dt

∫ xj+1/2

xj−1/2

vu dx = − v (f − ẋu)|xj+1/2
xj−1/2

+

∫ xj+1/2

xj−1/2

(f − ẋu)
∂v

∂x
dx. (5.1)

We now have a problem for u which includes ẋ as required.

32

A Boundary-based Moving Mesh Method

5.1.2 The weak formulation

Defining the finite dimensional subspace Vh to be

Vh =
{

v ∈ L1(0, 1) : v|Ij
∈ P k(Ij) , j = 1, . . . , N

}

,

where P k is the set of all polynomials up to degree k, we now replace the smooth

v(x) with a test function vh ∈ Vh and the exact solution u is replaced by uh.

The full problem, including initial conditions then becomes

∀j = 1, . . . , N

d

dt

∫ xj+1/2

xj−1/2

vhuh dx = − vhF |xj+1/2
xj−1/2

+

∫ xj+1/2

xj−1/2

F
∂vh

∂x
dx (5.2)

∫ xj+1/2

xj−1/2

uh(x, 0)vh dx =

∫ xj+1/2

xj−1/2

u0(x)vh dx. (5.3)

where F = f − ẋu.

As uh is discontinuous at cell boundaries, F (uh) is undefined at these points. We

introduce a numerical flux h such that h(x) = h(uh(x)+, uh(x)−) ≈ F (uh(x)),

where uh(x)+ and uh(x)− denoute the values of uh(x) from above and below

respectively.

The numerical flux may be calculated using the local Lax Friedrichs formula

h (a, b) =
1

2
[F (a) + F (b) − c(b − a)] ,

c = max
min(a,b)≤s≤max(a,b)

|F ′(s)|

where F ′ = f ′ − ẋ

We take the test functions vh(x) to be Legendre polynomials and express the

numerical solution uh as a sum of Legendre polynomial basis functions:

uh(x, t) =
k

∑

l=0

wl
j(t)φl(x)

33

A Boundary-based Moving Mesh Method

where φl(x) = Pl

(

2(x−xj)
∆j

)

and wl
j are coefficients to be found.

Through the orthgonality properties of the Legendre polynomials we are able to

express our problem (5.2, 5.3) as a matrix system

∀j = 1, . . . , N




1 0

0 1/3









∆̇jw
0
j + ∆jẇ0

j

∆̇jw
1
j + ∆jẇ1

j



 = −





h(xj+1/2) − h(xj−1/2)

h(xj+1/2) + h(xj−1/2)





+





0

F (xj+1/2
√

3) + F (xj−1/2
√

3)



(5.4)





w0
j (0)

w1
j (0)



 =





1
2

{

u0

(

xj+1/2
√

3

)

+ u0

(

xj−1/2
√

3

)}

√
3

2

{

u0

(

xj+1/2
√

3

)

− u0

(

xj−1/2
√

3

)}



 (5.5)

where ẋ(xj−1/2
√

3) and ẋ(xj+1/2
√

3) are found assuming ẋ is linear on each cell.

5.1.3 Time integration

We partition the time interval [0, T] into M intervals of size ∆t.

To step through time and find uh(t = T), we will use an Euler timestepping

method:

• Solve (5.5) to obtain w0
j (0) and w1

j (0) and hence find uh(t = 0);

• For m = 0, . . . , M − 1,

– Obtain the boundary speeds (see Section 5.2)

– Solve (5.4) to obtain ẇ0
j (t = m) and ẇ1

j (t = m);

– Compute




w0
j (t = m + 1)

w1
j (t = m + 1)



 =





w0
j (t = m)

w1
j (t = m)



 + ∆t





ẇ0
j (t = m)

ẇ1
j (t = m)





– and hence find uh(t = m + 1)

34

A Boundary-based Moving Mesh Method

5.2 Boundary Speed Selection

Unlike previous moving mesh algorithms, this method does not generate the

boundary speeds. Instead they may be input from an external source at each

timestep, and then the changes to the numerical solution uh are found accord-

ingly.

In particular, we note that if we take ẋ = 0 for all boundaries and for all time,

the method reverts back to the stationary DG method with Euler timestepping

and should yield similar results to the RKDG method from Chapter 2, allowing

for the difference in accuracy and stability between the Euler and Runge-Kutta

time-stepping algorithms.

5.2.1 Selecting non-zero boundary speeds

At each boundary, the numerical solution uh is discontinous and a jump in the

solution occurs (see Figure 2.2). A natural choice for the boundary speed would

be the notional shock speed associated with this discontunity in uh. In the case

when the jump in uh is negligible, we can instead use the overall wave speed.

We therefore select the boundary speeds to be

ẋ =







f ′(u+
h) if u+

h − u−
h ≈ 0

[f(uh)]
[uh] otherwise

(5.6)

where [uh] and [f(uh)] denote the jumps in uh and f(uh) respectively.

5.2.2 Controlling cell distribution

Over time, the choice of boundary speeds may result in boundaries overtaking

one another or cell widths becoming negligbly small. We need to overcome these

issues.

To avoid cells of negligble width, it would may seem natural to remove a boundary

35

A Boundary-based Moving Mesh Method

and merge the small cell with a larger cell as shown in Figure 5.1. However, it is

computationally difficult to work with a variable number of nodes and over time,

as the number of nodes falls, the accuracy of the model would decrease. We will

therefore fix the number of nodes and consider another approach.

cell 1 cell 2 removed boundary

repositioned node

Figure 5.1: The removal of small cells through merging with larger cells.

We could use variable ∆t, chosing the timestep so that no cell width falls below

the minimum for given boundary speeds. The minimum allowable timestep on

each cell can be found using

∆tj =
∆j min − ∆j

ẋ(xj+1/2) − ẋ(xj−1/2)
(5.7)

where ∆j min is the minimum allowed cell width, and then we can take ∆t =

min {∆tj} for the next timestep. However, in practise, this usually gives ∆t → 0

meaning that the model will not progress beyond a certain time.

As a third option, we consider changing the boundary speeds such that the

timestep ∆t and the cell widths ∆j stay within the stability criteria but above

given minimum values.

Firstly, we define our maximum allowed timestep, ∆tmax based on stability re-

strictions, and the minimum allowed timestep ∆tmin and minimum allowed cell

width ∆j min based on user preferences. We then use (5.7) to find the suggested

value of ∆t for the given boundary speeds.

Provided that ∆t > ∆tmin, boundaries will not overtake or get too close, so we

may continue with the time stepping algorithm using min {∆t, ∆tmax} to ensure

36

A Boundary-based Moving Mesh Method

stability. However, if ∆t < ∆tmin, we use ∆tmin and must amend the boundary

speeds.

Ideally, we only wish to amend the boundary speeds in problematic regions where

the cell widths become too small otherwise. One way is to identify the effected

cells and replace the speeds at the associated boundaries with an average speed

as shown in Figure 5.2. However, this may then effect neighbouring cells, so the

checks must be repeated until no problem cells are present.

replace v2, v3 and v4

with v = v2+v3+v4

3
v1 v2 v3 v4 v5

problem cells

Figure 5.2: Averaging boundary speeds for cells below the minimum width.

Another approach would be to revert to a constant speed across all boundaries

when problem cells begin to develop. As problems usually occur near the shock

formation, and we wish for the densly packed region of nodes to remain aligned

with this feature, the shock speed is the ideal choice of speed for the boundaries.

This is closely approximated by the boundary speed already calculated for the

boundary most closely alligned with the shock, so we identify this boundary and

set all boundaries to move at that speed.

replace all boundary

speeds with v3
v1 v2 v3 v4 v5

shock captured across these cells

boundary nearest to shock

Figure 5.3: Fixed boundary speeds taken as the approximate shock speed.

37

Chapter 6

Numerical Results for the

full-DG Method

We now apply the full-DG method from Chapter 5 to solve the conservation law

ut + (f(u))x = 0 on [0, 1] × [0, T] (6.1)

u(x, 0) = 3 sin(2πx) on [0, 1] (6.2)

with periodic boundary conditions for some linear and nonlinear test problems.

Firstly, we consider the zero boundary speed case and compare the solutions to

results obtained using the stationary 2nd order RKDG method from Chapter 2.

We then look at the results for boundary speeds derived form the notional shock

speeds at each boundary, and the average speed and fixed speed methods for

controlling the cell distribution.

6.1 Reversion to the Stationary DG Method

Setting all boundary speeds to be zero for all time, equation (5.1) simplifies to

equation (2.3), indicating that the full-DG method should revert to a stationary

DG method under these conditions.

38

Numerical Results for the full-DG Method

We solve the conservation law problem given by (6.1, 6.2) taking f(u) = 1
2u2 and

ẋ = 0.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 initial mesh

 new mesh

 exact initial data

 u
h
 at t = 0s

 u
h
 at t =0.25

(a) The solution for the full-DG method with ẋ = 0.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 fixed mesh
 exact initial data

 u
h
 at t = 0

 u
h
 at t =0.25

(b) The solution for the stationary 2nd order RKDG method.

Figure 6.1: The solution of inviscid burgers problem f(u) = 1
2u2 at t = 0.25 taking

∆x = 0.05 and ∆t = 0.0005.

At T = 0.25, we can see, from Figure 6.1, that the two methods give visually

identical results. For the moving mesh method, taking ẋ = 0 has meant the

39

Numerical Results for the full-DG Method

boundaries have remained fixed at their initial locations and it is only through

considering the absolute difference between the solutions for uh at the nodes, as in

Figure 6.2, that we are able to see any difference in the numerical approximations

found by the RKDG and full DG methods.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

node position

Figure 6.2: The absolute difference in solution between the 2nd order RKDG

method and the full-DG method with ẋ = 0, for the inviscid burgers problem

f(u) = 1
2u2 at t = 0.25 taking ∆x = 0.05 and ∆t = 0.0005.

Numerical investigations into stability indicate that for a linear f(u) = cu, the

stability of the full-DG method with ẋ = 0 is comparable with that of the 2nd

order RKDG method which is given in [4] as

c
∆t

∆x
≤ 1

3
.

In the nonlinar case, again the two methods exhibit similar stability. For the

inviscid burger problem f(u) = 1
2u2, the numerical results were stable when ∆t

∆x ≤
1
10 . Taking into consideration the value of f ′(u) for our intial data, the numerical

results indicate the stability condition to be approximately

f ′(u)
∆t

∆x
≤ 1

3
.

40

Numerical Results for the full-DG Method

6.2 Moving mesh for linear advection

We now solve the conservation law problem (6.1, 6.2) for linear advection, taking

f(u) = 3u and finding the boundary speeds through the local discontinuities at

each cell boundary.

At each boundary, equation (5.6) simplifies to give the wave speed, meaning all

boundaries move with uniform speed and no provision need be made for boundary

overtaking. The initial data is moved with the wave speed as in Figure 6.3.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 exact initial data

 u
h
 at t = 0

 u
h
 at t = 1.25

 initial mesh
 new mesh

Figure 6.3: The solution for the linear advection problem f(u) = 3u at t = 0.1

using the full-DG method taking the boundary speeds to be the local shock speeds,

and with ∆x = 0.05 and ∆t = 0.0005.

Note, the new mesh has moved from its original position, so although the two

meshes may appear aligned, for any given cell, boundary xj+1/2(t = 0) will not be

aligned with boundary xj+1/2(t = 0.1) etc.

Numerical investigations indicate that the stability for the moving mesh algorithm

with constant, uniform boundary speeds determined by the wave speed, is much

better than for the stationary methods. This is most likely because, for this

particular speed, the approximation uh on each cell does not change over time;

41

Numerical Results for the full-DG Method

the cell is simply moved. Figure 6.4 shows good results, even though c ∆t
∆x = 15.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 exact initial data

 u
h
 at t = 0

 u
h
 at t = 1.25

 initial mesh
 new mesh

Figure 6.4: The solution for the linear advection problem f(u) = 3u at t = 1.25

using the full-DG method taking the boundary speeds to be the local shock speeds,

and with ∆x = 0.05 and ∆t = 0.25.

Again, we should note that although the two meshes may appear aligned, the

individual boundaries are no longer in the position they started at.

6.3 Moving mesh for nonlinear motion with controlled

cell distribution

We now consider the nonlinear inviscid burgers problem, solving (6.1, 6.2) with

f(u) = 1
2u2. Taking the initial mesh to be equally distributed with ∆x = 0.05,

and allowing timesteps of 0.001 ≥ ∆t ≥ 0.0001, we run the full-DG method, using

local shock speeds for the boundary speeds, until cells are about to fall below the

minimum width of ∆j = 0.01 and cell distribution must be further controlled.

For the test case, no intervention is required until the 40th timestep (t ≈ 0.04).

The numerical solution and mesh at the last time before intervention is required

are shown in figure 6.5. In the nodal plot, we see that the gradient of the solution

42

Numerical Results for the full-DG Method

is becoming very steep, although the vertical shock has not yet formed.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 exact initial data

 u
h
 at t = 0

 u
h
 at t ≈ 0.04

 initial mesh

 new mesh

(a) The numerical solution on each cell.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

node position

(b) The numerical solution at each node.

Figure 6.5: The solution for the problem f(u) = 1
2u2 at the last timestep before

any intervention is required to control boundary movement.

To progress further without cell widths falling below the minimum values, we need

to control the cell distribution. We now investigate the two techniques discussed

in Section 5.2.2, looking first at adjusting boundary speeds through averaging,

43

Numerical Results for the full-DG Method

and then at adopting a fixed boundary speed across all boundaries.

6.3.1 Adjustments through speed averaging

We first use the average speed technique to amend boundary speeds around prob-

lem cells which would otherwise become too small at the next timestep.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 exact initial data
 u

h
 at t = 0

 u
h
 at t ≈ 0.185

 initial mesh

 new mesh

(a) The numerical solution on each cell.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

node position

(b) The numerical solution at each node.

Figure 6.6: The solution at t ≈ 0.185 for the average speed technique, showing

difficulties in fully capturing the shock.

44

Numerical Results for the full-DG Method

Initially we obtain good results as the shock begins to develop, but at later

timesteps we begin to notice difficulties in fully capturing the shock, most notica-

ble on the nodal plot as shown in Figure 6.6. The degree of this problem varies

with each further timestep, but when no further node movement can occur the

shock capture actually becomes much sharper as shown in Figure 6.7.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 exact initial data

 u
h
 at t = 0

 u
h
 at t ≈ 1

 initial mesh

 new mesh

(a) The numerical solution on each cell.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

node position

(b) The numerical solution at each node.

Figure 6.7: The solution at t ≈ 1 for the average speed technique shows sharp

shock capture when it is no longer possible for any boundaries to move.

45

Numerical Results for the full-DG Method

Although the shock capture is generlly not as good as the results seen for the

stationary methods, even though the nodes are more densly concentrated, this

method has the potential to allow different regions of the mesh to move at different

average speeds, allowing multiple features of interest to be followed which may

prove useful in some situations.

6.3.2 Adjustments through adopting a fixed speed

We now consider using the adoption of a fixed speed to control the cell distribution.

Using the fixed speed method, all boundaries are moved with a uniform velocity

determined by an approximation to the shock speed. For the test case given by

(6.1, 6.2) with f(u) = 1
2u2, we have a stationary shock, so the speed with which

the cells move is approximately zero.

As shown in Figure 6.8, the method is able to capture the shock much more sharply

than the average speed method of adjustments. The spread of the cells remains

constant, and the dense region of cells remains around the shock, even in the case

of a moving shock as shown in Figure 6.9.

A limitation of the method is that all cells move with the shock speed associated

with the largest feature and so smaller features may be less well captured. This

method is therefore not ideal for a system with multiple shocks, but could work

well for single shock systems.

Of the two methods for controlling cell distribution, the fixed speed method has

yielded the best results for the single shock problem and so will be the prefered

method if such a technique is required when we apply the full-DG method to a

1D system of shallow water equations.

46

Numerical Results for the full-DG Method

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 initial mesh

 new mesh

 exact initial data

 u
h
 at t = 0

 u
h
 at t ≈ 0.185

(a) The numerical solution on each cell.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

node position

(b) The numerical solution at each node.

Figure 6.8: The solution for the stationary shock test problem using fixed speed

adjustments at t ≈ 0.185.

47

Numerical Results for the full-DG Method

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

 initial mesh

 new mesh
 exact initial data
 u

h
 at t = 0

 u
h
 at t ≈ 0.185

(a) The numerical solution on each cell.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

node position

(b) The numerical solution at each node.

Figure 6.9: The solution for the moving shock problem (u(x, 0) = 3 sin(2πx) + 1)

using fixed speed adjustments at t ≈ 0.185.

48

Chapter 7

Shallow Water Equations

The shallow water equations may be used for modelling fluid flow in situations

where the vertical motion can be considered insiginificant in comparision to the

horizontal motion. The equations desribe the flow of a fluid at a single pressure

height and are not able to model factors which vary with height. For the use of the

equations to be appropriate, the wavelength of the phenonmenon being modelled

must be much larger than the depth of the fluid. This means that, in spite of

the name, shallow water equations may be used in deep ocean basins if we are

modelling tidal motion due to the large tidal wavelength.

The stationary DG method has been applied to many shallow water problems, with

Yu and Kyozuka [17] investigating both tidal flows and the dam-break problem.

For application of the moving mesh algorithm developed in Chapter 5, we shall

look particularly at shallow water equations applied to fluid flow in a river, taking

the surface of the river as our pressure surface.

In 1D, the shallow water equations for Figure 7.1 can be expressed as

ht + (hu)x = 0, (7.1)

(hu)t + (
1

2
gh2 + u2h)x = −gh

∂B

∂x
. (7.2)

49

Shallow Water Equations

where h is the height of water above the river bed B, and u is the horizontal

velocity of the water [12]. We assume a stationary bed, making no allowances for

sediment movement, and so take B to be independent of time.

x

h

B

u river

riverbed

Figure 7.1: Shallow water variables: h is the height of water above the river bed

B; u is the horizontal velocity of water.

Equations (7.1) and (7.2) respresent conservation of mass and conservation of

momentum respectively. We may rewrite the later in terms of the conserved

quantity Q = hu as

Qt + (
1

2
gh2 +

Q2

h
)x = −gh

∂B

∂x
. (7.3)

7.1 Application of the full-DG Method to the Shallow

Water System

Writing the shallow water equations in matrix form, we solve the conservation law

problem

∂

∂t





h

Q



 +
∂

∂x





hu

1
2gh2 + Q2

h



 =





0

−gh∂B
∂x



 on [0, 1] × [0, T] (7.4)





h(x, 0)

Q(x, 0)



 =





h0(x)

h0(x)u0(x)



 on [0, 1] (7.5)

with periodic boundary conditions.

50

Shallow Water Equations

7.1.1 The inclusion of boundary speeds

The conservation law problem (7.4, 7.4) must be reworked to include boundary

speeds ẋ.

To include the boundary speeds into the first shallow water equation, we follow

the derivation in Chapter 5.

We use Leibniz rule

d

dt

∫ xj+1/2

xj−1/2

mdx = mẋ|xj+1/2
− mẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂m

∂t
dx

to expand
d

dt

∫ xj+1/2

xj−1/2

vh dx.

Taking m = vh where v(x) moves with dx
dt , we have

d

dt

∫ xj+1/2

xj−1/2

vh dx = vhẋ|xj+1/2
− vhẋ|xj−1/2

+

∫ xj+1/2

xj−1/2

∂

∂t
vh dx

=

∫ xj+1/2

xj−1/2

∂

∂x
(vhẋ) dx +

∫ xj+1/2

xj−1/2

∂

∂t
(vh) dx

=

∫ xj+1/2

xj−1/2

[

v
∂

∂x
(hẋ) +

∂v

∂x
hẋ + v

∂h

∂t
+

∂v

∂t
h

]

dx

=

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(hẋ) +

∂h

∂t

]

dx +

∫ xj+1/2

xj−1/2

h

[

∂v

∂t
+ ẋ

∂v

∂x

]

dx.

As v(x) moves with dx
dt , the last integral term is zero and substituting in for ∂h

∂t

from our first shallow water equation (7.1), we obtain

d

dt

∫ xj+1/2

xj−1/2

vh dx =

∫ xj+1/2

xj−1/2

v (ẋh − hu)x dx.

Using integration by parts this becomes

d

dt

∫ xj+1/2

xj−1/2

vh dx = − v (hu − ẋh)|xj+1/2
xj−1/2

+

∫ xj+1/2

xj−1/2

(hu − ẋh)
∂v

∂x
dx

51

Shallow Water Equations

To include the boundary speeds into the second shallow water equation, we again

follow the derivation in Chapter 5, and obtain

d

dt

∫ xj+1/2

xj−1/2

vQ dx =

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(Qẋ) +

∂Q

∂t

]

dx +

∫ xj+1/2

xj−1/2

Q

[

∂v

∂t
+ ẋ

∂v

∂x

]

dx.

Again, we take v(x) to move with dx
dt so the last integral on the right-hand side

disappears. However, now when we substitute in from the second shallow water

equation (7.3), we have an additional term as the right-hand side of (7.3) is non-

zero.

d

dt

∫ xj+1/2

xj−1/2

vQ dx =

∫ xj+1/2

xj−1/2

v

[

∂

∂x
(Qẋ) − ∂

∂x

(

1

2
gh2 +

Q2

h

)

− gh
∂B

∂x

]

dx.

Using integration by parts, this may be rewritten as

d

dt

∫ xj+1/2

xj−1/2

vQ dx = − v

((

1

2
gh2 +

Q2

h

)

− ẋQ

)
∣

∣

∣

∣

xj+1/2

xj−1/2

+

∫ xj+1/2

xj−1/2

((

1

2
gh2 +

Q2

h

)

− ẋQ

)

∂v

∂x
dx −

∫ xj+1/2

xj−1/2

vgh
∂B

∂x
dx.

7.1.2 The weak formulation

We define the finite dimensional subspace Vh to be

Vh =
{

v ∈ L1(0, 1) : v|Ij
∈ P k(Ij) , j = 1, . . . , N

}

,

where P k is the set of all polynomials up to degree k, and replace the smooth v(x)

with a test function vh ∈ Vh. The exact solutions h, u, and hence Q are replaced

by numerical approximations hh, uh and Qh respectively.

The full problem, in matrix form, including initial conditions then becomes

52

Shallow Water Equations

∀j = 1, . . . , N

d

dt

∫ xj+1/2

xj−1/2

vh





hh

Qh



 dx = −vh





hhuh − ẋhh

1
2gh2

h +
Q2

h
hh

− ẋQh





∣

∣

∣

∣

∣

∣

xj+1/2

xj−1/2

+

∫ xj+1/2

xj−1/2





hhuh − ẋhh

1
2gh2

h +
Q2

h
hh

− ẋQh





∂vh

∂x
dx −

∫ xj+1/2

xj−1/2





0

vhghh
∂B
∂x



 dx (7.6)

∫ xj+1/2

xj−1/2





hh(x, 0)

Qh(x, 0)



 vh dx =

∫ xj+1/2

xj−1/2





h0(x)

h0(x)u0(x)



 vh dx (7.7)

We note that

F =





f1

f2



 =





hhuh − ẋhh

1
2gh2

h +
Q2

h
hh

− ẋQh





is undefined at cell boundaries due to this discontinuities in hh, uh and Qh, and

so we introduce a numerical flux H such that

H(x) = H({hh(x)+, uh(x)+}, {hh(x)−, uh(x)−}) ≈ F (hh(x), uh(x)).

As F is a vector, we use a slightly different version of the local Lax Friedrichs

formula to that seen in previous chapters. Basing the value of c on the eigenvalues

of the Jacobian matrix [12], we use

H (a, b) =
1

2
[F (a) + F (b) − c(b − a)] ,

c = max











1

u+
h ±

√

gh+
h



 ,





1

u−
h ±

√

gh−
h











.

We take the test functions vh(x) to be Legendre polynomials and express the

numerical solutions hh and Qh as a sum of Legendre polynomial basis functions:

hh(x, t) =
k

∑

l=0

wl
j(t)φl(x)

Qh(x, t) =
k

∑

l=0

zl
j(t)φl(x)

53

Shallow Water Equations

where φl(x) = Pl

(

2(x−xj)
∆j

)

and wl
j and zl

j are coefficients to be found.

Now, through the orthogonality properties for the Legendre polynomials, the full

problem may be given as

for j = 1, . . . , N

Equations for h:





1 0

0 1/3









∆̇jw
0
j + ∆jẇ0

j

∆̇jw
1
j + ∆jẇ1

j



 = −





H(xj+1/2) − H(xj−1/2)

H(xj+1/2) + H(xj−1/2)





+





0

f1(xj+1/2
√

3) + f1(xj−1/2
√

3)



(7.8)





w0
j (0)

w1
j (0)



 =





1
2

{

h0

(

xj+1/2
√

3

)

+ h0

(

xj−1/2
√

3

)}

√
3

2

{

h0

(

xj+1/2
√

3

)

− h0

(

xj−1/2
√

3

)}



 (7.9)

Equations for Q:





1 0

0 1/3









∆̇jz
0
j + ∆j ż0

j

∆̇jz
1
j + ∆j ż1

j



 = −





H(xj+1/2) − H(xj−1/2)

H(xj+1/2) + H(xj−1/2)





+





0

f2(xj+1/2
√

3) + f2(xj−1/2
√

3)



 − ∆j

2
√

3





f3(xj+1/2
√

3) + f3(xj−1/2
√

3)

f3(xj+1/2
√

3) − f3(xj−1/2
√

3)



(7.10)





z0
j (0)

z1
j (0)



 =





1
2

{

h0

(

xj+1/2
√

3

)

u0

(

xj+1/2
√

3

)

+ h0

(

xj−1/2
√

3

)

u0

(

xj−1/2
√

3

)}

√
3

2

{

h0

(

xj+1/2
√

3

)

u0

(

xj+1/2
√

3

)

− h0

(

xj−1/2
√

3

)

u0

(

xj−1/2
√

3

)}





(7.11)

where f1 = hhuh − ẋhh, f2 = 1
2gh2

h +
Q2

h
hh

− ẋQh and f3 = ghh
∂B
∂x . We assume that

ẋ is linear on each cell to obtain ẋ(xj−1/2
√

3) and ẋ(xj+1/2
√

3).

54

Shallow Water Equations

7.1.3 Choosing boundary speeds

In the full-DG method from Chapter 5, the boundary speeds are taken as the

local shock speeds at each boundary (5.6). However, we now have two variables h

and Q, both of which are discontinuous at boundaries and so both could provide

a boundary speed.

We select to use the variable h and the first shallow water equation (7.1) to drive

the mesh movement, so boundary speeds may be calulated by

ẋ =







u+
h if u+

h − u−
h ≈ 0

[hhuh]
[hh] otherwise

(7.12)

where [hh] and [hhuh] denote the jumps in hh and hhuh respectively.

When it becomes necessary to control the cell distribution, again we will choose

to favour the information provided by the h variable, and will move the speed at

the speed of the boundary nearest the steepest gradient in h.

7.1.4 Time integration

The time integration method requires no further modification for working with

a system of two equations as it is explicit and the values of h and Q at the

new timestep are found from previous known values only. For completeness, the

timestepping method, with cell distribution control, is included here.

We partition [0, T] into M intervals of variable size ∆tm where m denotes the

timestep.

To step through time and find hh(t = T), Qh(t = T), we will use an Euler

timestepping method:

55

Shallow Water Equations

• Solve (7.9, 7.11) to obtain w0
j (0), w1

j (0), z0
j (0), and z1

j (0) and hence find

hh(t = 0), Qh(t = 0);

• For m = 0, . . . , M − 1,

– Find the boundary speeds ẋ using (7.12) on h.

– Check that the minimum cell width and timestep criteria are not bro-

ken, and modifiy boundary speeds as necessary.

– Solve (7.8, 7.10) to obtain ẇ0
j (t = m), ẇ1

j (t = m), ż0
j (t = m), ż1

j (t = m);

– Compute





w0
j (t = m + 1)

w1
j (t = m + 1)



 =





w0
j (t = m)

w1
j (t = m)



 + ∆t





ẇ0
j (t = m)

ẇ1
j (t = m)





and similarly for zj(t = m + 1);

– and hence find hh(t = m + 1) and Qh(t = m + 1)

We now have a velocity-based moving mesh DG technique for a 1D system, in-

cluding a mechanism to control cell distribution. In Chapter 8, we briefly consider

the tidal bore and dam-break applications.

56

Chapter 8

Numerical Results for Shallow

Water Equations

The full-DG moving mesh method with fixed speed adjustements to control cell

distribution has been derived for a 1D system of shallow water equations in Chap-

tershallow. We now apply the method to two simple test problems, firstly consid-

ering the dam-break problem, as considered by Yu and Kyozuka [17], and then a

tidal bore.

8.1 A Dam-Break

The dam-break problem, with a well-documented solution, has been frequently

used as a preliminary test for modelling a system of shallow water equations. The

set-up usually starts with the fluid being at rest and partioned into two heights

by a dam which is then instantaneously removed at t = 0 and the fluid begins to

flow.

Yu and Kyozuka [17] consider the conservation law problem

∂

∂t





h

Q



 +
∂

∂x





hu

1
2gh2 + Q2

h



 = 0 on [0, 1] × [0, T]

57

Numerical Results for Shallow Water Equations

taking the initial conditions to be

h(x, 0) =







1m if x ≤ 0.5m

0.5m if x > 0.5m

u(x, 0) = 0.

The solution they obtain, taken directly from [17] is given in Figure 8.1, and shows

the formation of two shocks from the intial single shock.

Figure 8.1: Taken from [17] Fig.2 p1528, Mean depth for the one-dimensional

dam-break at t = 0.1 s of analytical solution and solutions obtained from various

DG FEM methods.

8.1.1 Our problem

Due to the periodic boundary conditions used in the derivation and implemen-

tation of our moving mesh method, the dam-break problem must be slightly re-

designed. We also note that we are working with a flat-bottomed bed, taking

58

Numerical Results for Shallow Water Equations

∂B
∂x = 0, and h therefore represents the surface height, as well as the height of

water above the bed.

The conservation law problem to be solved is given by

∂

∂t





h

Q



 +
∂

∂x





hu

1
2gh2 + Q2

h



 = 0 on [0, 1] × [0, T]

taking the initial conditions to be

h(x, 0) =



















0.5 if 0 ≤ x ≤ 0.1

1 if 0.1 < x < 0.5

0.5 if 0.5 ≤ x ≤ 1

u(x, 0) = 0.

8.1.2 Results

We firstly check the basic algorithm, without control of cell distribution, by setting

all boundary speeds to zero, giving a stationary mesh. We set the maximum /

minimum parameters to be given by

- Initial cell width: ∆j = 0.005

- Minimum allowed cell width: ∆j min = 0.005

- Minimum allowed timestep: ∆tmin = 0.00001

- Maximum allowed timestep: ∆tmax = 0.00001

After 200 steps, (t = 0.002), we see from Figure 8.2 that the right-hand shock has

begun to form into two shocks, as seen in Figure 8.1. However, on most of the

region, the values are registered as ‘NaN’, possibly due to complications with the

left-hand shock and periodicity. At further timesteps, the solution breaks down.

59

Numerical Results for Shallow Water Equations

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

h
h
 at t = 0

h
h
 at t ≈ 0.002

0.45 0.5 0.55

0.5

0.6

0.7

0.8

0.9

1

Figure 8.2: The height of the water in the dam-break problem at t = 0.002, found

using the full-DG method with stationary boundaries.

We now compare the results for a moving mesh, allowing boundary speeds to be

taken as the notional shock speed at each boundary, or fixed at the largest shock

speed. To allow some movement, we set the maximum / minimum parameters to

be given by

- Initial cell width: ∆j = 0.005

- Minimum allowed cell width: ∆j min = 0.005

- Minimum allowed timestep: ∆tmin = 0.00001

- Maximum allowed timestep: ∆tmax = 0.0001

Again, we view the solution after 200 steps (t ≈ 0.002) and see in Figure 8.3 that

the results are very similar to that of the stationary mesh. If we encourage further

movement by reducing the minimum cell width to 0.001, without changing any

other parameters, the system breaks down due to a problem with the implemen-

tation of the cell distribution algorithm. Due to time constraints, this was not

investigated any further, but one may speculate that in addition to the periodic-

ity issues faced by the stationary mesh, the problems may be also due to the cell

60

Numerical Results for Shallow Water Equations

distibution algorithm being poorly designed to cope with the multiple shocks that

are present.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

h
h
 at t = 0

h
h
 at t = 0.002

0.45 0.5 0.55
0.5

0.6

0.7

0.8

0.9

1

Figure 8.3: The height of the water in the dam-break problem at t ≈ 0.002, found

using the full-DG method with some boundary movement.

8.2 A Tidal Bore

A tidal bore is formed when the leading edge of an incoming tide forms a wave

which travels up a river against the prevailing current. It may appear as a single

breaking wavefront or as a smooth wave followed by a series of solitons. This ap-

plication may provide a single-shock problem which the cell distrbution algorithm

based on a fixed speed, may be better able to cope with.

Generally formed in rivers where both the depth and width decrease to create a

funnelling effect, examples may be found around the world including the Severn

Bore on the River Severn. The modelling of tidal bores has become important

in recent years to help with river planning as they are known to be potentially

dangerous for shipping, but also act as an attraction to tourists.

61

Numerical Results for Shallow Water Equations

8.2.1 Our problem

The height and speed of a bore is effected by many factors including the height of

freshwater in the river, offshore and opposing winds and pressure levels. However,

we will assume a very simple model for our bore, and seek to solve the conservation

law problem

∂

∂t





h

Q



 +
∂

∂x





hu

1
2gh2 + Q2

h



 = 0 on [0, 1] × [0, T]

where

h(x, 0) =



















2 if 0 ≤ x ≤ 0.1

(sin(5 ∗ pi ∗ (x − 0.1))).2 + 2 if 0.1 < x < 0.3

2 if 0.3 ≤ x ≤ 1

u(x, 0) = 3.

We shall use periodic boundary conditions, as this is how the full-DG method has

been developed, although we note that they are unrealistic for a river.

8.2.2 Results

The system was solved for stationary boundaries, setting ẋ = 0, and the results

from an early timestep may be seen in Figure 8.4.

Without any results to compare this to, we cannot be sure that this is giving

the correct solution, although the results are plausible, with the increase in Q,

without the increase in h, indicating an increase in the velocity u of the water.

For the initial conditions considered, no shock appears to be forming, but this

is not an immediate worry as we have not verified that a shock should form.

At further timesteps, and when considering a moving mesh, the solution breaks

62

Numerical Results for Shallow Water Equations

down, most likely due to the periodic boundary conditions and difficulties in the

cell distribution algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

h
h
 at t=0

h
h
 at t=0.005

(a) The numerical solution for h

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Q
h
 at t=0

Q
h
 at t=0.005

(b) The numerical solution for Q

Figure 8.4: The height of the water in the tidal bore problem at t = 0.002,

found using the full-DG method with zero boundary speeds, dt = 0.00001, and

dx = 0.005.

8.3 Conclusions

While we may have obtained some promising initial results for the dam-break and

tidal bore problems, there is clearly much more we could have investigated had

there been sufficient time. We have used periodic boundary conditions which were

unrealistic for the test problems and may have introduced errors. Ideally, the full-

DG method would be rederived, allowing for non-periodic boundary conditions,

63

Numerical Results for Shallow Water Equations

before any further investigations into the moving mesh algorithm were carried out.

The test problems may then be extended to investigate the effects of the shape of

the river bed on the fluid flow.

64

Chapter 9

Summary and Further Work

9.1 Summary

This dissertation looked to find a moving mesh method for use with the Discon-

tinuous Galerkin (DG) Finite Element Method , and this has been achieved for a

single equation, although only preliminary results were avaliable for the extended

algorithm for a 1D system.

We began by considering the stationary Runge-Kutta DG method developed by

Cockburn and Shu [11], and commonly used grid adaptation techniques, including

velocity-based moving mesh methods. From this, we persued two different routes

for obtaining a moving DG method.

Firstly, we considered cell-based moving mesh methods, where the boundary

speeds were derived assuming a conservation principle on each cell. Such methods

had limited success, possibly due to the use of numerical fluxes, and inconsisten-

cies in the use of the conservation principle which directly links cell widths to the

value of the numerical solution. Method B, a non-DG technique, was partially

successful, being able to accurately model linear advection but encountering some

difficulties due to boundary overtaking for the nonlinear case. As the method did

65

Summary and Further Work

not involve numerical fluxes, which are a main component of the DG method,

and because additional controls for cell distribution may have been difficult to

incorporate due to the conservation principle, this method was not pursued.

Secondly, motivated by the results of the cell-based methods, we considered a

boundary-based moving mesh method derived without the use of a cell-based

conservation principle. The derived full-DG method does not directly calculate

the boundary speeds which instead may taken from an external source. Setting

the boundary speeds to be zero, the method accurately reverted to a stationary

DG method and provided comparable results to the RKDG method considered

initially. Using boundary speeds derived using the notional shock speeds asso-

ciated with the discontinuities in the numerical solution at cell boundaries, the

mesh sucessfully adapted to cluster around a developing shock, at which point

two methods for controlling cell distribution were considered. The fixed speed

method for controlling cell distribution worked well, preventing further issues and

allowing the clustered cells to follow the shock as it moved. The shock capture

was also much sharper than that of the average speed method at the same point in

time. However, the fixed speed method has no mechanism for handling multiple

shocks with different shock speeds and will always choose to favour the speed of

the largest shock, whereas the average speed method could more easily adapt to

a multiple shock case.

The full-DG method with fixed speed boundary adjustments was then extended

to the 1D system of shallow water equations. Whilst it was possible to form a

method, neither of the two simple test problems was ideally suited to the periodic

nature of the boundary conditions applied. Due to time constraints, the method

was tested only very briefly, and although some plausible results were obtained for

the method when boundaries remained stationary, significant further work would

be required to obtain a working moving DG method for the system.

66

Summary and Further Work

9.2 Extensions

Due to time constraints, we were unable to fully develop and test a velocity-based

moving mesh DG method for a 1D system, and there is the potential for much

futher work in this area. The periodicity of the boundary conditions was not

realistic for the dam-break and tidal bore test problems, so amending the full-DG

method for non-periodic boundary conditions would be a natural first step. We

could then re-investigate our test problems and make more direct comparisons

with existing known results for the dam-break problem.

The preliminary numerical results for the shallow water system also indicated

potential problems with the cell distribution algorithm. In particular, it would

be advantageous to investigate alternative ways to adjust the boundary speeds so

that whilst no cell falls below the minimum allowed width, the mesh is still free

to adjust to follow local features, rather than being forced to follow the largest

shock. If a good method for handling multiple shocks can be found, the dam-break

problem is then an ideal first test case due to the mulitple shocks formed from the

single initial discontinuity.

The 1D shallow water equations incoporate a term relating to the river bed, mak-

ing it possible to see how the shape of the bed effects fluid flow. In both test cases,

we only considered the flat-bed problem, but it should only be a small step to add

this additional term to a working method and investigate the effects of a sloping

or irregular bed. Another potential extension would be to include the motion of

the river bed, as studied by Hudson [12], as sand and silt are moved by the fluid.

Such a method could have practical uses in river planning and management, al-

lowing the impact of changes in the river bed to be assessed for potential hazards

to shipping before any real changes are made. For a good river model, it would

also be advantageous to extend the full-DG method to a multidimensional case,

allowing for changes in river width as well as river depth to be included. This

67

could be particularly important for the tidal bore test case, as bores are known to

develop in rivers that not only become shallower, but also significantly narrower,

creating a funnelling effect on the water.

Finally, we note that this dissertation has only very briefly considered the accuracy

and stability properties of the full-DG method, even for the working single conser-

vation law case. For the effectiveness of the full-DG method to be really known,

such properties would need to be investigated in more detail and comparisons with

other Finite Element and Finite Difference Methods should be made.

68

Bibliography

[1] M.Baines, M.Hubbard, P.Jimack. A Moving Mesh Finite Element Algorithm

for Fluid Flow Problems with Moving Boundaries, International Journal for

Numerical Methods in Fluids, Vol 47, pp 1077-1083, (2005).

[2] M.Baines, M.Hubbard, P.Jimack. A Moving Mesh Finite Element Algorithm

for the Adaptive Solution of Time-Depenedent Partial Differential Equations

with Moving Boundaries, Applied Numerical Mathematics, Vol 54, pp 450-

469, (2005).

[3] G.Chavent, G.Salzano. A Finite Element Method for the 1D Water Flooding

Problem with Gravity, Journal of Computational Physics, Vol. 45, pp 307-

344, (1982).

[4] G.Chavent, B.Cockburn. The Local Projection P 0 P 1- Discontinuous-

Galerkin Finite Element Method for Scalar Conservation Laws, RAIRO

Modél. Math. Anal. Numér, No.23, pp 565-592, (1989).

[5] B.Cockburn. Discontinuous Galerkin Methods for Convection Dominated

Problems, High-Order Methods for Computational Science and Engineering,

Vol.9, Springer-Verlag, Berlin (1999).

[6] B.Cockburn, S.Hou, C.Shu. The Runge-Kutta Local Projection Discontinu-

ous Galerkin Finite Element Method for Conservation Laws IV: The Multidi-

mensional Case, Mathematics of Computation, Vol.54, No. 190, pp 545-581,

(1990).

69

Bibliography

[7] B.Cockburn, S.Lin, C.Shu. TVB Runge-Kutta Local Projection Discon-

tinuous Galerkin Finite Element Method for Conservation Laws III: One-

Dimensional Systems , Journal of Computational Physics, Vol.84, Issue 1, pp

90-113, (1989).

[8] B.Cockburn, C.Shu. The Runge-Kutta Local Projection P 1-Discontinuous

Galerkin Finite Element Method for Scalar Conservation Laws, American

Institute of Aeronautics and Astronautics, pp 636-643, (1988).

[9] B.Cockburn, C.Shu. TVB Runge-Kutta Local Projection Discontinuous

Galerkin Finite Element Method for Conservation Laws II: General Frame-

work, Mathematics of Computation, Vol.52, Issue 186, pp 411-435, (1989).

[10] B.Cockburn, C.Shu. The Runge-Kutta Discontinuous Galerkin Method for

Conservation Laws V: Multidimensional Systems, Journal of Computational

Physics, Vol.141, No.2, pp 119-224, (1998).

[11] B.Cockburn, C.Shu. Runge-Kutta Discontinuous Galerkin Methods for

Convection-dominated Problems, Journal of Scientific Computing, Vol.16,

No.3, (2001).

[12] J.Hudson. Numerical Techniques for Morphodynamic Modelling, University

of Reading : Thesis, (2001)

[13] A.Kuo, L.Polvani. Time-Dependent Fully Nonlinear Geostrophic Adjustment,

Journal of Physical Oceanography, Vol.27, pp 1614-1634, (1997).

[14] R.Li, T.Tang. Moving Mesh Discontinuous Galerkin Method for Hyperbolic

Conservtion Laws, Journal of Scientific Computing, Vol.27, Nos. 1-3, (2006).

[15] W.H.Reed, T.R.Hill. Triangular Mesh Methods for the Neutron Transport

Equation, Los Alamos Scientific Laboratory Technical Report LA-UR-73-479,

(1973).

70

Bibliography

[16] B.Wells, M.Baines, P.Glaister. Generation of Arbitrary Lagrangian-Eulerian

(ALE) Velocities, based on Monitor Functions, for the Solution of Compress-

ible Fluid Equations, International Journal for Numerical Methods in Fluids,

Vol.47, pp 1375-1381, (2005).

[17] Z.Yu, Y.Kyozuka. A Discontinous Galerkin Finite Element Shallow Water

Model in Simulating Tidal Flows, OCEANS ’04. MTS/IEEE TECHNO-

OCEAN ’04, Vol.3, pp 1526-1531, (2004).

[18] H.Anton, I.Bivens, S.Davis. Calculus, 7th Ed. John Wiley & Sons, Inc,

(2002).

[19] K.Eriksson, D.Estep, P.Hansbo, C.Johnson. Computational Differential

Equations, Cambridge University Press, (1997).

[20] www.severn-bore.co.uk

[21] www.tidalbore.info

71

