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Abstract

We consider a two-dimensional complex holomorphic system. In particular, we use
the centre manifold theory together with the singular point theory of Briot and
Bougquet [1] to establish a centre theorem concerning the behaviour of the phase paths
of the system in the neighbourhood of an equilibrium point having a single purely
imaginary eigenvalue. An extended centre theorem is established for the
corresponding N-dimensional complex holomorphic system (N >3).



1 Introduction

We consider the complex dynamical system,

Zt = F(z,w)
; (z,w,t)eDxI , (1.1)
wt = G(z,w)

where I c R is a connected open interval and D c C? is a simply connected
domain. F, G:D — C are complex valued functions of the complex variables
(z,w)eD. In particular F and G are holomorphic functions of (z,w) throughout
D (see Range, ch.1, §1.2, [2]). It should be noted that (1.1) can be written as a C=
four-dimensional real autonomous system in an appropriate domain of R4
(Range, ch.1, Corol. (1.5), [2]). Systems of the type (1.1) arise in
telecommunications problems (see, for example, [3], [4], [5]). (insert)

We examine the behaviour of integral paths (z(t), w(t)) in the two-dimensional
complex phase space (z,w). In particular, we consider the nature of integral
paths of (1.1) in the neighbourhood of an equilibrium point which has associated
eigenvalues, one of which is purely imaginary whilst the other has non-zero real
part. We establish the existence of a family of concentric closed orbits
surrounding the equilibrium point, and we conclude that the equilibrium point is

a centre, and topologically equivalent to that of the associated linearized system.

2 Local behaviour via centre manifold theory

Without loss of generality, we take z = w = 0 to be an equilibrium point of (1.1) in
D, which is simple; that is, det[J(F,G)] # O at z = w = 0, where J(F,G) is the
Jacobian matrix of F(z,w), G(z,w). This condition ensures that z = w =0 is an
isolated equilibrium point. We consider the situation when the associated
linearized system is such that one eigenvalue of J(F,G)l,0) is purely imaginary,
whilst the other has non-zero real part. For simplicity, we consider that the
linearized part of (1.1) at z = w = 0 has been put into normal form. We may then

write (1.1) as,

zt = ipz + f(z,w)
(z,w,t)e DxI (2.1)
Wt = AW + g(Z,w)



(insert)

In telecommunications systems, the transmission of high speed digital signals can be
affected by atmospheric distortion as a result of multipath interference. Distortion of this
type is removed by introducing adaptive equalisers which are tapped delay devices. Since
complex—valued data streams are usually transmitted, the control equations for the

equaliser are complex—valued and have the form,
¢t = — o Im[el¢ Ro} ,
Zjy = —ujel¢Rj , j=1,.,N.

Here zj (j=1, ..., N) are the variable tap weights which are adjusted to remove signal
distortion, Rj (j=1, ..., N) are nonlinear functions of z; (j=1,...,N), g (j=1,...,N)
are real, positive feedback factors and ¢ in the phase of the carrier signal. In the
simplest case, with N =2 and ¢ = constant, we obtain the two—tap adaptive equaliser

system, which can be written as

Zy = W

wy = Vi +vez+rvsw+ 71224 72w

with z, w, vj, 71 complex. This system falls into the class of complex dynamical systems

given by (1.1), and motivates their study.



where Re(A) # 0, peR\{0} and f(z,w), g(z,w) are holomorphic in D, with Taylor

series,

(2.2)

convergent in some neighbourhood of z = w = 0 (agp, bep, @.peN are Taylor

coefficients of f, g at z =w =0, Range, ch.1, §1.6, [2]).
(2.3) Remark

Without loss of generality, we will take Re(A) < O in (2.1). We simply reverse the
sign of t to consider the case when Re(A) > 0.

We now apply the centre manifold theory (see, for example, Carr [6], Wiggins [7])
to the equivalent C*= four-dimensional real system to classify the phase space
structure of (2.1) in the neighbourhood of z = w = 0. We use Theorems (1), (2)
together with comments (2.6) of Carr [6] (ch.1 and ch.2, §2.6) to deduce that there
exits a real two-dimensional centre manifold in a neighbourhood of z = w = 0,
described by,

We={(zw)e€C?2 : w=1L(z) , Ilzl<d, L(O)=0, DL0O)=0}, (2.4)

for &> 0 sufficiently small. In (2.4), L:Ds—> C, Ds=1{z: 1zl <8 and writing

z=x+1iy and L= u(x,y) + iv(x,y), then,

DL(0) = (“" z] (2.5)
Yix=y=0

In addition, the centre manifold theory guarantees that u(x,y) and v(x,y) are Cr
functions in some neighbourhood D! of x=y =0 foreach reN (see [6], ch.2,
§2.6). However, this does not imply that the complex function L(z) is a
holomorphic function of z in any neighbourhood of z = 0 (u(x,y), v(Xx,y) do not
necessarily satisfy the Cauchy-Riemann equations in any neighbourhood of
z=0),



Theorem 2 of [6] (ch.l, P.4) determines that all phase paths of (2.1) in a
neighbourhood of z =w =0 contract exponentially (in t) onto the centre manifold
Wec. Hence the nature of the equilibrium point z = w = 0 is determined by the
dynamics of (2.1) restricted to the centre manifold W¢. The dynamics on the

centre manifold are governed by the reduced scalar complex equation,
zt = ipz + f(z,1(z)) , lz1<d . (2.6)

Thus, to study the behaviour of (2.1) in the neighbourhood of the equilibrium
point z = w = 0, we need only examine the dynamics of the scalar complex
equation (2.6) close to z = 0. Clearly z =0 is an isolated equilibrium point of (2.6),
with a single imaginary eigenvalue iu. The behaviour of (2.6) depends crucially
upon whether the function L(z) is a holomorphic function of z 1in a
neighbourhood of z = 0. As remarked earlier, this is not guaranteed by the centre
manifold theory, even when f, g are themselves holomorphic functions of (z,w)
in a neighbourhood of z =w = 0.

When L(z) is holomorphic in a neighbourhood of z = 0, then f£(z, L(z)) is also
holomorphic in a neighbourhood of z = 0 (since f(z,w) is holomorphic in a
neighbourhood of z = w = 0) and the local behaviour of (2.6) can be determined
by the theory of scalar complex holomorphic equations (see, for example,
Brickman and Thomas [8], Sverdlove [9], Needham and King [10]). In particular

(noting that with L(z) holomorphic at z = 0, then, L(z) = anz“ in some
n=N

neighbourhood of z =0, with N 2 2) we have that the behaviour near w=2z=0 is
that of a centre, with the concentric family of closed orbits lying on the centre
manifold in the neighbourhood of z=w =0 (see [8] or [9], theorem (2.6)). We can

summarise this in,

(2.7) Proposition

Let z =w = 0 be an equilibrium point of (1.1) at which J(F,G) has a single purely
imaginary eigenvalue ip, whilst the other eigenvalue A has non-zero real part.
Then (1.1) has a complex one-dimensional centre manifold in a neighbourhood of
z =w = 0 described by the complex function L(z) of the complex variable z, for z
sufficiently close to z = 0. All phase paths of (1.1) in the neighbourhood of
z = w = 0 contract exponentially onto the centre manifold as t - « (when
Re(A) < 0) oras t— —o (when Re(A) > 0). Moreover, when L(z) is holomorphic
in a neighbourhood of z = 0, then (1.1) has a centre family in the neighbourhood



of z =w = 0. This centre family of concentric, closed, periodic orbits lies on the

centre manifold.

A general centre theorem now follows, provided we can establish that L(z) is
holomorphic in a neighbourhood of z = 0.

3 A holomorphic centre manifold via Briot-Bouquet theory

We consider first the following singular initial value problem for & :Dg — C

(where Dy ={z:1zl < &}) ,
linz + fz,0] - nE + g@8) , zeDy . E0)=£(0)=0,

which we will henceforth refer to as IVP. We have,

(3.1) Temma

w = L(z) is a centre manifold of (2.1) at z = w = O which is holomorphic in a
neighbourhood of z = 0 & & = L(z) is a solution of IVP which is holomorphic in a

neighbourhood of z = 0.

proof

= Suppose w = L(z) is a centre manifold of (2.1) at z = w = O which is
holomorphic in Izl <8. Then by definition, and the Cauchy-Riemann equations,

L(0) =L'(0) =0 . (3.2)

Now let Izol <& and put wgy = L(zg), with wg(t), zs(t) being the integral path of
(2.1) satisfying zs(0) = zg, ws(0) = wp. Since w = L(z) in an invariant manifold of
(2.1), then ws(t) = L(zs(t)) Vv Itl < 8" such that lzg(t)l < 3. However
wi(t) = L'(zs(t))z4(t), It <87, with in particular ws(0) = L'(zs(0))zs(0) which gives,
via (2.1),

AWo + 8(Zo, Wo) = L'(zo)(inzo + f(zo, wo)) - (3.3)



Equation (3.3) therefore holds V zy with |zgl <3. Equations (3.2) and (3.3)

establish that L(z) satisfies IVP in |zl <8, as required.

< Suppose that & = L(z) is a solution of IVP which is holomorphic in Izl <& for
some & > 0. We need to show that the (unique) solution of (2.1) with initial
conditions z(0) = zo, W(0) = L(zg) (0 <Izgl < &) is given by z(t), wg(t), where

w;s(t) = L(zs(1)) ,
(3.4)
Zgt = iHZs + f(Zs, L(Zs)) ’

for Itl <&, with 8 such that Izg(t)l <&. Now,

Zse — ipzg — £z, Ws) = £(zg, L(2s)) — f(zg, W) =0

Wt — AW — 8(Zs, Ws) = L'(Z5)Zs — ML(Zs) — 8(Zs, L(2))

_ [AL(zy) + 8(zg, L 1307 4 £z, Lizg))]

[ipzg + f(zg, L(z))]
—[AL(zg) + (2, L(z)) =0

via (3.4) and IVP. Thus (z(t), ws(t)) as given by (3.4) provides the solution of
(2.1)in Itl < 3 subject to initial conditions (zg, L(zp)) and the result follows.
a

We next establish that IVP has a unique solution holomorphic in a neighbourhood
of z=0.

(3.5) Lemma

IVP has a unique solution w = L(z) which is holomorphic in a neighbourhood of
z=0.

proof
We introduce w(z) by the transformation,
w(z) =zy(z) , lzl<¥& , (3.6)

and re-write IVP in terms of y(z) and z, which becomes,



(wiz + f(z, yz) (v + zyz) = Az + g(z, vz) , (3.7)
y(0)=0, lzI<¥& . (3.8)

We can write (3.7) as,

(1 + pzw) (v + 2yz) = —%w azy) , lzl<¥ (3.9)

where now,

oo

plz,v) = V(Y agy*)2

n=2 o+p=n

(3.10)

oo

q(Z, ‘U) . '1_];2( Zbaﬂwﬁ)zn—l )

n=2 o+f=n

convergent in some neighbourhood of z = y = 0, and are both therefore
holomorphic in that neighbourhood. We can simplify (3.9) to,

2yg =+ Dy - bz + Qzy) | 121 <8, (3.11)

where,

= _ bZO _ Q(Z; W)p(z) W) 1_7\‘_ W(Z’ W)
QUzw) =@z v) -3 == 0G0 TR T+pzy) (3.12)

is holomorphic in a neighbourhood of z =y = 0 and has,
Q(z,y) = 0(y2,z2) as Wy, l1zI-0 . (3.13)

We also observe that (% + 1) ¢ NU{0}. Equation (3.11) is now in the form of the

equation of Briot and Bouquet [1] (see also Sansone and Conti [11], ch.3, §2), and an
application of Theorem 1 of [11] (p.115, ch.3) establishes that equation (3.11) has a
unique solution y = ¥(z) holomorphic in a neighbourhood of z = 0 and satisfying
the initial condition ¥(0) = 0. Hence, via the transformation (3.6), IVP has a
unique solution w = L(z) holomorphic in a neighbourhood of z = 0, with
L(z) = z¥(z), and L(0) = L’(0) = 0, as required.



We now have,

(3.14) Proposition

The system (2.1) has a unique centre manifold w = L(z) at z = w =0 which is

holomorphic in a neighbourhood of z = 0.

proof

Follows from lemma (3.5) using lemma (3.1)

Finally we have established the following centre theorem,

(3.15) Theorem

Let z = w =0 be an equilibrium point of (1.1) at which J[F,G] has a single purely
imaginary eigenvalue, whilst the other eigenvalue has non-zero real part. Then
(1.1) has a unique complex one-dimensional centre manifold at z = w = 0 which is
holomorphic in a neighbourhood of z = 0. This centre manifold contains a centre
family of closed, periodic, orbits of (1.1) surrounding z = w = 0. All phase paths of
(1.1) in the neighbourhood of z = w = O contract exponentially (in t) into this
centre manifold as t -« (Re(A) <0) or t— -« (Re(A)> 0).

proof

Follows directly from propositions (2.7) and (3.14).

We can make the following comments concerning theorem (3.15) :

(3.16) Remarks

(i) Theorem (3.15) establishes that the phase space structure of (1.1) and that
of its corresponding linearization about z = w = 0 are topologically

equivalent in a neighbourhood of z =w = 0.

(ii)  The period of each of the periodic orbits on the centre manifold is T = 2%/,

and each has zero mean shift about z = 0, that is,



T
|, z(odt=0,

for each periodic orbit zp(t). This follows directly from the theory of
scalar holomorphic equations, [8], [9], [10].

(iii) Limit cycles in (1.1) cannot be created at a simple Hopf bifurcation.

We now develop a generalization of the centre theorem to N-dimensional
holomorphic systems.

4 N-dimensional holomorphic systems

We generalize the two-dimensional complex system (1.1) to the N-dimensional
system (NeN),

u=H(u) , (ut)eDxI, (4.1)

where D c CN is a simply connected domain, ueD and H:D — CN. In component
form we write u = (z,wq, ... , Wn.1)T and H = (E,Gy, .... , Gy.1)T with z,wjeC and
F,Gi:D—>C (i=1, ..., N-1) being holomorphic functions of u in D. Again, (4.1)
can be written as a C*, 2N-dimensional real autonomous system in a suitable
domain of R2N,

We consider the nature of integral paths of (4.1) in the neighbourhood of an
equilibrium point which has associated eigenvalues, one of which is purely
imaginary whilst the others have non-zero real parts. We establish the existence
of a family of concentric closed orbits surrounding the equilibrium point, leading
to a generalization of theorem (3.15).

We take u =0 to be the equilibrium point of (4.1) and assume that the linearized
part of (4.1) at u =0 has been put into normal form. Thus we may write,

Zt = ipz + f(Z,Wq, oo, WN-1)
(4.2)
Wit = MWj + gi(Z,W1, e s WN1) », i=1,..,N-1,
where peR\{0}, Re(Apj) #z O0(i=1,...,N-1) and f(u), gi(u)(i=1,...,N-1) are

holomorphic in D with If(u)l, Igi(u)l = O(lui?) as lul - 0. Thus, in a
neighbourhood of u=0, f and g; (i=1, ..., N-1) have Taylor series,



f(u)=2 ( Zaplpz____pszlwfz....wgﬁl) ,
n=2 p;+pz+..+Py=n

gi(u) = z ( z blplpz----pNZplwll:)z 'ngil) .
n=2

P1+DP2 +...+Py=D1

We can again apply centre manifold theory to the equivalent C=, 2N-dimensional
real system to classify the behaviour of (4.2) in phase space in a neighbourhood
of u=0. We require the extended versions of theorems (1), (2) and comment (2.6)
in [6] (as extended to systems for which Re(Aj) may be positive or negative, and
reviewed by Wiggins, [7], ch.2, §2.1c). These results establish the existence of a
real two-dimensional centre manifold in a neighbourhood of u = 0, described by,

We ={ueCN:wj=1Liz) , lzI<s , Lij(0)=0,
(4.4)
DLi(0)=0, i=1,...,N-1}

for some §>0. In (4.4) Lj:Dg— C and with Lj = uj + ivj, then the definition of
DL; follows (2.5). The functions uj(x,y), vi(xy) (i=1, ..., N-1) are C' functions
in some neighbourhood Dy of x=y =0 for each reN. However, as before, this
does not guarantee that the functions Li(z) are holomorphic in any
neighbourhood of z = 0.

The phase paths in the neighbourhood of u =0 contract onto the centre manifold
either as t » « oras t— —o and the nature of the equilibrium point u =0 is
determined by the dynamics of (4.1) restricted to the centre manifold Wc. The
dynamics on the centre manifold are governed by the reduced complex scalar

equation,
zt =ipz + f(z,L1(z), <o , In1(2)) ,  121<8 . (4.5)

Classification of (4.5) in Izl < then determines the nature of the equilibrium
point u=0 of (4.1). z =0 is an isolated equilibrium point of (4.5) with a single
imaginary eigenvalue ip. To establish the centre theorem for (4.1) we again
show that Lij(z) (i = 1, .... , N - 1) are holomorphic functions of z in some
neighbourhood of z = 0, after which the result follows from (4.5) and the theory
of [8], [9], [10], as in section 2.
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We introduce the initial value problem,

[1IJZ + f(Z,él, sese &N-l)] &IZ . }\’l&l i gi(z7§17 rens E.»N-l) ) |zl < &

i=1,...,N-1, with,

£i(0) =¢€jz(0)=0, i=1,..,N-1,
which we shall henceforth refer to as IVPN. Corresponding to lemma (3.1), it is
readily established that wj = Lj(z) (i=1, ..., N-1) in a centre manifold of (4.2) at
u = 0 which is holomorphic in a neighbourhood of z = 0 if and only if &;j = Li(z)
(i=1,...,N-1) in a solution of IVPN which is holomorphic in a neighbourhood
of z =0. We study IVPN using the Briot-Bouquet theory for systems (see [11], ch.3,
compliments 5, [12]). First we introduce the transformation,

&i(z) = zyi(z) , (4.6)

after which IVPN becomes,

sa , __iﬁ —
[1+f(z,2yy,....,2¢n_1)] [y + 29 ] = m Vi + 8(Z,2y1, .0, ZWNq) 4.7)

Izl< & ,

yi(0)=0, i=1,..,N-1. (4.8)

Here f:_if, éi =,Lgi are holomorphic functions of z,y, ..., yNy-1 ina
inz iuz
neighbourhood of z = y; = .... = yn.1 = 0. A further rearrangement leads to,
’ _i]\‘i e
Zyj = [T\I’i + 8i(Z,2y1, ..., ZWN_1)]
(4.9)

x[1+R(Z,ZWq,..-, ZWN_1)] - Wi, i=1,....,N-1,
with,

R(Z,Zy1,.+.-,ZWN-1) = =122, e Ti), (4.10)

(1 +£(z,2yy1,...0r ZWN-1))

11



We observe that,

i

éi = zi(ilul-oZ+O(ZZ’W57““7W§_1) ’
(4.11)
a

R= Li(il_o—z + 0(227\”%! "'-’WI%I—I) ’

as lIzl, lyil, ...., lyngl = O. Finally (4.9) becomes,
1

Z\lfi'=—ci\|/i—i 20""0Z+xi(z,\|11,....,\|lN_1) , i=1,....,N—1 N (4.12a)
with,

ci=%+1eNU{0}, i=1,..,N-1, (4.12b)
and, %i(z,y1, ... , Wn.1) 1S holomorphic in a neighbourhood of z =y; =...=yy1 =0
with,

% =05 w2, owh ) as Izl lyl, o Iyl > 0. (4.13)
Equations (4.12a) subject to initial conditions

yi(0)=0, i=1,...,N-1, (4.14)

are equivalent to IVPN. The equations (4.12) are now in the standard form for
application of the Briot-Bouquet theory ([11], [12]), which establishes that
provided none of the oj is a non-negative integer, then equations (4.12a) have a

unique solution vj = ¥i(z) (i=1,2, ..., N-1) which satisfies conditions (4.14) and
is holomorphic in a neighbourhood of z = 0. Since Re(Aj) #OVi=1,...,N-1,
then, via (4.12b), i €N U{0} Vi=1, ..., N- 1 and so the Briot-Bouquet theorem

holds. We conclude, via transformation (4.6), that IVPN has a unique solution
& = z¥i(z) i= 1, ...., N- 1 which is holomorphic in a neighbourhood of z = 0, from
which we deduce that (4.1) has a unique one dimensional complex centre

manifold at u =0, wj=2z%i(z) (=1, ..., N-1) which is holomorphic in a

neighbourhood of z = 0. We therefore have established the following

generalization of theorem (3.15),

12



4.1 Theorem

Let u =0 be an equilibrium point of (4.1) at which J[H] has a single purely
imaginary eigenvalue, whilst the other eigenvalues all have non-zero real parts,
then (4.1) has a unique complex one dimensional centre manifold at u =0 which
is holomorphic in a neighbourhood of z = 0. This centre manifold contains a
centre family of closed periodic orbits of (4.1) surrounding u = 0. All phase paths
of (4.1) in the neighbourhood of u =0 contract onto this centre manifold as t — «

or t — —oo,

We note finally that remarks (3.16) also apply to theorem (4.15).
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