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ABSTRACT

We consider the problem of high frequency acoustic scattering by sound soft convex

polygons. Standard numerical schemes have a computational cost that grows in

direct proportion with the frequency of the incident wave. Recently Chandler-

Wilde and Langdon presented a Galerkin boundary element method whereby the

products of plane wave basis functions with piecewise polynomials supported on a

graded mesh were incorporated into the approximation space. For this scheme the

degrees of freedom grows only logarithmically with the frequency. We propose and

implement a collocation method which is more computationally efficient when using

a similar approximation space and we give a thorough account of the theory used in

the implementation of this method. Although the method does not lend itself well

to the same rigorous error analysis as the Galerkin method, we are able to present

the numerical results obtained and conduct a comparison analysis of our method

with the existing numerical results obtained by the Galerkin method. These results

indicate that we have obtained a substantial reduction in the computational cost

whilst sustaining a similar order of convergence.
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1. INTRODUCTION

Wave scattering spans a large range of physical scenarios which we can describe

using Partial Differential Equations (PDE’s), complemented with both boundary

and initial data. These PDE’s cover scenarios such as acoustics, electromagnetics,

transmission lines (which store and convey energy), vibrations over some elastic

membrane to name but a few, and have many practical applications in the modern

world. Whether we require to know the acoustics in a music hall, and how the

architect needs to design for optimality, or how we find oil fields and assess the size

and quantity to see whether it is economically feasible for the oil to be removed, wave

scattering has many implications everywhere. Therefore the numerical simulations

of such challenges and the understanding of these simulations is a very important

area of research.

This dissertation is to focus on time-harmonic acoustic scattering by sound

soft convex polygons in an infinite plane. Using the boundary element method we

can reformulate the problem as a problem on the boundary of the obstacle whose

solution can be approximated using various methods. We shall also be focusing

on high frequency waves where traditionally we require a larger number of degrees

of freedom in order to obtain a good representation. Recent research has led to

a new graded mesh being developed and used on the boundary of the obstacle

instead of a more traditional uniform mesh where we discretise at regular intervals.

The number of degrees of freedom required to achieve a given level of accuracy on

this new graded mesh is logarithmically proportional to the wavenumber instead of

directly proportional as we would see with the more traditional mesh. This means

that simulation of high wavenumbers can be calculated a lot more efficiently than

before. Recently, a Galerkin boundary element method (see [4]) with non-standard

basis functions has been implemented successfully. Although it lends itself well to

rigorous analysis it suffers from large computational costs for the problem.

The aim of this dissertation is develop a Collocation Method so that we can

compute the entire acoustic wave field when given some known incident wave posed

with a convex polygon scattering obstacle in the two dimensional plane. The vertices
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of the obstacle in the isotropic two dimensional plane will be given and we will then

numerically calculate the total wave field along the boundary of the object allowing

us to construct an image of the total field. This method is more computationally

efficient than Galerkin but does not lend itself to the same rigorous analysis. The

method will be implemented using the MATLAB environment.

In chapter 2, where we discuss much of the theory, we give a brief introduction

to the problem and discuss how we can reformulate it as an integral equation on

the boundary, parametrise the problem and define the new graded mesh as in [4].

Chapter 3 is concerned with two of the methods we can use to solve the problem

that currently exist, here, we give a brief overview of the Galerkin and collocation

methods. We will then highlight their differences and discuss how we can choose

the appropriate mathematical constraints in order to optimise our method, and

eliminate some of the inaccuracies in our solution that may occur if a poor choice

was made.

In chapter 4 we discuss the implementation of the collocation method in building

the linear system we need to solve and how we can evaluate some of the entries

containing oscillatory integrals analytically. We also discuss how to evaluate some

of the oscillatory integrals which we cannot evaluate analytically and the reasons

why we cannot do this. This section is primarily concerned with building the linear

system defined by the method, but is also concerned with implementing the method

in an efficient manner when numerically integrating and treating problems caused

by the finite accuracy of machine hardware.

Numerical results produced by the method can be found in chapter 5, in this

section we discuss these results and whether or not the method has proved to be

successful for the problem and the reasons for this.

We conclude the report in chapter 6 and suggest avenues of investigation that

have been brought to our attention throughout.



2. BACKGROUND INFORMATION

In this chapter, we present some of the background information and motivation for

the problem at hand. This background review is not comprehensive but provides

us with building blocks for the problem and so the theory here is pertinent to our

specific application. Much of this background theory is based around the paper [4].

In this paper the same problem was tackled but instead of the collocation method

we use here, a Galerkin method was implemented.

2.1 Wave Scattering

When investigating scattering theory we are concerned with what effect an obstacle

has on some known incident wave (or waves). Scattering theory falls into two types

of problem area, these are

- Direct Scattering Problem - Concerned with determining the scattered

field in the plane where we have knowledge of the incident field and the scat-

terer. Here we refer to the scatterer as the scattering obstacle.

- Inverse Scattering Problem - Concerned with determining properties of

the scatterer, for example, shape and physical attributes, from the measure-

ment at specified positions of the scattered field, usually using a number of

different incident fields. Ultrasounds are an example of an inverse scattering

problem.

Our problem falls into the category of direct scattering, we now introduce the ideas

behind developing the problem, as well as the problem itself.

2.2 Direct Scattering Problem

Along with defining the incident wave, the direct scattering problem consists of

three requirements in order to solve for the total field when scattered by our convex

polygon Ω. By total field we mean the sum of the incident wave and the waves
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reflected and diffracted by the scatterer. These requirements consist of the following

three subsections.

2.2.1 The Helmholtz Equation

If we consider the isotropic scalar field V (x, t) ∈ C2 (Rm\Ω) × C2 (0, T ) for m =

2, 3, . . ., where m is the dimension, then for a wave propagating with some speed

c > 0 then V satisfies the wave equation

Vtt = c2∆V. (2.1)

Since we are dealing with acoustic waves we look for a time harmonic solution to

(2.1), that is, a solution which takes the form

V (x, t) = u (x) e−iωt,

where ω is the angular frequency. If we substitute this into (2.1) and perform some

manipulation we obtain

∆u (x) + k2u (x) = 0, (2.2)

for k = ω/c, where k is known as the wavenumber and equation (2.2) is known as

the Helmholtz equation. Note that the the wavenumber is directly proportional to

the frequency of the wave and as the problem in question is specifically looking at

high frequency waves, we are interested in the case when the value of k is large, or

equivalently when the scattering obstacle is large. So we are specifically concerned

with problems where the obstacle is many wavelengths long.

2.2.2 Boundary Condition on the Scatterer

We also require a boundary condition on the surface of the scatterer. This boundary

condition can consist of Dirichlet, Neumann or Robin conditions. For acoustic

waves these are known as sound soft, sound hard or impedance boundary conditions

respectively. For the problem we are to consider the scatterer is to have a zero, sound

soft (dirichlet) boundary condition and so we have

u = 0, on Γ, (2.3)

where Γ represents the entire boundary of the polygon.
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2.2.3 Sommerfeld Radiation Condition

The final requirement is that we are to supplement (2.2) with a Sommerfeld Radi-

ation Condition (SRC). This ensures uniqueness of the solution for the total field.

For example, one solution to (2.2) would clearly be u = 0, this of course is incorrect

and so without the SRC we would not necessarily have a unique solution. The SRC

takes the form

lim
r→∞

r
m−1

2

(

∂us (x)

∂r
− ikus (x)

)

= 0, r = |x| , (2.4)

where m is the dimension in which we are working (m = 2 in our problem) and

us (x) is defined to be the scattered field and is the difference between the total field

u (x) and the incident field ui (x) i.e. us = u − ui. The SRC ensures the scattered

field decays in all directions at ∞, and ensures the problem (2.2) together with the

boundary condition (2.3) has a unique solution. Another way to think of this is

that the scattered wave has a zero boundary condition at r = ∞.

We are able to reformulate the problem (2.2),(2.3) and (2.4) to be defined on

the boundary of the object, this is known as a Boundary Integral Equation (BIE),

and is what we are looking to solve. We describe this reformulation process in the

following section.

2.3 Greens Representation and Reformulation

Equation (2.2) is an elliptic PDE and so we are able to represent the total acoustic

field u, at any point in our domain explicitly in terms of the u and the normal

derivative on the boundary of the polygon, Γ. So using Green’s representation

theorem, together with the zero Dirichlet boundary conditions on the polygon we

have [5, Theorem 3.12]

u (x) = ui (x) −

∫

Γ
Φ (x,y)

∂u

∂n
(y) ds (y) , x ∈ D, (2.5)

where n is the normal to the boundary, D := R
2\Ω and Φ (x,y) := (i/4)H

(1)
0 (k |x − y|)

is the standard fundamental solution for the Helmholtz equation and ui (x) is the

incident wave. We define the fundamental solution as follows (see for example [7,

p.267] [11, pp.14-15]

Definition 1. For a linear PDE Lu = 0 in Ω̄ ⊂ R
d the fundamental solution s

(singularity function) is a function Φ of two variables x and y, defined for all the
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domain Ω̄, x 6= y, which for every fixed y ∈ Ω satisfies as a function of x

LxΦ (x,y) = δ (x − y)

where Lx denotes the operator differentiated with respect to x, and δ is the dirac

delta function.

We therefore have u (x) = Φ (x,y) satisfying the helmholtz equation and SRC

everywhere except at the points x = y. The fundamental solution, Φ, consists of the

function H
(1)
0 , this is known as the Hankel function of the first kind, of order zero.

Hankel functions are a linear combination of the Bessel and Neumann functions,

more specifically

H(1,2)
p = Jp (x) ± iYp (x) , p, x ∈ R, (2.6)

where Jp (x) is the bessel function and Yp (x) the Neumann function. We will not

investigate the Hankel function further here, the main features we are to take from

it is that as the argument approaches zero from above then the absolute value of the

Hankel function tends to infinity, and so it is not defined at the origin. Also, as we

move away from the origin (in the positive direction) the magnitude of this function

decays. Further information on these functions can be found in [16, pp.6-10] and

[1, ch. 9].

We recall that we are looking to reformulate the problem (2.2),(2.3) and (2.4)

as an integral equation on the boundary of the polygon, we let x → Γ in (2.5) and

using the zero dirichlet boundary conditions on Γ we obtain

ui (x) =

∫

Γ
Φ (x,y)

∂u

∂n
(y) ds (y) , x ∈ Γ, (2.7)

this is an integral equation of type first kind, but for some values of k no solution

exists. Instead we compute the normal derivative of (2.5) and let x → Γ once more

to obtain

1

2

∂u

∂n
(x) +

∫

Γ

∂Φ (x,y)

∂n (x)

∂u

∂n
(y) ds (y) =

∂ui

∂n
(x) , x ∈ Γ, (2.8)

where the half comes from the jump relations as we approach the boundary (see

[5]). Equation (2.8) is an integral equation of type second kind, which although

being easier to solve also suffers again as for some values of k no solution exists.

To ensure that we obtain a solution for all k we take a hybrid of these two integral

equations and add iη× (2.7) to (2.8) to obtain the Burton/Miller equation [3].

1

2

∂u

∂n
(x) +

∫

Γ

(

∂Φ (x,y)

∂n (x)
+ iηΦ (x,y)

)

∂u

∂n
(y) ds (y) = f̃ (x) , x ∈ Γ, (2.9)
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where we define the f̃ (x) to be

f̃ (x) :=
∂ui

∂n
+ iηui (x) (2.10)

with the coupling parameter η ∈ R\ {0}. The choice of η can be dependent on

many things, to balance (2.9) we choose η = k. By balance we mean that each of

the terms in the Burton/Miller equation will be multiplied by the wavenumber k

so it seems a logical choice and may also help to minimise the condition number in

the system we solve. Note that this is not essential and not even necessarily the

best choice, there are however many reports on what the best choice may be (see

for example [2]) and it is a large area of research, we will not go into this further

here.

Equation (2.9) is a uniquely solvable integral equation of type second kind which

has a solution for all k. We are looking to solve (2.9) for the unknown ∂u/∂n using

some appropriate method and substitute this into (2.5) allowing us to compute the

total acoustic field anywhere in our infinite domain. From here on the total acoustic

field is to be known as ut (x), and as with the scattered and incident fields is for

any point x ∈ D. There are many numerical methods we can use to solve (2.9),

two such methods are the Galerkin method and the collocation method, these are

the two methods we shall focus our attention on throughout and we will return to

the details of each in chapter 3.

The process of reformulating the Helmholtz equation on the boundary of the

polygon and solving is known as the Boundary Element Method (BEM). Note that

we have successfully taken the original two-dimensional problem (2.2), (2.3) and

(2.4) and reduced to a one-dimensional problem on the boundary in (2.9), an obvious

advantage, which we can then solve and hence find the total field. Before discussing

the methods for solving further, we will talk about the effects of high frequency and

how we can improve the efficiency of the standard BEM’s to be computationally

cheaper. This can be done by choosing an optimal mesh and using non-standard

basis functions. We will also discuss why we need to do this as opposed to using a

traditional mesh with nodes set at uniform intervals.

2.4 High Frequency

When numerically approximating waves using piecewise polynomials, typically as we

see in figure 2.1, we require at least ten nodes per wavelength for a good estimation.

It is clear to see that if we were solving for a wavelength of one unit length, then
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Fig. 2.1: Approximation to one complete wavelength

we would need, say j nodes to numerically represent the wave. However, if we were

to consider solving a problem where the wave had length 1/100th of a unit then

we would need 100 × j nodes to represent the wave over the same interval. This is

of course not feasible in computational terms as k → ∞, where we recall k is the

wavenumber, and so we are looking to find a method to reduce the computational

time considerably. We will preferably have a method where the degrees of freedom

required over some interval are not in direct proportion to kL, where L is the length

of the boundary.

If we consider for the moment some convex scatterer with a smooth boundary

(i.e. not a polygon) one way we can solve for the entire acoustic field is remove some

of the oscillation by factoring out the oscillation of the incident wave from the total

field, thus
∂u

∂n
(y) =

∂ui

∂n
(y) × F (y) , (2.11)

we are then able to approximate F (y) using some conventional BEM (such as

Galerkin) by piecewise polynomials of an appropriate degree. What we find is that

(2.11) holds relatively well for F (y) ≈ 2 on the illuminated sides of the obstacle and

F (y) ≈ 0 on the shadow sides. This makes sense if we consider physical optics, on

the illuminated side we will get a reflection of the incident wave roughly equal to the

incident wave itself. Likewise, on the shadow side we will get no incident wave and

hence no reflection so the total wave will be roughly zero. As mentioned previously

this is for a smooth object and helps reduce the degrees of freedom required per

wavelength, this does not however work so well for polygons but we can use this

idea of factoring out the oscillating wave to optimise our method. We shall return

to this idea shortly.
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2.5 The Problem On One Side

We can show by geometrical optics [8] that

ut (x) = ui (x) + ur (x) + ud (x) , (2.12)

that is, the total acoustic field is the sum of the incident, reflected and diffracted

fields respectively. Here, ud (x) represents the diffracted field in the plane and

ur (x) is the reflected field, the sum of these gives us the total scattered field, i.e.

us = ud + ur . The same can also be said for their normal derivatives. Clearly the

incident wave is known (of the form ui = eikx.d = eik(x1d1+x2d2), where all terms

are known) and when dealing with convex polygons it is a straightforward task to

calculate the reflected wave. We give a brief overview of how we can do this here.

In the absence of diffraction we have u = ui + ur and so using the zero boundary

condition (2.3) it follows that ur = −ui on the boundary, and so assuming we

have an infinite side of a polygon we seek d̃ in ur = eikx.
˜d such that the reflected

field equals the negative incident field subject to the zero boundary condition (i.e.

ut = 0 on x2, where x2 is the axis parallel to the polygon edge). This means that

the only term we need focus our attention on for now is the term ud (x) concerning

the diffracted field, since everything else is either known or easy to calculate.

If we consider one side of a polygon with corners P and Q (for now let this be an

illuminated side) and let us extend the side of the polygon infinitely in our domain.

We can define DL to be the half-plane with the boundary Γ+ ∪ γ ∪ Γ−, we see this

in figure 2.2 (see also [4, fig.2]).

We define the Dirichlet Green function in the half-plane DL as

G (x,y) := Φ (x,y) − Φ
(

x,y′
)

(2.13)

for x,y ∈ DL. Here y′ is the reflection of y along the boundary of our half-plane

Γ+ ∪γ ∪Γ− and (2.13) satisfies the helmholtz equation in DL. If we consider (2.12)

then in this case (when the side of the polygon is infinitely long) ui (x) = eikx.d

defines the incident field, whereas ur (x) = −eikx.d’ denotes the reflected field,

where d = (d1, d2) is the direction of the wave. We define precisely what d1 and

d2 are later on. Using Greens Representation Theorem [5] in the plane DL we can

represent the diffracted wave ud (x) as

ud (x) =

∫

Γ+∪γ∪Γ
−

∂G (x,y)

∂n (y)
u (y) ds (y) , x ∈ D, (2.14)
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Fig. 2.2: Scattering on a half plane by a convex polygon, consisting of incident, reflected

and diffracted waves

and since u (y) = 0 on γ, using symmetry we can write

ud (x) = 2

∫

Γ+∪Γ
−

∂Φ (x,y)

∂n (y)
u (y) ds (y) , x ∈ γ, (2.15)

we now take the normal derivative of (2.12) along the boundary and have for each

side of the polygon

∂u

∂n
(x) = 2

∂ui

∂n
(x) + 2

∫

Γ+∪Γ
−

∂2Φ (x,y)

∂n (x) ∂n (y)
u (y) ds (y) , x ∈ γ. (2.16)

Equation (2.16) is not hypersingular (not very singular) since at no point can x = y.

We also note that the term 2∂ui/∂n (x) is absent on the shadow sides of the polygon.

We are looking to parametrise along γ and so represent the side as P + s(Q −

P )/ |Q − P | , s ∈ [0, |P − Q|] where L := |P − Q| is the length of γ and s is the

distance along γ. Standard properties of bessel functions (see [1, ch.9]) allows us to

show
∂2Φ (x,y)

∂n (x) ∂n (x)
=

ikH
(1)
1 (k |x − y|)

4 |x − y|
, (2.17)

so we can form an explicit parametric representation of each side for s ∈ [0, L] as

∂u

∂n
(x) = 2

∂ui

∂n
+

ik2

2

[
∫ 0

−∞
H (k |s − s0|) u (s0) ds0 +

∫ ∞

L
H (k |s − s0|)u (s0) ds0

]

(2.18)
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where H (z) := H
(1)
1 /z, z > 0. For simplicity and ease of read we make the following

substitutions in terms of our parameter s.

φ (s) :=
1

k

∂u

∂n
, φi (s) :=

1

k

∂ui

∂n
, ψ (s) := u, (2.19)

where we have yet to explicitly identify what values φ (s) and φi (s) take, thus

φ (s) = 2φi (s) +
i

2

[

eiksυ+ (s) + e−iksυ− (s)
]

, (2.20)

where in (2.20) the normal derivative of the diffracted field ∂ud/∂n is represented

by the last term with

υ+ (s) = k

∫ 0

−∞
e−ik(s−s0)H (k (s − s0)) e−iks0ψ (s0) ds0,

and

υ− (s) = k

∫ ∞

L
eik(s−s0)H (k (s − s0)) eiks0ψ (s0) ds0.

Putting

µ (z) := e−izH (z) = e−iz H
(1)
1 (z)

z
, z > 0,

as done in [4, p.5] we have

υ+ (s) = k

∫ 0

−∞
µ (k |s − t|) e−iktψ (t) dt,

υ− (s) = k

∫ ∞

L
µ (k |s − t|) eiktψ (t) dt.

These integrals are over the Γ+ and Γ− and so can be thought as of the diffracted

waves traveling along the side γ, which of course is what we are trying to numerically

solve for. We remind ourselves that we wish to solve (2.9) and we have (2.20) as

an explicit representation for its solution. By doing this in such a manner, it

means we have now separated out the oscillatory and non-oscillatory parts of the

solution in the sense that the µ terms are non-oscillatory, in that as z → ∞, we

have µ(m) = O
(

z−3/2−m
)

[4, p.5]. This gives us two important results about the

diffracted wave for each υ.

1+. k−m
∣

∣

∣
υ

(m)
+ (s)

∣

∣

∣
≤ Cm (ks)−1/2−m , ks ≥ 1,

2+. k−m
∣

∣

∣
υ

(m)
+ (s)

∣

∣

∣
≤ Cm (ks)−α−m , ks ≤ 1, α ∈ (0, 1/2) ,

1−. k−m
∣

∣

∣
υ

(m)
+ (L − s)

∣

∣

∣
≤ Cm (k(L − s))−1/2−m , k(L − s) ≥ 1,
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2−. k−m
∣

∣

∣
υ

(m)
+ (L − s)

∣

∣

∣
≤ Cm (k(L − s))−α−m , k(L − s) ≤ 1, α ∈ (0, 1/2) ,

where the constants Cm are independent of the wavenumber k. The first result for

each tells us that if we are away from the corner, i.e. ks > 1 for υ+ and k(L−s) > 1

for υ−, then the magnitude of the υ± is relatively small, and decreases the further

from the corners we are, note that in the definition these correspond to opposite

corners for the polygon edge. The second result tells us that as we get close to

the corners, i.e. ks < 1 for υ+ and k(L − s) < 1 for υ−, then the diffracted wave

becomes highly peaked and almost singular at the corner. This means that the

υ± are peaked at opposite corners along the edge of the polygon and decay as we

tend away. This is useful to keep mind when we consider the mesh design, we shall

return to this when we introduce the mesh to be used in section 2.7. Not only do

the results above hold, but it is also dependent on the external angle of the corner

̟. The value for α is defined as

α := 1 −
̟

π
, where ̟ ∈ (π, 2π) .

This definition in conjunction with our results about the υ± suggests that we have

more diffraction (so the wave is more highly peaked) where we have acute corners,

this makes sense since if the external angle is equal to π, meaning no corner, then

no diffraction will exist. If however we have just a point as the corner (angle equal

to 2π) then we would expect more diffraction caused, which indeed it does and

the results suggest this to be the case. Proofs of these results can be found in [4,

Theorem 2.1, Theorem 2.2].

The terms e±iks in equation (2.20) provides much of the oscillation in the

diffracted wave, this means we can approximate the υ± using piecewise polyno-

mials and multiply these by the oscillatory functions to get a good approximation,

we incorporate this into what is known as the basis functions in the collocation

method, we shall return to this choice in the chapter 3.

By using this information we can impose a graded mesh along the boundary of

our polygon where the grading is dependent on the wavenumber and internal angle

of the corner, in this mesh we define smaller elements near to the corner. If we

consider figure 2.3 which denotes a speculative view on what we would expect the

diffracted wave to look like where each end of the graph denotes a corner. At these

corners due to the highly peaked (almost singular) nature dependent on wavenum-

ber it is harder to represent what is going on using a few elements. We can however

represent the central part (for instance from 0.2 to 0.8) using fewer elements (per-

haps even one or two in this example) and get a fairly good representation of the
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solution. By using this idea and deriving some rigorous regularity results it means

a mesh can be designed with fewer degrees of freedom to obtain a more accurate

result. The number of elements required will only increase logarithmically with kL

as opposed to directly proportional as we saw before, a big improvement. In this

report we will give a brief overview of the mesh points used (see section 2.7), but

all major details have been left out.

We have considered one side of the polygon, it now remains to discuss how we

0 0.2 0.4 0.6 0.8 1
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0.45

Fig. 2.3: Speculative view on what the diffracted wave may look like across one side of a

polygon (of length one) with equal diffraction at each of the corners

fully parametrise the problem by carrying out similar observations over the whole

boundary.

2.6 The Full Parametrised Problem

We wish to consider the boundary as a one dimensional problem instead of two

dimensional as it stands now.

We can write the entire boundary of the polygon as the sum of each of the sides

and order the sides so that we have the first ns sides in shadow and the remaining

sides illuminated. We call the entire boundary Γ and define it as Γ =
⋃ns

j=1 Γj +
⋃n

j=ns+1 Γj for the n sides of the polygon, where Γj is the jth side. We move around

the polygon in an anticlockwise direction, and for our program define the first node

to be the point (0, 0) in the plane. The jth vertex is defined as Pj = (pj , qj)

and Γj connects Pj and Pj+1, as a result, for our parametrised boundary we have

P1 = Pn+1. The length of the jth side is defined to be Lj = |Pj+1 − Pj |, we can
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then represent each edge of the polygon by

Γj = Pj + s̃
Pj+1 − Pj

Lj
, s̃ ∈ [0, Lj ] .

Using this we can represent the whole boundary, Γ, parametrically as

x (s) = Pj +

(

s −

j−1
∑

l=1

Ll

)

(

Pj+1 − Pj

Lj

)

, s ∈

(

j−1
∑

l=1

Ll,

j
∑

l=1

Ll

)

j = 1, · · · , n

Let us briefly turn our attention to the incident wave ui. We take the angle θ

of the incident wave to be measured anticlockwise from the downward vertical and

have θ ∈ [0, π/2], and write

ui (x) = eikx.d = eik(x1sinθ−x2cosθ), (2.21)

where d is the direction of the incident wave defined to be (sinθ,−cosθ)

Recalling the equation we wish to solve (2.9), our aim here is to represent the

BIE in terms of some parameter s. We define the normal derivative to the edge Γj

by nj := (nj1, nj2) then for x = (x1, x2), y = (y1, y2) and using properties of bessel

functions [1] we have

G (x,y) :=
(

∂Φ(x,y)
∂n(x) + iηΦ (x,y)

)

= −1
4

[

ηH
(1)
0 (k |x − y|) + ik

H
(1)
1 (k|x−y|)
|x−y| [nj1 (x1 − y1) + nj2 (x2 − y2)]

]

(2.22)

If we now consider (2.10) (the right hand side of (2.9)), we can use (2.21) to obtain

a new representation. We have for x ∈ Γj

f̃ (x) := ∂ui

∂n (x) + iηui (x) ,

= [nj1iksinθ − nj2ikcosθ + iη] eik(x1sinθ−x2cosθ).
(2.23)

We are able to use these previous results for fully parametrising (2.9) which is to be

used when coding the method in MATLAB. By making the following substitutions

x := x (s) , y := y (t) , φ (s) :=
1

k

∂u

∂n (x (s))

and using results discussed above we can write (2.9) as

1

2
φ (s) +

∫ L

0
G (x (s) ,y (t))φ (t) dt =

1

k
f̃ (x (s)) , s ∈ (0, L)
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where L =
∑n

l=1 Ll is the total length of the boundary. This equation can be broken

down into a sum of integrals over each of the sides of our polygon, hence

1

2
φ (s) +

n
∑

j=1

∫

∑j
l=1 Ll

∑j−1
l=1 Ll

G (x (s) ,y (t)) φ (t) dt =
1

k
f̃ (x (s)) , s ∈ (0, L) .

We now define for each of the j sides the following variables

aj :=
pj+1 − pj

Lj
, bj :=

qj+1 − qj

Lj
,

cj := pj − aj

j−1
∑

l=1

Ll, dj := qj − bj

j−1
∑

l=1

Ll,

so that we have
x1 − y1 = ams − ajt + cm − cj ,

x2 − y2 = bms − bjt + dm − dj ,

for x (s) ∈ Γm and y (t) ∈ Γj , where m, j = 1, . . . , n.

We also note that

nj1 = bj , nj2 = −aj ,

and can therefore define the absolute value of |x − y| to be

|x − y| =

√

(ams − ajt + cm − cj)
2 + (bms − bjt + dm − dj)

2 =: R (s, t) = R,

(2.24)

thus allowing us to write (2.22) in the parametrised form

G (x,y) = −1
4

[

ηH
(1)
0 (kR) +

ik((ambj−bmaj)t+bm(cm−cj)−am(dm−dj))H
(1)
1 (kR)

R

]

=: K (s, t) .

(2.25)

Similarly, the right hand side (2.23) can be represented parametrically as

1

k
f̃ (x (s)) = i

[

bmsinθ + amcosθ +
(η

k

)]

eik((ams+cm)sinθ−(bms+dm)cosθ) =: f (s) .

(2.26)

This gives us the full parametrised equation for the Burton-Miller formulation (2.9)

which we are looking to solve as

φ (s) + 2

∫ L

0
K (s, t)φ (t) dt = 2f (s) . (2.27)

If we recall (2.20) we were able to separate off the leading order behavior of the

wave field consisting of the incident and reflected waves leaving us with just the
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diffracted wave field. We do the same procedure here, so we define the following

function to represent this

Υ (s) :=

{

2φi (s) , if m > ns,

0 if m ≤ ns,
(2.28)

for s ∈
(

∑i−1
l=1 Ll,

∑i
l=1 Ll

)

, where m runs from 1 through n, ns represents the sides

in shadow (remembering we order the sides) and φi (s) is the leading order behavior

as in (2.20). The φi (s) also has a parametric representation and is equal to

φi (s) :=
1

k

∂ui

∂n
(x (s)) = i (bmsinθ + amcosθ) eik[(ams+cm)sinθ−(bms+dm)cosθ].

We are interested in the diffracted wave and so wish to set up a parametrised

integral equation to represent only this, we wish to do this by first defining

ϕ (s) := φ (s) − Υ (s) ,

so that we can substitute this into (2.27) to obtain

ϕ (s)+2

∫ L

0
K (s, t)ϕ (t) dt = 2f (s)−Υ (s)−2

∫ L

0
K (s, t)Υ (t) dt := F (s) , (2.29)

and so obtain our parametrised integral equation which we require to solve for as

ϕ (s) + κϕ (s) = F (s) , s ∈ [0, L] ,

where

κϕ (s) := 2

∫ L

0
K (s, t)ϕ (t) dt.

We have our integral equation in which we must approximate for the diffracted

field. The rest of the total field consisting of the incident and reflected waves can

be calculated easily since we have the explicit form for ui, and ur can be found

easily as described previously. It now remains to introduce the mesh we use on

each side of the polygon to optimise the method by reducing the degrees of freedom

needed.

2.7 The Mesh

We are looking to approximate eiksυ+ + e−iksυ−. We do this by incorporating

the functions e±iks into our basis functions (see section 3.2.1), which allows us

to approximate the non-oscillatory υ± by piecewise polynomials of some degree

ν ≥ 0 to be chosen. This is possible since what we are approximating is smooth,
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and so we should be able to get a good numerical approximation to the υ±. We

approximate on a graded mesh with a higher grading near the corners as stated

already, this mesh grading is dependent on the wavenumber and the internal angles

of each of the corners. We can expect the diffraction to be highly peaked on more

acute corners and so will require a higher mesh grading for this instance, likewise

the mesh grading is also to be dependent on the wavenumber since the diffraction

wave will be larger for higher values of k and so need a higher grading. We use

a composite mesh on [0, A] where A > λ := 1/k with a polynomial grading on

[0, λ] and a geometric grading on [λ, A]. The mesh used here is the same as in [4,

p.15],[12, p.4] and similar to that defined in [14, pp.16-22] and defined as

Definition 2. For N = 2,3,. . . and for A > λ the mesh ΛN,A,λ,υ,α := {y0, . . . , yN+NA
}

consists of the points

yi = λ

(

i

N

)q

, i = 0, . . . , N,

where q := (2ν + 3) / (1 − 2α), with α := 1 − ̟
π , along with the points

yN+j := λ

(

A

λ

)j/NA

, j = 1, . . . , NA,

where NA = ⌈N∗⌉ is the smallest integer greater than or equal to N∗, where

N∗ =
− log (A/λ)

q log (1 − 1/N)
.

This choice of N∗ ensures a smooth transition between the polynomial and geomet-

ric meshes.

This definition describes one of our grids we need to set up. We recall that we

have the υ+ and υ− from section 2.5, each is peaked over the sides of each edge

of the polygon towards opposite corners. The definition above will denote the grid

on the side of the polygon [0, A] for υ+ since we have a higher grading towards

the zero corner for that edge. For υ− we need another grid, this time it will be

graded towards the A corner of the side due to the diffraction being highly peaked

at the opposite end. The process of computing is exactly the same for this second

grid where we can either compute the nodes directly or in the same way as above

(i.e. assuming the corner is at the zero end) and reflecting the points. Figure 2.4

represents what each mesh calculated will look like. We have two meshes for each

side and although they are both used in calculating the behavior of the wave, in

practice we consider them separately. This process of course needs to be done for
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Fig. 2.4: Mesh points for one side of square of length 2π, wavenumber k = 10 for N =

2, 4, 8, 16, 32. Left : mesh for υ+. Right : mesh for υ
−

each side of the polygon.

This mesh is only logarithmically proportional to kL and so doubling k give us

a logarithmic increase in the degrees of freedom, hence it is especially useful for

high frequency problems. In this chapter we have discussed some of the theory

applicable to the high frequency scattering problems, but have yet to discuss any of

the methods we use. In the next chapter we describe two such methods for solving

the problem.



3. BOUNDARY ELEMENT METHODS

We now give a description of the Galerkin and collocation methods and a brief

comparison between the two. We highlight their advantages and disadvantages and

the reasons why this further work into the implementation of the collocation method

is a logical step forwards from the Galerkin method.

If we take the general form of the integral equation of the second kind we are

required to solve, we have

φ + Kφ = f, (3.1)

where φ is the unknown to solve for, K is some known integral operator and f some

known right hand side function. We look to approximate φ by a sum of unknown

constants and known basis functions. We define our approximation to be φN (s)

and this takes the form

φN (s) =
N

∑

j=1

cjρj (s) , (3.2)

where we look to solve for the unknowns cj and choose the basis functions ρj (s) in

some appropriate manner. The above information is generic to both methods we

are to discuss, from here they differ and so we will tackle them individually.

3.1 Galerkin Method

Before we formally define the Galerkin method let us first introduce the notation

of inner products

(v, w) :=

∫

Γ
vw̄dΓ,

which has the corresponding L2-norm defined as ‖v‖L2
:= (v, v)

1
2 .

We proceed in the Galerkin method by multiplying (3.1) by some test function

(call this χ) and integrating. (3.1) becomes what is known as The Weak Formula-

tion, defined to be

(φ, χ) + (Kφ, χ) = (f, χ) . (3.3)

The Galerkin method says that we require for this to hold ∀χ ∈ {VNG
} where VNG

is

our approximation space. Let φNG
= φN be the Galerkin approximation to φ. We
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seek to approximate φNG
∈ VNG

and we choose VNG
= span {ρj}, j = 1, . . . , NG

i.e. we choose the χ to be equal to the ρj , the set of basis functions we use to

approximate φ by. If we substitute this into (3.3) along with the approximation to

φ, we have

NG
∑

j=1

cj [(ρj , ρm) + (Kρj , ρm)] = (f, ρm) , for m = 1, 2, . . . , NG.

Using this we are able to form a linear system in order to solve and find the un-

knowns in question. The values of m and j each run up to NG, where NG is the

number of elements (basis functions) over the interval we wish solve for. As a result,

the system we solve is of the form















(ρ1, ρ1) + (Kρ1, ρ1) (ρ2, ρ1) + (Kρ2, ρ1) · · · · · · · · ·

(ρ1, ρ2) + (Kρ1, ρ2) (ρ2, ρ2) + (Kρ2, ρ2) · · · · · · · · ·
...

...
. . .

...
...

. . .





























c1

c2

...

...















=















(f1, ρ1)

(f2, ρ2)
...
...















(3.4)

We are required to find the unknowns in the linear system (3.4) and using (3.2)

we obtain a representation for the approximation to φ. Solving this system can be

done very easily in MATLAB using the simple matrix division function. However,

the Galerkin method does suffer due to the initial computational cost of setting up

the matrix. The general entry in the matrix contains a single integral summed with

a term of the form

(Kρj , ρm) =

∫

suppρm

∫

suppρj

(

∂Φ

∂n
+ iηΦ

)

ρj (s) ρm (t) dsdt.

This is a double integral over the support of each of the basis functions (the ρ’s) of

an oscillatory function since the term (∂Φ/∂n + iηΦ) is oscillatory as are the basis

functions ρj and ρm. The major disadvantage here is because we have a double

integral then the computational cost is very high, we recall that for each wavelength

we need a minimum of ten nodes, as a result we need a lot of nodes in two directions

for a good representation and this proves to be very slow computationally. For these

integrals if we wish to improve the accuracy by doubling the amount of nodes then

the time to evaluate will increase four times and so something faster is desirable.

For example, a method using at most one dimensional integrals, where doubling

nodes over each integral will only double the time taken since the nodes will only

need doubling in one direction.
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The next question is, if it is less computationally efficient than other methods,

then why do we use the Galerkin method? The answer is that the method is a

stable method and it converges to the true solution so we know we will obtain a

good result. Not only is this true, but also we can prove that this is the case, we do

not see this type of analysis for some other methods, for example, the collocation

method. We will now discuss how the collocation method works, and why we are

attempting to use it in this dissertation to tackle the problem.

3.2 Collocation Method

In the collocation method we do not multiply (3.1) by a test function, and simply

replace φ by our approximation (3.2) in (3.1). For the collocation method our

approximation will be known as φNc = φN , thus

Nc
∑

j=1

cj [ρj + Kρj ] = f, for m = 1, 2, . . . , Nc. (3.5)

The method works by forcing (3.5) to be true for Nc predefined collocation points

x1, x2, · · · , xNc , i.e.

Nc
∑

j=1

cj [ρj (xm) + Kρj (xm)] = f (xm) , for m = 1, 2, . . . , Nc.

As in the Galerkin method we form a linear system in which we require to solve for

our unknowns. The system takes the general form















ρ1 (x1) + Kρ1 (x1) ρ2 (x1) + Kρ2 (x1) · · · · · · · · ·

ρ1 (x2) + Kρ1 (x2) ρ2 (x2) + Kρ2 (x2) · · · · · · · · ·
...

...
. . .

...
...

. . .





























c1

c2

...

...















=















f1 (x1)

f2 (x2)
...
...















(3.6)

Clearly this system is more computationally efficient than we had before. The

terms in the matrix have now been reduced to a simple function evaluation and

a single integral. Although in the current form for our problem the integrals are

still oscillatory, it is clear that this system will be calculated considerably faster

than what we had with the Galerkin method and is the key advantage in using

this method as no double integrals are involved. One might ask why do we not

start with this method and forget about Galerkin. The reason for this is that the

collocation method cannot be analysed in the same way as the Galerkin, by this,
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we mean we cannot prove the stability or the convergence of the method and so it

is not a good starting point when investigating a new idea. What we can and will

do is obtain results using Galerkin and use this as a comparison (for example using

the L2-error) to investigate whether or not the collocation method converges in the

same way. If we do have convergence that is not dependent on the wavenumber

then we have a successful method. It now remains to decide on the basis functions

we must use and the implications of the implementation phase.

In this chapter, so far, we have looked at two different boundary element meth-

ods, both of which require the use of basis functions to be determined. To conclude

this section we apply this to our problem and choose the basis functions in order to

ensure we have an accurate solution, i.e. we do not have an ill-conditioned system.

The optimal choice for the basis functions will depend on the method we use, for

that reason, we focus on the collocation method basis functions and how we de-

termine them. We will also discuss how we choose our collocation points for the

problem.

3.2.1 Choosing the Basis Functions (Collocation Method)

First, let us recall what we are trying to approximate in this problem. That is, the

approximation to the diffracted field in (2.20), which takes the form

[

eiksυ+ (s) + e−iksυ− (s)
]

.

We mentioned in the chapter 2 that we remove lots of the oscillations of the diffrac-

tion and are left with the υ± functions which are non-oscillatory. We also discussed

that we approximate using piecewise polynomials, in our case we shall use degree 0

(piecewise constants).

Due to the nature of the diffracted wave it seems logical to let the basis func-

tions be some multiple of e±iks. We can then multiply these basis functions by

our piecewise polynomial approximation to υ± to get the diffracted field, these are

known as plane wave basis functions (since they take the form of a plane wave,

see [13, ch. 2]) and are the non-standard basis functions we use. This makes sense

since we are approximating the non-oscillatory functions υ± and can get a lot better

representation with piecewise constants using fewer degrees of freedom than if the

functions were heavily oscillating. We mentioned how we approximate the unknown

using (3.2) and because we are approximating υ± which is multiplied by e±iks we
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are effectively trying to find an approximation to φ in the form

φNc (s) =

N1
∑

j=1

c+
j eiks +

N2
∑

j=1

c−j e−iks.

So we have N1+N2 (= Nc) unknowns to solve for. This also means that we will have

a combination of two meshes over the boundary of the polygon (as we discussed

in section 2.7). One will represent the basis functions concerning the eiks with the

mesh graded towards one of the corners and few nodes elsewhere, the other will be

for e−iks basis functions which will be graded towards the opposite corner. From

here we will refer to these as gridx and gridy respectively and are as we saw in

figure 2.4.

We mentioned the condition number earlier and how wish to minimise this, the

condition number describes how sensitive the system is to errors in the vector when

solving the system and so the smaller the better. Theory of integral equations means

that if we have a second kind integral equation that takes the form (I + K) φ = f ,

where I is the identity, then provided the integral operator K satisfies ‖K‖ < 1

then we have a well conditioned system, we can also show that (I + K)−1 exists

and is bounded [14, Theorem. 4.1] and so a solution exists. For this problem it is

unclear whether or not this condition on K is satisfied, however, generally this is

still better than the standard Lφ = f form. The integral equation we are looking

to solve is similar to this (I + K) φ = f form and looks like

[ρj (s) + Kρj (s)] cm = f (s) , (3.7)

for the unknowns cm. This means that if we make the term ρ (s) as close to the

identity as possible then we should be able to obtain a better conditioned system.

The easiest way to do this, due to the sparsity of the matrix, is to have the leading

diagonal entries equal to one and attempt to minimise any other entries we might

have, therefore we are to choose the basis functions to be

ρj (s) = eσjik(s−z)χ[yj , yj+1] (3.8)

where

σj = ±1, depending if we are on gridx or gridy

yj are the points of the graded mesh

χ[yj , yj+1] is the characteristic function =

{

1 s ∈ (yj , yj+1)

0 otherwise



3. Boundary Element Methods 30

and

z =
yj + yj+1

2
. (3.9)

This choice of basis function covers both cases for approximating υ±, one of which

is covered by σj = 1 and the other σj = −1. The z values are the mid-points of our

intervals and the s are the collocation points. We have not yet formally identified

what we choose to be the collocation points, there are many different ways we can

choose and so shall discuss this now.

3.2.2 Choosing the Collocation Points

Recall the method works by collocating the selected points x1, . . . , xNc so that the

integral equation (3.7) holds (i.e. forcing the equation to hold at these points). We

need to select the points so that we have one collocation point for each interval in

our mesh. [15] discusses many ways we are able to make this choice on a uniform

mesh and also talks about a general rule we follow. The rule of thumb states that

if we are approximating using piecewise linears or cubic splines then the collocation

points should be the break points of the mesh i.e. at xm = k/m intervals. If however,

we are using piecewise constants, then we should use the mid-points of the intervals,

there is also the option to use ǫ-collocation giving greater freedom of choice where

the ǫ allows a small perturbation along each interval. ǫ-collocation is defined as

xm =
k + ǫ

m
, m = 1, . . . , (N1 + N2).

If we were follow the rule above for the piecewise constants we choose the mid-points

to be our collocation points, i.e. the value of ǫ = 1/2. For uniform meshes approx-

imating by piecewise constants, this choice of ǫ will give an order of convergence

of at least one better than using some other point in the interval. Our problem

differs since the mesh we are to use is non-uniform and so this rule does not directly

apply. Currently, no known rule exists for a non-uniform mesh in choosing these

points, however, we are still to choose the collocation points to be the mid-points

of the intervals. Although we have no analysis to support our decision, this seems

the most logical choice from what is known, and so seems the most obvious starting

point when implementing the method.

The z values (3.9) in the basis functions are the mid-points of our intervals, the

collocation points are also contained within the intervals (as one would expect),

this can however cause one problem. If, in the unlikely event we have a colloca-

tion point and a mid-point (one on gridx and one on gridy) that exactly coincide
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with each other, then two rows of the matrix in the linear system will be the same,

this will mean that the system is singular which is clearly bad news as no solution

will exist. This situation is unlikely, and in the short term we need not to worry

about this. However, if the software was required for commercial use this would be

an issue and there are many ways around it. For example, it is possible to have

two separate collocation points on each interval and tackle the problem that way,

although possible, it is not ideal. We could also formulate the mesh differently, by

this we mean divide the side of the polygon into two. In the first half where the υ+

is peaked we could have a mesh graded towards the corner and no elements crossing

the central point, and in the other half where the υ− approximation is peaked we

could have another graded mesh. This will mean that the meshes will not overlap

and we would guarantee that a mid-point on one mesh will never equal the collo-

cation point from the other, hence the singular matrix scenario will be avoided and

a solution will always exist. We will not pursue this any further in this report, but

it is something to think about when developing the software further.



4. COLLOCATION METHOD IMPLEMENTATION

In this chapter we give an overview of the implementation implications, and how for

different basis functions and collocation points we approach the problem differently.

We recall the integral equation we wish to solve takes the form

ϕ (s) + κϕ (s) = F (s) , s ∈ [0, L] . (4.1)

where

κϕ (s) := 2

∫ L

0
K (s, t)ϕ (t) dt,

and s is some parameter along the boundary.

We also recall that we look to approximate our unknown ϕ using the collocation

method and the series approximation

ϕNc (s) =

Nc
∑

j=1

cjρj (s) (4.2)

where we define the ρj to be the basis functions (3.8).

It is also worth reiterating here that the collocation points we are to use are to

be the central points of each of the intervals within the mesh, that is, they are the

central points of each of our basis function intervals. This means we shall have a

set of collocation points for gridx and also a set for gridy. We define the entire set

of collocation points to be sm for m = 1, . . . , Nc. The method states that we take

(4.2) and substitute it into (4.1) and so

Nc
∑

j=1

cjρj (s) + 2

∫ L

0
K (s, t)

Nc
∑

j=1

cjρj (t) dt = F (s) ,

thus
Nc
∑

j=1

[

ρj (s) + 2

∫ L

0
K (s, t) ρj (t) dt

]

cj = F (s) , (4.3)

where we wish to solve for the unknowns cj and (4.3) holds for all s = sm.

When implementing this collocation method within the MATLAB environment
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we can break (4.3) into three separate problems when building the system, these

take the form

LHS1 = ρj (sm) , (4.4)

LHS2 =

∫ L

0
K (sm, t) ρj (t) dt, (4.5)

RHS = F (sm) , (4.6)

where all functions have been defined previously and j, m = 1, . . . , Nc. We will now

look at each case separately and discuss how we tackle the problem of evaluating

each term in MATLAB.

4.1 LHS1

Firstly, we shall look at (4.4). This of course is a matrix of size Nc×Nc where Nc is

the amount of basis functions/collocation points we have. The entries of LHS1 are

a simple function evaluation for each function (3.8) with the appropriate collocation

point as the argument. If we let ρj represent the jth basis function and sm represent

the mth collocation point, then if ρj and sm are on different sides of the polygon

then (3.8) is zero immediately by definition. Similarly, if the collocation point falls

outside the support of the basis function when ρj and sm are on the same side then

we have zero immediately.

If ρj and sm are on the same side of the polygon we have two cases to consider.

Firstly, when σj = σm , that is, when both the basis function and the collocation

point are supported on the same grid (either gridx or gridy) and the collocation

point coincides with the basis function. Clearly, in this case the entry we are

calculating shall fall on the diagonal of the matrix. By taking the collocation point

to be the mid-point of the basis function means that we have sm = z and the basis

function evaluation is equal to one since

ρj (sm) = eσjik(sm−z) = eσjik×0 = e0 = 1

The second case we look at is when ρj and sm are on supported on different grids,

this time we have σj 6= σm (one is supported on gridx and the other on gridy). In

this case we have a simple evaluation of the basis function with the appropriate

collocation point as the argument.

LHS1 is the simplest case we shall come across when setting up the system

(3.6) as no integration is required and so few entries are needed to be evaluated.

In fact, the matrix will only have 2 × Nc non-zero entries and so as a result for
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memory reasons, when we implement LHS1 using MATLAB we shall use sparse

matrix storage format. We will now look at the more complicated LHS2 and the

implementation ramifications we need to take into account.

4.2 LHS2

If we recall our parametrised integral operator (2.25) for the problem, bringing the

−1
4 constant outside this definition for K and using the basis functions (3.8), we

can write (4.5) as

−
1

4

1

eikz

∫ yj+1

yj

K (sm, t) × eσjiktdt (4.7)

where

K (sm, t) =

[

ηH
(1)
0 (kR) +

ik((ambj−bmaj)t+bm(cm−cj)−am(dm−dj))H
(1)
1 (kR)

R

]

with R = R (sm, t). Let us also note that the m-subscripted values represent those

defined by the side in which the collocation point lies and the j-subscripted values

represent those corresponding to the side where the basis function sits. The matrix

formed by this is of size Nc × Nc as we saw for LHS1. In computing the entries of

this matrix we have two possibilities, these are as follows

4.2.1 Case (i)

The first case is when the collocation point lies on the same side as the support of

the basis function. We find that when the collocation point falls inside or close to

the basis function then the larger the entry in the matrix is, almost singular in the

first instance. As a result, and for a more efficient and accurate result we need to

make a number of substitutions and calculations on the K function. In this case

the entries represented fall in the leading block diagonals of the matrix. It is easy

to show that when they both lie on the same side that

K (sm, t) = ηH
(1)
0 (k |sm − t|) , (4.8)

and using the identity [4, p.20]

H
(1)
0 (s) = −

2i

π

∫ ∞

0

e(i−t)s

t
1
2 (t − 2i)

1
2

dt, s > 0, (4.9)

we can write (4.7) as

−
1

4

1

eikz

∫ yj+1

yj

ηH
(1)
0 (k |sm − t|) eσjiktdt,
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substituting in (4.9), we switch the order of integration and obtain a new form for

the entries of the matrix for this particular case, hence, we wish to evaluate

iη

2πeikz

∫ ∞

0

[

∫ yj+1

yj

e(i−r)k|sm−t|eσjikt

r
1
2 (r − 2i)

1
2

dt

]

dr. (4.10)

We are able to calculate the inner integral analytically and so using some numerical

integration rule we need to evaluate the outer integral. (4.10) takes the general

form (ignoring the constant)

∫ ∞

0

I (r)

r
1
2 (r − 2i)

1
2

dr,

for some function I (r). In order to solve this using quadrature we make the sub-

stitution r = s2/
(

1 − s2
)

, this reduces the interval of integration to [0, 1] and

eliminates the singularity at r = 0. It now remains to consider the procedure for

calculating the analytic integrals I (r). This is broken into three further categories

depending on the positioning of the sm in relation to ρj , all of which have a slightly

different result. These are, when the collocation point is smaller than the basis

function, the collocation point is larger than the basis function and finally when

the collocation point falls inside the support of the basis function. These three

cases will be known from here as I1, I2 and I3 respectively. We define these as

the following where the yj and yj+1 are the end points of the jth basis function,

I1: sm < yj ,
∫ yj+1

yj

e(i−r)k(t−sm)eσjiktdt

=
ek(r−i)sm

(

e−kyj(r−i(1+σj)) − e−kyj+1(r−i(1+σj))
)

k (r − i (1 + σj))
, (4.11)

I2: sm > yj+1,
∫ yj+1

yj

e(i−r)k(sm−t)eσjiktdt

=
e−k(r−i)sm

(

−ekyj(r+i(σj−1)) + ekyj+1(r+i(σj−1))
)

k (r + i (σj − 1))
, (4.12)

and finally I3: yj < sm < yj+1,

∫ sm

yj

e(i−r)k(sm−t)eσjiktdt +

∫ yj+1

sm

e(i−r)k(t−sm)eσjiktdt
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=
ekismσj − erk(yj−sm)+ik(sm+yj(σj−1))

ik ((σj − 1))
+

eiksmσj − erk(sm−yj+1)+ik(yj+1(1+σj)−sm)

ik (r − (1 + σj))
.

(4.13)

By doing this, we have successfully reduced the original integral to be solved into

an integral which does not oscillate by solving the oscillatory part analytically, this

allows us to use a smaller amount of quadrature points to get a more efficient and

accurate approximation to the function. It also means we avoid the function being

singular (or almost very highly peaked) when the collocation point is close to or

sits in the support of a basis function.

4.2.2 Case (ii)

The second case we consider is when the basis function is supported on a different

side from the collocation point. These represent the off block diagonals in the

matrix LHS2 i.e. the rest of the entries. In this situation we can calculate nothing

analytically and so have to use quadrature to approximate K (sm, t), where the

form of K (sm, t) is demonstrated by (4.7). We also note that once again if the

collocation point and the basis function are close to each other we would expect a

large peak in the evaluation of (4.7) and special allowances need to be made. This

will occur when we are dealing with adjacent corners of the polygon (since for case

(ii) sm and ρj are on different sides). We return to what allowances we need to

make in section 4.4.

4.3 RHS

The third separate problem we need to consider is the Nc-column vector on the

right hand side of our linear system. The evaluation of the vector comes from the

terms

F (sm) := 2f (sm) − Υ (sm) − 2

∫ L

0
K (sm, t)Υ (t) dt (4.14)

as defined by (2.29). As we did for LHS2, we consider (4.14) in separate cases (two

in this case). One case when we are on a shadow side and the second case when

we are on an illuminated side of the polygon. The first case we consider are the

shadow sides, this represents the first ns sides of the polygon.

4.3.1 RHS - Shadow Sides

When we are considering a collocation point on a shadow side then the Υ (sm)

term in (4.14) vanishes as does much of the integration since not all of [0, L] is



4. Collocation Method Implementation 37

illuminated. This leaves us with a simple evaluation for f (sm), defined by (2.26),

(where sm will be the collocation point in question) plus some small contribution

from the integral which we can evaluate using quadrature.

Similar to LHS2 we find that when a collocation point is close to the support of

the integral in the last term of (4.14), then the function is highly peaked (almost

singular when the collocation point is contained within the support). We note that

when this integral is on a shadow side, it is clearly zero, since Υ (t) is zero. As a

result we need not make any special allowances for the shadow collocation points,

however, when considering an illuminated side we need to take this into account

since sm will fall within the boundaries of the basis function and hence the integral

is highly peaked (as we saw with LHS2). We will now discuss the entries of the

vector when sm is on an illuminated side, the remaining (n − ns) sides.

4.3.2 RHS - Illuminated Sides

We now have the additional (central) term in (4.14), this requires no special al-

lowances since it is just a simple function evaluation of known values. The same is

also true for the evaluation of the first term in (4.14) and so the only term we need

worry about is the integral term. As mentioned before when the collocation point

is in the interval of integration we would expect to have a highly peaked function.

As a result, we need to take similar action to what we did in LHS2 on the leading

block diagonals and solve analytically first, we must also divide the integral up into

n separate integrals where each one represents a side of the polygon. Where we

have a collocation point falling outside any of the n integrals we proceed by using

numerical quadrature as done for the shadow sides and also in LHS2 where we

also used numerical integration. In the instance where the collocation point falls

within one of these integrals, in order to evaluate the oscillatory part of the integral

analytically, we can use the same code as we did for I3 except replace σj with

amsinθ − bmcosθ and multiplying the whole integral by a different predetermined

constant. By proceeding as we did previously, using identity (4.8) along with the

definition of Υ (see (2.28)) and substituting into the (integral) term in (4.14) we

have
∫ Lj+1

Lj

K (sm, t)Υ (t) dt,

=

∫ Lj+1

Lj

−
η

4
H

(1)
0 (k |sm − t|) 2i (bmsinθ + amcosθ) eik[(amt+cm)sinθ−(bmt+dm)cosθ],
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= −
iη

2
(bmsinθ + amcosθ) eik(cmsinθ−dmcosθ)

∫ Lj+1

Lj

H
(1)
0 (k |sm − t|) eik(amsinθ−bmcos)tdt,

and using identity (4.9), switching the order of integration gives us

C

∫ ∞

0

[

∫ Lj+1

Lj

e(i−r)k|sm−t|+ikat

r
1
2 (r − 2i)

1
2

dt

]

dr, (4.15)

with

sm ∈ (Lj , Lj+1)

where

C = −
η

π
(bmsinθ + amcosθ) eik(cmsinθ−dmcosθ),

and

a = amsinθ − bmcosθ. (4.16)

So when we solve the inner integral of (4.15) analytically, we can think of it as

(4.13) except with a different value for σ (or a as seen above), and with the constant

multiplication, C. We approach the second integral calculation in exactly the same

way as we did before by making the substitution r = s2/
(

1 − s2
)

to reduce the

range of integration and eliminate the singularity at r = 0.

So far in this chapter we have looked at the methods for setting up the linear

system and the different considerations we require. For this MATLAB program

being written we require it to be as efficient as possible and as a result it is important

to consider what numerical integration technique we shall be using. We also need

to decide how many points to choose over each interval of integration and how we

can make this as small as possible to obtain a numerically accurate result. Before

deciding on the amount of nodes we require over the interval we shall give a brief

introduction to the numerical technique we will be using.

4.4 Gaussian Quadrature

There are many different techniques in which we can numerically approximate an

integral, here we give a summary of the method we shall use along with how we

determine the amount of nodes required.

There are two main types of method in which we can numerically integrate func-

tions. Firstly, we have Newton-Cotes Formulae, these are a family of techniques

that use evenly spaced functional values across the range of integration. For exam-

ple, Trapezium Rule, Simpson’s Rule, Duran’s Rule, Weddle’s Rule to name but a



4. Collocation Method Implementation 39

few. The second type is the Gaussian Quadrature (GQ) which selects functional

values at non-uniform intervals and corresponding weights across the range of inte-

gration to achieve a higher accuracy. We shall be using the GQ type.

The method we shall use is to be a composite GQ, by this we mean that we

will split our interval into NQ subintervals determined by some means, within each

of these subintervals we determine the MQ nodes and weights for the GQ method.

When calculating integrals at the implementation phase we compute the required

weights and nodes on the interval [−1, 1] and transform them onto our interval of

integration. We give a brief overview here as to how the GQ method works be-

fore moving on to specifically applying it to our problem and how we calculate the

optimal values for NQ and MQ. Consider the integral

I (f) =

∫ 1

−1
f (x) dx

we seek to approximate I(f) by our quadrature of the form

Q (f) =

MQ
∑

m=1

wmf (xm) = w1f (x1) + w2f (x2) + . . . + wMQ
f

(

xMQ

)

where the wm are the weights and f (xm) is the function evaluation at the point

xm. The values of the weights and the position of the nodes are determined so that

the method yields exact integration for f (x) = x0, x1, . . . , x2MQ−1, this gives us

2MQ degrees of freedom and so we are able to solve exactly if f was a polynomial

of degree 2MQ. For our problem, the kernels in the integration when computing

the linear system are of course not polynomials, but we can use this method to

approximate them to a high order polynomial and get a very good approximation.

All of the integrals we shall deal with will not fall in this range unfortunately and

so we are required to transform the weights and nodes onto a general interval [a, b]

(an alternative approach is to transform the integral range [a, b] onto [−1, 1]).

We make the following transformations in order to achieve this. For the weights we

have

wm 7→
(b − a)

2
× wm,

for the nodes we use the transformation

xm 7→ a + (b − a)
(xm + 1)

2
.

We know that we shall be using a composite GQ for our numerical integration

for calculating entries in our system, so it now remains to determine the number of
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subintervals required and Gaussian nodes on these intervals for each integral. The

integrals we have are a combination of non-oscillatory and oscillatory functions,

the latter of course needing more degrees of freedom over the same interval to get

similar accuracy. We will now look at the implications of this and discuss how we

can optimise our program to give the best results in the quickest time. Ideally, we

would like to get an accurate result using as few nodes and weights as possible so

that the MATLAB code completes the calculations quickly and efficiently.

There are many different considerations we need to take into account in de-

termining the amount of subintervals and Gaussian nodes we require. We remind

ourselves that the amount of subintervals over our integral will be NQ and the

number of Gaussian nodes and weights required in each of these intervals will be

MQ. We shall proceed by keeping the value of MQ fixed and varying how many

subintervals we shall divide the integral into, i.e. the NQ value. We shall consider

the non-oscillatory and oscillatory functions separately.

4.4.1 Non-Oscillatory Functions

In the case where we have a non-oscillatory function we are able to use fewer points

to represent the integrand. It is acceptable in this case to choose NQ = 1 and an

appropriate amount of Gaussian nodes, i.e. MQ = 30. The non-oscillatory functions

we have are the instances where the collocation point falls on the same side of the

polygon as the basis function, that is, the leading block diagonals in LHS2 which

takes the general form
∫ ∞

0

I (r)

r
1
2 (r − 2i)

1
2

dr

and the evaluations in the right hand side vector on the illuminated sides, see (4.15)

through (4.16).

4.4.2 Oscillatory Functions

For the integrals that oscillate we need to determine the value of NQ, preferably

dependent on the amount of oscillations and size of the integral support. The

oscillatory integrals are the rest of the evaluations in our system (all those not

mentioned in the case above) i.e. where we have not solved anything analytically.

We recall that for each mesh (gridx and gridy) the basis functions near one of the

corners of the polygon are smaller than those away from the other corner on that

side (remembering of course that each mesh is graded towards opposite corners).
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This suggests that we have a lower number of wavelengths in the smaller intervals, as

a result we should be able to obtain an accurate result using fewer points. Consider

Fig. 4.1: Example of what the oscillating function may look like across a basis function

many wavelengths long

figure 4.1, we wish to find a value of NQ so that it is equal to the number of

wavelengths across the interval, i.e. we are looking for NQ intervals of length λ = 1/k

(one wavelength long), so we wish to divide as shown. We can then use MQ nodes

in each of these subintervals to approximate. We are looking for a value of NQ such

that

b − a = NQλ,

where b and a are the boundaries of each integral, this implies

NQ =

⌈

(b − a)

λ

⌉

= ⌈k (b − a)⌉ , (4.17)

where the ⌈∗⌉ denotes the smallest integer greater than or equal to ∗. In practice,

for a more accurate result, we may increase this value of NQ by dividing (b − a) /λ

by some value less than one in order to get more subintervals, this should however

be sufficient for the problem. By choosing NQ to be this value we will have more

subintervals across the larger basis functions, this makes sense as we will clearly

have a larger amount of wavelengths traveling across the larger elements at any one

time and so more nodes will be needed. In section 2.4 we said typically we need ten

nodes to represent one wavelength, we choose the value of MQ to be larger than

this, typically MQ = 30 should be more than sufficient.

We now know how to choose how many Gaussian nodes and weights we require,

we do however have an exception to this rule. We know that when a collocation

point falls close to the edge of a basis function we have more contribution from that

element in our linear system meaning that it is highly peaked. This happens at the
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corners of the polygon. This choice of NQ cannot model this well and so we will

require a lot more points to get a true representation, hence we need a clause in

this rule. That is, an “if” statement in our program stating that when a collocation

point is less than some distance from the support of a basis function, then we need

to increase the number of points in that interval, ideally using a graded mesh. The

value we choose to be this distance is one wavelength, as a result as k increases,

fewer elements fall into this category.

Although we will not implement a graded mesh for this specific program we

shall mention how we would set one up. [12, pp.9-10] describes how this can be

done over a two-dimensional interval, a similar approach can be applied over a one

dimensional domain as we have here. Consider the interval [a, a + λ], where a is

the corner of our polygon and λ is close to a. We could impose a graded mesh and

place nodes at for example the points

a + λ0.15NQ ,

where NQ is the number of nodes we choose to place on the interval determined

by some means relative to how diffracted the wave will be, this will give us more

dense points towards the corner where the diffraction will be highest as more nodes

will be required. Doing this would allow maximum efficiency from our code and

is another point to consider in developing the software. We will not develop this

further here.

We will follow this discussion on GQ by discussing the error involved in approx-

imating our functions.

4.5 Gaussian Quadrature Error

Numerical integration by GQ is designed to interpolate polynomials up to a specified

degree where we have discrete data given. We mentioned in section 4.4, that given

some function, we are able to integrate up to degree 2MQ exactly, this is useful when

we wish to solve polynomials, and can solve non-oscillatory functions relatively well,

but GQ is not designed for oscillating functions. In this section we are going to

assume that the function we wish to integrate behaves like the oscillatory function

eikt and wish to integrate with respect to t. In actual fact, the oscillatory functions

we are integrating in the set up of the system are a lot more complicated than

this, but for the purposes of this error discussion, this will demonstrate the ideas

involved. The GQ error for evaluating a function f , with 2n continuous derivatives
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is defined as
f (2n) (ξ)

(2n)!
‖pn‖

2

for some ξ ∈ (a, b), and pn is the orthogonal polynomial of degree n.

If we consider the nth derivative of our assumed function then the general form is

(ik)neikt, this function behaves like (ik)n i.e. it blows up as n → ∞ (due to being

oscillatory). This means for small n that the error estimate blows up rapidly before

converging, as a result, it means we need a large amount of Gaussian points to get

an accurate representation. As we are using a composite quadrature rule, we divide

the interval into many smaller problems dependent on the wavenumber k. As a

result, if we double k, for the same level of accuracy, we need twice the number of

subintervals and so twice the computation capacity. This is not ideal when talking

about very high wavenumbers.

The evaluation of high oscillatory integrals is a large area of research in optimis-

ing the efficiency in which a solution can be found, this is done by taking advantages

of certain properties of the oscillating function. [9] and [10] discuss such ways we

can do this, it is however unclear whether or not the properties on K (s, t) are sat-

isfied and so we have no guarantee of these methods converging. These methods

will not be implemented here and so we will not consider them further. The final

section in this chapter discusses how machine accuracy plays a part in our problem.

4.6 Machine Accuracy

We already know that as we get close to the corners of our polygon then the size of

the basis functions are considerably smaller than if we are elsewhere on the grid, this

of course is where we gain our computational advantage (by having more elements

where we need them) but this can cause problems in the computation. Computer

hardware can only carry out floating point arithmetic to some finite accuracy, this

has three consequences in terms of what we must consider when implementing such

a mesh.

1. There is a limited number of significant digits stored,

2. There is a maximum floating point number,

3. There is a smallest positive floating point number.

For our program, point 3 is most applicable. At first hand this problem of machine

accuracy may seem negligible but it is an important consideration. In recent history
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many disasters have been caused by numerical errors in computations resulting in

either loss of life or huge financial catastrophes that could have been avoided. These

include patriot missile failure, explosion of an unmanned rocket and the sinking of

an offshore platform to name but a few, all of which could have been avoided if the

errors were treated correctly. Any failure in this program because of this will not

have such devastating effects, but may prove to give inaccuracies in our results and

so we must treat them carefully.

Due to inaccuracies in computer hardware, it means that as we approach a larger

number from a floating point number that is a very small distance away, then at

some point the value will be rounded to that large number and so an error will

form. Another way to put, is that because of the finite accuracy, there is a floating

point number, δ > 0.0, such that 1.0− δ equals 1.0 as far as the computer hardware

can tell. This may not seem too much of a problem, but consider the following two

equations and the results obtained.

1. large - (large’ - ǫ)

2. (large - large’) + ǫ

for ǫ ≤ δ. In these cases we may obtain inaccuracies in the first calculation although

the results should be the same. For some large value, the bracketed part in 1. will

round to large’, and so what actually is calculate is large - large’. This is clearly not

correct, and this problem does not arise in case 2. If we consider the more extreme

case when large = large’ then the first calculation gives zero, and the second gives

the correct answer of ǫ so we need to consider this in the implementation phrase.

The value of δ varies from machine to machine and so it is hard to put an actual

figure on what it is, but it is very easy to write a piece of software to do calculate

this. Typically, using MATLAB we have δ = 1.11e−16 when using double precision

(this value is considerably less for single precision). For the machine the results in

this dissertation are being calculated on we have δ = 1.110223024955037e−016. All

this has major implications when writing the code. If we consider what sort of mesh

sizes we will be dealing with, for a square with each side of length 2π, wavenumber

k = 160 and N = 32 then the first collocation point on each side is of a distance

8.8818e − 017 (half the interval of the basis function) away from the corner, let us

refer to this value as t. The easiest way to calculate t is simply calculate half the

support for the ρj and add this to each of the lower boundaries of the basis functions,

but we see the problem with this demonstrated by table 4.1. If programming in the
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Collocation Point Actual Calculated Col Pt Error

t t 0

2π+t 2π t

4π+t 4π t

6π+t 6π t

Tab. 4.1: Rounding errors in collocation points when falling close to boundary

way described by 1. then it is clear that the collocation points are stored as the

wrong values. This does make a small difference to the values calculated and means

results can become more inaccurate as we keep carrying these small rounding errors

forward, and so we look at ways to avoid them so that we do not cause too many

inaccuracies in the solution to our problem. One of the main problems arises in the

calculation of (2.24) for use in (2.22). In (2.22) a Hankel function is evaluated with

the argument (2.24)×constant. Now, recall (2.24) takes the form

R = R (sm, t) :=

√

(amsm − ajt + cm − cj)
2 + (bms − bjt + dm − dj)

2,

where sm represents the collocation point and t is the integration variable (when

evaluating the integrals in our system), all the other variables are known constants.

We tackle this slightly differently than how it is written, rather than storing the

collocation points as values we have two storage vectors, one stores the length of

the side, the other the distance the collocation point is from the nearest corner in

the positive direction. This is slightly different depending on if we are on gridx or

gridy but the basic principle is the same. i.e. all of the “distance from” points for

gridx are positive, and gridy negative. If we consider the above calculation (first

term only) then to avoid these rounding errors we break the collocation point into

the nearest corner distance from zero and the distance of the collocation point from

the corner and as a result program the code as

((al × nearestside − ajt + cl − cj) + al ∗ distfromside)2 .

This is needed as in some instances the value of R will be almost zero, if we do

not do this then the evaluation of R will be zero due to the rounding error, and

as mentioned before this needs to be passed through the Hankel function which

is undefined at zero and hence the program cannot run. We also divide by this

R value so we end up dividing through by zero which again is undefined so it is

clear to see that these modifications to get results are necessary and should not be
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treated lightly. The same also needs to be done for the second lot of terms in R, as

in other areas of the program, this section has only considered the one example.

We have now discussed all theory behind the problem and how we implement

the method. In the next chapter we discuss the results obtained from the method

and assess whether or not the method has been successful.



5. NUMERICAL RESULTS AND DISCUSSION

We have mentioned throughout that one of the reasons we are implementing the

collocation method is because it is more computationally efficient then the Galerkin

method, this is an important advantage of our method and is something we shall

focus on shortly, but first we are to focus on how successful the method has been.

When judging if the collocation method implemented is successful for this problem,

we investigate two main features of the results.

1. Firstly, as we increase the degrees of freedom over the boundary, we would

require the error in the numerical solution to decrease with an estimated

order of convergence (EOC) of one. We would expect this value for the EOC

as we are approximating by piecewise constants, if we were to use higher order

polynomials to approximate we would expect a better EOC. Using constants

means that if we double the degrees of freedom we would expect the error to

halve, although this is unlikely to be exact for reasons we discuss shortly, but

we should see a trend.

2. Secondly, as we increase the value of the wavenumber, k, then the relative

error stays roughly the same for constant N , (where N is the number of

nodes between [0, λ] as in definition 2). This means that the error is not

dependent on the wavenumber of the incident wave.

If both these points hold it will suggest that this is a good method to use when

considering high frequency problems. We can show that for the Galerkin method

in the piecewise polynomial case that [12, Theorem 1.1.2]

k1/2 ‖ϕ − ϕN‖2 ≤ C sup
x∈D

|u (x)|
[n (1 + log (kL/n))]3/2

N
.

Where C is a constant independent of k and N and ‖ϕ − ϕN‖2 is the L2-error.

Although we cannot provide similar analysis for the collocation method, we would

hope that our results hold close to the Galerkin error estimate above. To investigate

this, we are to use a model problem of a square. Each side is to have length 2π,
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Fig. 5.1: Total Acoustic Field for k = 10, scattering by a square with incident wave π/4

measured from the downward vertical (top left corner to bottom right)

with each of the corners having an internal angle of π/2 and the angle of incident

is to be π/4 measured anticlockwise from the downward vertical. The problem is

as shown in figure 5.1

In calculating the errors we need an exact solution, unfortunately no such an-

alytic solution exists for the problem and so we are going to assume that the best

estimate we have for the problem is to be the exact solution and so will use the

Galerkin estimate with N = 256. This model problem is the same as the one con-

sidered in [4].

We are to investigate varying values of k starting with k = 5 and doubling up for

each test. The speed in which the linear system (3.6) is set up primarily depends on

the choices of the number of subintervals and the Gaussian nodes/weights over each

integral, clearly, the more we choose the more accurate the result obtained will be,

but the computational time required will be higher. We could expect that doubling

the nodes over each integral will double the time taken and so a balance needs to

be struck between the accuracy of these calculations and the computational time

taken. Where we have non-oscillatory integrals we take NQ = 1 and MQ = 30, in

the case of oscillatory integrals we are to take MQ = 30 for the Gaussian nodes and

weights over each interval and NQ to be as previously defined in section 4.4, and

we recall it to be of the form

NQ = ⌈k (b − a)⌉ . (5.1)
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For the purpose of this accuracy test, when the collocation point is less than one

wavelength away from the basis function (when on different sides) we choose the

number of subintervals, NQ, to be dependent on the wavenumber. This is because

for higher values of k we notice that each entry evaluation is more peaked than

lower values of k, i.e. as k grows large, the functions we evaluate need more mesh

points to represent their behavior. A brief comparison test suggests that NQ = 3k

is sufficient for obtaining an accurate result in the evaluation of our integrals for

this problem and so we take this to be the amount of subintervals in this exception

case. The numerical evaluation of the integrals will still not be exact and we would

still expect inaccuracies in the solution but these choices should reduce any errors

that may arise. Table 5.1 demonstrates the results obtained for increasing values

of k and N . For each k, we show the N values, the degrees of freedom (selected by

definition 2 for setting up our mesh), the relative error (rel. = ‖ϕ − ϕNc‖2 / ‖ϕ‖2)

and the estimated order of convergence (EOC). The error calculated is the L2 error

where we take the exact solution to be the Galerkin solution for N = 256.

The results we have obtained look very promising for each case as it is clear

to see the solution is converging. In a small number of cases it appears that the

increase in N does not help improve our numerical solution. This is not unexpected

since often results can take a while to settle down and so it is the latter results we

find of most interest when analysing. It also appears that the EOC is not always

close to one and in some cases very far away. This is because this calculation of

the EOC assumes that we have evaluated everything exactly, this is clearly not the

case as we are numerically integrating many functions and so will not obtain exact

answers, so small errors will carry over to our solution. The EOC does however,

in general, stay close to one for increasing N and so the results are what we might

expect.

We wish to now discuss if we can call the method successful by definition of the

two points we mentioned previously. Point 1 above is certainly satisfied for each

wavenumber as it clearly converges as N grows larger with an EOC roughly equal

to one. Point 2 requires us comparing the relative errors for each wavenumber,

we notice that the errors for each N value are almost always of the same order as

k increases. Although this is not perfect, because they are of the same order of

magnitude, it is a reasonable statement to say that the method is not dependent

on the wavenumber and so the method is successful for solving high frequency

problems in the sense of the two points mentioned above. It is worth noting that
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k N dof Rel. EOC

5 2 24 7.1425 × 10−1 0.6

4 48 4.7393 × 10−1 0.6

8 88 3.2269 × 10−1 1.0

16 176 1.5496 × 10−1 1.0

32 360 7.7404 × 10−2 1.0

64 712 3.9425 × 10−2 0.4

128 1416 2.9569 × 10−2 -

10 2 24 7.5453 × 10−1 0.7

4 48 4.7335 × 10−1 0.8

8 96 2.6980 × 10−1 1.1

16 192 1.2670 × 10−1 0.9

32 376 6.8440 × 10−2 1.2

64 752 3.3034 × 10−2 0.4

128 1496 2.3141 × 10−2 -

20 2 24 7.5254 × 10−1 0.1

4 48 7.1085 × 10−1 1.2

8 104 3.0762 × 10−1 0.8

16 200 1.7872 × 10−1 1.7

32 392 5.5728 × 10−2 0.4

64 792 4.1295 × 10−2 1.0

128 1576 2.0186 × 10−2 -

k N dof Rel. EOC

40 2 24 7.3945 × 10−1 0.4

4 56 5.4597 × 10−1 0.7

8 104 3.4089 × 10−1 −0.1

16 208 3.6095 × 10−1 0.4

32 416 2.8317 × 10−1 2.9

64 824 3.7158 × 10−2 1.0

128 1656 1.8542 × 10−2 -

80 2 24 7.6504 × 10−1 0.7

4 56 4.6096 × 10−1 1.0

8 112 2.3333 × 10−1 0.6

16 216 1.5975 × 10−1 0.2

32 432 1.4203 × 10−1 1.7

64 864 4.4374 × 10−2 1.1

128 1736 2.1325 × 10−2 .

160 2 32 6.8901 × 10−1 0.6

4 56 4.4455 × 10−1 −0.1

8 112 4.6445 × 10−1 1.0

16 224 2.3456 × 10−1 1.3

32 456 9.3327 × 10−2 1.0

64 904 4.8153 × 10−2 0.7

128 1808 2.9822 × 10−2 .

Tab. 5.1: Relative L2 errors, k = 5, 10, 20, 40, 80 and 160. N = 2, 4, 8, 16, 32, 64, and 128

if we did eliminate these inaccuracies in the numerical integration we could expect

these requirements to hold more strongly, unfortunately for obvious reasons this is

not possible.

The final thing that we are take from tables 5.1 is looking at the degrees of

freedom (dof) required in order to obtain a fixed level of accuracy. Throughout we

have said that the amount of mesh points was no longer directly proportional to kL

and we now have (dof) ∝ N log k. Figure 5.2 demonstrates the degrees of freedom

required as k grows for the higher values of N (that is N = 64 and N = 128). It

is clear to see the advantages of using this mesh for high frequency problems, the

graphs clearly demonstrate the logarithmic increase in mesh points as the value of

k increases. So doubling k has little effect on the degrees of freedom for fixed N as

one would hope.

So far, we have established that the method converges for increasing values of
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Fig. 5.2: Degrees of freedom for increasing wavenumbers for N = 64 and N = 128

N and is not dependent on the wavenumber k and so the method does indeed work

for solving ((2.2),(2.3) and (2.4)).

We are now to look briefly into the computational cost of the collocation method

in comparison to the Galerkin method. This is hard to compare directly since

for a fair comparison we would require the computational times for each method

in order to get the same level of accuracy. This is a near impossible task, but

we can demonstrate the advantage of using the collocation method for increasing

wavenumbers over the Galerkin method. It is well known that the collocation

method is faster in setting up the systems in comparison to the Galerkin method

and many comparisons have been done, [14] is one such example of this. In this

comparison, a different problem was tackled but cost of setting up the system

was similar. It was found that the amount of floating point operations (known as

flops which gives one way to measure numerical work), required by the collocation

method is typically 56-58% to that of the Galerkin method for a varying amount

of mesh points. We may obtain a similar result to this figure but it ultimately

depends on the quadrature points we use and because the quadrature points in the

Galerkin method are calculated differently due to the double integrals, it is unlikely

we will be able to make a direct comparison in the cpu times. For this test, in the

collocation method we have taken the values of NQ and MQ to be of that we saw in

the accuracy test, for the Galerkin method we have taken the quadrature points over

each interval to be 6. It is not possible to get an accurate result from the Galerkin

method by choosing the quadrature to be so small, but we choose this small value

because of time constraints. Therefore, we cannot make a direct comparison and so

for this test we are to investigate what increase in computational time is obtained
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when increasing both N value and the wavenumber. Table 5.2 demonstrates the

computational time for each of the methods for different wavenumbers and the ratio

increase, the results were computed on an AMD Athlon XP 3000+, with cpu times

presented in seconds.

k N Col Time Ratio

10 2 2.4530 × 10+0 2.2

4 5.4380 × 10+0 2.7

8 1.4578 × 10+1 3.1

16 4.5094 × 10+1 3.2

32 1.4324 × 10+2 3.7

64 5.2354 × 10+2 3.7

128 1.9266 × 10+3 -

k N Col Time Ratio

20 2 4.2650 × 10+0 2.3

4 9.5930 × 10+0 2.8

8 2.6860 × 10+1 2.9

16 7.7985 × 10+1 3.1

32 2.4350 × 10+2 3.6

64 8.8328 × 10+2 3.6

128 3.1686 × 10+3 -

k N Col Time Ratio

40 2 8.0630 × 10+0 2.7

4 2.1735 × 10+1 2.3

8 4.9640 × 10+1 3.0

16 1.4686 × 10+2 3.0

32 4.4695 × 10+2 3.5

64 1.5575 × 10+3 3.7

128 5.6956 × 10+3 -

k N Gal Time Ratio

10 2 1.1797 × 10+1 1.0

4 1.2016 × 10+1 1.4

8 1.7093 × 10+1 2.1

16 3.5671 × 10+1 2.5

32 9.0281 × 10+1 3.3

64 3.0217 × 10+2 3.9

128 1.1689 × 10+3 -

k N Gal Time Ratio

20 2 4.0531 × 10+1 0.8

4 3.4531 × 10+1 1.2

8 4.1171 × 10+1 1.5

16 6.2891 × 10+1 2.1

32 1.3123 × 10+2 2.8

64 3.7363 × 10+2 3.7

128 1.3775 × 10+3 −

k N Gal Time Ratio

40 2 1.5377 × 10+2 0.8

4 1.1722 × 10+2 1.1

8 1.2319 × 10+2 1.2

16 1.5203 × 10+2 1.6

32 2.3975 × 10+2 2.2

64 5.2584 × 10+2 3.2

128 1.6912 × 10+3 −

Tab. 5.2: Timings, k = 10, 20, and 40. N = 2, 4, 8, 16, 32, 64, and 128 Collocation Vs

Galerkin

As mentioned previously we cannot compare the cpu times directly, but we

can look at the increases for each method. For the collocation method we see

that asymptotically (i.e. as N → ∞) that for fixed k, if we double N , then the

computational cost increases approximately four times. This is what one would

expect as if we were to double N then the degrees of freedom roughly doubles and

so the main matrix in the system will be double the size in both directions, i.e. it is
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four times the size. There is of course the right hand side of the system to consider,

this will double in size and is why we would expect the four-fold increase to be most

noticeable in the limit. So as N → ∞ the percentage of the overall calculations

contributed from the right hand side vector will tend to zero. If we compare this

to the Galerkin, similar results are obtained. This is for exactly the same reason,

when we double N the degrees of freedom roughly doubles and so the system will

be four times the size, and hence four times as many calculations required, again

we see this best represented in the limit. So neither method gives a computational

advantage in terms of the ratio when we increase the value for N .

N = 4 10 20 40 80 160

Col Time 5.4380 × 10
+0

9.5930 × 10
+0

2.1735 × 10
+1

3.9734 × 10
+1

7.8625 × 10
+1

Ratio Inc. 1.8 2.3 1.8 2.0 −

Gal Time 1.2016 × 10
+1

3.4531 × 10
+1

1.1722 × 10
+2

4.3524 × 10
+2

2.3641 × 10
+3

Ratio Inc. 2.9 3.4 3.7 5.4 −

N = 16 10 20 40 80 160

Col Time 4.5094 × 10
+1

7.7985 × 10
+1

1.4686 × 10
+2

2.8827 × 10
+2

5.6218 × 10
+2

Ratio Inc. 1.7 1.8 1.9 2.0 −

Gal Time 3.5671 × 10
+1

6.2891 × 10
+1

1.5203 × 10
+2

4.7111 × 10
+2

1.5081 × 10
+3

Ratio Inc. 1.8 2.4 3.1 3.2 −

Tab. 5.3: Timings for increasing k, N = 4 and N = 16

Next, we wish to establish the computational cost increase when we double the

value of the wavenumber k. First, let us consider the collocation method, if we recall

equation (4.17) (see also 5.1) where we define the number of Gaussian nodes and

weights over each interval we recall it was proportional to the wavenumber. This

demonstrates that for N constant, by doubling the wavenumber then the quadrature

points over each interval will also double and so the computational time should

double with it. For the Galerkin method a similar process is used in determining

the quadrature. We recall back to section 3.1 where we commented that when

setting up the linear system we have double integrals to numerically solve. As we

have these double integrals the quadrature is doubled in two dimensions as oppose

to one. This means that when we double k we expect the computational time to

quadruple. Table 5.3 demonstrates the cases where N = 4 and N = 16 for varying

k for each of the methods. We have chosen smaller values for N to represent this

because as N increases, to get a good result we need to take higher values for the

wavenumber and so choosing N to be low means we do not have to run k up to
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extremely high numbers. As expected the results suggest that doubling k whilst

increasing computational time four times for Galerkin, only doubles the cpu time

for the collocation method, demonstrating a speed advantage as k gets large. Even

if for lower k the Galerkin method is quicker then at some point when k gets to a

large enough value then the collocation method will always be quicker to implement

for solving the problem.

To finish off this section we are to present some more images from some of the

results to further demonstrate the program produces correct results for a general

problem. Throughout the demonstration we have limited k to be 20 or less in

order to allow easier viewing of what the behavior is for each example. For each

demonstration we show the full picture (which includes the sum of the scattered

and incident waves) and also show the “diffracted” wave field (i.e. the total field

minus the leading order terms) since we have been mainly concerned with the

diffracted wave throughout. We calculate the value in this field by using (2.5) and

our approximation to ∂u/∂n = φ = ϕ + Υ and so calculate and plot

u = ui −
∫

Φφ

= ui −
∫

Φ(Υ + ϕ)

= ui −
∫

ΦΥ −
∫

Φϕ

where we take the last term in the third equation to be the diffracted wave.

Figures (5.3) through (5.6) represent a series of demonstrations with varying

values for k and θ (angle of incident where θ ∈ [0, π/2]) as well as a number of

different polygons we use to scatter the waves. For each figure we have four separate

images, the top left represents the total acoustic pressure in the field (for this we

have used the real values), the top right represents the absolute value of the total

field and helps us clarify the overall behavior of the problem, this allows us to

establish where we have waves with higher magnitude and where we do not. The

bottom images represent the diffracted field, again we have the acoustic pressure

and the absolute values.

In each example it is clear to see the wave field formed, the magnitude of the

wave can be seen more clearly in the absolute value graphs for both the total field

and the diffracted field. If we focus on the absolute values of the diffracted field it is

clear to see that we have a higher diffraction in the places expected. These consist

of the acute corners and where more of the corner is seen by the incident wave as

we would expect.
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Fig. 5.3: Square, coordinates (0, 0) (2π, 0) (2π, 2π) (0, 2π). θ = π/4, k = 10
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Fig. 5.4: Square, coordinates (0, 0) (2π, 0) (2π, 2π) (0, 2π). θ = π/8, k = 5
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Fig. 5.5: Hexagon, coordinates (0, 0) (2, 1) (2, 2) (0, 3) (−2, 2) (−2, 1). θ = π/2, k = 20
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6. CONCLUSIONS AND FURTHER WORK

We have implemented and presented a new collocation method for solving problems

of high frequency scattering by convex polygons using a recently developed mesh

and non-standard basis functions. We have also presented results of the accuracy

and computational cost of the method in comparison with the Galerkin method.

The results obtained are very promising for this new method. We have estab-

lished that the error in our solution converges with an approximate estimated order

of convergence of one as we would expect. Also, we have shown that the error in

the solution is not dependent on the wavenumber k and so is ideal for scattering on

polygons as k grows larger. We have also demonstrated the computational advan-

tage of the method over using the Galerkin method, this is seen more so for higher

wavenumbers due to only doubling computational cost if we were to double the

value of k, whereas the computational time with the Galerkin method quadruples.

Although we have successfully implemented this method, many areas remain to be

improved both in the current implementation and in how we can optimise this, and

also how we can develop the method further to improve the convergence rate.

The first point we shall suggest improvement on is concerned with generating

the amount of nodes for the numerical integration, specifically when a collocation

point is near the support of the basis function when each is on a different side.

We currently impose a set number of nodes predetermined by the user over these

intervals, although this can be dependent on k it is not ideal as the amount of

points we need will also be dependent on the angle of the corner, although what we

have is sufficient for the program as it stands, it would be a welcome improvement.

Ideally, a graded mesh can be written into the program as defined in section 4.4.2

where the amount of mesh points is dependent on the wavenumber and angle and

not on a user entered value, this will improve the computational efficiency time for

running our program.

Another improvement we could make is to do with the evaluation of the high-

oscillatory integrals. We have discussed how the GQ is not designed for oscillating

functions and so by learning more about the properties of the oscillating functions,
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a method may be developed in that the evaluation of the integrals is a lot more

efficient using fewer nodes over each interval of integration (see [9], [10]). The nu-

merical integration in the program is where the majority of the computation time is

taken up and so improving on this would improve time taken to solve the problem

considerably.

We also talked about how a singular system may occur if a collocation point is

exactly the same as a mid-point in our basis functions, and so the development of

another mesh as discussed in chapter 3 will eliminate this problem. This will also

improve the conditioning of the system if we can guarantee that the collocation

points on gridx and gridy are at least some distance apart, say ǫ.

Finally, we wish to discuss what the next step forward would be in developing

the method further. The approximation using piecewise polynomials can, on aver-

age, at best give us an order of convergence of one. So as we double the degrees of

freedom the error in our approximation will on average at best halve. The future

development of the method will be using higher order piecewise polynomials to ap-

proximate by, giving us a better order of convergence. Using a linear approximation

will increase the estimated order of convergence to be two, and even higher order

approximations will increase this order of convergence further. We have defined our

basis functions as in chapter 3 for the piecewise polynomial case. One way in which

we can approximate using linears is by using “hat functions” and still use the same

technique of removing the oscillation of the incident wave as we have done here.

The new basis functions would then take the form

∂u

∂n
(s) =

m
∑

j=1

[

eik(s−c)ρj (s)
]

,

where the ρj is now the hat function which will take the form

ρj (s) =















s−sj−1

sj−sj−1
s ∈ [sj−1, sj ]

sj+1−sj

sj+1−sj
s ∈ [sj , sj+1]

0 otherwise

This will allow to increase the estimated order of convergence for our method to be

two, and there is also scope to approximate using even higher order polynomials to

obtain better rates of convergence.
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