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Abstract

Four-dimensional variational data assimilation requires the development of a discrete
linear model with which to predict the evolution of a perturbation to the initial
state of a nonlinear system. There are two ways in which this linear model may be
derived. Beginning with the continuous nonlinear equations we may first discretize
them and then linearize the numerical scheme thus formed, or we may first linearize
the continuous equations and then apply some suitable discretization. In this thesis
we compare these two methods.

Using simple models of an ODE and a PDE problem we show how the two
methods may lead to models with different stability and accuracy characteristics.
An important factor in determining the accuracy of the second method is found
to be the representation of the background trajectory around which the model is
linearized. We find that natural approximations to this trajectory may not only
reduce the accuracy of the overall scheme but, within the context of semi-Lagrangian
advection, may lead to a scheme which is no longer consistent.

As part of our analysis we identify a difficulty in testing the linear model formed
by first linearizing and then discretizing. In order to overcome this we propose a
new method for testing such models, which we demonstrate both theoretically and
numerically.

Finally we consider the implementation of these ideas for operational weather
forecasting, by developing the linearization of a three-dimensional weather forecast-
ing model. For this case only the linear model formed by first linearizing and then
discretizing is found. Numerical tests are performed using this model and the results

interpreted in the light of the analysis of the simple problems.
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Chapter 1

Introduction

L.F. Richardson proposed a method of forecasting the weather numerically using
the already well-known equations of a fluid in 1922 [70]. His idea was not realized
until much later when, in the 1950s, simple models of the atmosphere were run on
the very first digital computers [89]. However, it was soon realized that to be able
to forecast a physically realistic state of the atmosphere it was necessary to specify
the initial conditions with care, so as to avoid the growth of non-physical gravity
waves within the numerical model. It was the absence of techniques to do this that
lead to large errors in Richardson’s own first forecast [52].

The difficulty with the specification of initial conditions for a weather forecast-
ing model is that the underlying initial value problem being solved is very much
underdetermined. For the operational resolution of most global models today it 1s
necessary to specify of the order 10° — 107 data values to begin a model forecast, but
at any one time the number of observations of the atmosphere is only of the order
10°. Besides the obvious lack in the number of data, the data that are available are
not evenly spread and so for example we have many useful data over the continents,
but little over the oceans. Thus to obtain a reasonable estimate of the initial fields
for the forecast model it is necessary to combine the data we do have with some

first estimate of the initial state. This estimate is known as a background field and



is usually obtained from a previous short period forecast. The process of using the
data to improve on this estimate is called data assimilation.

Until recently most methods of data assimilation have relied on a statistical
combination of the data and background field. A review of such methods is given
in [31] and [51]. A limitation of these methods is that they do not explicitly use
the known model equations to constrain the problem in any way. This was changed
by the proposal of the method of four-dimensional variational data assimilation
(4D-Var) (e.g. [48], [80]). This method treats the data assimilation problem as
a problem of minimizing the distance between the observations and the trajectory
of the numerical model in a given time window, while still staying close to the
background solution. Thus the numerical model itself is used as a constraint in
the problem. The proposal of this method led to much experimentation in 4D-
Var systems (e.g. [85], [14], [49], [86], [95], [50], [94]). However the full 4D-Var
system as originally proposed was thought to be too expensive for any operational
implementation.

The development of a 4D-Var system for use in real-time weather forecasting
became a realistic possibility when in 1994 Courtier et al. [17] proposed an incre-
mental formulation. In this formulation the linearization of the nonlinear model is
used to predict the evolution of a perturbation around a given trajectory of the non-
linear model. The distance from the perturbed trajectory to the observations is then
minimized, with the adjoint of the linear model being used to provide the required
gradient information for the minimization. In this way the full 4D-Var problem is
approximated by a quadratic problem. This guarantees a unique solution to the
minimization and also allows faster convergence to this solution. This formulation
also allows an approximation to the true linearization of the model to be used, thus
allowing further savings in the computational cost.

In order to develop an incremental 4D-Var system we must first develop a lin-

earization of our nonlinear model and the adjoint of this linear model. This require-



ment is not particular to 4D-Var, however, since the linearization of a nonlinear
model is often used as a means of obtaining the adjoint model in other applications.
Adjoint models are an efficient method of providing gradient information for many
large scale optimization problems. They are used within meteorology not only for
data assimilation, but also for the study of forecast error, the determination of initial
perturbations for ensemble forecasts, sensitivity analyses and the targetting of at-
mospheric observations [27], [13], [12], [56], [63], [68], [69]. They also arise in many
applications in other fields, such as aerodynamic design [1], [60] and oil reservoir
problems [15]. Thus the question as to which is the best method to obtain the linear
model and the adjoint model is one which is of interest in many fields.

There are three different ways in which one may develop a discrete adjoint model
beginning from a continuous nonlinear model and these are illustrated in Figure 1.1.
Method 1, which is called the continuous method, is to find the adjoint of the con-
tinuous nonlinear equations and then apply a suitable discretization. This method
has been used for example in aerodynamic design [40]. However, it is not suitable
for the problem of incremental 4D-Var since it does not provide a discrete linear
model with which to predict the evolution of a perturbation.

Method 2 is first to discretize the nonlinear equations and then linearize the
discrete numerical scheme in order to form a discrete linear model. This method
is known as the discrete method and the discrete linear model formed in this way
is called the tangent linear model (TLM). The adjoint model can be found directly
from the tangent linear model by a transposition of the matrix representation of
the discrete tangent linear model. This method has the advantage that the tangent
linear model can be found by directly linearizing the nonlinear model source code,
a process known as automatic differentiation. The adjoint model can then be found
by transposing the tangent linear model source code ([5], [9], [10], [14], [32], [34],
175))

The third method is one which we propose in this thesis. We begin from the
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continuous nonlinear equations and linearize them, to form a set of continuous linear
equations. These linear equations are then discretized using a suitable numerical
scheme to form the discrete linear model, which we call a perturbation forecast model
(PFM). The adjoint model can then be obtained from the perturbation forecast
model in the same way as in Method 2 and so within the incremental 4D-Var scheme
we still have the exact adjoint of our discrete linear model. We call this approach
the semi-continuous method.

There are two main advantages to the semi-continuous method. The first is
based on the premise that although the tangent linear model is valid for infinitesimal
perturbations, what we actually want to model are finite perturbations of the size of
uncertainties in the initial conditions [26]. The perturbation forecast model can be
designed with this aim in mind. Thus it can be based on physical principles and can
make some small approximations to the true tangent linear model. If the magnitude
of such approximations is no greater than the error made by linearizing, then this
should not affect the accuracy of the calculations, but will allow significant savings to
be made to the running costs of the models. In fact, within the field of aerodynamics
some attempt has been made to simplify the adjoint model to reduce its cost [60].
Our approach allows such simplifications to be made both in the equations of the
linear model before any discretization by appealing to scale analysis and in the
actual implementation of the numerical scheme.

A second advantage to this approach is that it is possible to avoid some of the
problems which occur with numerical schemes which are difficult to linearize. Such
difficulties will be reviewed in more detail in Section 3.2. For the present we note that
one such problem can occur when deciding how to linearize an iterative scheme [64].
The semi-continuous method avoids this question by applying a suitable numerical
scheme to the linearized equations.

In this thesis we do not treat the adjoint model, but concentrate our attention

only on the discrete linear models formed by the discrete method (Method 2) and
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the semi-continuous method (Method 3). We wish to compare the properties of the
linear models formed in this way and to examine some of the issues which arise
when discretizing the linear equations in the semi-continuous method. We begin
in Chapter 2 by reviewing some of the principles of numerical analysis and some
particular numerical schemes, which we make use of in the remainder of the thesis.
In Chapter 3 we review some of the studies that have already been carried out on
linear models, first looking at how linear models have generally been assessed and
then presenting some known results on the different ways to find a linear and ad-
joint model. At the end of the chapter we propose a new method for the testing of
a perturbation forecast model. We then move on to our own studies of particular
examples of linear models. In Chapter 4 we look at a simple example of an ordinary
differential equation problem and develop the linear model by both methods, com-
paring the tangent linear model (TLM) and the perturbation forecast model (PFM)
analytically and numerically. Chapter 5 then considers a simple system of partial
differential equations. We again develop and compare the TLM and PFM, in a study
of the one-dimensional shallow water equations, this time using numerical schemes
more similar to those used in the three-dimensional weather forecasting model being
developed for operational use at the Met Office. In Chapter 6 we turn our attention
to this three-dimensional weather forecasting model. For this model it is not practi-
cal to develop the linearization by both methods, so we develop only the PFM. We
explain some of the choices made for the numerical scheme and show results from
numerical experiments. Finally in Chapter 7 we draw together the conclusions from
the various models we have looked at and propose some questions to be answered

in future work.
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Chapter 2

Numerical methods for differential

equations

In this chapter we review some of the concepts of numerical analysis and the nu-
merical methods which we make use of in the remainder of the thesis. We begin in
Section 2.1 by reviewing the analysis of initial value problems of ordinary differen-
tial equations (ODEs) and then move on to partial differential equations (PDEs) in
Section 2.2. For each of these we review three essential properties of any numerical
scheme, accuracy, convergence and stability. The accuracy of a numerical scheme is
a measure of how well the numerical method approximates the original continuous
equation. To measure this we introduce the definitions of the truncation error, order
and consistency of a numerical scheme. However these only measure the error in
the approximation of the equation and do not give information about how close the
numerical solution is to the analytical solution. To obtain this we introduce the
concept of convergence. Finally we have stability, which is a property of the dis-
crete equations and makes no direct reference to the continuous problem. Stability
together with consistency ensures that the numerical solution does not grow faster
than the analytical solution. For most stability analyses we need to make some sim-

plifying assumptions about the problem being solved. For example, the analysis is
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usually applied to a linear problem and sometimes we are required to ensure that we
have constant coefficients. Thus such analyses often provide only necessary, but not
sufficient, conditions for stability. Within this thesis we restrict our analysis to the
stability of a linear system. For both the ODE and PDE problems we discuss the
concepts of accuracy, convergence and stability with respect to a general problem
and then introduce examples of particular numerical schemes in Sections 2.3 and

2.4.

2.1 Ordinary differential equations

For our study of ordinary differential equations we limit discussion to the system of
first order equations
dy

i F(y,t) =0, (2.1)

where y = y(t) is a real-valued vector, t € [0,T] and y(0) = yo is given. We interpret
the independent variable ¢ as a temporal variable. In order to represent general
numerical schemes applied to these equations we first introduce some notation. We
define the step size At for the independent variable . Then we have at time ¢,, the
analytical value of y, which we write y(t,,) = y(nAt). The numerical approximation
to this is written y,,. Then we can write a general one-step numerical scheme to

solve the system (2.1) as
Vot1 — Fu(yn, At) =0 (2.2)

with initial condition ygo, where for an implicit scheme the solvability of the implicit

equations is assumed.

2.1.1 Accuracy

The accuracy of the numerical scheme (2.2) is defined by its global truncation error

as follows:
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Definition 2.1 For the ODE problem (2.1), the global truncation error T, of the
scheme (2.2) at time t,, is defined by

Y(tns1) = Fuly(tn), At)
At ’

(2.3)

T, =
where y(t,) is the theoretical solution of the initial value problem (2.1).

The global truncation error is often simply referred to as the truncation error and
we will follow this henceforth. A Taylor series expansion of the truncation error in
terms of the step size At allows us define the order of accuracy of the scheme ([44],

p.225):

Definition 2.2 The method (2.2) is said to have order p if p is the lowest integer
for which
Y(tast) — Faly(ta) At) = O(APH) (2.4

holds, where y(t,,) is assumed to be a sufficiently differentiable solution of the initial
value problem (2.1).

The requirement that the accuracy of the scheme increase as a smaller step size is

used is then given by the property of consistency:

Definition 2.3 The numerical method (2.2) is consistent if T, — 0 as At — 0

with n/At constant.

This is equivalent to requiring that the order of the scheme be at least one.

2.1.2 Convergence

The convergence of a numerical scheme relates the analytical and numerical solu-
tions. We first need to choose an appropriate norm to measure the distance between
the solutions, which we write || . ||. Commonly chosen norms for a vector x = {x;}

of length N are the maximum norm

| % lloo= v o (25)

14



and the Euclidean, or [, norm

I [la= (Z |ij2> : (2.6)

We define the global error e, of the numerical solution at time ¢,, by
e, = y(nAt) — yn,. (2.7)
Then we have:

Definition 2.4 The numerical scheme (2.2) is a convergent approzimation to the

initial-value problem (2.1) if || e, || = 0 as n — oo with nAt constant.
Convergence is related to consistency by means of the following theorem:

Theorem 2.1 Let F,, be a continuous function of its arguments and let there exist

a constant L such that for all points (yn, At), (yi, At),
| Frlyn, At) = Fulyn, Ab) [|< (14 LAY [ yn —y5 |- (2.8)

Then the one-step method (2.2) is consistent if and only if it is convergent ([{4],
p.116).

The condition (2.8) is called the Lipschitz condition.

2.1.3 Stability

The general definition of stability ensures that a numerical method is not over-
sensitive to small perturbations in the initial conditions of the problem. We use
the definition from [45], p.32. We define perturbations {d,,,n = 0,1,..., M} and
perturbed solutions {z,,n = 0,1,..., M} to the discrete system (2.2) by

Znt1 — Fnlzn, At)—308, =0,
Zo — Yo + 60. (29)

Then we have
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Definition 2.5 Let 8,6, be any two perturbations of (2.2) and let z,,z; be the
resulting perturbed solutions for n = 0,1,..., M. Then if there exists constants S

and hqg such that, for all At € (0, ho],
| z, — 2 ||< Se (2.10)

whenever

| 60 — 65 ||< € (2.11)
for 0 < nAt < T, we say that the methods (2.2) is zero-stable.

A sufficient condition for the zero-stability of the numerical scheme (2.2) is that the
scheme satisfy a Lipschitz condition of the form (2.8).

The definition of zero-stability is concerned with what happens as At — 0 with
nAt fixed. For At # 0 we can define a weaker form of stability which considers
how a perturbation propagates for a fixed At as n — oco. We determine this weaker

stability by applying the numerical scheme to the linear scalar equation

dy
A < 0. 2.12
il L (2.12)

If we apply the numerical method (2.2) to this equation, we obtain a one-step

difference equation of the form

Yn+1 = ApAt)yn, (2.13)
where A(uAt) is called the amplification factor. We then have

Definition 2.6 The numerical scheme (2.2) is absolutely stable on an interval (o, 3)

if Yo = 0 asn — oo for pAt € (o, 3).

We see from (2.13) that the numerical scheme is absolutely stable for those values

of At for which |A(uAt)| < 1 holds ([45], p.199).
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2.2 Partial differential equations

The partial differential equation problem we consider is the first order quasi-linear
system in two independent variables

Ju Ju
a + FI(U,Jf,t)%

where u = u(z,t) is a real-valued vector, t € [0,T] and = € [0, L]. The boundary

+ Fy(u,z,t) = 0, (2.14)

conditions on x are periodic, so that u(0,¢#) = u(L,?), and the initial condition
u(x,0) = ug(x) is given. The partial derivatives of the vector u are defined to be the
Jacobian of the vector with respect to the variable x or t. We interpret x as a spatial
variable and ¢ as a temporal variable. Many of the following results can easily be
extended to more spatial dimensions by considering a vector x = [z1, 29, . . ., zx], but
for the purposes of this chapter we restrict the discussion to one spatial dimension
so as to simplify the notation.

In order to represent the numerical schemes we introduce step sizes Ax, At for
the independent variables x and ¢. Then at any spatial point x; and time ¢,, the
solution to the analytical system (2.14) is written u(a;,t,) = u(tAz,nAt). The
numerical approximation to this we write u?’. We also need to define notation for
the vector of values over all spatial points at a given time. We assume that we have
N gridpoints, with NAz = L, and define the vector of numerical solutions on the
grid by

U = ()T, )7 ()] (215)
This is a numerical approximation to the analytical solution vector

U(ta) = [0 (x1, ta), 0 (22, t0), .. ul (2, 1)) (2.16)

We can then write a general one-step numerical method for solving the system (2.14)

in the form

U™ — g"(U", Ax, At) = 0, (2.17)

where G" is a continuously differentiable difference operator and U? is given.

17



2.2.1 Accuracy

We define the accuracy of the numerical scheme (2.17) by means of its global trun-

cation error as follows:

Definition 2.7 For the PDE problem (2.14), the global truncation error " of the
scheme (2.17) at time t,, is defined by

+_ Ultap) = §"(U(t,), Aw, At)
= 5 : (2.18)

As for the ODE problem, this then leads to the definitions of order and consistency

for the numerical scheme. For this case we may have different orders of accuracy in

different variables and so we have,

Definition 2.8 The method (2.17) is said to have order p in Ax and order q in At

if p and q are the lowest integers for which
U(t,i1) — 6"(U(t,), Az, At) = O(AzPT) + O(A#rH) (2.19)

holds, where U(t,,) is assumed to be a sufficiently differentiable solution of the initial
value problem (2.14).

Definition 2.9 The numerical method (2.17) is consistent in a given norm if

| 7" [|[— 0 as At — 0 and Az — 0 with nAt and NAx constant.

It is necessary that there be some additional fixed relationship between At and Ax,
with At = O(Az) typical for hyperbolic problems ([57], p.136). We note that the
scheme will be consistent if and only if it has order of at least one in all independent

variables.

2.2.2 Convergence

To define convergence for the PDE scheme we first define the global error e at point
x; and time t,,

e’ = u(iAx,nAt) —ul. (2.20)

18



Then we have:

Definition 2.10 The numerical scheme (2.17) is a convergent approzimation to the
initial-value problem (2.14) in a given norm if || €@ ||— 0 as n — 00,1 — oo with

nAt,1Ax constant.

2.2.3 Stability

In this section we restrict discussion to the stability of linear schemes for partial
differential equations, that is schemes of the form (2.17) where G" is a linear function
of U". Then the stability of the numerical scheme (2.17) can be expressed by the

following definition, taken from [42], p.30:

Definition 2.11 The difference approzimation (2.17) is stable in a given norm for
a sequence At — 0, Az — 0 of there are constants a, K such that for all to,t, with
t, > to and all U°

| U 1< et | U0 | (2.21)

For a PDE problem, establishing the stability of a numerical system is an impor-
tant part of demonstrating its convergence. The inherent link between these two

properties is expressed by the Laz equivalence theorem:

Theorem 2.2 (Lax equivalence) Given a properly posed initial-value problem and
a finite-difference approzimation to it that satisfies the consistency condition, sta-

bility is the necessary and sufficient condition for convergence, assuming that all

conditions hold in the same norm. ([T1], p.45).

However, in general it is difficult to determine a condition such as (2.21) for a variable
coefficient problem and so we usually consider only the stability of a constant-

coefficient linear system. In this case the numerical scheme (2.17) can be written
Ut = Co(At, Az)U", (2.22)
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where Cy is a time invariant matrix. Assuming a relationship between Az and At

we can write such a system in the form
U™t = C,(AH)U", (2.23)

with C; a time invariant matrix and 0 < nAt < T. Since C; is time invariant
we have U™ = [C1(At)]"U°. The matrix Cy is the amplification matriz. Then to
determine the stability of the linear system (2.23) we use the result of Richtmyer
and Morton, which limits how much a feature of the initial data can be amplified in

the numerical procedure. This leads to the following:

Theorem 2.3 The finite difference approzimation (2.23) is stable in a given norm

if for some v > 0, the infinite set of operators

[C1(AD)]", 0 <At <y,

0<nAt<T, (2.24)
is uniformly bounded in that norm ([71], p.45).

We can determine a necessary condition for stability as follows. Welet A, Ay, ... A,

be the eigenvales of Cy(At) and recall that these are the solutions of the equation
det [\ — Cy| = 0. (2.25)
The spectral radius p(Cy) of Cy(At) is defined as
p(C1) = max|A;]. (226)
Then, following [71], p. 70, we have
p(C1)" <[ [Ca(AL)]" || (2.27)

Therefore, using Theorem 2.3, a necessary condition for stability in a given norm is
that p(Cy) be bounded in that norm. This leads to the following condition ([57],
p.144):
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Theorem 2.4 (von Neumann condition) A necessary condition for the linear
system (2.23) to be stable is that there exists a constant K such that for each of the

eigenvalues A; of the amplification matriz Cq
|Ai| <14 KAt (2.28)

Furthermore we find that of Cy is a normal matriz, then this condition is both nec-

essary and sufficient for stability ([71], p.70).

In practice we must determine how the numerical solution is amplified from one
time step to the next before this theory can be applied. To do this we make use of

Fourier analysis. We explain this method next in Section 2.2.4.

2.2.4 Fourier analysis

In order to analyse the amplification of the numerical solution in successive time
steps we must separate the effects of the space and time discretizations. To do this
we apply a Fourier transformation to the system (2.22). This procedure of Fourier
analysis, which is also known as the von Neumann method, is a fairly straightforward
procedure. However it can only be applied under a restricted set of conditions:
that the system being analysed is linear, the matrix Cg is constant in time and
the boundary conditions for the problem are periodic. Under these conditions the
method then proceeds as follows. We assume that the numerical solution to the

system (2.22) is given by a single Fourier mode of the form

n tkjAx
U" = a, e (2.29)

Y

where k is the wave number and a,, is constant in space. Then substituting this into

the linear system (2.22) we obtain a relationship of the form

anyy = Co(At, k), (2.30)
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where éo is the discrete Fourier transform of the matrix Cg. This is an equation
of the form (2.23), with the transformed matrix éo(At, k) being the amplification
matrix for each value of the wavenumber k. We see from (2.29) that || U™ ||=|| a, |-
Hence a stability condition for the transformed system (2.30) is equivalent to a
stability condition for the original linear system (2.22). Thus we find that under
the assumptions required by this technique, a necessary condition for the linear
system (2.22) to be stable is that the amplification matrix éo(At, k) satisfy the von
Neumann condition for all possible values of the wavenumber .

Further useful information about the stability of the scheme and its phase error
can be found by modifying the above analysis such that we replace the mode (2.29)

by the expression

n __ i(kjAz+wnAt
U = Uge! ),

(2.31)

where Uy is constant in time and space and w is complex. Then substituting into

(2.22) leads to the matrix equation
(AT — Co(At, k))Uq = 0, (2.32)

where O is the zero vector. Taking the determinant we obtain the characteristic
equation for the matrix éo(At,k), with €“?! being the eigenvalues of éo(At,k).

Then, from Theorem 2.4, a necessary condition for stability is that

R <1+ O(Ab). (2.33)

The advantage of this form of analysis is that by splitting w into its real and imag-
inary parts we can obtain information on the amplitude and phase of the scheme
separately. Following Durran [21], p.91, we write w = w, + iw;. Then the Fourier

mode (2.31) can be written

U;z — er—w,’nAtei(ijx—I—wrnAt) (234)

— ‘U;z‘ ei(ijx—I—wrnAt)‘ (235)
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Thus the imaginary part of w determines the amplitude of the solution and so
corresponds to the stability analysis of above, with the solution growing for w; < 0.
On the other hand the real part w, gives information about the phase-speed. The
expression for w, in terms of the other variables is called the discrete dispersion
relation. Then w, is the frequency of the numerical solution and the phase speed is
given by —w, /k.

The derivation of such a relation allows comparison with an equivalent expression
for the analytical system. We consider the linear analytical equations with constant

coefficients. Then substituting Fourier modes of the form
u(z,t) = ugeketet) (2.36)

with ug constant in space and time, we can derive an expression for the frequency w
in terms of the wave number k. This analytical expression can be compared with the
discrete dispersion relation to determine the change in frequency of a given Fourier
mode caused by the numerical scheme. Thus this second form of Fourier mode (2.31)
provides both a stability analysis and a phase speed analysis.

As noted above, the Fourier method is limited by the fact that it can be applied
only to linear constant-coefficient systems. For systems with variable coefficients
and nonlinear systems some information can be gained from an analysis of a frozen-
coefficient linearized system if the variable coefficients are smooth and well-resolved

and the scheme includes some dissipative smoothing ([21], p.147).

Having reviewed the methods available to examine numerical schemes, we now
turn our attention to examples of some schemes which we will make use of later in
the thesis. We first treat methods for ODE problems in Section 2.3 and then look
at methods for PDE problems in Section 2.4.
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2.3 Methods for ODE problems

In this section we restrict our attention to the scalar ODE problem

dy
% - (yvt) =0, (237)
with ¢t € [0,T] and y(0) = yo. We define two types of numerical scheme for use in
later chapters, linear multistep methods and Runge-Kutta methods.

Linear multistep methods for the solution of ODE problems do not follow the
general form of the scheme (2.2). We treat these methods only briefly in Chapter

4 and so the definition is included here only for completeness. The general linear

k-step method for solving (2.37) is written (following [44], p.11),
k k
Zajyn-l-j = At26jfn+jv (238)
7=0 7=0

where «; and f3; are constants and f,, = f(yn,ts). It is assumed that oy # 0 and
that ap and fy are not both zero. Since the coefficients are arbitrary to the extent
of a constant multiplier we assume that aj = 1.

These methods achieve high order accuracy by using function values at several
steps in a linear scheme. In order to achieve higher order while retaining a one-step
scheme it is necessary to allow nonlinearities to be introduced. This is the idea
behind Runge-Kutta schemes. Following [44], p.114, we write a general R-stage
Runge-Kutta method as

where

R
G(Yns tn, At) = Z (2.40)

with

XR:CT -1 (2.41)



and the functions k, defined such that (2.39) satisfies the original differential equa-
tion (2.37) to the required order of accuracy. We note that the scheme (2.39) is of
the general form of a one-step method (2.2) and so the theory developed in Section
2.1 is applicable to such schemes. The so-called ‘classical” Runge-Kutta methods

are derived by setting

kl = f(ynvtn)v

r—1

kr = f(yn + At Z brsksa t, + CLTAt),

s=1
Gy = E br57

r=2,3,...,R. (2.42)

A scheme with a given order of accuracy can then be designed by the appropriate
choice of the coefficients a,, b,s, ¢,. In Chapter 4 we will make use only of the two-
stage Runge-Kutta method defined by choosing by; = 1 and ¢; = ¢; = 3, giving the

scheme

kl = f(ynvtn)v
ks = flyn + Atf(yn,tn), tn + At),
At
Ynt1 = Yn+t 7(]?1 + k2). (2.43)

2.4 Methods for PDE problems

When we turn to PDE problems we find a wide selection of schemes available. Many
of these are reviewed in [57] for general PDE problems and in [21] specifically for wave
equations of geophysical fluid dynamics. Here we only treat the particular numerical
schemes which we use in the one-dimensional shallow water model of Chapter 5 and
the three-dimensional weather forecasting model of Chapter 6. We introduce the

semi-implicit semi-Lagrangian treatment of a forced advection equation. A review
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of the use of semi-Lagrangian schemes in atmospheric models is given in [79]. We

begin with semi-Lagrangian advection in the context of a passive advection equation

and then show how this is extended to treat the forced advection problem.
Following [79] we first illustrate the principle of semi-Lagrangian advection by

considering the passive advection equation in one dimension. Thus we have
—=—+U(z,t)— =0, (2.44)

where 6 is a scalar function being advected and U(z,t) is a given wind field. This
system is of the same form as our general PDE problem (2.14). Along the curve

Z—f = U(x,t) (2.45)
the scalar # remains constant. We can consider the set of curves given by (2.45) as
the set of trajectories of individual fluid particles. In a fully Lagrangian framework
we would follow each of these particles in consecutive time steps. The problem
with such a scheme is that an initially regular distribution of particles would soon
be distributed irregularly [79]. The semi-Lagrangian method follows trajectories of
fluid particles, but on each time step a different set of particles is chosen such that
at the end of the time step the particles lie on a regular grid.

A semi-Lagrangian method is usually discretized over two or three time levels.
Here we consider only a two-time-level scheme. These have the advantage over
three-time-level schemes that they can use twice the time step of a three-time-level
scheme to obtain the same order of time accuracy [83]. We illustrate the method
with reference to Figure 2.1, which is adapted from Figure 2 of [79]. The general
principle is that for each grid point at time level ¢,, + At we can trace back the
trajectory of a particle arriving at that point by integrating (2.45) backwards from
time t,, + At to time ¢,,. This is illustrated in Figure 2.1 by the line C A. The value
of the scalar § at point C and time level ¢,, + At is then equal to the value of 8 at

point A at time level ¢,,. Since point A will not usually lie on a grid point, its value
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must be determined by interpolation from surrounding grid points at time ¢,. In
practice we approximate the exact trajectory of the particle AC by the approximate
straight line trajectory A’C'. This is calculated by assuming a constant velocity Uy
along the trajectory. Then if the point C has = coordinate z;, the point A’ has
x coordinate z; — UgAt. We refer to point C as the arrival point, denoted by the
subscript a and point A’ as the departure point, denoted by the subscript d. Then
we approximate (2.44) by

o+t — on
——==0. 2.4

We note that this scheme is of the general one-step form given by (2.17) and so the

theory for PDE problems developed in Section 2.2 is applicable to two-time-level
semi-Lagrangian schemes.

Two important components of such a scheme are the determination of the ad-
vecting velocity Uy and the interpolation of values at time level ¢,, to the departure
point. The advecting velocity should be an estimate of the velocity at the mid-point
of the trajectory at time level ¢,, + At/2, which corresponds to point B in Figure 2.1.
The problem which occurs in real atmospheric models is that the velocity U is itself
being advected and so is not known a prior: at time level ¢,,1;. The solution to this,
proposed independently by Temperton and Staniforth [83] and McDonald and Bates
[55], is to extrapolate the winds to time level ¢,, + At/2 using the winds at times ¢,

and t,,_1. The displacement « in Figure 2.1 is computed by solving iteratively

(k)
o) = AU (2; — %,tn + %), (2.47)
with
At 3 1
U(i,tn + 7) = §U(:1;i,tn) — §U(:1;i,tn — At) (2.48)
and
a® = 0. (2.49)
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Figure 2.1: A schematic representation of two-time-level semi-Lagrangian advection.
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Pudykiewicz et al. [66] proved that this iteration will converge provided that

ox

At max

<1 (2.50)

for this one-dimensional case. We note that the use of this iteration introduces
values of the wind at time level n — 1 into the scheme and so the scheme is not
exactly a one-step scheme. However for most purposes of analysis we can consider
the determination of the displacement separately and still consider the rest of the
scheme as if it were just one-step.

The calculation of U™ requires values to be calculated at points which do not
necessarily lie on the grid. Thus an interpolation must be made using values at
surrounding grid points. It is sufficient to use a linear interpolation for this step
[79]. However, the choice of interpolation scheme to interpolate values of 8 to the
departure point is more important. A comparison of the properties of various poly-
nomial interpolations is contained in [53]. It is found that linear interpolation for
this step has too large a damping. Cubic interpolation is often used as the best
compromise between accuracy and computational cost [79].

The main advantage of semi-Lagrangian schemes is that the stability of such
schemes is not restricted by the CFL condition and so the maximum time step de-
pends only on the convergence criterion (2.50). For a three-dimensional atmospheric
model Pudykiewicz et al. [66] conclude that the maximum permitted time step is
of the order of approximately 3 hours. This is much larger than can be used in
an Eulerian scheme. Whereas the time step of an Eulerian model must be chosen
according to stability considerations, the semi-Lagrangian method thus allows the
time step to be chosen on the basis of accuracy considerations. However, in order
to obtain the benefit from using larger time steps, it is important that the iteration
(2.47) be solved to at least O(At?) accuracy in order to avoid degrading the accuracy
of the scheme as a whole [54]. Two iterations of this displacement calculation are

found to be sufficient to achieve this [79].
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The potential benefits of semi-Lagrangian schemes have led many operational
weather forecasting centres to move towards the implementation of such schemes
in recent years. The operational models at the European Centre for Medium-range
Weather Forecasting and the Canadian Meteorological Centre both use such schemes
in their models [37], [16] and the Met Office is moving towards implementing such a
scheme [18]. However, in order to use a larger time step it is necessary to combine
a semi-Lagrangian treatment of advection with a semi-implicit treatment of terms
responsible for gravity waves, so that the speed of the gravity waves does not itself
determine the stability criterion of the scheme.

To illustrate how this is done we consider the forced advection of a scalar 8 in
one dimension

00 00

a-l—U(:z:,t)a—x—l—G(G,x,t) =0. (2.51)

Then following the scheme of [83] we can discretize (2.51) as

9217;63 + %Gf} + %Gg“ = 0. (2.52)
Again the particular problem (2.51) is an example of the general problem (2.14) and
the scheme (2.52) can be rearranged to be a one-step scheme of the general form
(2.17) and so the definitions of Section 2.2 apply. The scheme is second order accu-
rate in time and is unconditionally stable for the linearized equations [83]. However,
Rivest et al. [74] showed that the scheme allows a spurious orographic resonance. To
avoid this they propose a first order and a second order off-centering of the implicit
part of the scheme. The first order version is typically used, which discretizes (2.51)

with the scheme
o+l — 67
At

with a € [0.5,1]. When a = 0.5 we have the original scheme (2.52) and o = 1 gives

+ (1 — )Gl + oG =0, (2.53)

a fully implicit time updating. For values of o not equal to 0.5 the scheme is first

order accurate in time, but it is close to second order for « close to 0.5.
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In later chapters we look at the linearizations of models using the schemes in-
troduced in this section. First we review some of the work which has already been

published on linear models.
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Chapter 3

Development and testing of linear

models

In the previous chapter we introduced some concepts of numerical analysis and also
some of the numerical schemes that we wish to use in this thesis. The theory of
numerical analysis can be used not only to study the nonlinear model, but also to
compare the linear models formed by the discrete method (the tangent linear model)
and the semi-continuous method (the perturbation forecast model). The definitions
of the previous chapter allow us to assess the properties of these discrete models and
also compare them with the linear continuous system. In the present chapter we
consider work directly concerned with the development and testing of linear models.
We begin in Section 3.1 by looking at an alternative way in which tangent linear
models have been assessed, by comparison with the discrete nonlinear model. Then,
in Section 3.2, we review some previous studies which have looked at the properties
of linear models. Finally, in Section 3.3, we propose a new method for evaluating a

perturbation forecast model.
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3.1 Comparison with discrete nonlinear model

3.1.1 Theory

In the meteorological literature the usual method of testing a tangent linear model
follows that of Rabier and Courtier [67], which compares the evolution of a pertur-
bation in the discrete linear model with the evolution of the same perturbation in
the discrete nonlinear model. The method is based on a Taylor series expansion of
the solution operator of the discrete nonlinear model. We illustrate the method with
respect to a PDE initial value problem, but the following can easily be adapted for
the ODE case.

We consider a general numerical scheme of the same form as equation (2.17)
Ut — g"(U", Az, At) =0 (3.1)

with nAt € [0,T] and U® given. Let the Jacobian of G" with respect to the model

state vector evaluated at U™ be written

oG"
AU |y

(3.2)

We define S(t,,to, U?) to be the solution operator which maps an initial state U°

to a state U™ at time level n, so that
U" = S(t,,t0, U%) (3.3)
with
S(tn,t0, U%) = GG (... (G°(U° Az, At))...)). (3.4)

Now suppose that to the initial state U® of the model we apply a small pertur-
bation adU°, where dU® controls the shape of the perturbation and « is a scalar
parameter which controls its magnitude. We can run the discrete nonlinear model

starting from the unperturbed state U® and then again from the perturbed state
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U°® + adU°. Then at any time ¢, the difference between the two model runs is the

perturbation N"[adU?] evolved in the nonlinear model, given by
N"[adU°] = S§(t,,t0, U° + adU®) — §(¢,,t0, U?). (3.5)

By a Taylor series expansion of S in (3.5) we have

0
N"[adU°] = %a&UO +0(a?) (3.6)

where the Jacobian 98 (t,,t, U?)/9U is calculated along the time-evolving trajec-

tory defined by S(t,,to, U?). We apply the chain rule to (3.4) to obtain

8 (tn, to, U?) og"tog"*  ag' 4g°

50 = 967 29g" " 9g° 9T (3.7)
n—1 k
0g
= — 1 . (3.8)
o U |y
using (3.2). Then substituting into (3.6) and defining the operator
n—1 k
0g
G = — :
(tnvto) H ou - (3 9)
k=0
we have
N"[adU° = G(t,, t)adU® + O(a?). (3.10)

We note that the operator G(t,,to) has been derived by a differentiation of each
step of the discrete nonlinear model. Hence this is the solution operator of the
linear model derived by linearizing the discrete nonlinear model. In other words,
(3.9) defines the tangent linear model. Thus (3.10) tells us that to first order in o
the solution of the tangent linear model applied to adU? is equal to the perturbation
N"[adU? calculated from the two runs of the nonlinear model.

This relationship is used as a standard test of a tangent linear model. An initial
model state U° and perturbation dU® are generated and the nonlinear model run
from the states U® and U® + adU°. The difference between these two runs at any

time can be compared with the output of the tangent linear model, linearized around
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the state defined by the trajectory S(t,,to, U°) and acting on the perturbation
adU°®. Such a comparison enables us to understand how well the tangent linear
model represents the true evolution of a perturbation in the discrete nonlinear model.
The trajectory around which the tangent linear model is linearized is referred to as
the linearization state. An important component of these experimentsis the choice of
the initial U® used to generate this linearization state and of the initial perturbation
adU°. However, since these will depend on which particular model we are using, we
leave discussion of this to the sections on numerical experiments in later chapters.
Within this thesis we wish to apply this test not only to the tangent linear
model, but also to the linear model formed by discretizing the continuous linear
equations, the perturbation forecast model. Thus we introduce the notation L(¢,, )
to mean the solution operator of a linear model formed by either discretizing first
and then linearizing, or linearizing first and then discretizing. In the case where
we linearize the discrete nonlinear model we have the tangent linear model and so
usually L(t,,,to) = G(t,,t0). For the perturbation forecast model we have a different

linear operator L(t,,to) = P(t,,t0) and in general
P(t,,t0) = G(tn,to) + R(t,, to) (3.11)

where R(#,,%) is a non-zero linear operator. We use the notation (§U™) to repre-

sent the perturbation evolved in the linear model, and so
(6U™)E = L(t,,10)6U°. (3.12)

The linear models are assumed to be linearized around a state which satisfies the
discrete nonlinear system.

Before comparing a perturbation evolution in the nonlinear and linear models
in the way we have described it is important to have clear the purpose of the test.
For this we make use of the concepts of correctness and validity introduced by

Polavarapu et al. [65]. We first define the linearization error:
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Definition 3.1 The linearization error E™ at time t,, is the difference between the

nonlinear and linear vartations. Thus

E" = N"[adU°] — L(t,, to)ad U°. (3.13)

Then the concept of correctness refers to whether the linear model represents the
linear part of the nonlinear evolution. This is an objective property of a given
discrete model and does not depend on the particular linearization state or initial

perturbation. Thus following [65] we have

Definition 3.2 The linear model L(t,,to) is correct for any time t,, if

n—1 agk

k=0 U Uk

L(t,, to) = (3.14)

Thus a correct linear model differs from the nonlinear model only in terms which
are second order or higher. This allows us to formulate a necessary and sufficient

condition for correctness as follows:

Lemma 3.1 The linear model L(t,,t0) is correct if and only if for all initial per-

turbation directions 8 U°
L

a—0 |Oé|

=0, (3.15)

However we note that although Lemma 3.1 allows us to test for correctness by
considering the limit of small perturbations, the concept of correctness is not itself
dependent on the perturbation size.

Validity on the other hand is a more subjective property, since it is a judgement as
to how well the linear variation approximates the nonlinear variation. This depends
on the particular value of the linearization state and perturbation being used. The
judgement as to whether a linear model is valid in a given situation will also depend
somewhat on the application for which the model is required. We use the concepts

of [65] to define validity as follows:
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Definition 3.3 The linear model L(t,,t0) is valid at time t, for a given background
trajectory S(t,,to, U®) and initial perturbation adU° if

IE" <] (adU™)" . (3.16)

More discussion of the choice of norm is made in Section 3.1.2. This definition is
equivalent to the requirement that the true nonlinear evolution of a given finite
perturbation be dominated by the part of the evolution predicted by the linear
model.

For the purpose of comparing the two different methods for deriving the linear
model, we note that in general only the tangent linear model will be correct accord-
ing to Definition 3.2 of correctness. However, since for most applications we are
concerned with predicting the evolution of a finite perturbation in a given situation,
it 1s the validity of the linear model which is most of interest. In the following chap-
ters therefore we concern ourselves more with comparing the validity of the tangent
linear and perturbation forecast models, though some discussion of correctness will
be made. We now consider some of the ways in which correctness and validity can

be determined in practice.

3.1.2 Quantifying the error

Using the above notation we have from the linear model at time level n the vector of
perturbations (§U™)! and from the nonlinear difference the vector of perturbations
N"[adU?. In order to compare these we must define some way of measuring the
difference between them. We describe various methods for measuring this difference
proposed in the literature. Rabier and Courtier [67] measure the difference between
the nonlinear and linear perturbations relative to the size of the linear perturbation.
They define the relative error Er which compares the error in the linear evolution

with the size of the linear perturbation. Thus they define
| N"[adU°] — L(tn, t)[adU°] |

Er =100 )
f | L(tn, t0)[@dU°] ||

(3.17)
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where || . || is a given norm. We look more closely at the choice of norm later. For
the moment we note that the relative error can be used to test both the correctness
and validity of the linear model. The correctness of a tangent linear model can be
proved by showing that this error measure reduces to zero as the perturbation size
« decreases. This method was used by Li et al. [50], who tested their linear model
by changing « logarithmically, that is by putting o = 107, where p is an integer.
For a tangent linear model, which we usually expect to be correct according to
Definition 3.2, this test is a useful way of proving that the tangent linear model has
been correctly coded. However, for a perturbation forecast model we find that the
relative error does not tend exactly to zero, but to a non-zero constant dependent
on the linearization state. In order to understand the reason for this we note with

reference to (3.10) and (3.11) that for the perturbation forecast model
N"[adU° — L(t,, to)[adU°] = —R(t,, to)[adU°] + O(a?). (3.18)

Hence from (3.17) we have

£, — | Bltn10)[adU% + O(a?) |
| P(tn, t0)[adU°] ||

(3.19)

Thus we see that as a — 0, Er will not itself tend to zero, but will tend to a value

given by
| R(tn, to) |l

| P(tn, to) ||’

which will be constant for a given value of ¢,,. This presents a problem for testing

(3.20)

a perturbation forecast model, since we do not have the same objective test as we
have for a tangent linear model. In Section 3.3 we propose a different method for
assessing the error of a perturbation forecast model.

Despite this problem, the relative error is still useful for assessing both linear
models when we consider a finite perturbation. For a tangent linear model known
to be correct the relative error is a measure of the validity in a given situation.

When the relative error is low it indicates that the evolution in the nonlinear model
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is reasonably linear and so the tangent linear approximation is valid. A high relative
error on the other hand indicates that nonlinear effects are having a big influence on
the evolution. For the perturbation forecast model the relative error is dependent on
a combination of the nonlinearity of the evolution and the closeness of the discrete
scheme to the tangent linear model. For a given situation it gives information as to
how well the linear model approximates the nonlinear evolution, taking into account
both of these effects.

As we have already mentioned, an important component of this measure is the
definition of the norm. In [67] Rabier and Courtier choose an energy based norm.
Such a norm has the advantage of being physically and mathematically meaningful,
since 1t is weighted by the grid box area and so the discrete norm converges to the
corresponding continuous norm as the grid size is reduced. In this way we do not
give too much weight to polar points on a regular latitude-longitude grid. However,
when we are testing a model for correctness (or near correctness for a perturbation
forecast model) it may be more desirable to give equal weight to all grid points, to
ensure that any problems near the poles show up immediately. In this case the root
mean square (rms) value may be a more useful norm. This norm is defined for a

vector x = {x;} of length N by the formula

rms(x) = (%fo) . (3.21)

i=1
The root mean square norm is simply the [y norm (2.6) scaled by the square root
of the length of the vector. We note that in spherical geometry this norm does not
converge to a continuous norm as the grid size is reduced. Vukicevi¢ and Bao [88]
use this norm for their experiments. They measure the total error with respect to
the size of the nonlinear perturbation rather than the linear perturbation, defining

the solution error Eg by

rms(N"[ad6Ug] — L(t,,%0)[06Uo))

Bs =100 rms(N"[adUg])

(3.22)
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A final measure of the difference between the linear and nonlinear perturbations
is the correlation coefficient, used for example by Errico et al. [28]. If we have
two vectors of length N, x = {z,} and y = {y,}, then we define the correlation
coefficient C[x,y] between x and y by

C[X,y] _ Ef\;l(xl B j;)(yl - g) . (323)
(e — 2 S e - 92)

where

1 N
j = NZy,'. (3.24)

A value of C[x,y] close to unity indicates a good agreement between x and y.

However, the authors of [28] note that

“The correlation measure of the accuracy tends to suggest closer agree-

ment between figures than some other measures do.”

This effect can be seen in a study by Li et al. [50], who calculate correlations of
greater than 0.9 even when the relative error exceeds 40%.

A closer examination of the correlation measure shows that it is dominated by
errors in phase between the linear and nonlinear perturbations and, unlike the other
error measures discussed, is not sensitive to a pure amplitude error. We illustrate this
using an idealised nonlinear perturbation in a one-dimensional advection problem
with 10 data points, as shown in Figure 3.1. We consider two scenarios, Case I in
which the linear perturbation has only an amplitude error (Figure 3.2) and Case Il in
which the linear perturbation has only a phase error (Figure 3.3). The linearization
errors for these experiments as defined by Definition 3.1 are shown in Figures 3.4
and 3.5 respectively. Table 3.1 shows the correlation, the relative error and the

solution error for these two cases.
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Figure 3.1: Nonlinear perturbation.

Figure 3.2: Linear perturbation with amplitude error.

Figure 3.3: Linear perturbation with phase error.
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Figure 3.4: Linearization error for perturbation of Figure 3.2
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Figure 3.5: Linearization error for perturbation of Figure 3.3
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Case I | Case II

Correlation 1.0 0.54
En 100% 2%
Eq 50% 2%

Table 3.1: Comparison of different error measures for amplitude and phase errors.

From this simple example we see that if the linear and nonlinear perturbations
are exactly in phase (Case I) then the correlation measure shows a perfect correla-
tion, even if there is a large amplitude difference between the perturbations. For
this reason it is important to quote some measure of the perturbation amplitudes
whenever the correlation measure is used alone. The relative error and solution error
on the other hand are sensitive to both amplitude and phase errors. When only a
phase error is present so that the nonlinear and linear perturbations have the same
amplitude, we have || N[adU?] ||=|| L(t,,t0)[@dU°] || and we find that the relative
error and solution error have the same value. We note that the relative size of the

relative error and solution error is given by the ratio

En _ | N[asu |
Es [ L{tmto) (0600 |

(3.25)

which is independent of the magnitude of the linearization error || E® ||. Thus the
actual values of the different error measures depend not only on the linearization
error, but also on the magnitudes of the linear or nonlinear perturbations.

It is clear from this analysis that no single measure can be relied on to tell the
whole story. In order to assess the validity of linear models for different perturbations
in different situations it will be necessary to consider different measures, with an
understanding of the limitations of each. It must also be recognized that all the
measures discussed in this section are calculated as norms over a whole field or a
given area of a field and do not differentiate between large and small scales. For

the application of incremental 4D-Var we wish to ensure that the linear model is
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valid primarily for perturbations of meteorological significance and so a subjective
assessment of the perturbation fields is also useful.

So far we have seen essentially two different methods of examining the properties
of linear models, the techniques of numerical analysis discussed in Chapter 2 and the
method of comparison with the discrete nonlinear model discussed in this section.
In Section 3.3 we propose a new method which we have designed specifically for
perturbation forecast models. First however we review some studies of linear models

already published.

3.2 A review of studies of linear models

There is very little published work which looks at the specific question of the com-
parative properties of the linear model generated by first discretizing and then lin-
earizing (the tangent linear model, or TLM) and that generated by first linearizing
and then discretizing (the perturbation forecast model, or PEM). The question was
looked at in the context of an ordinary differential equation problem by Ortega and
Rheinboldt [61]. Using the theory of functional analysis they showed that for a class
of discretization operators satisfying a compatability condition, the TLM and PFM
were equivalent. This work was extended by Krishna [43] who, noting that the com-
patability condition of [61] was difficult to verify in practice, developed a theory to
show the equivalence of the TLM and PFM without verification of this condition.
However, it is observed that the theory does not apply to some commonly used
difference schemes, such as Runge-Kutta methods. We shall look in more detail at
an example of a Runge-Kutta scheme in Chapter 4.

Other work in this area has concentrated either on the properties of tangent
linear models, or on a comparison of the adjoint models formed by the continuous
method and the discrete method (Methods 1 and 2 of Figure 1.1). This work on

adjoint models is also useful to review here, since the accuracy of the adjoint model
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is inherently linked to that of the linear model [28]. In fact the tangent linear model
could be found by taking the adjoint of the adjoint model formed by the continuous
method. We first look at the work which has concentrated solely on the tangent
linear model.

Studies of the properties of the direct linearization of a discrete nonlinear model
have been made within meteorology and within the more general field of automatic
differentiation (AD), but surprisingly the interaction between the two has been very
limited. Certainly meteorologists have made use of the techniques of AD in deriv-
ing linear and adjoint models (e.g. [14], [93]), but little reference is made to the
theoretical results of AD in the meteorological literature. A particular example of
this is the study of the linearization of iterative processes. These are important
in meteorological models, particularly when semi-implicit semi-Lagrangian schemes
are used. These schemes contain iterative processes within the departure point cal-
culation of the semi-Lagrangian scheme and in the solution of the elliptic pressure
equation which arises from the implicitly treated terms. Within the meteorological
literature the problem of linearizing such processes has been studied by Polavarapu
and Tanguay [64]. They examine the direct linearization of each step of a fixed-
point iterative procedure and also an approximation to this which does not vary
the linearization state from iteration to iteration. They establish that the direct
linearization converges more slowly than the nonlinear reference iteration. This
problem has also been looked at in detail within the field of AD and studies therein
have looked at the theoretical properties of some simplifications [35], [4].

Another area of difficulty which has been studied in the context of meteorological
tangent linear models is the treatment of interpolation, which is an important part
of semi-Lagrangian schemes. As we saw in our review of such schemes in Section
2.4, the values of a field at the departure point must be found by interpolation from
the values at surrounding grid points. In order to calculate which are the nearest

grid points it is necessary to calculate the nearest integer value to the departure
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point displacement from the coordinate origin. In Fortran this is provided by the
intrinsic function INT. However, this process is non-differentiable and so may lead
to problems if the departure point of the perturbed trajectory lies in a different
grid interval from the background trajectory. Polavarapu et al. [65] examined the
linearization of various piecewise-continuous interpolation schemes in this context
for correctness, as defined by Definition 3.2. They found that assuming infinitesimal
perturbations it is necessary that the first derivative of the interpolating functions
be continuous in order to ensure the correctness of the tangent linear model. This
implies that if the perturbed departure point lies in a grid interval adjacent to that of
the linearization state departure point, then the first derivatives of the interpolation
function used in each interval must be equal at the grid point in between. If the
perturbations are assumed to be finite then this continuity of the first derivative
is no longer sufficient to ensure correctness. In a later study of the effect of such
errors in the tangent linear model it was shown that the errors can amplify in time.
However, for a realistic wind field it was found not to be a problem [81].

The problem of treating non-differentiable processes when developing a tan-
gent linear model has also been looked at in the context of the parametrization
of sub-grid scale processes within numerical weather prediction models. The mod-
elling of processes such as convection (intended in the meteorological sense as a
thermally-induced circulation) includes many discontinuous operators, for example
on-off switches, which cause difficulties for the linearization. There have been two
approaches to coping with this problem. One is to assume that the switches are not
sensitive to changes in the initial conditions (e.g. [3], [92] ) and so the tangent linear
and adjoint models follow the same path through the code as the nonlinear inte-
gration. In the context of 4D-Var in its full, non-incremental form, this gives errors
in the gradient required for the minimization. Vukicevi¢ and Bao [88] showed that
linearization errors caused by treating convective processes in this way could lead to

slower convergence and consequently locally bad 4D-Var data assimilation results in
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the areas where the linearization error was highest. However they conclude that in
practice this problem was unlikely to cause errors larger than those associated with
other approximations within the data assimilation system.

A second method of treating the problem of discontinuous processes within phys-
ical parametrizations is to redesign the nonlinear schemes such that these disconti-
nuities do not occur ([2], [94], [90]). At ECMWEF and Meteo-France this path has
been pursued and a simplified set of nonlinear physical parametrizations has been
developed for use in the incremental 4D-Var scheme [41]. They have been designed
in such a way that their linearizations and adjoints are straightforward to obtain.
However, the original physical parametrizations are used in the calculation of the
nonlinear trajectory.

At this point we highlight one of the benefits of the semi-continuous approach to
forming the linear model. Since we work from the continuous linear equations, we
have no need to linearize discrete schemes and so the problems highlighted in this
section do not arise. We see this more clearly in an example of a one-dimensional
shallow water system in Chapter 5, where we develop a model including some of the
difficulties discussed here.

It is also important to consider the stability of the linear models. We have
previously shown that the tangent linear model may become unstable for time steps
at which the perturbation forecast model is still stable [46]. Further details of this
study are given in Chapter 4. More recently it has been demonstrated that in the
context of a diffusion problem the linearization of a discrete nonlinear model which is
unconditionally stable may lead to a tangent linear model which is only conditionally
stable [91]. Hence for large enough time steps the tangent linear model may become
unstable, even if the nonlinear model is stable. This is possible even when the
underlying continuous problem is stable. Thus it is important to understand well the
stability properties of the linear model. We intend to demonstrate in the forthcoming

chapters that this is most easily done by following the semi-continuous method to
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derive a perturbation forecast model, rather than linearizing the discrete numerical
schemes.

In the published studies on adjoint models, there have been various comparisons
made of the adjoint model formed by the continuous and the discrete methods, but
no work on the adjoint model formed by the semi-continuous method. Although the
continuous method is not of great interest for the application of incremental 4D-Var,
since it does not provide a discrete linear model directly, some of the results of these
studies are relevant to the present argument and so we review these here.

One important area which has been studied is the adjoints of advection schemes.
Sirkes and Tziperman [76] demonstrated that the adjoint of a leapfrog scheme formed
using the discrete method shows a sensitivity to a computational mode which does
not appear when the adjoint is formed by the continuous method. This occurs
because the adjoint formed by the discrete method gives a sensitivity with respect
to the discrete numerical model, of which the leapfrog computational mode is an
important component. On the other hand, the adjoint formed by the continuous
method approximates a sensitivity with respect to the continuous system. Although
the authors conclude that both adjoints are valid if only a gradient at the initial time
is needed, as is true for incremental 4D-Var, they do state that this is symptomatic
of a wider problem of ensuring the stability of an adjoint model.

More recently Thuburn and Haine [87] investigated the adjoints of nonoscillatory
advection schemes. Such schemes, in order to be monotone and better than first-
order accurate, are necessarily nonlinear. The authors show that for a large class
of such schemes the sensitivities calculated using the discrete adjoint do not agree
with those calculated from a direct perturbation of the forward model. Moreover
they prove that the discontinuities in the advection schemes cannot be smoothed
out in some way to prevent this without sacrificing some desirable properties of the
schemes.

A comparison of the continuous and discrete approaches to adjoints in the context
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of aeronautical design is made by Giles and Pierce [33]. They comment that while the
continuous approach has the advantage that the physical significance of the adjoint
variables and the role of the boundary conditions is clearer, the discrete approach
is more conceptually straightforward and allows the exact gradient of the discrete
cost function to be obtained. However they conclude that for the moment there is
no clear evidence as to which is the best method to follow and both methods seem
to perform well in practice. Similar results are reported by Nadarajah and Jameson
[59], who study this problem for the Euler equations in aerodynamic design. For their
particular optimization problem they show that the difference between the gradients
calculated from the continuous and discrete methods becomes smaller as the mesh is
made finer, but the adjoint formed by the discrete method is computationally more
expensive. To some extent the choice of method used will depend on the problem
being solved. For example, Anderson and Ventkatakrishnan [1] look at a problem of
aerodynamic design on unstructured grids. For their case the continuous approach
is found not to be suitable, since for example it does not provide sensitivities due to
the grid, which in their problem are essential to obtain accurate derivatives.

It is clear from the work reviewed here that whether we need only an adjoint
model or whether we need the discrete linear model as well, both the continuous
method and the discrete method have their difficulties. The question we now wish to
answer is: Can the semi-continuous method provide us with a linear model which is
as accurate as the tangent linear model formed by the discrete method while avoiding
some of the problems associated with linearizing discrete numerical models? 1t is this
question which we examine in the remainder of the thesis. The adjoint model formed
from the semi-continuous method will not be discussed. One important part of this
question is to decide what we mean by an accurate linear model. The concepts of
numerical analysis from Chapter 2 and the comparison with the discrete nonlinear
model as described in Section 3.1 both provide methods of assessing the accuracy of

a linear model. However, we saw in Section 3.1 that the test described there favours
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the linear model formed by linearizing the discrete scheme, the tangent linear model.
We now propose a new method designed to evaluate the accuracy of a perturbation

forecast model.

3.3 Comparison with estimated tangent linear model

error

One of the difficulties in testing a perturbation forecast model which we referred
to in Section 3.1.2 is the fact that the linearization error does not tend to zero
as a perturbation becomes infinitesimally small. For experiments with finite size
perturbations it would be useful to know how much of the linearization error we do
see 1s due to nonlinear effects and how much is due to the fact of using a perturbation
forecast model instead of a tangent linear model. In this section we develop a new
method of assessing this, which uses the nonlinear model to estimate the linearization
error that we would obtain if we had a tangent linear model. This can then be
compared with the actual linearization error from the perturbation forecast model.

We consider our discrete nonlinear model to be of the form (3.3). In order to
derive our formula for the estimate of the linearization error we first need to expand
the nonlinear model using a Taylor series. To do this we follow [67]. We assume that
the vector U is represented by p components U; and that the model S is represented
by p scalar components S; with [ = 1,...,p, so that

Ul = Si(tn, to, U%). (3.26)
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Then from [67] we have the expansion

Si(tn, o, U° +6U°%) = S,(tn,to,UO)

05, 07 crr0
+ 6U ——(tn, to, U )dU;

+ liiﬁ(t to, UO)STOST®
2l & = JUOU; 0

2
aSl 0 0¢770 ¢770

to,to, UNYSULSUOS
+ 3'ZZZBUaUaUk 0 )oU; U] Uk

=1 y=1 k=1

+ h.o.t. (3.27)

We wish to use this Taylor series expansion to derive an estimate of the lineariza-
tion error we would obtain if we used the tangent linear model to evolve an initial
perturbation U® around an evolving linearization state S§(t,,to, U°).

The method proceeds as follows. We first run the nonlinear model from three
different initial conditions, U%, U° 4+ §U® and U® + v U°, where ~ is a small scalar
parameter. From these runs we can use (3.5) to calculate the two nonlinear pertur-

bations

N"6U° = S(ta to, U°+8U°) — S§(t,,t, U°), (3.28)
N"[v8U° = S(tn, to, U% +~8U°) — S(t,,t0, U?), (3.29)

consisting of the components N;*[dU°], N]*[ydU®] respectively, with{ = 1,...,p. We
now note that the linearization error E" we would obtain by applying the tangent

linear model to the perturbation dU° is given by
E" = N"[6U°] — G(t,,t,)6U° (3.30)

using Definition 3.1, where G(t,,to) is the tangent linear model operator defined by
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(3.9). Then from (3.27) we see that E" consists of the p components EJ' given by

B = liiﬁ(t t0, U®)SULSU?
1 — a “\tny L0y 7 7
; 1

+ h.o.t. (3.31)

It is this quantity which we seek to estimate.

We now define a function £" by
N"[y6U°] — yN"[6U°]

£ = nER (3.32)
with components £". Then using (3.27) we find that
P P
1 PP S,
+ (1+7)5 Z; Z; ; m(tn, to, U)SULSUSUP
ohot (3.33)

A comparison of this expression with (3.31) shows that for small values of v and small
perturbations we have for each of the p components &' ~ EJ and so £" ~ E". Since
the expression (3.32) is calculated by using only the nonlinear model, it provides an
estimate of the expected linearization error E" of a tangent linear model without
the need for such a model. Thus this formula allows us to estimate how much of
the linearization error we see in tests of the perturbation forecast model is due to
nonlinear effects.

As a corollary of this analysis we can also estimate the solution error we would
obtain if we were to use an exact tangent linear model. From (3.22) we find that

the solution error Fg can be written

rms(E") ‘
rms(N"[6U°))

Es = 100 (3.34)
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Since the size of the nonlinear perturbation is known and we have an estimate for
the linearization error, we can also calculate the estimated solution error E, using

- rms(E")
B =100 (N Is0))

(3.35)

This can then be compared with the actual solution error for a perturbation forecast
model, calculated using the linearization error E” from (3.13). This gives a more
quantitive estimate of the difference from a tangent linear model.

Although these formulae are analytically robust, it is necessary to test them
numerically to see how well they hold in practice. In Chapter 5 we develop the
tangent linear and perturbation forecast models of a semi-implicit semi-Lagrangian
shallow water model. In experiments with these simple models in Section 5.6 we are
able to validate the formulae developed in this section and we consider there how to
choose practically the value of the parameter v in (3.32). Once these formulae are
demonstrated to be useful we can apply them in our study of a three-dimensional
weather forecasting model in Chapter 6. First however we study a very simple
ordinary differential equation initial value problem in Chapter 4. This problem
is used to prove the concept of the semi-continuous method and to examine the

accuracy and stability properties of the linear model formed in this way.
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Chapter 4

An ODE initial value problem

In this chapter we wish to investigate the principle of the semi-continuous method
for developing a linear model by looking at a very simple problem. The results
of this chapter we have also published separately in a technical report of the Met
Office [46]. The problem we study is an initial value problem of a scalar ordinary
differential equation. The aim of looking at this problem is to see in a simple context
what kind of results we may expect in more complicated models.

We consider a general ODE initial value problem for a scalar function y(#) of the

form
dy _

dt f(y)v te [OvT]v y(O) = Yo, (4'1)

where f is explicitly a function in y only. This is a scalar equation of the same form

as the general equation (2.1) introduced in Section 2.1. The linearization of (4.1) is

— = f'(y)dy, (4.2)

where
flyy = - (4.3)

We note that since y = y(t), the coefficient of dy in (4.2) will in general vary

with time. This must be taken into account when applying schemes that require
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coefficients from different time levels. In order to develop the linear model by the
discrete method we apply a numerical scheme to equation (4.1) and then linearize
this scheme. This gives the tangent linear model (TLM). We wish to compare this
linear model with that derived by the semi-continuous method, that is by applying
the original numerical scheme directly to equation (4.2). This second linear model is
the perturbation forecast model (PFM). Within this chapter we compare the TLM
and PFM for a particular numerical scheme, looking particularly at the properties
of accuracy and stability.

Before we continue it is desirable to say something about the existence of solu-
tions to these equations. We assume that f is continuous on some interval [yo, yr]

and satisfies a Lipschitz condition

) = Fly) [ < L Ty = w2 |l (4.4)

for all y1,y2 € [yo,yr] . L is the Lipschitz constant. This ensures that (4.1) has a
unique solution while y remains in the region [yo, yr| ([30], section 1.1).

In order to show that the tangent linear problem (4.2) has a Lipschitz condition
and therefore a unique solution, we first note that for given perturbations dyy, dy,

to a state y(¢), we have

I F'(w)dyr = F()dya [ < || F(y) (Il 691 = dya ] - (4.5)

Hence, if f'(y) is bounded in [yo, yr], we can choose

L =max{|| f'(y) |I: ¥ € lyo,yr]} (4.6)

to give the required condition. A bound on f’(y) is then provides a sufficient condi-

tion for a solution to exist and so this is assumed in our analysis.
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4.1 Linear multistep methods

We consider the general linear k-step method as defined by (2.38) of Chapter 2.

Applying such a scheme to (4.1), we have

k k
Z AjYn+j; — At Z 6jfn+j7 (47)

where f, = f(yn). A linearization of this scheme produces the tangent linear model

k k
Z aj0yny; = At Z Bifrg On+s- (4.8)

=0 =0
It is clear that exactly the same result would be obtained by applying the orig-
inal scheme (2.38) to the linear equation (4.2). Hence, for the case of a general
linear multistep method, the discrete method and the semi-continuous method are

equivalent.

4.2 Nonlinear methods

The conclusion of the previous section does not necessarily hold when we apply a
nonlinear numerical method to the problem. To illustrate this, we use the example
of a two-stage Runge-Kutta scheme defined by equation (2.43) of Chapter 2, which

we restate here:

kl - f(ynvtn)v
ks = flyn + Atf(yn,tn), tn + At),
At
Yntl = Yn T 7(]?1 + k2). (4.9)
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For the nonlinear problem we are considering we note that the function f does not

depend explicitly on t and therefore we have the scheme

kl = f(yn)v
ky = f(yn + At f(yn))v
At
Yntl = Yn T+ 7(]?1 + k3). (4.10)

Applying this scheme to the nonlinear equation (4.1) gives the discrete nonlinear

model

i = Y+ S L)+ Pl + D))} (4.11)

In order to form the TLM we linearize this scheme to obtain

At
Y1 = 5yn+7{f (Yn)0Yn

+ f(yn + At fyn))[1+ At f'(ya)]0yn}- (4.12)

However, if we apply the nonlinear scheme (4.9) to the tangent linear equation (4.2),

noting the time dependence of the coefficient of dy, we obtain the PFM

A
5yn+1 — 5yn+7t{f/(yn)5yn
+ F(Ynr) [+ AL F(ya)]6yn}- (4.13)

A comparison of (4.12) and (4.13) shows that they are very similar, but with
Yn+1 1 the second equation being replaced by an estimate of this in the first. In the

second scheme, however, y,, 11 1s given by the more accurate estimate obtained from

(4.11), which implies that
5yn+1 = 5yn + %{f/(yn)(syn
A
+ flyn+ 7t {F(yn) + Flyn + At fya)) DL+ AL f'(y)]6yn}. (4.14)

It is clear from equations (4.12) and (4.14) that the TLM and PFM are not the

same for a general function f. Hence for this scheme the processes of discretization
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and linearization are not commutative. We note however that if we were to apply
the Runge-Kutta scheme to the coupled system given by the continuous nonlinear
equation (4.1) and the continuous linear equation (4.2), then the resulting linear
model would be the same as the tangent linear model. This is the commutativity
of discretization and linearization which is usually referred to in the literature (for
example [61]). However, by applying the scheme first to the nonlinear equation and
then to the linear equation afterwards, a different linear model results. Since this is
the method followed in practice to obtain the linearization of a weather forecasting
model at the Met Office (details of which are given in Chapter 6), it is useful to
study the effect of forming the PFM in this way. We now examine in more detail
the TLM (4.12) and the PFM (4.14) to see if we can say something about their

comparative properties. We begin with an analysis of their truncation errors.

4.2.1 Truncation error analysis

We wish to calculate the truncation errors in both the linear models, to check the
accuracy to which they solve the continuous linear equation (4.2). It is informative to
compare with the truncation error of the scheme applied to the nonlinear equation,
and so this is calculated first.

Let us denote the truncation error of the nonlinear model as 7n7. Then by the

definition of truncation error given by Definition 2.1 and using (4.11), we have

v = WD) 2y ya) 4 flue) + A FOD)) . (415)

Noting that y(t,11) = y(t, + At), we can perform a Taylor series expansion around

time t,, and also expand the second function about f(y(¢,)). Then using relation-
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ships

y

‘;Tg = fly)F (y(t)),
d>y

L= PO ) + ) )

we find that the truncation error is given by

L = (gﬂy(tn))[f'(y(tn))]?—gf'%y(tn))[f(y(tn))]?)Atz

By this we see that the scheme is second order in time.

Now we wish to examine the truncation errors for the two linear models (4.12)
and (4.14), which we denote 71 and 7 respectively. First we must be clear about
what these quantities mean. The PFM (4.14) is a scheme written to approximate
the linear equation (4.2) and so the truncation error is defined in the usual way
with respect to the analytical solution of the linear equation. However, when we
look at the TLM (4.12), we do not have a clear definition of truncation error, since
this scheme is not designed as an approximation to any particular equation. For
comparison therefore, we take the truncation error with respect to the solution of
the same linear equation (4.2).

For the TLM (4.12) the truncation error is found to be

no= e SO gy )t,)
P ) + A+ M) (117)

Now we expand 0y(t,+1) = dy(t, + At) in a Taylor series around ¢,, and expand the
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last term of the equation around f’(y(¢,)). Then using the relationships

% = f'(y(t))dy + O(3y*),
di;fzy) = "y Fly)sy =+ [f (y(t)]*y + O(5y?),
d*(dy)

o = IOy + 4 () f (1) fy(t))dy
+ [Fy()]’dy + O(dy?),

we find that to order dy

no= (GO D W i)
— %f”’(y(tn))[f(y(tn))V) Sy(tn)At* + O(by(tn) At%). (4.18)

We note first of all that this is second order. A simple manipulation shows that it
is equal to the linearization of the nonlinear model truncation error (4.16).
Turning now to what happens when we discretize the continuous linear equation,

we find that the truncation error for the PFM (4.14) is

no= e SO L)yt + (o)

At
At

— U ((t) + fly(ta) + At fy(t))) DL+ AtF(y(Ea))10y(ta) }.(4.19)

and with the same cancellations as in the previous case, this reduces to

no= (GRS G i)
- %f”’(y(tn))[f(y(tn))V) Sy(tn) At* + O(dy(ta) AL). (4.20)

Again we see that this is second order, but this time it is not the linearization of

the truncation error of the nonlinear scheme.
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4.3 Example

To illustrate the above theory we consider the simple example of the initial value
problem (4.1) with f(y) = y*, which gives

dy 2

— = 4.21
and we assume ¢ € [0, 10] and y(0) = yo. The analytical solution to this equation is

given by
_ Y
1-— yot '

By considering a perturbation dy to the problem (4.21), we obtain the analytical

y (4.22)

solution for the nonlinear evolution of a perturbation,

Sy(t) = T ggj)t) T (4.23)
The analytical linear system obtained from the linearization of (4.21) is
% = 248y, (4.24)
which has the solution
Sy(t) = (15% (4.25)

To obtain the numerical models we first apply the Runge-Kutta scheme (4.10) to

(4.21), to obtain the discrete nonlinear model

4At3
Yt = Yo T YR AL+ Y, At + ynT (4.26)
which is second order in time, with truncation error
_ y(tn)4At2 S k41 A 2k—1
e =+ >yt TIART (4.27)

k=4
To find the linear model by the discrete method, we linearize the discrete scheme

(4.26) to obtain the TLM
Synp1 = (14 2y At + 3y2At? + 242 At) Sy, (4.28)
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The linear model by the semi-continuous method is determined by applying the
numerical scheme (4.9) to the analytical linear equation (4.24). This gives the PFM

OYnt1 = 0Un + YnAtOY, + Ynr1 At[1 + 2y, At]|0y,. (4.29)

Then, using the estimate of y,41 from (4.26), we have

4

3 A 42 ynAt3
+ Yn + ynAt +yo AtC + -5 At[1 + 2y, At]dy,
= (14 2y, At + 32 At + 3y> A + gyiAt‘l + Y2 At°)dy,.  (4.30)

Then using equations (4.21) and (4.24) and their derivatives, the truncation errors
as defined by Definition 2.1 are as follows:
e for the discrete method (TLM)

(1 )P A2 Sy(t,) + dy(t,) At Sy(t,) + 6y ()  At*Sy(t,)

T = 2

<

(k4 1)y(ta) At Sy (ta); (4.31)

]2

_|_

b
Il

6

e for the semi-continuous method (PFM)
5
= y(ta) AP0y (ta) + Sy(ta) Aty (tn) + 5y(tn)* At'dy(ta)

+ i kA4 Dy(ta)F A8y (t,). (4.32)

=6
We note that both linear models are second order in time. For the PFM this would
be expected, since we know from the analysis of the discrete nonlinear model that
the scheme we are applying is a second order scheme. For the TLM we see that the
scheme is also second order, with truncation error (4.31) equal to the linearization
of the nonlinear model truncation error (4.27). However the form of the truncation
error is different for the two linear models, with that of the PFM having a smaller
principal term than that of the TLM. In order to understand any differences in

behaviour between the TLM and PFM we now consider some numerical experiments.
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4.4 Numerical experiments

We use the method described in Section 3.1 to compare the linear and nonlinear
evolution of the perturbations in the numerical models. The schemes were coded
and the nonlinear model was run from two slightly different initial conditions y, and
Yo + dyo at time t = 0. The difference between these two runs was then compared
with each of the linear models initialized with the perturbation dyg at ¢t = 0. The
first experiment used values of yo = —2.5 and dyg = —0.1 and a time step At = 0.25.
The output is shown in Figure 4.1. The solid line shows the difference between the
two nonlinear runs, the dashed line shows the TLM scheme formed by linearizing
the discrete scheme (4.28) and the dotted line shows the PFM scheme formed by
discretizing the linear equation (4.30). Also plotted with diamonds is the true non-
linear variation of a perturbation calculated from the analytical expression (4.23).
For this experiment the solid line and the dashed line are almost identical. We see
that both linear models approximate well the true nonlinear variation.

The experiment was then repeated with larger time steps, first for At = 0.35 and
then for At = 0.5. The output from the first of these is shown in Figure 4.2. The
solution trajectory from the PFM moves away from the other curves. This model
thus seems to be less accurate in representing both the true nonlinear variation and
the evolution in the discrete nonlinear model, despite having a smaller truncation
error.

However, when the time step is increased even further, to a value of 0.5, a
different behaviour is seen. The output from this experiment is shown in Figure
4.3. In this case the difference between the two runs of the discrete nonlinear model
is quite different from the true nonlinear evolution of the perturbation. The TLM
follows closely the difference between the two discrete nonlinear runs, whereas the
PFM is closer to the true nonlinear variation.

To explain the peak in these results which makes the two linear schemes so dif-
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Figure 4.1: Plot of perturbation against time for A¢ = 0.25. The solid line indicates the
evolution in the nonlinear model, the dashed line shows the tangent linear model evolution,
the dotted line shows the perturbation forecast model evolution and the diamonds indicate

the true nonlinear variation.
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Figure 4.2: As Figure 4.1, with At = 0.35.

ferent, it is useful to look at the behaviour of the numerical solution of the nonlinear
equation. The solution from the runs of the nonlinear model is shown in Figure
4.4. The dotted line indicates the model run with At = 0.25, the dashed line with
At = 0.5 and the solid line is the analytical solution. We show in Figure 4.5 the
absolute value of the global error e, for each of these runs, as defined by (2.7). It
can be seen that doubling the time step gives a large increase in the error of the
model solution, showing that the scheme itself is inaccurate with the larger time
step. The effect of this inaccuracy on the difference between the perturbed and
unperturbed runs is that the perturbation can change sign. This can be seen in
Figure 4.3; the solid line shows the initial negative perturbation becoming positive
during the nonlinear model run, whereas the true nonlinear variation, shown by the
diamonds, remains always negative.

If we consider the true nonlinear variation (4.23), then for given initial values yq

and dyo both less than zero, we see that dy(t) cannot change sign. If we examine the
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Figure 4.3: Plot of perturbation against time for At = 0.5. The solid line indicates the
evolution in the nonlinear model, the dashed line shows the tangent linear model evolution,
the dotted line shows the perturbation forecast model evolution and the diamonds indicate

the true nonlinear variation.
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Figure 4.4: Solution of nonlinear model runs. The dotted line is for At = 0.25 and the
dashed line is for At = 0.5. The solid line indicates the analytical solution of the nonlinear

problem.
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Figure 4.5: Absolute value of the global error for the nonlinear model runs. The dotted

line is for At = 0.25 and the dashed line is for At = 0.5.
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analytical solution to the linear equation (4.25), we see also that dy at any time ¢ is
always a positive factor times the initial dy and thus cannot change sign. Hence the
analytical solutions to both the nonlinear and linear problems tell us that an initial
negative perturbation must remain negative throughout the model run. Thus the
behaviour of the perturbation in the discrete nonlinear model is one which is not
allowed by the analytical solution.

Turning now to the linear models, we wish to understand why the solution of
the model formed by the discrete method (the dashed line in Figure 4.3) follows the
erroneous nonlinear model solution. In particular, we wish to determine whether
this is an effect of an incorrect linearization state or a feature of the scheme itself.
The experiments were therefore repeated, using a time step of At = 0.25 in the
nonlinear model run, and then using the linearization state from this to force the
linear models with a time step of At = 0.5. The result of this is shown in Figure 4.6.
From this experiment we see that a more correct linearization state is not enough
to prevent the perturbation from changing sign in the linear model formed by the
discrete method (the TLM). The linear model is unstable even though the nonlinear
model is well-behaved. The problem must therefore be inherent in the scheme of
the TLM. We therefore analyse further the linear schemes, to understand how their

behaviour changes with time step.

4.4.1 Analysis of numerical results

We first consider the numerical stability of the schemes. To investigate the linear
stability limit of the Runge-Kutta scheme (4.10) we follow the method of Section

2.1.3 and apply the scheme to the scalar system

dy
—2 = 0. 4.33
il p< (4.33)
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Figure 4.6: As Figure 4.3, but with the nonlinear model run with At = 0.25 and the

linear models run with At = 0.5.

70



Then requiring that the modulus of the amplification factor be less than one, we
find a limit on the time step At for this scheme of

2
At < ==, (4.34)
7

Hence with p set to 2y, as in our linear equation (4.24), we find that for stability

we require

1
At < —=. (4.35)
)

For y = —2.5 this gives a time step limit of At < 0.4.
This limit also holds for the linear model formed by the discrete method (the

TLM). The amplification factor A, of the linear scheme is given by

A, = et
OYn

(4.36)

For an initial negative perturbation to remain negative we require that A, is always
positive. A simple analysis of the TLM (4.28) shows that (4.35) is a necessary and
sufficient condition for this.

To illustrate this we plot A, for the scheme, for a range of values of y and At.
This i1s shown in Figure 4.7. We see that for y = —2.5 the amplification factor
becomes negative for time steps At greater than 0.4, as predicted by the analysis.

In contrast, the scheme formed by the semi-continuous method allows a larger
time step for any particular value of y than that given by the above analysis. In this
case, the scheme allows for the variation of p in time, thus making it more stable
for larger time steps than the model formed by linearizing the discrete nonlinear
scheme. This can be seen in the plot of its amplification factor in Figure 4.8. A
comparison with Figure 4.7 shows a greater range of values for which A, remains
positive. In particular, for y = —2.5 and time step At = 0.5, A, is positive with
value 0.38.

In order to compare the accuracy of the linear schemes, we define the local error
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Figure 4.7: Amplification factor for various time steps and values of y: Tangent linear

model.
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of each scheme at time ¢, by

E = 0y(tnt1) — Oyn+1, (4.37)

where we assume dy, = dy(t,) and y, = y(t,). Then, expanding about time ¢, we
find the following local errors after one time step:

e for the discrete method (TLM)
Ey = 2y(t.)> AP + 5y (t,) ' At* + 6y(1,)°At® + O(y(t.) At Sy(t,); (4.38)
e for the semi-continuous method (PFM)

By = [y(t,)’ At + gy(tn)4At4 + 5y (t,)° At° + O(y(t,)° At%)]dy(t,). (4.39)

The higher order terms of these errors are identical, and so we can write an exact

expression for their difference,
By By = [yt + 2y(0a) At + g1 P ANy ). (4.40)

A simple analysis shows that within the limits of stability, the magnitude of the

error F, is greater than that of F; wherever
1
-1 <yAt < —5 (4.41)

For a value of y = —2.5 this corresponds to a time step range of 0.2 < At < 0.4, and
so explains the relative accuracy of the two linear solutions when At = 0.35. When
the time step is less than 0.2, we find that the scheme formed by the semi-continuous

method is more accurate.

4.5 Linearization state

Within each of the linear models we find a dependence on the linearization state

y(t) about which the model has been linearized. From equation (4.13) we note that
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the discretization of the linear equation depends on f'(y(¢)) at two different time
levels t,, and ¢,,41. In real applications we may want to replace both of these with
some average value of the linearization state, since storing the values at every time
step may be too costly. There are different ways that this can be done. One way
is just to use the value of the linearization state at time t,, everywhere. However,
calculation of the truncation error for this scheme shows it to be first order in time,
that is the accuracy of the original scheme is reduced.

Since a reduction in accuracy is undesirable, the next natural thing to try is to
find an average state in the middle of the time step, which we will write y,,. This

gives the scheme

A
5yn+1 — 5yn + ;{f/(ymysyn
+ f/(ym)[l + Atf/(ym)](syn}' (4'42)

We note that this is not just the same scheme (2.43) with values at the intermediate
time level, since this formula would imply that k& = f'(ym)dy,, which contains
variables at two different time levels. Applying the scheme (4.42) to the general

linear equation, we find that the truncation error 75 is given by

mo= Ml 20 o gy ,)6(t,)

ALy () Py )] (4.43)

We consider two different ways of calculating the intermediate value. We could

either take the average of the values of y at the ends of the time step, i.e.

1

Ym = 3 <yn + yn+1>, (4.44)

or we could take the value of the model state at the middle of the time step

This second option requires the nonlinear model, which generates the linearization

state, to be run at a higher time resolution than the linear model in order to produce
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the intermediate values. An expansion of the truncation error finds that both of these
options are second order accurate.

Although it may be argued that this is not a fair comparison, since by changing
the time of the linearization state we are changing the numerical scheme, this is in
fact what we do in practice. In the three-dimensional perturbation forecast model
being developed at the Met Office, of which we speak in detail in Chapter 6, we
apply the scheme of the nonlinear model to the linear equations, and afterwards
decide where to take our linearization state. Hence it is important to know to what
extent the choice of linearization state can affect the accuracy of the model.

To illustrate the effects of this choice we repeat the numerical experiment of the
previous section using the scheme given by (4.42) and a time step of 0.5. We run two
different experiments. For the first y,, is taken to be equal to y,,, and for the second
the value of y,, defined by (4.44) is used. The results are shown by the asterisks in
Figures 4.9 and 4.10 respectively. It is seen that using the value at the start of the
time step, giving only a first order approximation, does indeed degrade the results.
The evolution is no longer monotonic, but has an undershoot in the early stages of
the run. Averaging the linearization state to the midpoint of the time step instead

results in a much closer solution to the true discretization of the linear equation.

4.6 Summary

Although we have only considered a very simple numerical model in this chapter, the
analysis and numerical experiments have provided an insight into the two different
methods for developing a linear model. It is clear that at least for some schemes
applying the numerical scheme to the continuous linearized equations is not the
same as linearizing the discrete nonlinear scheme. The linear models thus formed
may have different stability characteristics and so may exhibit different behaviours

in some circumstances. In the example considered the tangent linear model has
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Figure 4.9: As Figure 4.3, with the asterisks showing the evolution of the perturbation

forecast model when the linearization state is taken at the start of the time step.
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Figure 4.10: As Figure 4.3, with the asterisks showing the evolution of the perturbation

forecast model when the linearization state is taken at the midpoint of the time step.
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the linear stability limit of the discrete nonlinear model, whereas the perturbation
forecast model allows larger time steps. Hence it is possible that the TLM may
become unstable for time steps at which the PFM is still stable. Such a difference
may be important if we wish to run the linear model at a lower temporal resolution
than the nonlinear model. In practice this may be the case for incremental 4D-Var,
since many iterations of the linear model will be required and means to reduce the
cost of the linear model must therefore be sought. There may of course be situations
in which the TLM is more stable than the PFM. However an advantage we see of
the semi-continuous method is that the stability of the linear model may be better
controlled a priori by careful choice of the numerical scheme used to discretize the
linear equations.

For the numerical experiments in which both linear models remained stable, we
find that the relative accuracy of the TLM and PFM compared with the analytical
solution is dependent upon the value of the time step and the value of the lineariza-
tion state. Thus it is not clear that either method holds an advantage over the other
from an accuracy point of view.

A corollary of the results in this chapter is that testing the validity of the linear
model must be performed with a good understanding of the nature of the numerical
scheme. The usual method of testing such a model by comparing its output to the
evolution of a perturbation in a nonlinear model will indicate how well the linear
model represents the behaviour of the discrete nonlinear model. This is expected
from the theoretical analysis and has been illustrated with numerical experiments.
However, if the limitations of the numerical scheme are not understood, the linear
model will not necessarily indicate the true evolution of a perturbation in reality, for
example a perturbation to the atmosphere, and so may not be valid for applications
which require this. It is therefore necessary to keep in mind the particular application
for which the model is required whenever we are interpreting the results of such tests.

Finally in this chapter we have seen that if we apply a slightly modified version of
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the scheme to the continuous linear equation, for example by using the linearization
state at a different time level, then the order of accuracy may be reduced. In
practice we may want to make such approximations, since for example it may be
too expensive to store the linearization state at every time step. It is clear from the
simple example considered that any approximations made must take into account
the effect on the truncation error. We next consider such questions in the context

of a one-dimensional shallow-water model.
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Chapter 5

A 1-D shallow water model

In the previous chapter we have shown that for a simple ordinary differential equa-
tion problem linearizing a discrete nonlinear model is not necessarily the same as
discretizing the linearized continuous equations. We now examine this problem for
a partial differential equation system, using some of the numerical schemes that are
used in operational weather forecasting models. We begin in Section 5.1 by setting
up the analytical model. We state the systems of nonlinear and linearized equations
and examine some of their properties. In Section 5.2 we then present the various
numerical schemes. We set out in detail the scheme for our nonlinear model and
then discretize it to form the tangent linear model (TLM). We then present the
result of applying a numerical scheme to the linearized equations, that is the per-
turbation forecast model (PFM). In dealing with partial differential equations we
find that there is more freedom in how to apply the numerical scheme to the lin-
earized equations and so two alternatives for the PFM are presented. Some analysis
of the schemes is made in Section 5.3 before presenting the results from numerical
experiments in Section 5.4. We then consider the effect of altering the time level of
the linearization state in Section 5.5. In Section 5.6 we discuss further the testing
of linear models and verify the method for testing a perturbation forecast model

which we proposed in Section 3.3. Finally Section 5.7 summarizes the results of the
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chapter, particularly concentrating on those results which help our understanding

of the three-dimensional models.

5.1 The analytical model

5.1.1 The nonlinear equations

The model we wish to consider is the one-dimensional shallow water system describ-
ing the flow of a single-layer fluid over an obstacle in the absence of rotation. The

governing equations can be written

Du 0¢ OH

Dr + 9= 9o (5.1)
%f + qb%:(), (5.2)

where
% = % + uaa—x (5.3)

is the material derivative. In these equations H = H(x) is the height of the bottom
orography, u is the velocity of the fluid and ¢ = gh is the geopotential, where ¢ 1s
the gravitational constant and 2 > 0 the depth of the fluid above the orography.
The problem is defined on the domain x € [0, L] with periodic boundary conditions
such that x(0) = x(L) and we let ¢ € [0,T]. The values of v and ¢ are specified

everywhere at the initial time, such that

u(x,0) = wup(x),
P(2,0) = ¢o(x).

We note that the mass continuity equation (5.2) can also be written in its loga-

rithmic form

D(ln¢) Ou
D + e 0. (5.4)
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When we implement the numerical model we find this form of the equation easier
to work with, since the last term on the left hand side is linear. However, for work
on the properties of the analytical equations, the two forms are equivalent and so

we use (5.2).

5.1.2 Properties of the analytical system

In order to understand some properties of the nonlinear system, it is useful first to
examine the constant coefficient linear system. This is derived by linearizing the
homogeneous system around an equilibrium state Uy, ¢ which is constant in time

and space. We put H(xz) = 0 for all x and set
u(x,t) = U+ dulx,t),
qb(l‘,t) = (I)O + 5¢(x7t)

Then substituting into (5.1) and (5.2) we find
) dou 0o

U
ot +lo Ox + Ox 0 (5:5)
0 06 dou

to first order in the perturbations. Following the methods of Section 2.2.4, we obtain
the dispersion relation for this linear system by searching for wave solutions of the

form

Su(z,t) = Juge'ke+et),

p(a,t) = dgoe'trren),

where k is the wave number and w is the frequency. Substituting these solutions

into the linearized system we obtain
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from which we can derive the analytical dispersion relation

W = —kUO + k"\/ q)o. (59)

The phase speed of a wave is then given by

_% = Uy + /To. (5.10)
Thus for the linearized homogeneous analytical system the phase speed is indepen-
dent of the wave number k.

For the complete nonlinear inhomogeneous system (5.1), (5.2), it is more difficult
to obtain analytical properties. We can however find steady state solutions to the
equations. To find such solutions we set du/dt = 0 in (5.1) and d¢/dt = 0 in

(5.2). Then following [38] we integrate with respect to @ to obtain the steady state

solutions
2
u? + ¢+ gH = K, = constant (5.11)
and
u¢p = K, = constant, (5.12)
where v = wu(x), ¢ = ¢(x) and K, K, are constants of integration which are

independent of x. We note that the invariance of these quantities in the steady
state is simply Bernoulli’s theorem for this system ([6], Section 3.5). We use these
solutions in Section 5.4 to help validate our numerical models and to understand

the behaviour of the linearizations.

5.1.3 The analytical linear system

In order to form the set of linear equations we consider the fields u, ¢ as perturbations
Su, d¢ about a spatially and temporally varying basic state u, ¢ which satisfies the

nonlinear equations. This basic state is also called the linearization state. Thus we
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have

u(x,t) = u(ax,t)+ du(x,t), (5.13)

H(x,t) = o(a,t)+ dé(x,t). (5.14)
These expressions are substituted into the nonlinear equations (5.1), (5.2) and prod-
ucts of perturbations neglected, to give the linear equations. We obtain, for the
linearization of the momentum equation (5.1)

Déu . du 936 _

—_— — 0: 5.15
Dt + u@:z;+ ox ’ ( )

for the linearization of the continuity equation in its original form (5.2)

Ds¢ | . 86 du  -d(su)
T OUSE 805 4 67 = 0 (5.16)

and for the linearization of the continuity equation in its logarithmic form (5.4)

2<5¢> N 5u6(1n95) N 0(du)

Dt\ ¢ Ox Ox

The material derivative D/ Dt is defined as in (5.3), but using the linearization state

= 0. (5.17)

wind u. As for the nonlinear model, we treat the logarithmic form of the continuity
equation (5.17) in the discrete numerical model developed here, but the alternative
form (5.16) is easier to use when deriving analytical properties of the system.

By setting the partial time derivative to zero in (5.15) and (5.16) we can find
two steady state solutions, which are equal to the linearizations of the steady state

solutions of the nonlinear equations. Thus we have
udu + 6¢ = 0Ky (5.18)

and

b+ dup = 5K, (5.19)

with § K and K5 constant.

85



5.2 The numerical schemes

5.2.1 The nonlinear model

The governing equations we discretize are the momentum equation (5.1) and the
logarithmic form of the continuity equation (5.4). Using this form of the continuity
equation has the advantage that we avoid having to treat the nonlinear term of
the product of the geopotential and divergence seen in (5.2), which can lead to
instabilities if extrapolated quantities are used [79]. The scheme we will use is a
two-time-level semi-implicit semi-Lagrangian scheme as described in Section 2.4. It
is based on the scheme of [83], but with an off-centred time averaging of the forcing

terms along the trajectory, as in [74]. The time discretization is thus written

ntl _gm B OH\" B OH\"t
Do M 41— ay) <—¢+g—> +a1< ¢+ ) =0, (5.20)

At Ox Ox J % ga—x "
(ng)pt' —(ng)y . oul"  oul"tt
At + (1 Oéz) ax . (%)) ax ) == 0, (521)

where d indicates a value at the departure point and « indicates a value at the
arrival point. The coefficients aq, ay are time-weighting parameters chosen to lie in
the interval [%, 1]. This scheme is chosen to match as closely as possible the new
integration scheme being developed for the Unified Model at the Met Office [1§],
[19], which we outline in Chapter 6. It is also similar to the scheme being used
operationally in the GEM model of the Canadian Meteorological Centre [16].

The spatial discretization chosen is a staggering of the points on which the vari-
ables v and ¢ are held, which is essentially a one-dimensional representation of the
Arakawa C-grid being used at the Met Office. The points are regularly spaced such
that the distance between neighbouring points holding « and ¢ values is %. We
identify a general point at which ¢ is evaluated (a ¢-point) as x;, where 7 is an

integer. The points either side of it on which u is evaluated (u-points) are written

x,_1 and TipL The grid is defined with N ¢-points and N w-points and with cyclic

=3
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boundary conditions, such that the point ¢y is identical to the point ¢, and UnyL
is identical to uL. Interpolation of quantities between u-points and ¢-points is per-
formed using a linear interpolation. The introduction of such a staggering means
that for a general ¢-point x; and a general u-point Tipt the departure points will
differ. Henceforth we indicate the departure point for the ¢-point using the subscript
d¢ and the departure point for a u-point using the subscript du.

We first give an outline of the solution method for the scheme, before writing
out all the details needed in order to perform a linearization. We follow a predictor-
corrector method, with one prediction step followed by one correction step. The
first step is to calculate the departure points x4, and x44 for each of the v and ¢

gridpoints at time level n 4+ 1. This allows us to calculate the time level n terms in

(5.20) and (5.21). Thus we obtain

oo™t 9H
ntl At = =
u’+§ T oo (6:1; i+L+gax it L

" 0H

99
9%

=uy, — (1 —ay)At (@_

Tlg

du) : (5.22)

n+1 "
(In)™ + aAt Ou = <1n¢ —(1— ozz)Ata—u> ,
i de

52 52 (5.23)

with all the terms on the right hand sides of (5.22) and (5.23) known. Then after
discretizing the derivative terms we are left with a system of coupled linear equations
for u and ¢ at time level n + 1 at all spatial points. These equations can be solved
by eliminating u at time level n + 1 and solving the remaining set of equations for
"t at each ¢-point ;. The result can then be substituted back into (5.22) to find
the values of u:l_l‘_"f for each u-point Tyt

2

The scheme in detail proceeds as follows:

1. First we must find the departure points z4,, 244 for each of the u-points and
¢-points at time level n + 1. We consider the calculation for a general point

x;, where x; can be either a u-point or a ¢-point. Then the departure point
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T4 can be calculated from

Tq = Tj; — Oy (524)

where the displacement «; is calculated using the iterative procedure intro-

duced in Section 2.4,

(k)
o At
oz;kH) = Atu*(x; — —; b + 7) (5.25)

with ozgo) = 0. The velocity u* is an estimate of the velocity at the mid-point
of the trajectory. In order to estimate the velocity at time t,, + At/2 we use

the extrapolation formulae

At 3 1
u*(;pi_l_%,tn + 7) = §u(:1;i+%,tn) — §u(:1;i+%,tn — At) (5.26)
at u points and
At 1
W (i tn + 20) = S0 (@i ta) — T (it — At) (5.27)
2 2 2
at ¢ points, with
_ 1
ut(x,tn) = 5(“(9‘%—%7 tn) + u(:z;i+%,tn)). (5.28)

The evaluation of (5.25) requires u to be calculated at the point x; — ozgk)/Q.
This may not lie on a grid point and so the value must be found by interpolation
from surrounding grid points. For this step a linear interpolation is used. We
set out the details with reference to Figure 5.1. In order to calculate u at
Ty = Tj — ozgk)/Q, point B in the figure, we need to interpolate between the
grid points either side of z,,, which we write x;_,_; and x;_,. The value of

s, which will depend on the arrival point index j and the iteration count &, is

s = INT o (5.29)
4 2Ax '

given by
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where INT(x) means the integer value of . Now define ’y](k) to be the fraction
of the grid interval x;_, — x;_,_1 which is covered by the length z,;_, — x,,, so

that

k k a
7 = s 4 L (5.30)

Then v at point x,, can be calculated from the linear interpolation formula
1 , 1
u(mAe, (n+ A = Pu((G - Y~ DAz, (0 + 5)A1)
. 1
(1=l = A, (0 4+ S)AD). (5.31)
Having performed K iterations of (5.25) the departure point is situated at

(K)

JAz — ;7. It is normally found that there is no advantage to performing

more than two iterations of this part of the solution procedure [79]. We now

o)
J
p=INT ( g ) (5.32)

oK)
Bi=-p+ ( A]x ) : (5.33)

Then the departure point x4 lies between the points z,;_,_; and z,_, and is a

let

and define

distance 8;Az from the point z;_,, as shown in Figure 5.1. We note here that
the INT function used in (5.29) and (5.32) is non-differentiable. Thus it will

require special attention when we look at the tangent linear model.

. Having found the departure points, we can calculate the right hand sides of

(5.22) and (5.23). We first define the variables X, Y,

0¢ OH
X = u—(1—ap)At| = — .34
o (-anar (524057, (5:34)
YV = In¢g—(1-— az)Ata—u, (5.35)
Jx
where the derivative terms are approximated using the standard centred dif-
ferences
9¢ Piy1 — &
9c .. I (5.36)
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Figure 5.1: A schematic representation of two-time-level semi-Lagrangian advection.
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Ju Uil —U; L
—| ~ 2 2 5.37
Oz |, Ax (5.37)

Equations (5.22) and (5.23) thus become
oo™ 9H
n+1 i il _ n

W+ A (6:1; 9, ) = X (5.38)
R N 77 (5.39)

The variables X and Y are calculated at gridpoints at time level n, defining X
on u-points and Y on ¢-points. The values at the departure points can then
be calculated from these values by interpolation. As discussed in Section 2.4 a
cubic interpolation is often used and here we use the cubic Lagrange formula.

Hence we obtain

i 1 1 i 1 1 i
Xiw = (ghus + )X + B+ 585 — 380X
1 2 1 3 n
R e R R L
1 1, 1.
+ (_gﬁz-l—% + 5614-% - 6614-%) it s—pt1’ (5‘40)

. 1 1 . 1 1 n
Vi = (—gBit BN+ (Bt 5P = 5BV,

1 1
+ (11— 55:’ — B+ 55?)17113

1

1 1 oo
+ (—5hit 50— BV, (541)

where the values of § for each point are defined by (5.33). We note that the
variable p will also depend on the coordinates of the arrival point by means of

(5.32), but this dependence is omitted for clarity in (5.40) and (5.41).

. The next step is to solve the implicit part of the procedure. From (5.38) and
(5.39) we have two sets of N equations
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n+1

n+1 _Qb aH _ n

ul._l_% 4+ ag At (6 + g—ax ,_|_L> = X}, (5.42)
n—I—l
n+1 au n
(ln¢): + At — =Yy, (5.43)
Jz |

valid for all values ¢ = 1,..., N, with periodic boundary conditions closing the

system. Then eliminating Uig 1 for all values of ¢ we obtain the set of equations

0 1 g0 i AT i (gt = R, (5.44)
with
Ri= v} — OZN[X” - X (5.45)
and
X2, = X3, — andg ZZ (5.46)

z’+1§
The equation (5.44) is a discretization of an elliptic equation on the domain

and 1s weakly nonlinear through the presence of the In ¢ term on the left hand

side.

. A suitable procedure must now be obtained to solve the system (5.44) for all
values of ¢; at time level n + 1. The method we choose is to apply a fixed
point iteration, solving a linear problem on each iteration. A natural way of
choosing such an iteration would be to consider a scheme such as

OéloézAt (m) OéloézAtz

N ¢z+1 + QW@(m) —

oo A (o, m—
DAL H" = R~ (mg)(" ", (5.47)

where the superscript m is the iteration counter. However the tridiagonal
matrix given by left hand side of this equation is singular and so this iteration

1s not well-defined.

To obtain a suitable linear equation to iterate we shift the solution about a

reference state ®,.; which is constant in time and space. We write
I = Doy + ¢ (5.48)
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and put
aq OézAtz

C="3z

(5.49)

Then substituting into (5.44) and moving the nonlinear term to the right hand

side we have
_Cqb;-l—l —I_ QCqb; - Cqbi'—l — Rl - 1n(®ref -I' Qb;) (550)

We now add a term ¢}/®,.; to both sides of (5.50) to obtain

1

qb’.
q)ref ‘

) = €y = Bi= (s 4 60) + 3

—Clu + (20 + (5.51)

We note that this equation is mathematically equivalent to the original equa-
tion (5.44). However the left hand side now consists of a strictly diagonally
dominant tridiagonal matrix and is therefore invertible. Hence we can succes-

sively solve the series of equations

(m+1) 1 (m+1) (m+1)
~Cofy, "+ (204 )™ - col
qb’»(m)

= Ri—In(®rey + &™) + :
q)ref

(5.52)

where m is the iteration count and qb,"(o) = 0 for all . On each iteration we
apply a direct solution method to solve the linear equation using the solver
of Appendix A.2 of [21]. The iteration (5.52) is a fixed point iteration which
we have designed for this particular model. We show in Appendix A that it
converges to the solution of (5.44) provided that

q)ref

'] < 5 (5.53)

The iteration is repeated until (5.44) is satisfied to some specified tolerance.
Assuming that this occurs after M iterations we obtain an updated value of ¢

from

A (5.54)
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5. As a final step we use these new values of ¢; to calculate values of u at each
grid point at the new time level from (5.38), thus completing one time step of

the scheme.

5.2.2 The tangent linear model

The normal procedure to obtain a tangent linear model is to linearize directly the
source code of the nonlinear model, and this is the practice which we also follow.
However, to enable analysis of the scheme produced in this way, it is instructive to
write out the equivalent scheme that this produces. We do this by linearizing the

discrete nonlinear scheme described in Section 5.2.1. We first set

uie o= Ul +oul
P = o +d¢7, (5.55)

where ﬂﬁr;ﬁ? are solutions of the discrete nonlinear model at time level n. The
2

linearization is then obtained by substituting these expressions into the nonlinear

scheme and neglecting products of perturbations. We now derive the discrete equa-

tions this produces for each stage of the model solution procedure.

1. The first stage is the linearization of the departure point calculation. We
show only the calculation for u-points, since that for ¢-points follows the same
pattern with some extra horizontal averaging. The scheme for the nonlinear

model can be summarized by the three steps

w o®
) INT [ -2 5.56
% 2Azx |’ ( )
(k) (k) ol

J
v = s 4 A (5.57)
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ozgk—l_l) = At

3 k . &
§<’y]( )u((J — S; ) L)Az,nAt)

J

H(1 =y u((G - s A, nAt))

N |

<7;k>u((j — s~ 1)Aw, (n - 1)At)

(1 =yl - sAaz, (n - 1)At)> . (5.58)

The equations resulting from a direct linearization of this discrete scheme are
therefore as follows.

k
35t =0, (5.59)

since the linearization necessarily assumes that the grid interval for interpola-

tion processes does not change. Then we have

Sak)
k

and

5a§k+1) = At

3/(_ .
5 (’y](k)csu((] — Sgk) — 1)Ax, nAt)

J

+ (1= 3" su((j — 5™ A, nAt))

(ﬁ’“au((j — 5% — 1Az, (n — 1)AY)

N | —

+ (1= 3du((j - 58 Az, (n - 1)At)>

+ oA %(%““)u(o =5 = DAw,nA)

—57;k)ﬂ((j — Egk))A:Jc, nAt))
1 P
) (57](k)u((] — Sgk) — DAz, (n — 1)At)

—57Wa((5 = sW)Az, (n - 1)At)> , (5.61)
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with 5@20) = 0. We note here that because we are taking a small predetermined
number of iterations, usually two or three, we can consider this as just a two- or
three-step calculation and so linearize each iteration separately as if they were
just different parts of the numerical scheme. This allows the linearization to
be performed at the level of the model source code and is the procedure often
followed in deriving the linearization of this part of a semi-Lagrangian scheme
in meteorological models [64], [82]. However, when we come to the iterative
solution of the elliptic equation later, we iterate to some desired convergence
criteria and the number of iterations may differ between time steps. In that

case we use a different method to find the tangent linear model.

Now we assume that the perturbed departure point lies in the same grid in-
terval as the original departure point, and so dp = 0. As discussed in Section
3.2 this assumption will ensure a correct tangent linear model for infinitesimal
perturbations if and only if for a piecewise-continuous interpolation function
the first derivative of the interpolating function is continuous, as shown in
[65]. For the cubic Lagrange scheme which we are using this condition does
not hold. However the authors of [65] state that for this scheme the error in
the linearization is not large. Then after K iterations of this calculation we
calculate the linearization of (5.33)

5@51‘)‘
Ax

88, = (5.62)

. The next stage is to calculate perturbations to the expressions of known terms

X,Y. We linearize (5.34) and (5.35) to obtain

)
6XipL = duipL —(1—a) At% ) (5.63)
2 2 Ox i+1§
oo ddu

Then using these expressions we can evaluate the linearization of the cubic
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Lagrange interpolation to the departure points. Thus from (5.40) we have

. 1 1 . 1 1 .
0XGu = (=gPuy + gPL)oX sy + By + 580 — 580X
1 2 1 3 n
‘|‘ (1 - 56@4—% - i-l—% ‘|’ _6i+ )(SX ——p
1 1 1 i
+ (_gﬁi-l—i + 56,’2_1 - 66 )5Xl_|___p_|_1

1 " 3 n

+ (_8 + 5,+ )561+1X pr T4 By — 56’2+%)56’+1X’+"p !
1 n

+ ( 2 2614_ + 62 ) 6l+lX —-p

1 1

3

+ (38— 585408 X (5.65)

and from (5.41) we have

1 1 1 1
5K&==(—a%+g@ﬁﬁgq+%ﬂ+~ﬂz——ﬁﬁqu

b B BV, (B B SV
1

+(e6+%ﬁﬁ@ﬁg4+wl+ﬂ——ﬂﬁﬂY%4

1

2t SESANE, 4 (5 B SANIAY . (5.66)

+ (-3

The values of p and § in (5.65) and (5.66) are in fact linearization state values
defined by (5.32) and (5.33), but the overbars have been omitted for clarity.
The value of 64 is that calculated from (5.62). Finally for this part of the

scheme we linearize (5.46) to obtain

55(;;% = 5X7. (5.67)

We note that the perturbation to X7, , written 0.X7,, is not equal to the per-
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turbation of X evaluated at the point Xy, and similarly for 6Y7,. We define

(—%@% + %5?%)5)(;;15_]3_2
b Gy + 5y~ 3%
%@‘r% - 62'2% + lﬁ?—l— )5in+2 —p

+ (—%@% + %@ig - é
(V)i = (—gfit gAY+ (5 + 202 = SEIOVE,

+ (1- 35» - B+ 163)51/’1]3
1

(6X)g. =
)5Xin+§—p—1

+o-

DSXTL L (5.68)

AL (5.69)
and put
505(41()
* J
ou™ = Ar (5.70)

Here du* is the perturbation to the estimate of the velocity at the mid-point
of the trajectory. Then the equations for X7, and 0¥y can be written

At G, OH\\"
§X5, = (X)), + A—(Su* (u — (1 — o)At <6—¢ +9—-— 9 )) , (5.71)
At - ou
Yy = (YY), + —du” (lnqb (1-—a )At—) (5.72)
dé @ T Ax 2 dz /) 4

where d’ indicates not the perturbed departure point, but the linearization of
the interpolation scheme. A Taylor series expansion shows that this lineariza-
tion divided by Az is an O(Ax) approximation to the first derivative d/0x.
Then also noting that du* = dul}, + O(At) we can consider (5.71) and (5.72)

as the equations

" " . [ 0u 6% 62 "
+ O(AtAux), (5.73)

a1 0%
5Yp, = (5Y)g¢—|—At5ugu< arf (1—a2)At67>

+ O(AtAz). (5.74)
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We note that the first term of each bracket on the right hand sides of (5.73)
and (5.74) also appear in the analytical linear equations (5.15) and (5.17).
However the second term of each bracket consisting of second derivatives of
the linearization state do not appear in the analytical equations and thus do
not appear in the perturbation forecast models. These terms arise from the
perturbation to the departure point calculation. We see later in Section 5.3.3
that these terms contribute to the first order part of the truncation error for

this scheme.

. The next part of the nonlinear scheme is the iterative solution of the discrete
elliptic equation. In order to find the tangent linear model we do not linearize
this iterative procedure, but instead linearize the discrete equation of the non-
linear model and then solve this linear equation, thus following the normal
procedure of automatic differentiation [5]. The equation which we solve in
the nonlinear model is (5.51), but since this is mathematically equivalent to
the original form (5.44), a linearization of the latter is sufficient. Linearizing
(5.44) we obtain

1
o

—CserE + (20 * ) 560 — CosH = OR,, (5.75)

with C defined by (5.49) and

§R; = 8V}, — O‘Z—At[éfg;k —6XT

v ! (5.76)

1
2
This is a linear equation which can be solved directly for §¢"*" at all points
x;. Hence we see that for this system an iterative procedure is not needed in

the tangent linear model.

. From the updated values of d¢;, the time level n 4+ 1 values of 5“14-% at each

point ;1 are then found from the linearization of (5.38)

(S0 — d01*)

i1
Az

Sult! =6X7, — oAt
2

] . (5.77)
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This completes one time step of the tangent linear model.

5.2.3 The perturbation forecast model

To develop the perturbation forecast model we begin by taking the continuous lin-
earized equations (5.15), (5.17) and seek some suitable discretization, following as
closely as possible the numerical scheme of the nonlinear model. The most natural
method of treating these equations in a semi-implicit semi-Lagrangian context is to
treat all the nonadvective terms as off-centred averages along the trajectory. Thus

we propose the scheme

L (gt " |t
At <(SU 2 _5udu> + (1 B 051) ox du t o Jx i+l
ou\" ou\""!
+ (1—a3) <5u6_:1;> . + as <5u6_:1;>i+1_ =0, (5.78)
At b/, az) Oz a0 * ox :
+ (1 — ay) ((5u) 92 >d + ((5 ) “or o= =0, (5.79)
where

(6u' ) = (5u L+ 0uy) (5.80)
and «; are time-weighting coefficients for ¢ = 1,...,4. The finite difference form

of the derivatives 9d¢/0x in (5.78) and ddu/dx in (5.79) are defined by (5.36) and
(5.37), as for the nonlinear model. For the perturbation forecast model we also

require the approximations

ou Ujips — UL

0_:1; i+l - 2Ax ’ (581)
Ing)| (Indliy — (Ind)iy

dx |, - 2Ax (5-82)

The outline of the scheme is very similar to that of the nonlinear model.
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1. We first calculate the departure points. Since the semi-Lagrangian part of

our scheme is only considering advection by the linearization state wind, these

departure points and hence their derivation is exactly the same as in the

nonlinear model.

2. The next step is to calculate all the time level n terms in (5.78) and (5.79).
We first define

0X

oY

du— (1 — al)At% —-(1- oz;;)At(Sug—Z, (5.83)
5 ddu

? — (1 — Oéz)Ata—x )

(1 — ag)At(Fa) 2ne) (5.84)

X

in a similar way to X and Y in equations (5.34) and (5.35) of the nonlin-

ear model. Then the values X7 , 0¥z, at the departure points x4y, vag are

calculated by interpolation from nearby gridpoints using the cubic Lagrange

interpolation formulae (5.40), (5.41) respectively.

3. Having calculated the time level n terms we substitute into (5.78), (5.79) to

obtain the implicit system

5un—|—1

In order to solve this system we wish to eliminate du

1
l-l—g

_|_

5 n+1 n+1
a1 At ﬁ + oz3At5u?_:'fa—u
0:1: i-l—% 2 6:1; i+1§
5X7. (5.85)
Asu |t —a d(ln )|t
OézAt % i + Oé4At((SU )?—I—l (anb) i
Y. (5.86)

::_"Ll for all values of 7 to

2

form a system of equations for §¢it!. We first rewrite (5.85)

+1
ouTy

z—|—2

1 + Oé3Ata—

n+1
al ) — X"

5"t
0:1; i-l—% '

— a At —

- (5.87)

1
35
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We can eliminate du provided that

ou |t
1 At— 0. 5.88
+ as Oz ot 7’é ( )

This leads to a restriction on the time step

1

At < — =
NPRETTERE

(5.89)

This may seem to be an extra restriction which is not present in the tangent
linear model. However, we recall from Section 2.4 that the iterative proce-
dure by which we calculate the departure point itself imposes the restriction
Atmax [0u/dx| < 1. Hence for values of as in the range [0, 1], (5.89) must

hold in any case. We define

_ U;ps —U; 1)\ 7

A (1 + %yM) : (5.90)
so that (5.87) gives

_ )
5u”+11 = Zl.n_:—; ((SX;U — OélAt %

i+3 Ox

n+1) . (5.91)

it1
Then substituting this expression into (5.86) and rearranging, we obtain the
system of linear equations

— CZH_%(CM + 03)5¢?.|—.I_11

1
‘|‘ [W ‘|’ 02,'_%(—01,' ‘|‘ 03) —|— 02i+15(01i —|— 03)] (qu?-l—l

+ Cy_1(Cy; — C3)097H

1
2

= R, (5.92)
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with

o as At 9(In @)t
e 2 dx
QIZXt Sn
Casp = R, 70
as At

SR = 8V, = Cij(Z3H[8X) y + 216X,
).

L
2 2

~7n+1 n ~7n+1 n
_C3(Z],+1§5Xj+1_ — Z],_lg5Xj_
The system (5.92) is represented by a strictly diagonally dominant tridiagonal

matrix and so can be directly solved for all values of J¢;t! using the same

solver as in the nonlinear model.

4. The result of the previous step is then substituted into (5.91) to calculate

?"'Ll and so complete one time step of the perturbation

2

the updated values du

forecast model.

5.2.4 A second version of the perturbation forecast model

One possible difficulty with the perturbation forecast model scheme discussed in
Section 5.2.3 is in the treatment of the term arising from the linearization of ad-
vection, in which the perturbation wind multiplies the gradient of the linearization

state field. In the analytical linear equations (5.15), (5.17) we have the terms

ou

P o (5.93)

The averaging of these terms along the trajectory as in the scheme of the first
perturbation forecast model (5.78), (5.79) couples the equations in a way that may
cause difficulties in a three-dimensional model. In order to avoid this coupling, we
consider an alternative scheme for the perturbation forecast model, which matches

more closely the scheme implemented at the Met Office. On the assumption that
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the perturbation wind is likely to be small, we treat this term explicitly and in
an Eulerian fashion. Hence for both equations the term is evaluated at the arrival
point, but at time level n. Thus we have the scheme

1 Ju
. n+l n i
At <5ui+% 5“"“) + <5u ax>

n

i+t
s |" ase|"t
+ (1 — Oz1)a—x N + Oz1$ " =0, (5.94)
n+1 n 7 n
s\(2), -(2),) « (755
At o/, ¢/ 4 Oz ;
déu|" dou |t
+ (1 — OKQ)W “ Oéza i == 0, (595)

with 0u" defined by (5.80). The method for solving this scheme is very similar to the
previous section, with just a few terms changed. The departure point calculation is

the same, from which we calculate the known terms

0XE, = [du—(1— al)At@ — At(Su@ , (5.96)
I / 4 Tlipl
oo @5u>n —0(Ing)|"
oY), = (— — (1 — ag)At— — Atdu 5.97
d¢ Qb ( 2) 6:1; o T . ( )
We then have the system
05¢ n+1

n+1 _ n
5ui+% + OélAt 6—;1; i = 5Xdu7 (598)

dp\ nt1 du" ! "
<T>i faalts = Y (5.99)

From these equations we can eliminate all values of 5u?_|_ to obtain the linear system

1
Coip L C3007 + [W + 2021'_1503] St
+ o1 G374 = OR;, (5.100)
where Czi_%, CZH-% and C3 are defined as in the previous section and
SR, =38Y; — 03(2;%_15)(;% — Z;j;am ). (5.101)

1
I3
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Again we have a strictly diagonally dominant system, which can be solved for d¢;
at each point x; for time level n + 1. The result is then used to update 5ui+; for all
2

values of 7 by means of (5.98).

5.3 Analysis of numerical schemes

In order to proceed with an assessment of the different linear models, we wish to
look at the properties of the numerical schemes developed in Section 5.2. However,
we also need to understand the properties of the nonlinear discrete model and so

these are also discussed.

5.3.1 Stability of nonlinear model

In Section 2.4 we referred to studies which have shown that the scheme developed
from the nonlinear model in Section 5.2.1 will be unconditionally linearly stable for
values of ay,ay € [0.5,1]. Here we develop the discrete dispersion relation for the
constant-coefficient linear system of our model, to illustrate this stability and give
information on the phase speed of the numerical solution. We follow the method of
Fourier analysis described in Section 2.2.4 and substitute Fourier modes of the form
(2.31) in order to provide the dispersion relation.

First we must define the linearized constant-coefficient problem for the numerical

system (5.20), (5.21). We let

1
+3)

¢ = o097,

with Uy, ®¢ constant and ®y > 0 and assume a constant advective wind Uy. Then
substituting into (5.20), (5.21) we obtain the linear system

n+1
=0, (5.102)

s 1
l-l—g

Sutl — oul, @

z—I—% .
At + (1= a) Ox

" 93¢
oy —

du ox
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n+1

" 5
Doul™ _y, (5.103)

+ay o
do ox

where g, = 7,1 — UgAt, 244 = v; — UgAt and the spatial derivatives are approxi-
2

St — den, B5u
ooy e e

7

mated according to the centred difference formulae (5.36), (5.37).

We seek solutions of the form
Su = SupeFeHel) 5 = fgpel ket (5.104)

where dug, d¢g are constant in space and time and w is complex. For the purposes of
the analysis we will assume that all interpolation is exact, that is we assume no errors
arising from the interpolation to the departure point nor from the interpolation
between u- and ¢- points. In general there will be an error from the interpolation,
which will depend upon the distance of the departure point from the grid point and
hence on the assumed constant velocity Uy. A more complete study of the error due
to interpolation is given by McDonald [53], who showed that a cubic interpolation
scheme has the smallest phase error of the low order Lagrangian interpolations.
He also found that the amplitude error when the interpolation point is close to a
grid point is small, with an amplifying factor of less than one as the interpolation
point moves away from the grid point. Hence we do not expect the errors due to
interpolation to cause an amplification and so this approximation is reasonable for
our present analysis.

We first calculate the Fourier representation of the spatial derivatives at the
departure points by substituting the finite difference formulae of the derivatives
(5.36), (5.37) into the cubic Lagrange interpolation formula and then substituting
in the Fourier modes (5.104). We find that

odu 2 sinkATx

= 2 5 Nl
5 |, A Ot (5.105)
9é 2i sin ¥4<
—r = ——= 4. 1
ol 2Ty (5.106)

Then substituting these expressions and (5.104) into (5.102) and (5.103) we obtain
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an equation of the form

(SUO 0
M = \ (5.107)
Yo 0
where
M - E' -1 2isin B AL[(1 — o) + oy F')
27 sin MTx%(I)O[(l — az) + az B E -1

(5.108)
with F = ¢“Al B’ = ¢*oAE and |E'| = |E|. A comparison with the theory
developed in Section 2.2.4 shows that (5.107) can be used to obtain the characteristic
equation for the amplification matrix of the numerical scheme, by setting det M = 0.
Then the eigenvalues of the amplification matrix are the values of E which satisfy
this equation. It follows from Theorem 2.4, the von Neumann condition, that a

necessary condition for stability is that
|E| <1+ O(A?). (5.109)

In fact from the analytical dispersion relation (5.9) we find that w is real and so
there is no growth in the analytical solution. Hence for the numerical scheme we
seek the stability condition |E| < 1, without allowing any growth in the solution.
We set det M = 0 from which we obtain the relation

(14 a1aaC*)E* + (C*az(l —ay) +ar(1 — ay)) — 2)E

+ (1—a)(l—a2)C?+1=0, (5.110)
with
A2 kA
2 -2
C* = 4(I)OA:1;2 s ——. (5.111)

If we assume that oy and a3 are equal to a common value «, then the solution of

(5.110) is given by

1+ (a? —a)C*+ Ci

E' =
14 a2C?

(5.112)
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Since |E| = |E’|, the condition |E| < 1 is satisfied only for values of o > 0.5 and
thus this is a necessary condition for stability. For a value of a = 0.5 we find that
|E| =1 and so there is no amplitude error in the numerical solution. However Rivest
et al. [74] showed that it is necessary to use a value of « slightly greater than 0.5
to avoid spurious resonance in the solution.

Again following Section 2.2.4 we can separate w into its real and imaginary parts,
putting w = w, + iw;. Then substituting into (5.112) we obtain the numerical phase

speed

w 1 C
_r —— tan~! ) A1
VA (1 + (o — a)02> (5.113)

A comparison with the analytical phase speed (5.10) shows that there is an error in

phase in the numerical solution dependent upon the wave number k.

5.3.2 Time accuracy of nonlinear model

We now examine the truncation error for the scheme used in the nonlinear model, as
stated by Definition 2.7 of Section 2.2. In deriving the truncation error we consider
only the time discretization, that is we assume that there is no error due to spatial
discretization or interpolation. The reason for this is twofold. Firstly, a good spatial
accuracy can easily be obtained by the choice of an appropriate interpolation scheme
and so in order to preserve the accuracy of the overall scheme it is important to
consider the time accuracy of the scheme. In fact, the truncation errors for various
polynomial interpolations within semi-Lagrangian schemes have been derived in [54].
The second reason for looking at the time truncation error is so that we can also
understand the effect of approximating the linearization state of the perturbation
forecast models at different time levels, which we discuss in Section 5.5.

For ease of notation we make use of subscripts « and ¢ to indicate partial deriva-
tives with respect to those variables. We expand the truncation errors around the

mid-point (2, t,) of the semi-Lagrangian trajectory. Then for the nonlinear model
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described in Section 5.2.1 we find that the semi-discrete scheme (5.20) satisfies the

analytical momentum equation (5.1) with truncation error

N — (20 — 1)%

TU

(Pt + Uz + ugHm);’jn + O(A#?) (5.114)

and that the scheme (5.21) satisfies the analytical continuity equation (5.4) with

truncation error
NL At ¢ 2
To = (200 — 1)7(uxt + Utige )" + O(AL?). (5.115)

We see that if we have ay = 0.5, a3 = 0.5 then the scheme is second order accurate,
whereas for the off-centred scheme, with a;, oy greater than 0.5, there is a first order
time truncation error. However, if the values are chosen to be close to 0.5, then we
can write a; = (1 + ¢;)/2, with « = 1,2, for some small parameters ¢;. In this case

we have for both equations
NE = O(eAt) + O(At?), (5.116)

where v = u or ¢. Then for small enough values of ¢;, that is for values of «; close

enough to 0.5, the scheme will be close to second order.

5.3.3 Time accuracy of linear models

An important question to answer with respect to the linear models is to what trun-
cation error their time discretizations approximate the analytical linear system. We
apply Definition 2.7 to calculate the truncation error in the usual way and then
expand in a Taylor series around the mid-point of the trajectory defined by the
linearization state wind.

For the tangent linear model described in Section 5.2.2 we do not have an obvious
form of the time discretizations to which we can apply a truncation error analysis.
We can calculate a general form of the tangent linear model by perturbing the

nonlinear model time discretizations (5.20) and (5.21), including a perturbation to
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the departure point, and then dropping products of perturbations in the expansion
of the truncation error. We find that the tangent linear model satisfies the linearized

momentum equation (5.15) with truncation error

Il = (204 — 1)% [S¢ut + Ubhue + Sudey + 5ugHm};’" + O(A#?) (5.117)

and the linearized continuity equation (5.17) with truncation error

At

74" (200 — 1)7 [Otgr + UbUze + Suiies]." + O(AL). (5.118)

In order to verify the method used here we note that a general time discretization
for the equation for du can also be found by combining equations (5.67), (5.73) and
(5.77) from Section 5.2.2 and ignoring the discretization of the spatial derivatives.
An expansion of the truncation error for the expression thus formed gives exactly
the same as (5.117).

We see from (5.117) and (5.118) that the tangent linear model is a second order
in time approximation to the continuous linear system for time-weightings oy =
ay = 0.5 and O(At) otherwise. A comparison of the truncation error with that
of the nonlinear model, given by (5.114) and (5.115), shows that the leading order
terms in the error for the tangent linear model are equal to the linearization of the
leading order terms in the nonlinear model truncation error. This was also true for
the example of the ODE problem in Chapter 4.

In order to calculate the time accuracy of the perturbation forecast model scheme
of Section 5.2.3 we consider the time discretizations (5.78) and (5.79). We find
that (5.78) approximates the continuous linearized momentum equation (5.15) with

truncation error

= (200 )5 (bt 50,
At
+ (205 = )5 ((Sutia)e + u(Sutiz)e )" + O(A). (5.119)

and the discretization of the linearized continuity equation (5.79) approximates the
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analytical linear equation (5.17) with truncation error

Tfl = (202 — 1)% (dug + ﬂ(Sum);’;
+ (204 — 1)%((5u(1n ?)2 )i + u(Su(ln qg)x)x);’:; + O(A#?).  (5.120)
It is informative to compare the truncation errors of the tangent linear model
and the first perturbation forecast model for our shallow water system. We consider
first the approximation to the linearized momentum equation. A comparison of
(5.117) and (5.119) shows that if fu = 0 so that there is no perturbation to the back
trajectory of the semi-Lagrangian scheme, then the truncation errors are identical.
Where du # 0 an extra O(At) error is added depending on how the perturbation to
the trajectory has been treated. For the tangent linear model the truncation error
(5.117) contains a term of the form (Su(qux + gH,.). A comparison of these terms
with equation (5.73) reveals that they arise from the linearization of the interpolation
within the semi-Lagrangian scheme. In the perturbation forecast model however we
do not have such a linearization, since we treat the perturbation wind term Juu, as
a forcing averaged along the trajectory. As a result of this we find in the truncation
error (5.119) a dependence on the rate of change of this term along the trajectory.
The truncation errors for the mass continuity equation show a similar picture. We
compare the tangent linear model error (5.118) with the perturbation forecast model
error (5.120). The tangent linear model contains a term involving the perturbation
wind multiplied by t,,. A comparison with (5.74) shows again that this comes from
the linearization of the interpolation scheme. The perturbation forecast model error
on the other hand depends on the rate of change of the term du(In ®), along the
trajectory.
We now consider the second perturbation forecast model scheme described by

equations (5.94) and (5.95) of Section 5.2.4. For this scheme we find the truncation
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error

At
7_52 — (2&1 - 1)7 (5¢xt + u(sgbxx)txr:l
At _ e 5
> (—(duug)s + u(duuy),) + O(AL?) (5.121)
in the approximation of the linearized momentum equation (5.15) and the truncation

error

7'(52 = (209 — 1)%(5uwt + ﬂ(Sum);’:‘n
+ %(—(Mlnq%)x)t +u(du(lng),).) + O(At?) (5.122)

in the approximation of (5.17). Thus we see that for this second version of the
perturbation forecast model the accuracy is only first order in time even with the
time weightings «; set equal to 0.5. This appears to be a serious deficiency with this

version of the model.

5.4 Numerical experiments

5.4.1 Verification of nonlinear model

The numerical experiment we use to test the different models is one of a motion
forced by some orography, based on an experiment described by Houghton and
Kasahara [38]. For time ¢ < 0 the fluid is at rest and the geopotential ¢ is equal to
oo — H(x), with ¢ constant. At ¢ = 0 the fluid is impulsively set in motion with a
constant velocity ug for all . From this impulse a wave motion develops and moves
away from the obstacle in both directions, while the solution in the vicinity of the
obstacle becomes a steady state solution and thus satisfies (5.11) and (5.12). For a

continuous flow the analytical values of the steady state constants Ay and K, are
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given by

2
Ug

_[(1 - ? —|— Qbo, (5123)

_[(2 == qubo. (5124)

This problem is defined over an infinite domain —oc < x < oo, but the authors
of [38] use a periodic domain with boundaries far enough away from the obstacle
that the asymptotic conditions are established around the obstacle before any of the
wave motions can feed back into this area. We also follow this approach.

In [38] Houghton and Kasahara describe different motions depending on the
initial conditions wug, ¢g and the size of the obstacle. For some combinations of these
parameters jumps will form in the fields. However, since in our study we wish to
consider the behaviour of linear approximations, we want only motions which are
not too highly nonlinear and so we restrict the experiments to ones in which a jump
does not form.

In order to test our nonlinear model, we first run an experiment based on Case
A of [38]. The height of the obstacle H is given by

1,2

H(z)= H. (1 — —) for 0 <|z| <a, (5.125)

2
and H(x) = 0 otherwise. H, is the maximum height of the obstacle and « is half
the length over which the base of the obstacle extends. The values of the various
parameters needed are taken from [38]. The domain is defined to be periodic over
1000 gridpoints, with a distance Az = 0.01m between them, so that x € [0m, 10m].
The value of a is taken to be 40Ax = 0.4m and the height of the obstacle H. =
0.05m. At time ¢t = 0 we have ¢(x) = g(ho — H(x)), where we take hy = 0.2m and
g = 10ms™2. The initial velocity ug is taken to be 0.1ms~!. We run for a total of
500 time steps using a time step At of 4.6 x 107 %s.

It is also necessary to choose the variable parameters in the numerical scheme

that we are using, which was outlined in Section 5.2.1. We set the time-weighting
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Figure 5.2: Fields of u and ¢ from the nonlinear model after 500 time steps = 2.3s.

parameters oy, ay to 0.6, thus satisfying the stability criteria of Section 5.3.1, while
still keeping close to the more accurate centred time differencing. These a values
are typical of those used in practice, for example in the regional model of the Cana-
dian Meteorological Centre [16]. The reference geopotential ®,.; in the iterative
procedure (5.52) is taken to be 1.5m%s™2.

Figure 5.2 shows the fields after 500 time steps, which is equivalent to 2.3s of
real time. The fields in the centre of the domain match well the corresponding

figures in [38]. The average velocity of the outgoing waves in the first 500 time
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Figure 5.3: Variation of u¢ in the centre of the domain with time. The dot-dashed

line shows the asymptotic value ugdpg.

steps (calculated from the distance from the centre divided by 2.3s) is found to be
—1.31ms™! and 1.47ms~!. These compare with the analytical values calculated for
the homogeneous linearized problem using (5.10) of —1.31ms™! and 1.51ms™!. They
do not match exactly since the analytical results are based on the constant-coefficient
linearized homogeneous system. In Figure 5.3 we plot the value of the quantity u¢
summed over the interval from 4.5m to 5.5m, which is where the stationary part
of the solution forms. From Section 5.1.2 we expect this quantity to asymptote to
the value of K5, which for this problem is equal to wppg = 0.2, and we see that
this is indeed the case. Thus it seems that our nonlinear scheme with the given
parameter settings models well the true solution of the problem. With confidence

in the nonlinear model, we can now look at how the various linearizations behave.
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5.4.2 Verification of linear models

Before comparing the behaviour of the various linear models, we need to ensure that
they are coded correctly. To do this we make use of the method described in Section
3.1 and compare the evolution of a perturbation in runs of each linear model with
the difference between two runs of the nonlinear model. We take the experiment
of Section 5.4.1 as our unperturbed run and add perturbations (ydug, ¥d¢o) to the
initial conditions in order to generate the perturbed runs. The initial perturbations

are taken at t = 0 to be

Sug = 0.0lms™!,

Spg = —0.2m*s7 2,

representing a change of 10% in each field, and we set v = 10” for p = 0,—1,...,—5.
For the first version of the perturbation forecast model we must also choose values
of the extra time-weightings as and oy. We set these to be 0.6, as for the other
values of «;. In order to measure the error between nonlinear perturbations and the
solution from the various linear models, we calculate the relative error Er and the
solution error Eg as defined by equations (3.17) and (3.22) of Section 3.1.2. The
norm used in both cases is the root mean square norm defined by (3.21). These
error measures are calculated for the u and ¢ fields separately.

In Figure 5.4 we plot the relative error against perturbation size for the u and
¢ fields for each linear model. The solid line shows the error for the tangent linear
model described in Section 5.2.2, the dashed line shows the first version of the
perturbation forecast model derived in Section 5.2.3, hereafter written PFM1, and
the dotted line shows the second version of the perturbation forecast model from
Section 5.2.4, hereafter PEM2. We see that for the tangent linear model the relative
error tends linearly towards zero, showing that the model is correctly coded. For
the two versions of the perturbation forecast model the relative error tends towards

a non-zero constant, as predicted by the theory of Section 3.1.2. However, it is
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Figure 5.4: Plot of relative error Er against perturbation size after 500 timesteps.
The solid line is for the tangent linear model, the dashed line for PFM1 and the
dotted line for PFM2.

encouraging that for the larger perturbations both perturbation forecast models
give the same relative error as the tangent linear model. This indicates that all the
linear models are an equally valid approximation for reasonably sized perturbations.
A plot of the solution error Eg against perturbation size, seen in Figure 5.5, also
shows this error tending linearly towards zero for the tangent linear model. For
this measure the error for the perturbation forecast models does not asymptote to
a constant value, but does show a greater error than the tangent linear model for
small perturbations. However, as for the relative error, the solution error indicates
that all models are comparable for reasonably sized perturbations. A more detailed
comparison between the models is made in Section 5.4.3.

The result of this test is of interest, since it demonstrates that the correct coding
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Figure 5.5: Plot of solution error Eg against perturbation size after 500 timesteps.
The solid line is for the tangent linear model, the dashed line for PFM1 and the
dotted line for PFM2.
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of a perturbation forecast model cannot be proved as easily as that of a tangent
linear model. The analysis of Section 3.1.2 and the experimental evidence from
these experiments show that the relative error will tend to a non-zero constant.
However, it is not possible to tell from the value of that constant the significance of
the difference between the perturbation forecast model and a tangent linear model.
In Section 5.6 we test how well the method for testing a perturbation forecast model
which we proposed in Section 3.3 can be used to assess this difference. First however
we examine further the performance of the linear models with various numerical

experiments.

5.4.3 Experiments with linear models

To begin we take the experiment of Section 5.4.1 as our nonlinear model run to
produce the basic state, but we now use a time step of At = 9.2 x 1073s. This
is double the step we used previously, but we have found that the scheme remains
stable with no noticeable loss in accuracy compared to runs with the smaller time

step. The initial perturbation is taken to be

Sug = 0.0lms™!,

Spg = —0.2m*s7%

For each of the linear models we compare the perturbation produced by the lin-
ear model with the difference between the perturbed and unperturbed runs of the
nonlinear model. Figures 5.6, 5.7 and 5.8 show the nonlinear and linear perturba-
tions after 250 time steps (2.3s) for the tangent linear model, PFM1 and PFM2
respectively. In each case the top picture shows the perturbation of v and the bot-
tom picture the perturbation of ¢, with the solid line indicating the nonlinear model
perturbation and the dashed line indicating the perturbation as evolved in the linear

model.
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Figure 5.6: Comparison of nonlinear and linear perturbations for tangent linear
model after 250 time steps. The solid line shows the nonlinear perturbation and the

dashed line the output from the tangent linear model.
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NL & PFM1 perturbations of u for t = 250
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Figure 5.7: Comparison of nonlinear and linear perturbations for the first pertur-
bation forecast model after 250 time steps. The solid line shows the nonlinear
perturbation and the dashed line the output from the first perturbation forecast

model.
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NL & PFMZ2 perturbations of u for t = 250
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Figure 5.8: Comparison of nonlinear and linear perturbations for the second per-
turbation forecast model after 250 time steps. The solid line shows the nonlinear
perturbation and the dashed line the output from the second perturbation forecast

model.
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The first thing we notice from these pictures is that all the linear models seem
to behave in the same way. For each of the models we see two main errors in the
representation of the nonlinear perturbation. The first is that there is an amplitude
error in the stationary solution in the centre of the domain. The second error is a
phase error in the outwardly moving gravity waves. We examine the source of each
of these in turn.

In order to understand the amplitude errors in the stationary solution, we re-
fer back to the solutions derived in Section 5.1.2. There we found that that the

stationary solution of the nonlinear model satisfies
u(z)p(x) = Ky (5.126)

and for this problem we have K, = uggpy. From this we can define a relationship
between the perturbed quantities
(w(x) + du(x))(¢(x) + dp(x)) — u(w)d(x)

= u(x)dd(x) + du(x)p(x) + du(x)do(x). (5.127)

EN(J})

Then using the asymptotic solutions we find that for the nonlinear problem the

analytical value of En(z) asymptotes to a constant value E4, given by
Eff = UO(SQbO + (SUOQbO + (SUO(SQbo. (5128)

We can define a similar quantity for the perturbations from the linear models. In
Section 5.1.3 we found that the perturbation to the stationary solution satisfies two
analytical expressions, given by (5.18) and (5.19). For the problem being described

in this section we find that the constants 6 Ky, d Ky are given by

(S.[(l = UO(SUO + (quo, (5129)
0K, = wugdgg + duodo. (5.130)

Then defining
Er(x) = u(x)dd(x) + du(z)o(x), (5.131)
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we find that for perturbations calculated from the linear problem Ej (x) asymptotes

to a constant value Fj given by

For the initial values used in the experiment of this section we find that Ex = —0.02
and Ef = 0.

For the numerical solutions we calculate Ex and Ej, at the centre of the domain.
We first interpolate u and du to ¢-points and then calculate the average value of Ey

and Ep, over an interval [z,, xp] using the trapezoidal quadrature rule, which gives

By - 7( z Bl + Em)),

(25 — a) i=a+1

In Figure 5.9 we plot the variation over time of Ey calculated from the nonlinear
perturbation and Ej calculated from the tangent linear model over the interval
x € [4.5m, 5.5m], together with their analytical asymptotic values. For each quantity
we plot the absolute value. We see that after approximately 200 time steps both Ey
and E; asymptote to a constant value and that this value matches the analytical
asymptotic value of E4 and Ej respectively. Also shown on this figure by the
dotted line is the quantity Ey calculated using the perturbations from the tangent
linear model. The asymptotic value of this quantity does not equal that of the the
nonlinear model, but has a larger value. Thus it appears that above the orography
the linear model asymptotes to a solution consistent with the linear equations and
this explains the difference between the linear and nonlinear solutions in the centre
of the domain. Graphs of E;, and Ey from both perturbation forecast models (not
shown) are very similar to those of the tangent linear model.

In order to understand the phase differences seen in perturbations to the outgoing

gravity waves, we first wish to understand whether this difference is mainly caused
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Figure 5.9: Variation of linear and nonlinear perturbations to u¢ in the centre of
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by the perturbation to u or the perturbation to ¢. We therefore run again the
previous experiment setting each of the initial perturbations to zero in turn. Thus

for the first experiment we use
Sug = 0.01ms™',  §py = 0m?s™2, (5.134)

and for the second

Sug = 0ms™,  §pg = —0.2m*s™2. (5.135)

Figure 5.10 shows the nonlinear and tangent linear perturbations from the first of
these after 250 time steps, and Figure 5.11 shows the same thing for the second of
these experiments. We see that when the d¢ perturbation is zero, there is no phase
error in the waves in the u field. However, if only the initial du perturbation is zero,
then the phase error does appear in the subsequent waves.

We can understand this result by looking again at the analytical phase speed
(5.10) for the constant coeflicient linear system. Although this was calculated as-
suming the absence of orography, most of the gravity wave movement is away from
the orography in this problem and so we do not expect orographic effects to have a
large effect on the wave speed. A perturbation to (5.10) tells us that the difference

in phase speed between the two nonlinear model runs is given by

—%} =oUp £ <'\/ Py + D) — \/(ITO> . (5.136)

We see then that the difference in phase speed is linear in dUy and nonlinear in
0®y. Thus when the perturbation to ¢ is zero, we would expect the linear model to
represent well the phase difference between the two nonlinear model runs and this
is reflected in Figure 5.10. However, when d¢ is non-zero, then we would expect a
difference between the linear and nonlinear models. The same result is also seen by
consideration of the numerical dispersion relation for the constant-coefficient linear
system (5.113). It is clear that a perturbation in U, will lead to a linear perturbation
to the phase, while a perturbation to ®q leads to a nonlinear perturbation of the

phase.
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Figure 5.10: Comparison of nonlinear and linear perturbations for tangent linear
model after 250 time steps, for the experiment with d¢g = 0. The solid line shows
the nonlinear perturbation and the dashed line the output from the tangent linear

model.
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Figure 5.11: Comparison of nonlinear and linear perturbations for tangent linear
model after 250 time steps, for the experiment with dug = 0. The solid line shows
the nonlinear perturbation and the dashed line the output from the tangent linear

model.
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For each of these last two cases we still find an amplitude error in the centre
of the domain. The reason for this is that when one of the perturbations is zero,
then the asymptotic values E4 and E# are equal. In the nonlinear model the
nonlinear perturbation to u¢ asymptotes to this expected value. In the linear model
it is the linear perturbation to u¢ which asymptotes to this quantity, and so an
error is present according to the asymptotic value of the nonlinear term du(x)dp(x)
calculated from the linear model. For the above experiment this quantity remains
small for the case in which d¢q is zero, which is why the amplitude error is less

noticeable in Figure 5.10.

5.4.4 Behaviour for large Courant number

The experiments in the previous section were restricted to a small Courant number
in order to avoid conditions in which a jump forms in the solution. We would like
to check that the linear models are also suitable for values of the linearization state
Courant number uAt¢/Ax greater than unity and for values of the perturbed Courant
number duAt/Ax greater than unity. In particular we wish to ensure that the
second version of the perturbation forecast model PFM2, described in Section 5.2.4,
is stable for such values. In order to run with higher Courant numbers we introduce
another experiment taken from [24]. For this experiment there is no orography,
that is H(x) = 0 everywhere. We have a total of 1000 grid points, separated by a
grid length Az = 1000m, and we run for a total time of 10,000s. The reference
geopotential for the iterative procedure (5.52) is chosen to be ®,.; = 980m?s™2. We
set the time-weightings ay = ay = 0.7 for all the models and a3 = a4 = 0.7 for the
first perturbation forecast model. These values for a; were chosen by experiment;

values lower than this produced too many trailing waves in the nonlinear model
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solution. The initial conditions are
u(z,0) = 10ms™,

2
é(2,0) = 1000m2s~2 + 100 exp l— <$580§0> ] m2s2.

Then the solution of the ¢ field is two gravity waves which move in opposite direc-
tions. This is illustrated by Figure 5.12 which shows the initial and final fields of ¢
from a nonlinear model run using a time step At = 1. The average velocity of the
waves in the numerical solution, calculated from the distance moved by each wave in
the integration period, is —22.7ms™! for the left-moving wave and 42.7ms™! for the
right-moving wave. These values verify well with the analytical values of —21.6ms™!
and 41.6ms™! calculated from the phase speed (5.10) of the constant-coefficient ho-
mogeneous system given by (5.5) and (5.6). However, the amplitude of the waves
is damped, with an amplitude of 1042m?s~? compared with the analytical solution
of 1050m?s™%. This damping can be reduced by using a smaller time-weighting co-
efficient, but at the expense of introducing some trailing waves. For the purpose of
comparing the linear models we prefer the solution to be as clean as possible, and
so we choose to remain with the damped solution.

We now look at two experiments with the linear models. The above experiment

is taken as the linearization state and we obtain the perturbed state by adding

perturbations

Su(x,0) = 3ms™,

2
§¢(x,0) = —10exp [— (2803()) ] m?s™2.

For the two experiments we run for a total of 10,000s. The first experiment uses

a time step of 250s and the second a time step of 500s. For the first of these the
linearization state Courant number uAt/Az is equal to 2.5, whereas the perturbed
Courant number duAt/Ax is still less than one. For the second experiment the lin-

earization state Courant number is equal to 5, while the perturbed Courant number
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Figure 5.12: ¢ field for initial time and after 10,000s from a nonlinear model run

with At = 1.
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has a value of 1.5. The effect of increasing the time step for the linearization state
run is to further dampen and disperse the outward moving gravity waves. This can
be seen from Figure 5.13, which shows the final field of ¢ from the nonlinear model
for each of these two experiments. The comparison of the nonlinear and linear per-
turbations of ¢ is shown in Figure 5.14 for the run with At = 250s and in Figure
5.15 for the run with A¢ = 500s, with the two experiments plotted on a different
scale. For each figure we have a comparison with the tangent linear model and both
versions of the perturbation forecast model. We find that as for the experiments in
Section 5.4.3 the linear model introduces a phase error and an amplitude error with
respect to the nonlinear model solution. As the time step increases the perturbations
are damped in both the linear and nonlinear models. For a time step of 250s we
notice no significant difference between the three linear models. However when the
time step is increased to 500s so that the perturbed Courant number is greater than
one, we do notice a slight degradation for the second perturbation forecast model in
the representation of the right-moving wave. Thus it seems that the discretization
of the §udu/dx and Sud(Inp)/dx terms in (5.94) and (5.95), which we have shown
to be only first order, may lead to errors when the perturbation Courant number
is greater than one. However a run of this experiment over a longer time period

showed no evidence of the error becoming unstable with time.

5.5 Linearization state of PFM

Within both versions of the perturbation forecast model we find a dependence on the
linearization state at both the departure point at time level n and the arrival point
at time level n+ 1. In this section we consider whether it is possible to approximate
these by using the linearization state at one time level only. We consider first an
approximation of the linearization state which uses the value at the correct spatial

point, but uses values at time level n + % In Section 4.5 we found that for the ODE
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Figure 5.13: ¢ field at final time from nonlinear model runs with At = 250s and
At = 500s.
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Figure 5.14: Comparison of final nonlinear ¢ perturbation with the corresponding
perturbation from each of the linear models after 10,000s, for At = 250s. The top
figure is for the tangent linear model, the centre figure for the first perturbation

forecast model and the bottom figure for the second perturbation forecast model.
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problem of Chapter 4 this approximation still had the same second order accuracy

as the original scheme. Thus for the first perturbation forecast model we replace

(5.78) and (5.79) by

n+1

1 bl n 0
E <5ul+% — 5udu> + (1 — al)a—x

" A
St

1
5

o (ou\"tE o [OU\"TE
+ (1 —a3)(0u)y, R —|—oz3(5u)l.+% P =0, (5.137)

du l-|—%
1 /gt S dsu " 8w |
m( - fﬁ) +H—a)G| +egs
b 7 Qg d¢ :
i [O(lnd)\ "
‘I’ (1 — 064) ((SU) i <6T> “
x| +1 1 b n+1§
+ oo (Ou)| (@) = 0. (5.138)
2 X .

A calculation of the truncation error around the mid-point of the trajectory shows
that for the momentum equation the truncation error is exactly as for the unap-
proximated version of the model and is given by (5.119). However for the mass

continuity equation we now get a truncation error

TP1:—£>(S
re ()

At
+ (202 — 1)7 (dug + ﬂ(Sum);’;
At

+ (204 — 1)7((5u(1n ?)2 )i + u(Su(ln qg)x)x);’:n + O(A#?).  (5.139)

We see that for (¢7!); # 0 the first term of the truncation error is of order zero
and so the scheme (5.138) is not a consistent approximation to the continuous linear
equation (5.17). Further analysis shows that this zero order term arises from the

approximation of the linearization state within the discretization of the advective

% (%b) . (5.140)
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An alternative method of approximating the linearization state at one time level
only would be to average the time level n and time level n + 1 values. However,
since this averaging is an O(At?) approximation to the value at the middle of the
time step, the zero order truncation error term appears in the same way.

We illustrate this error by repeating the first experiment of Section 5.4.3 for the
first perturbation forecast model, which previously gave the result shown in Figure
5.7. We first rerun the experiment using a linearization state defined by the average
of the time level n and time level n 4+ 1 values at the correct spatial point. The
output at the end of the run is shown in Figure 5.16. It is clear that for both the u
and ¢ fields the linear model solution is completely incorrect. If however we replace
the linearization state in the d¢/¢ terms of (5.138) with the correct values, but use
the averaged values of the linearization state elsewhere in (5.137) and (5.138), then
such a large error does not occur. The output from this experiment is shown in
Figure 5.17, which is hard to distinguish from Figure 5.7.

It is possible to extend this analysis to show that a zero order term will oc-
cur with such an approximation to the linearization state wherever a time-varying
linearization state is included within an advective term of the perturbation fore-
cast model. In general this will be the case if the nonlinear model contains the
semi-Lagrangian advection of a quantity which is a nonlinear function of the model
variables. For example, in the nonlinear model of this chapter we advect In ¢ and
so this leads to a 1/¢ term in the perturbation forecast model advection. If we had
chosen to discretize the alternative form of the mass continuity equation (5.2), which
advects ¢ itself, then we would not have had a problem with consistency even with
the time-averaged linearization state.

For the three-dimensional model being developed at the Met Office, which we
discuss in Chapter 6, the problem of the zero-order term does not arise since all
the quantities being advected are linear in the model variables. However, treating

the logarithmic form of the continuity equation with a semi-Lagrangian scheme is
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Figure 5.16: Comparison of nonlinear and linear perturbations for the first pertur-
bation forecast model after 250 time steps, with the linearization state averaged to
the middle of the time step. The solid line shows the nonlinear perturbation and

the dashed line the output from the perturbation forecast model.
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Figure 5.17: Comparison of nonlinear and linear perturbations for the first pertur-
bation forecast model after 250 time steps, with the linearization state averaged to
the middle of the time step in all parts of the scheme except the advection of §¢/ .
The solid line shows the nonlinear perturbation and the dashed line the output from

the perturbation forecast model.
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not uncommon. For example the operational models of the European Centre for
Medium-range Weather Forecasting [84], [37], and of the Canadian Meteorologi-
cal Centre [16], both use the semi-Lagrangian advection of a logarithmic quantity
within the discretization of the continuity equation. The development of a pertur-
bation forecast version for these models would therefore require great care to ensure
consistency of the underlying scheme.

Finally, if we choose to approximate the linearization state outside of the advec-
tion terms by using the time level n values in place of the time level n + 1 values in

(5.78) and (5.79), then we obtain the truncation errors

= (200 - )5 (bt 50,

— %(&th)?fn +O0(A) (5.141)

for the momentum equation and
At
Tfl = (209 — 1)7 (duge + 125um);’:;

+ (200 - )5 Fuin ). + a(ullnd).). ),
At oy 5
7(5u(1n O)at)ar + O(AL) (5.142)
for the mass continuity equation. We see that the resulting scheme is only first
order accurate in time for all choices of the time-weighting parameters «;. This
agrees with the results for the ordinary differential problem in Section 4.5. For that

problem we also found that approximating the time level n + 1 linearization state

with time level n values reduced the scheme from second to first order in time.

5.6 Estimating the tangent linear model error

In Section 5.4.2 we illustrated the difficulty of verifying a perturbation forecast

model, since although it may be comparable with a tangent linear model for finite
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perturbations, the errors do not tend to zero as a perturbation becomes infinitesi-
mally small. In the experiments so far in this chapter we have been able to verify
the output of the perturbation forecast models by comparison with the tangent lin-
ear model. For the three-dimensional models being used at the Met Office we do
not have this opportunity, since we only have the perturbation forecast model and
do not have the tangent linear of the discrete nonlinear model. As a proposal for
overcoming this problem we developed in Section 3.3 formulae for estimating the
linearization error and solution error we would obtain if we were to use a tangent
linear model. Since for the shallow water model of this chapter we have the true
tangent linear available, we are able to verify the usefulness of these formulae.

In order to validate the formulae developed in Section 3.3 we run again the first
experiment from Section 5.4.3. The nonlinear model is then run perturbed by a
perturbation (ydug, yd¢y), where we use values of v = 0.5,0.1,0.02,0.01. For each
value of v we can calculate the estimated linearization error using (3.32) and the
estimated solution error using (3.35). These can then be compared with the actual
linearization error and solution error of the tangent linear model initialized with the
perturbation (dug, d¢y).

We first consider the evolution of the solution error with time for each value of
~v. We can consider the contributions to the solution error from the u and ¢ fields
separately. We choose to plot the values for uw rather than ¢ since we find that the
values of the solution error are higher and so this will provide a better test of the
accuracy of our theory. In Figure 5.18 we plot the true and estimated solution error
of the perturbation to the u field. For each of the individual figures the true solution
error of the tangent linear model is shown by the solid line and the solution error
Es estimated using (3.35) is shown by the dashed line. We see that for a value of
~ = 0.5 the estimate is only good for approximately the first 70 time steps. However
as the value of v is reduced the estimate Eg provides a better approximation to

the true solution error throughout the period of the run. Hence we see that for a
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suitably chosen value of the parameter v the estimated solution error Es provides a
good estimate to the actual solution error obtained using a tangent linear model.

One problem we have is how to choose a suitable value of v in practice when we
do not have the true error to compare with. The value needs to be small enough to
provide a good estimate, but still large enough to avoid too much rounding error in
the calculation of £". We see from Figure 5.18 that as the value of « is reduced, the
estimates of the solution error converge to the true value. Thus by calculating the
estimated solution error for different values of v it is possible to see at what value
the estimates begin to converge. The largest value of v which appears to match the
converged solution can then be taken as the most suitable value of the parameter
with which to calculate the error in the fields. For example in this experiment we
would take v = 0.02. This is the method which we will use in Chapter 6 to obtain
a suitable value of 4 for our three-dimensional model.

Thus we have illustrated that the estimated solution error Es is a good approx-
imation to the true solution error and also provides a method of choosing the value
of 7. We now look at the estimate of the linearization error itself. In Figure 5.19 we
plot the true linearization error for the u field after 250s and the estimated lineariza-
tion error £" for values of v = 0.1,0.02,0.01. We see that qualitatively £" is a good
estimate of the true linearization error. In Figure 5.20 we plot the differences of the
estimated error from the true linearization error for each of these values of v. We
see that using a value of v = 0.02 compared with v = 0.1 introduces approximately
a five-fold decrease in the maximum difference. The values of the maxima for these
values of v are 3.43 x 10™* and 6.78 x 107° respectively. Such a difference would be
expected, since we see from (3.31) and (3.33) that

1 p P p 0351
E =& ==y > > S ot g e fo: UOULOUSOUL + oot (5.143)
e

which is proportional to 4. The size of this difference should be compared to the

maximum value of the linearization error itself, which is 4.5 x 1072. We find that

142



121 T 1217
/
1071 a 101
/
- / .
° 8r / ] © 8r
o / o
/
s 6F y ] s 6r
5 7 5
g 4 | 5 4
Vi
/
2 1 27
O e b b b b O e b b b e e
O 50 100 150 200 O 50 100 150 200
Time step Time step
gamma = 0.02 gamma = (.01
52 B B A 1o T T T T
1071 ] 101 1
5 8} : S 8f :
a i
5 o | 5 o |
5 E
S 4 | S 4 f
2 1 27 1
O coa b b b b O P N I S R R
O 50 100 150 200 O 50 100 150 200
Time step Time step

Figure 5.18: Comparison of the evolution of the estimated solution error Eg with

that of the true solution error of the tangent linear model Eg for values of v =
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shows the true value. The errors are calculated for the perturbations to the u field.
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using the estimate with v = 0.02 introduces an error of approximately 1.5% in
the calculation of the linearization error. Thus the estimate with this value of the
parameter is also quantitatively very good. For the stationary solution in the centre
of the domain the true linearization error is 1.3 x 1072 and the estimate differs from
this by approximately 0.25%. A further reduction in v by a factor of 2 to 0.01
reduces the maximum difference by another factor of 2 to 3.4 x 107°. However,
this is at the expense of introducing some noise due to rounding error, as can be
seen from the third difference plot of Figure 5.20. Thus it seems that the values
of v = 0.02, which from the plots of solution error was conjectured to be the most
suitable value of the parameter, does indeed provide a good compromise between
accuracy of the formulae and rounding error.

The experiments of this section have shown that the formulae we derived in
Section 3.3 can provide an accurate estimate of the linearization error and solution
error of a tangent linear model using only the nonlinear model. This estimate is
useful both qualitatively and quantitatively. Having demonstrated this numerically
we can have some confidence in the use of these estimates in the three-dimensional
model of Chapter 6, for which we do not have an exact tangent linear model. The
numerical experiments have also provided a method of choosing the parameter v such
that we obtain a good balance between accuracy and the introduction of spurious

noise.

5.7 Summary

In this chapter we have investigated the semi-continuous approach for producing a
linear model in the context of a partial differential equation problem, using numerical
schemes similar to those used in weather forecasting models. Beginning with a
one-dimensional shallow water system we developed two versions of a perturbation

forecast model and compared them to the tangent linear model derived by the
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Figure 5.19: Linearization error for u field at the end oftf the run. The top figure
shows the true linearization error and the other figures show the estimated lineariza-

tion error using values of v = 0.1,0.02,0.01.
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discrete approach. We have shown that the semi-continuous method can be used to
design a linear model which is as equally valid as the tangent linear model for finite
perturbations. However, this chapter has also illustrated several problems which
can occur when using this approach and which must be taken into account when it
is applied to a full weather forecasting model.

Firstly, it is clear that when we are treating a system of partial differential equa-
tions, there is some extra degree of freedom in deriving a perturbation forecast model
which is not present in the ordinary differential equation problem. The linearization
of the analytical equations can produce terms in the linear equations which have no
obvious counterpart in the nonlinear model and so no obvious discretization. This
was seen in the shallow water model of this chapter. The linearization of the an-
alytical equations produced terms containing the perturbation wind multiplied by
the gradient of the linearization state field. In the two versions of the perturbation
forecast model described in Sections 5.2.3 and 5.2.4 we proposed two different ways
of discretizing this term. Our analysis showed that one of these models was sec-
ond order accurate in time for a centred time averaging, while the other remained
first order for all choices of the time weightings. The tangent linear model was also
second order for a centred time averaging. Thus we find that the development of
a perturbation forecast model for a partial differential equation problem introduces
the possibility of choosing a numerical scheme which is detrimental to the accuracy
of the model. This illustrates the necessity of applying the semi-continuous method
with great care and with a good understanding of the underlying numerical schemes.

We have also shown that the perturbation forecast model requires the time level
of the linearization state to be chosen carefully. In the ordinary differential equation
problem of Chapter 4 taking the linearization state at the centre of the time step
was sufficient to retain second order accuracy, while using the linearization state at
the start of the time step reduced the accuracy to first order. This was also true for

the shallow water model of this chapter, provided that the correct linearization state
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was used within the semi-Lagrangian advection scheme. However, if approximations
were made to the linearization state within the advection scheme, then the resulting
perturbation forecast model was no longer consistent. This reinforces the conclusion
of Chapter 4 that any approximations in the linearization state must be considered
in the context of the whole scheme.

Finally we have illustrated that a perturbation forecast model is more difficult to
test than a tangent linear model since it is not correct in the sense of Definition 3.2
and so the relative error or solution error do not reduce to zero as the perturbation
size is reduced. This provides a problem for testing our three-dimensional weather
forecasting model, since we do not have the tangent linear model solution to compare
with. To overcome this we developed in Chapter 3 a method of estimating the
linearization error and solution error that a tangent linear model would have, by
using only the nonlinear model. In this chapter we have been able to demonstrate
that this method gives useful estimates and we have also introduced a practical
method of specifying a value for the variable parameter v which the method requires.
Thus we can be more confident in the use of this estimate to assess the accuracy of

our three-dimensional perturbation forecast model in Chapter 6.
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Chapter 6

Application to a

Three-Dimensional Model

In Chapters 4 and 5 we have illustrated the viability of developing a linear model
by the semi-continuous method. We now apply these ideas to a three-dimensional
weather forecasting model. The model we use is the adiabatic version of the new
integration scheme being developed at the Met Office for future operational use. The
linearization of this model and the adjoint of the linear model are needed as part
of the development of an incremental four-dimensional variational data assimilation
scheme. However, as we discuss in Section 6.1.2, certain properties of the numerical
scheme in the nonlinear model would cause difficulties if we tried to linearize the
discrete scheme directly. We have therefore chosen to develop the linear model
by applying the semi-continuous method and discretizing the linearized analytical
equations. In following this method some of the choices for discretization in the
linear model are then constrained by the need to be able to derive the adjoint
model easily. In this chapter the scheme for the linear model is set out in detail
and then numerical experiments are used to determine the validity of the model for
forecasting the evolution of a perturbation. Since it is not straightforward to derive

a linearization of the discrete scheme to compare with, we must use other measures
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to assess the validity of the model. These will be outlined as we discuss specific

numerical results in Section 6.3.

6.1 The nonlinear model

6.1.1 The continuous equations

The nonlinear model is based on the fully compressible Navier-Stokes equations on
a sphere. The equations are written in spherical coordinates (r, A, ¢), with a height
based vertical coordinate, where r defines the distance from the centre of the Earth.
The horizontal coordinates A, ¢ are the longitudinal and latitudinal directions on
a regular latitude-longitude grid. The vertical levels in the numerical model are
defined by a coordinate n, with the levels following the terrain near the surface
of the model and gradually becoming flat higher in the atmosphere. We assume
that the coordinate 7 is a smooth, differentiable function of r, with dn/dr > 0. The
coordinate is defined such that » = 0 on the model level following the Earth’s surface
and 17 = 1 on the top model level. Then derivatives along constant r surfaces can be

written in terms of derivatives along constant n surfaces using the transformation

9] _ 9 9
asr_as n@r

or

% (6.1)

b
A7¢7t
where s = A, ¢ or t. This relationship also allows us to define a generalized vertical
velocity 1 with respect to the coordinate system. Noting that the material derivative

in height coordinates is given by

D:Q_|_ u g+gg+g (62)
Dt — 0t| ~ rcos¢ OA| 1 09|, “or '

we define a vertical velocity 77 = Dn/Dt. Then we find that 7 is related to w by

means of the formula
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The material derivative in the n coordinate system becomes

D 0 u 0

v .0
Dt atn—l_rcosqbﬁn—l_;@_qb‘n—l_n@_n'

(6.4)

The adiabatic form of the continuous model consists of the momentum equations
in three dimensions, the mass continuity equation, the thermodynamic equation and
the equation of state. These equations then take the following form in the model

coordinates, where the notation is set out in Table 6.1, adapted from Table 1 of [18]:

% — 20 sin év + 20 cos duw — “”ifmqb n # + rzz; (Z—lg . %—?%) — 0, (6.5)
% + 20 sin du + uztfn¢ + % % (Z_I; - %%) =0, (6.6)
%—QQCOSQML—M—FQ—F%&%—I::(L (6.7)

% + pV.y, =0, (6.8)

g—f = 0, (6.9)

sty — P (6.10)

KCp

The symbol u, in (6.8) denotes the velocity vector (u,v,n).

The terms in (6.5), (6.6) and (6.7) involving the Earth’s rotation rate ) arise
because the coordinate system we are using is rotating with the Earth and so 1s
a noninertial reference frame. These terms are known as the Coriolis terms. The
other terms arising in these equations from the choice of coordinate system are the
terms proportional to a quadratic function of the velocity components divided by
r. We refer to these terms as the metric terms. They come from the fact that we
use the spherical coordinates A, ¢ in the horizontal direction, with unit vectors 1,
directed in an eastward and northward direction respectively. Thus, with respect to
a cartesian coordinate system, these vectors are a function of position on the Earth

and this is accounted for by these metric terms in the equations.
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(r,A,#) Spherical polar coordinates relative to centre of Earth

n Terrain-following vertical coordinate
u,v,w  Velocity components

n Generalized vertical velocity

D, Po Pressure and reference value of pressure
IT Exner pressure <p%>K

Cp Specific heat of dry air at constant pressure
K Gas constant divided by ¢,

p Density scaled by r?

0 Potential temperature

Q Earth’s rotation rate

f 2Q2sin ¢ (Coriolis parameter)

g Gravitational constant

Table 6.1: Symbols used in equations. Table adapted from Table 1 of [18].
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6.1.2 The discrete nonlinear model

We present here a brief outline of the numerical scheme used in the nonlinear model.
Fuller details of the implementation and justification for some of the choices made
can be found in [18] and [19]. The model is implemented on a staggered grid, using
an Arakawa C staggering in the horizontal and a Charney-Phillips staggering in the
vertical. The scheme itself combines a semi-Lagrangian treatment of advection with
a semi-implicit treatment of terms responsible for sound and gravity waves. The

procedure used is a predictor-corrector method and consists of the following steps:

1. Predict initial estimates of updates to the wind components, density and po-

tential temperature.

2. Use these predicted values and the equation of state to form an equation for the
update to the pressure variable. The resulting equation is a three-dimensional

elliptic equation with variable coefficients.
3. Solve this elliptic equation and update the pressure variable.

4. Use the updated value of pressure to correct the other variables.

The initial estimates are obtained by means of the two-time-level semi-Lagrangian
scheme of Bates et al. [8], using information from the current time level. The de-
parture points are determined from the algorithm of Ritchie and Beaudoin [73] with
linear interpolation. This is the first point where we would encounter difficulties if
we were to attempt a linearization of the discrete nonlinear scheme. We have seen
from the studies reviewed in Section 3.2 and from the shallow water model in Chap-
ter 5 that this part of the scheme includes an iterative process and non-differentiable
functions, both of which which must be taken account of in the linearization. Al-
though it is possible to treat such functions, as was illustrated in the tangent linear
model of Section 5.2.2, the approach of discretizing the continuous linear equations

avoids such complications.
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Within the three-dimensional nonlinear model there are various predictor-corrector
steps before the formation of the elliptic equation. This is to enable the nonlinear
terms to be calculated as accurately as possible. However, if we were to linearize
this discrete scheme we would require values of the linearization state from each
predictor-corrector step either to be stored from the nonlinear model base state run
or to be recalculated during each run of the linear model. We see in the scheme
developed for the perturbation forecast model in Section 6.2 that by using the semi-
continuous approach we avoid the need for these intermediate values.

Once the initial estimates of the corrections have been calculated, an elliptic
equation for the pressure correction is formulated. In the nonlinear model this is
done by first linearizing the equation of state (6.10). We define the time tendencies
of p, 8 and II in one time step by

r— ntl n g =gt _ g, ' =ma-tt —m-, (6.11)

where n and n + 1 indicate the time level. Then linearizing the equation of state in
terms of these variables we obtain

2
kI10p" + kpOTl' + kpllf' = —kpllh + Q, (6.12)

Cp
where the full model variables are defined at time level n. It is this equation which
we solve within the numerical model. We substitute appropriate predicted quantities
into (6.12) to obtain an elliptic equation for the pressure correction II'. This step
ensures that the elliptic equation obtained is linear, but at the expense of accuracy.
An alternative strategy is to write the continuity equation in logarithmic form and
retain the weakly nonlinear elliptic equation which results. This is the strategy
adopted by the Canadian Meteorological Centre [16]. The presently used method
leads to a linear Helmholtz equation, which is solved using a generalized conjugate
residual algorithm as described in [78]. Preconditioning of the problem is performed

using an alternating direction implicit (ADI) method, as proposed in [77].
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6.2 The perturbation forecast model

6.2.1 The continuous equations

We represent the state vector of the continuous nonlinear model by
Xe = (u,v,w, 11, p, 0). (6.13)

The continuous equations for the perturbation forecast model are obtained by first
setting
Xe = Xe + 0Xe, (6.14)

where X. is a spatially and temporally varying background state satisfying the non-

linear equations and dx. is the perturbation vector
0% = (du, dv, dw, 811, 6p, 66). (6.15)

We then substitute into the nonlinear equations and drop products of perturbations
in the usual way to obtain the linearized set of equations.

However, before carrying out this procedure we can use our physical insight to
simplify the equation set that we wish to linearize. Firstly we omit in (6.5) and
(6.6) the metric and Coriolis terms in which w appears and in the vertical velocity
equation we omit the metric and Coriolis terms involving w and v. This is based
on the commonly used “traditional approximation” [22]. However, whereas this
approximation is usually preceded by assuming that 1/r may be replaced by 1/a,
where a is the constant radius of the Earth (the shallow atmosphere approximation)
[58], we retain a full three-dimensional height field in the equations. On the basis
of a simple scale analysis we also make the extra approximation of ignoring the
advection of w, treating the time derivative as a partial derivative. After all of these

approximations the full set of momentum equations which we linearize is

Du uvtang cpf (61_[ o1l 67“) _0

— — 2Qsin ¢v — TN

6.16
Dt r + rcosg ( )
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Dv u’tand oIl oIl or
Jw oIl
5 +9+c,0— o = 0. (6.18)

Having made these approximations we perform the linearization procedure. For
the linearization of the approximate momentum equations (6.16), (6.17) and (6.18)

we obtain the linearized equations

Déu LT — 20 sin b duv tan ¢ B udv tan ¢
Dt r r

c,60 (OI  OTl Or ¢, (96Tl 9smary
( ~ o X ooy "0 (619

T Cos ¢ T Cos ¢

lz)(stv +du. Vo + 20 sin pdu + 7212(% tan ¢
E
cpof (OIL  OIl Or 9oIl QoI or o, (6.20)
r \Jd¢ Or 0¢ r aqb ar aqb
where du = (du, dv, o).
ddw o1l _0611

For the linearization of the continuity equation (6.8) and the thermodynamic equa-

tion (6.9) we obtain

ddp 1 1 0 ((dpu+ pdu) Or 1 0 ((dpv+ pdv)Or
ot Tarjoy { ( + cos

cos ¢ OA r an cos ¢ 9o r 677
0 - .. 0r
o ((5,077 + ,0577)6—77” =0 (6.22)
and
Dé8 _
ﬁ —|—511V(9 = 0. (623)

In order to obtain the linearization of the equation of state, we linearize the form
that is actually used in the nonlinear model, given by (6.12). We assume that the

state about which we are linearizing satisfies the full equation of state, so that the
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right hand side of (6.12) is zero. Then ignoring products of perturbations with the

time increments p’, II" and ¢, we obtain the linearized equation
wIB(Sp" T — 8p") + (k — 1)pf(STI™HT — STI7) + wp(66™T — 56") = 0. (6.24)

The six equations (6.19)-(6.24) form the basis of the perturbation forecast model.

The symbol V is the three-dimensional gradient operator, defined on a sphere as

1 919 a\"
V: (rcosqbﬁ’;a_qb’a_n) . (625)

At this point it is also useful to note extra diagnostic relationships arising from

a linearization of the corresponding relationships in the nonlinear model. A lin-

earization of the definition of Exner pressure gives a relationship between dp and

oIl: B
511 = FoP. (6.26)

p
We also have the linearization of the definition of 7 (6.3),

1 du  Or 51}&

o = Jr/on ow = rcos¢ 0\ 1 00

(6.27)

Once we have defined this set of equations, we need to decide on an appropriate
numerical scheme with which to solve them. We try to follow as closely as possible
the scheme used in the nonlinear model, but some changes must be made to accom-
modate extra terms which arise from the linearization and we also find some other
approximations necessary. In the following sections we look at the implementation

of this scheme.

6.2.2 General formulation of the numerical scheme

Before looking at the detailed discretization of the perturbation forecast model, it is

helpful to write the scheme in its matrix formulation, to set out the different steps
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of the solution procedure more clearly. We first define a general state of the discrete

perturbation forecast model
0x = (du, dv, dw, 611, 6p, 66), (6.28)

where the perturbation fields are now understood to be vectors of values over the

model grid points. We let
ox' = ox"t — 6x". (6.29)

Then the scheme can be written in the simple form
ox"t! = §x" + M'Pox", (6.30)

where P and M are matrices denoting the predictor and corrector parts of the
scheme.

We note that the variable 47 is not included within the vector dx, but is treated
as a diagnostic quantity calculated at the start of each time step. The pressure
variable is taken to be JII, from which we can calculate dp using (6.26).

The first step of the solution procedure is to calculate the application of the
matrix P, which we denote

8% = Pox". (6.31)

This corresponds to the predictor step in the scheme. We must then invert the
matrix M to complete the solution of (6.30). In practice we have the matrix in the

operator form

Méx' = 6%. (6.32)

This system is reduced analytically to a single equation for 6II', of the form
LOII' = RHS, (6.33)

where £ is an elliptic operator, which can then be solved using a generalized con-

jugate residual (GCR) method. The value of §II' is then substituted into (6.32) to
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provide the other components of dx’ and the updated values dx"*! are calculated
using

ox"t = §x" + 6% (6.34)

For the model being developed here it is preferable to approximate the matrix
M when forming the elliptic equation for §II', to avoid coupling the horizontal
momentum equations with the thermodynamic equation. The details of this are
explained in Section 6.2.5. For the moment we just note how the matrix notation
is adapted in this case. We write the approximation to M as M;j. In order to form

the elliptic equation we replace (6.32) by

M;dx’' = x. (6.35)
This can be rearranged to provide a linear equation of the form

Lo = RHS, (6.36)

which can be solved for 5ﬁ’, again using a GCR method. The increment to the
perturbation Exner pressure field is then found by setting SII' = SII'. The increments
to the other fields can be calculated using either the approximate matrix equation
(6.35) or the original equation (6.32). Although using the original equation would
be more accurate, the present version of the model uses the approximate equation
for this step since it makes the adjoint model easier to derive. However initial tests
have shown little difference between the solutions. Once the increments have been

calculated the final update of the perturbations is performed using (6.34).

6.2.3 Outline of the numerical scheme

The aim of the numerical scheme in the perturbation forecast model is to discretize
the equations of Section 6.2.1 while following as closely as possible the nonlinear

model. The scheme is implemented on the same horizontal and vertical grids and
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follows a very similar semi-implicit semi-Lagrangian solution procedure. In this
section we set out the semi-discretized form of the equations to indicate how the
time discretization is implemented. A more complete description of the scheme is
then given in Section 6.2.5. First it is necessary to introduce some notation for the

representation of the finite difference equations.

Notation

We define finite difference operators for the horizontal and vertical grids. For the
horizontal operators we let X();, ¢;) be a general point on the horizontal grid, where
7,7 are the indices in the A and ¢ directions respectively and the vertical level is
unspecified for the purpose of the definitions. For the vertical operators we consider
a variable Z = Z(r; ;1) for operators involving r and Z = Z(ny) for operators
involving n, where 1, j represent the indices in the A and ¢ directions and % is the
vertical level. We then have

e Horizontal averaging operators

X0ud) = 5 [XOus6) + X005 (6.37)
X007 = 3 [X0ndy0)+ X006, (6.35)

e Horizontal differencing operators

X(Aiypr05) = XAy, 95)

HX (i, ¢5) = y) 7 (6.39)
X (hty) = ot STy (6.40)
XM b)) = X()‘i+17¢j)2;;(()\i_l’¢j)7 (6.41)
N
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e Vertical averaging operators

(ri,j,kq—% - Ti,j,k)Z(ri,j,kJrg) + (rijk — ri,j,k—lg)Z(ri,j,k—%)
Z(rijx) =

, (6.43)

Tigktd = Tije-1

Merl — M) Z(Mpar) + (e — M) Z (M1
g ey =W Z(0y) = ) 20y o
Mt s — -1

e Vertical differencing operators

Z TZ» . 1) — Z TZ» s L
hZ(rije) = (r’]’kh) r( o 2), (6.45)
igk+s T Tigk=1
0 Z(riyy) = i) = Lrijic) (6.46)
et Tigk+1 — Tijk—1 7 '
Z(UHL) — Z(M—1)
nZ(m) = mj . 2 (6.47)
+3 -3
Z — Z(n—
02 = T2l (6.45)

We note that the vertical averaging operators perform a piecewise constant av-
eraging. This is different from a standard linear averaging and was chosen to ensure
that certain adjoint properties of the continuous equations also hold in the discrete
formulation. However, it is less accurate than a linear interpolation and so will be
replaced by the latter in a future version of the model.

We also introduce the notation for the time-weighting of particular terms. For a

given term dc we define

1

e = (1 —a;)dc + a6t
= (1 —a;)dc] + a;dcy + a;dd, (6.49)
where
§¢ = 5" — 5. (6.50)

The subscript d indicates a value at the departure point and the subscript a a value
at the arrival point. The «; are the time-weighting parameters for the different

terms, with a; € [0.5,1]. The model time step is written At. We also introduce
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the parameter g = fAt, where f = 2Qsin ¢ i1s the Coriolis parameter, and define

weightings
1— Oé5(]_ — Oé5)62
W 6.591
1 1 —I— O{gﬁz b ( )
g
W — 6.52
2 1 —I— 052627 ( )

for a time-weighting parameter . The derivation of the weightings Wi, W, is
explained in Section 6.2.4.

A feature of the grid staggering that we are using in the horizontal and vertical
is that variables are defined at four different sets of points. The variables p, II and
p are defined at the same point on the grid, with the horizontal wind components u
and v staggered from these in the east-west and north-south directions respectively.
We refer to these as p-points, u-points and v-points respectively. The remaining
variables #,w and 7 are defined at the same horizontal positions as p, Il and p, but
on vertical levels staggered from those on which the other variables are held. These
points are referred to as #-points. In the equations which follow we assume that
where no spatial position is indicated, then variables are defined on the appropriate
points for that equation. Thus the horizontal momentum equations are defined on
u- and v- points, the equation of state and continuity equation on p-points and the
vertical momentum equation and thermodynamic equation on é-points. The diag-
nostic relationship for 7 is also defined on #-points. We also assume that variables

are calculated at time level n where not indicated otherwise.

Time discretization

Having defined the notation we wish to use, we now state the time discretization
of equations (6.19) to (6.23). Noting that the chosen grid staggering implies that
u, v and 6 are held at different points on the grid, we introduce the subscripts du,

dv and dt to indicate the departure points associated with each of these grid points
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respectively. We then have

Suvt "
Suttt — Wisul, — Wadl, + At [((mvu)n . <M>

7

¢, 00 (61‘[ anar>3

T Cos ¢ ar O\
_ t3
e, (0011 B 65H& B
T COS qb( oA ar JA =0, (6.:53)

Suut "
SO~ WS + Wadul, + At {(&lvv)n + <M>

7

— — t3
0,00 (O Ol or ol dotiar\ ]
- <a¢ ar 94 + 2 96 " oras) |70 (E3Y

We note that the second term containing tan ¢ from (6.19) and half of the tan ¢

term from (6.20) are absorbed into the departure point calculation, following Bates

et al. [7].
etd
St — Sw"™ + At cp5<9t4aH + cpéa(s—ﬂ =0, (6.55)
ar ar
At [ 1 9 ((Spu+pou)or
5 n+l 5 n i i
P Pt Jr/on Losqb@A( r an
1 J (5,0U—I—,05v )6 s
cos ¢ Jo r 677 o8
a - _—=tp 67“
9 (s s Y| = .
+ 677(( pil + PO )677)} 0, (6.56)
Su 99 Svd  —w0b
n+1 n __
56" — 667, +At{ o5 DN + — 99 + 47 977} 0. (6.57)
The term 5_7'7tp in (6.56) is given by
2l 2l
= A = 7
P B L L L (6.58)
Jr/on 7 cos ¢ OA 7 0o
and 5_7'7tw in (6.57) is given by
A =
%tw 1 el _fu Ir " Or (6.59)
Jr/on 7 cos ¢ O 7 0¢
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6.2.4 Comments on the discretization

It 1s useful at this point to highlight two particular differences from the scheme
used in the nonlinear model. The first arises from the linearization of the advection
terms which, as we discussed in Chapter 5, which produces an extra term consisting
of the perturbation to the wind field multiplying the gradient of the linearization
state field. Within the three-dimensional model we use the approach implemented
in PFM2 of the shallow water model in Section 5.2.4, and evaluate this term at the
arrival point at time level n.

The second difference from the nonlinear model scheme is in the treatment of
the terms involving the Earth rotation rate (the Coriolis terms) in the horizontal
momentum equations. Within the nonlinear model theses terms are treated semi-
implicitly, giving rise to terms within the elliptic equation. However, since these
terms couple the equations for u and v, we find such a treatment in the perturbation
forecast model causes problems for the subsequent derivation of the adjoint model.
For this reason we wish to remove the Coriolis terms from this part of the solution
procedure. Referring to the matrix formulation of Section 6.2.2, this corresponds
to requiring that these terms appear only within the operator P and not within
M. However, stability considerations require that these terms be treated implicitly
in time. In order to do this we use the method which Gadd [29] introduced into
a split-explicit model. We adapt this scheme by applying it as an average along
the semi-Lagrangian trajectory and introducing an off-centering parameter in the
time-weighting to increase the stability.

We derive the scheme by considering the horizontal momentum equations consist-

ing only of advection and the Coriolis terms, linearized about a constant advecting

velocity (Uy, Vo)

Ds
D—tu—fév = 0, (6.60)
Ds
Dt” +fou = 0, (6.61)
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where

D 8 U 9 Vo
Di= ot T icsomn T v g (6.62)

The first step is to implement a semi-Lagrangian treatment of the advection and a

semi-implicit treatment of the wind perturbation in the Coriolis terms. We write

the semi-discrete equations

Sultt = Sulj 4 (1 — as)ALFOu 4 asAt St (6.63)
Sontt = Suf — (1 — as) AtFou — asAtfount, (6.64)

where subscript d indicates a value at the departure point, subscript a indicates a
value at the arrival point, a5 is a time-weighting coefficient and At is the model
time step. We note that we have not yet fixed the position on the grid at which f
is calculated. Substituting for §v”™ in (6.63) from (6.64) and for du ™" in (6.64)

a a

from (6.63) we obtain

Sult = Widul + Wydvl, (6.65)
Jontt = Wiyév; — Waduy, (6.66)

a

with W; and W, given by (6.51) and (6.52). We fix the evaluation of f (and therefore
) to be at the departure point and implement the form of the scheme given by (6.65)
and (6.66) directly in the scheme of the perturbation forecast model. This gives rise
to the terms containing W; and W in the semi-discrete equations (6.53) and (6.54).

To illustrate that this scheme provides the stability we require, we perform a

Fourier stability analysis as described in Section 2.2.4 by substituting the modes
du = 5uoei(kx+ly+wt), Sv = Juge!hrttytet) (6.67)
into (6.65) and (6.66). This gives

EE/ — W1 —W2 (SUO 0
= : (6.68)
W2 EE/ - W1 (SUO 0
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where E = exp(iwAt), E' = exp(i(UpkAx + VolAy)). Then a necessary condition
for stability is that the modulus of E be less than one. Following Section 2.2.4 we

set the determinant of the matrix to zero to obtain the discrete dispersion relation
EE' =W, +iW,. (6.69)
Since || £’ ||[=1 we find that

IE|* = Wi+W;
1-0[5 1-0[5 2)2 2
_ ((1—|—oz§ﬁ)f)2) +5 (6.70)

This expression is difficult to analyse in the general case. However, we can obtain
the following results for specific cases:

e For a5 = 0.5 we have || E ||=1 and the scheme is unconditionally stable.

e For oy = 1 we have

IE = 1

e
and again the scheme is stable.

e For other values of a5 we plot || E || for different values of #. This is shown in
Figure 6.1. It is seen that the scheme is stable for all values of a5 > 0.5. Thus we
conclude that the proposed scheme gives the stability we require, while avoiding the

Coriolis terms entering into the pressure equation.

6.2.5 Details of the numerical scheme

We now present the details of the solution procedure for the numerical scheme with
reference to the matrix formulation outlined in Section 6.2.2. In order that we can
clearly indicate the averaging of different terms on the grid we omit the overbar
on the linearization state for this section only. Where a term is averaged in two
directions then the first index of the averaging is that which is carried out first. So,
A

for example, means first average « in the vertical using r and then do a horizontal
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Figure 6.1: || E || for different values of o and 5.

A averaging. We assume that all terms are evaluated at the appropriate grid-point
for the equation and at time level n unless indicated otherwise. The solution then

proceeds as follows.

Computation of Pix"

The first step is the computation of the predicted values dx = Pédx". For the

horizontal and vertical momentum equations we set

F)\

Y ) oAe
St = Wisul, — du" + Wydv *, — At [(5u.vu) - (MH

_ At([(l — as) EZS ¢<§M6A5H - ea,oanma@

(1 —ag) 2 (Wkakn—aea,on“awﬂ

7 cos du
Cp —r\ . A
+oa - ¢<e O\OT1 — 63,011 a@
Cp =T A . A .
+ %FACOw((Se O\II — 30,11 a@), (6.71)
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F(b

_ a4n AP
o = Wil 80" = W, - e Guve) + (0]

~ At ( {(1 - a3);—g (5’“%@11 - ear<snr¢a¢r>

. a3);—g (W%m - 5earnr¢a¢r>]

dv

+ ast (5’“5@45511 - 96T5HT¢6¢T>
T

+ oast <W¢a¢n - 596THT¢6¢T>> : (6.72)
T

o = —At [cp(SG@TH + cpear(SH] . (6.73)

For the thermodynamic equation we implement a semi-Lagrangian scheme which
is non-interpolating in the vertical and which is also used in the thermodynamic

equation of the nonlinear model [72]. We calculate the predicted value

80 = 887 — 60" — At[(1 — ag)(w — w) Dy, 06]a

——TA ——Tro
~ ) ) :
— Atozz(w — w*)BZT(SGl — At (r CZS qb@pﬂ + 1; 62¢(9 + 5776277(9), (674)

where the subscript dl indicates the value on the nearest vertical level to the depar-

ture point d and
Ta — Tdl

At

The quantity §6; is an intermediate predictor for the advective part of the equation

w' =

(6.75)

calculated from the time level n values,
80, = 667 — 56" — At[(1 — ay)(w — w*)p, 8]
— Atog(w — w*)OZT(Sé”. (6.76)

The predictor for the density is

A A
. At 1 dp0,r u + pOyr du
o = _$<cos¢a)‘< [ >
N 1 5 <(5,06nr¢v +,06nr¢5v) Ccos gb)
cos ¢ ¢ 7o
+ 0,500+ 7 s ). (6.77)
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We also have the remaining component of X,
oIl =0, (6.78)
since there is no predictor step for the pressure perturbation.

Computation of M~1dx

The prediction step leaves us with the matrix equation Mdx’ = 8%, given by the

equations
s+ S (o - o o )
T cos ¢
At —r —
+ (e *O\STT — 00,011 Aaw) = §ii; (6.79)
T cos ¢
, a3cp, At [(——re — ¢
I R— Ff; (59 dsT1 — 660,11 6¢r>
ascp At [ , Ao .
+ = F]; (e 90Tl — 60,611 6¢r> = (6.80)
Jw + At [oqcp(s@’@rl_[ + oz4cp(96T5H'] = dw; (6.81)
58 + ay Atdy, 850" = 56; (6.82)
— —
At 1 PO, 1 PO, oS @
5/ = n 5 / n 5 /
rot Oyr (COS ¢6>\< [ u1> + cos ¢a¢< 7 U1>
+ 6,7<ﬁ“a,7r5771’>> = 5p; (6.83)
- ]_ gr QT —r
(== Deb Py, ppdl 4+ pB 55 =0, (6.84)
kIl
with
Sul = oqdu, (6.85)
vy = o, (6.86)
dwy = oazduw (6.87)
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and

7 A 7
it — [ — 29 g T ] (6.88)
n Oy, ! 7 cos ¢ A 7o 0 ' '

It is at this point that we introduce an approximation into the matrix M as
referred to in Section 6.2.2. In order to avoid coupling updates to the horizontal
momentum equations (6.79) and (6.80) with the thermodynamic equation (6.82),
we approximate 86’ in these equations with the predicted value 8. Thus this term

1s moved to the right hand side of the equations. We define

—rA —rA
s = g — @A (59 oAl — 530,11 ax?«), (6.59)
T COS
—ré —d
5% = 65 — 0‘3;’;At (59 0,11 — 560,11 6¢r>. (6.90)

Then (6.79) and (6.80) become

At [~ A o
sul 4 2% (e A\STT — 90,017 A@w) = b (6.91)
" COS
Sv' + 04351;At (gr(ba(b(ﬂ_[/ — W¢6¢T> = ov”. (692)
T

We also immediately substitute the expression for §7," (6.88) into (6.83) to eliminate
87, since this is considered only a diagnostic variable. Thus, using also (6.85)-(6.87)

we obtain

— —
At [ oy PO, oy pOyr cos @
5 / = n 5 / n 5 /
r Oyr (cosqba)‘< u> + cos¢a¢< 7o U)

F)\

— A —
., , a15u'n a15v'n .
+ 0, <,0 0w’ — ———0O\r — 3 Opr > = ip. (6.93)

7 cos &

At this stage we also substitute (6.82) into (6.81) to give

Sw' = é((Sw* — oz4cpAt<96T5H'>, (6.94)
with
Sw* = §b — cyc, At500,11 (6.95)
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and

G =1- Oé20é4CpAt262,«(ga,«H. (696)

In order to understand better the matrix structure of the equations, we rewrite this
Gow' + ayc,At00, 511 = Sw*. (6.97)

The matrix M referred to in Section 6.2.2 is given by the left hand sides of (6.79),
(6.80), (6.82), (6.84), (6.93) and (6.97). We note that for the w’ equation it is the
finite difference form of (6.97) that we actually use and not (6.81). This distinction is
important, since the above substitution has been made with the analytical equations.

By replacing the horizontal momentum equations with the equations (6.91),
(6.92) in the Helmholtz derivation, we are replacing the matrix M with an ap-
proximate matrix M. Thus M;j is given by the left hand sides of (6.91), (6.92),
(6.82), (6.84), (6.93), and (6.97), but with SII' replaced by ST .

Solution of implicit step

Using the equations of M; and substituting into (6.84), we obtain the elliptic equa-

tion

— 1pbp s . At0y,0 A
(n = Vpbp e (59 — 920 (e, Atb0,01 ))

k11
. At oy PO, o pOyr cos¢ _ ,
e {00 o () + g (B
W e
. ’ aq10u _ aq0v .
+ 6,,(,0 [oz25w B v ]))) — 0, (6.98)

where du', §v', duw' are as defined by equations (6.91), (6.92), (6.94), but with JII'
replaced by ST, This is a Helmholtz equation which we need to solve iteratively
for 61T, The exact form of the equation is given for reference in Appendix B. To
solve this equation we use the same generalized conjugate residual method as used

in the nonlinear model. In fact, we find that form of the elliptic equation is the
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same as that in the nonlinear model, thus allowing the same Fortran code to be

used. Having solved (6.98) for ST we set §II' = 61T .

Final update step

The perturbation Exner pressure is updated with
STI™H = §II" + 61T, (6.99)

The perturbation pressure dp can then be updated using (6.26). To find the other
components of §x"t! we back substitute into the equations (6.91), (6.92), (6.82),
(6.93) and (6.97). We note that by using the approximate equations (6.91) and
(6.92) rather than the original equations (6.79) and (6.80) we are updating using
the approximate matrix M;. Finally the values of the perturbation fields at time

level n + 1 are found by adding the increments on to the time level n values.

6.3 Numerical experiments

Having derived the perturbation forecast model it is necessary to validate the model
we have coded. This consists of two steps. The first is to check that the code
correctly solves the scheme we have set out above. The second step is to check that
the model we have developed represents the evolution of a perturbation to sufficient
accuracy, that is the validity of the model as defined by Definition 3.3. As we saw
for the shallow water model in Section 5.4.2, testing a perturbation forecast model
is much more difficult than testing a tangent linear model, since the model is not
correct in the sense of Definition 3.2, that is it is not equal to the first order part of
the discrete nonlinear model. Hence error measures such as the relative error do not
tend to zero with smaller perturbations. In order to make some effort at checking
the code, individual subroutines representing the calculation of the various equations

are tested by feeding in data for which it is possible to obtain an analytical solution
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and checking that this solution is found. This does not give a complete test, but
does help to identify many bugs in the code. The nature of these tests is dependent
on the function of the subroutine and results are not presented here.

The validity of the model is tested by comparing the evolution of a perturbation
in the perturbation forecast model with the evolution in the nonlinear model, as
described in Section 3.1. In order to do this we need to define a set of initial
conditions for the nonlinear model and generate an appropriate perturbation. Other
studies involving full three-dimensional weather forecasting models have used the
model state resulting from the application of a data assimilation system as the initial
conditions. Such a state is known as an analysis and is used to provide the initial
conditions for routine numerical weather prediction forecasts. Studies by Errico et
al. [28] and Li et al. [50] used interpolated analyses from the European Centre for
Medium-Range Weather Forecasting in tests of a linear model. For our studies it
was not possible to use an interpolated analysis directly for reasons explained in
Section 6.3.1. Thus a different method for setting up the experiments was required.
In the next section we explain the method used. Subsequent sections will then

discuss results from particular experiments.

6.3.1 Method

In order to compare the evolution of a perturbation in the perturbation forecast
model with the evolution in the nonlinear model it is necessary to define two sets
of initial conditions for the nonlinear model, one for the nonlinear base state run
and one for the perturbed nonlinear model run. However we would prefer that the
difference between them, which will be the initial perturbation for our linear model,
be of a similar structure to a typical analysis error. Errico et al. [28] found that the
growth of random perturbations, which had no spatial correlations and no prescribed

relationships between fields, was described mainly by linear processes. Hence such

173



perturbations do not provide a realistic test of a linear model. We seek a method
of producing initial perturbation fields which have realistic spatial correlations and
also realistic inter-correlations between different variables.

The method we use to obtain our initial conditions is described with reference
to Figure 6.2. We first take two analyses 24 hours apart, each valid at midnight.
We refer to these as analyses valid on Day 0 and Day 1. During the period in
which these tests have been carried out the nonlinear model was not connected to
a data assimilation system and so no analyses were available for the model we were
using. The analyses were therefore taken from the Met Office’s current operational
Unified Model system. This model is quite different from the nonlinear model we are
using, with a different grid staggering of variables in both the horizontal and vertical
and also differences in some of the variables being used. A reconfiguration program
written at the Met Office is used to convert these analyses to a set of initial conditions
for each variable of the new nonlinear model on its own grid. However, these initial
conditions cannot be used directly for the perturbation forecast experiments for two
reasons. The first is that the reconfiguration can cause imbalances which then affect
the evolution of the system. This is particularly noticeable when we consider the
evolution of small perturbations. The second reason is that we wish to run with an
adiabatic version of the model and these fields have been produced from a diabatic
version. Suddenly turning off all physical parametrizations has also been found to
cause imbalances.

In order to generate the initial conditions we first run from each of the analyses
on the new grid using only the adiabatic version of the nonlinear model, and run
until midnight on Day 2. Thus the Day 0 analysis is run for 48 hours and the Day
1 analysis for 24 hours. We follow the usual nomenclature of meteorology and refer
to a forecast N hours after the analysis time as a T+N forecast. Then these two
model runs result in T4+24 and T+448 forecasts, both valid at midnight on Day 2.

These two forecasts provide the two sets of initial conditions for the perturbation
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T-48 analysis Perturbed NLM run
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4 NLM base state run

T

analysis

- ————

PEM run

T+0
Figure 6.2: Illustration of experimental method. The dotted arrows indicate the 24 and
48 hour forecasts of the nonlinear model run to generate initial fields, the solid arrows
indicate the nonlinear model runs from the T4+24 and T-+48 fields and the dashed line is

the run of the perturbation forecast model. Day 2 is taken to be T+0 for the experiments.

experiments. The forecasts are indicated by the dotted arrows in Figure 6.2.

In order to compare the evolution of a perturbation in the nonlinear and linear
models we first run the nonlinear model from these two forecasts. The run from
the T+24 forecast is taken to be the nonlinear base state run and the run from the
T+48 forecast is taken to be the perturbed nonlinear model run. These forecasts
are indicated by the solid arrows of Figure 6.2. The initial perturbation, from which
we start the perturbation forecast model, is given by the difference between the
T+48 and T+24 forecasts. The differencing of two such forecasts is often taken
to be an estimate of forecast error [39] and so this should be a reasonable physical
perturbation to use.

For the experiments in the following sections the model is run on a regular

latitude-longitude grid, with a horizontal resolution of 3.75° in the east-west di-
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rection and 2.5° in the north-south direction. There are 38 levels in the vertical,
following the orography at the lower levels and gradually flattening out with height.
In the results shown the plots of perturbations are chosen around levels of physical
interest, for example 250h Pa where there are the strongest jets. However, the data
are plotted on model levels rather than pressure levels and so the pressure given is
only an approximate pressure. This avoids any errors due to interpolation and so
allows us to compare fields directly as they come out of the model. However, we
note that for the Charney-Phillips grid being used the § and w fields are on levels
staggered from the other fields. Each variable is output on the level on which it is
stored within the model.

For each of the experiments described we use a model time step of 1800s in
both the nonlinear and linear models unless stated otherwise. The time-weighting
parameters are set to oy = a3 = 0.6 and a3 = a4 = 1.0 for both models, with the
extra weighting a5 = 0.6 in the perturbation forecast model. This extra weighting
arises from the treatment of the Coriolis terms as described in Section 6.2.3. The
linearization state for the perturbation forecast model is taken to be at the start of
the time step, except in the experiment of Section 6.4 which is designed to test this
approximation.

The data we use are taken from December 1998. The T40 data time is taken to
be midnight on 3rd December, with the fields for the nonlinear runs spun up from
analyses at midnight on 1st December and 2nd December. For this case the pertur-
bation generated using the method described has maximum values of approximately
50 — 70ms~! in the zonal and meridional wind fields, 25hPa in the pressure field
and 35K in the potential temperature fields. The largest perturbations are in the
lowest levels of the model. We note that since we are not using any surface friction
or vertical diffusion scheme in either the linear or nonlinear model, it is likely that
non-meteorological structures will develop close to the surface [11]. This may lead

to a distortion of the results if we consider only global measures of error and so
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in the following sections we verify the model distinguishing between the different
model levels. For this case we concentrate attention particularly on the following

levels:

Level 1: The lowest model level;

Level 12: The top of the boundary layer;

Level 15: Approximately 500k Pa;

Level 21: Approximately 250k Pa;

Level 31: The first constant height level on the vertical grid.

Level 31 is chosen not for its meteorological interest, but because it is a place which

numerically could cause problems.

6.3.2 Correctness

Although we have shown that in general a perturbation forecast model will not be
correct in the sense of Definition 3.2, since it does not represent the first order part
of the discrete nonlinear model, it is useful to examine the behaviour of the model
as the perturbation size is reduced. In Chapter 5 we found that the relative error of
the perturbation forecast model tended to a non-zero constant as the perturbation
size was reduced, which agreed with the theory developed in Section 3.1.2 (we recall
Figure 5.4 of page 117). We now investigate the behaviour of the three-dimensional
model for a similar experiment. The initial perturbation is taken to be that produced
as described in Section 6.3.1 and the linearization test is run with this perturbation
multiplied by a factor @ = 1077, where p = 0,1,2,3. The integration period is
taken to be 12 hours. At the end of the period we calculate the relative error (3.17)
for each level using the root mean squared norm (3.21) weighted by the area of a

grid box. Since for this model we find that most of the decrease in relative error
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occurs between values of & = 1.0 and « = 0.1, we also include experiments with the
intermediate values 0.5 and 0.2.

The change of relative error with « is shown in Figure 6.3 for each of the primary
model variables du, dv, dw, dp, dp, 68. We note that here we are using pressure rather
than Exner pressure as the output variable, since its physical meaning is more readily
interpreted when we look at the perturbation fields themselves. Each plot of Figure
6.3 shows the five model levels chosen in Section 6.3.1, with level 1 in black, level
12 in orange, level 15 in blue, level 21 in red and level 31 in green. The first thing
we note is that for all the levels plotted except level 1 we have an initial decrease in
error as « decreases followed by a levelling off of the error to a constant value. This
1s the same pattern that we saw for the shallow water model in Figure 5.4. We also
note that for most of the fields the error on level 1 increases in value for the smallest
perturbation. A closer examination of the perturbations themselves (not shown)
shows that this can be explained by an error at one grid point over the Himalayas
when the perturbations are very small.

It is clear from Figure 6.3 that the present version of the perturbation forecast
model has a large variation of accuracy with height. Such a variation was not found
in studies of the tangent linear model of the MM4 mesoscale model by Errico et al.
[28]. However, our experiments do not yet include any friction scheme or vertical
diffusion. This is likely to lead to highly nonlinear effects near the lower boundary
leading to larger differences between the linear and nonlinear models. We expect
that once such schemes have been implemented, the variation of error with height
will be less.

In experiments with data from another date, July 1999, the graphs of relative
errors show similar patterns as « is reduced (not shown). However, the asymptotic
values are found to be quite different. This would be expected since the difference
between the perturbation forecast model and a tangent linear model will depend

on the linearization state fields and so on the particular meteorological situation.
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Figure 6.3: Relative error norms at T+12 as a function of . The different lines are level

1 (black), level 12 (orange), level 15 (blue), level 21 (red) and level 31 (green)
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Thus it appears that the asymptotic values of the graphs plotted cannot give any
general information about the performance of the model. In order to assess that the
perturbation forecast model is performing satisfactorily we therefore require some
other criterion with which to measure its validity. In the following sections we make
use of the formulae which we proposed in Section 3.3 in order to provide such a

criterion.

6.3.3 Error measures

In order to assess the validity of the perturbation forecast model it is useful to know
how much of the linearization error we see is due to nonlinear effects and how much
is due to the fact that we have not linearized the discrete nonlinear model. For our
three-dimensional model we can make use of the method we derived in Section 3.3
and tested for the shallow water model in Section 5.6. We estimate the lineariza-
tion error we would expect from a tangent linear model by running the nonlinear
model from three different initial conditions and using the formula (3.32) to calcu-
late the estimated tangent linear model (TLM) linearization error £. This can then
be compared with the actual linearization error E from the perturbation forecast
model (PFM), found from the difference between the perturbation as evolved in the
nonlinear model and the PFM solution.

First we must find a suitable value of the parameter 4 to use in the linearization
error estimate (3.32). To do this we apply the method suggested in Section 5.6 and
plot the evolution of the estimated tangent linear model solution error Eg given by

- rms(E")
Bs = morms(zvn[aUO])’

(6.100)

for different values of v. In Figure 6.4 the evolution of Eg is plotted using values
at T46, T+12, T+18 and T+424, with values of v = 0.5,0.2,0.1,0.01 shown by the
dotted, dashed, dot-dashed and solid lines respectively. The different coloured lines

indicate the different levels in the same way as in Section 6.3.2 and as detailed in
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the caption of the figure. We note that for most of the fields away from level 1
all values of v give approximately the same estimate at T+6. For level 1 there is
some variation even at T+46 and this is likely to be due to the fact that we have
large perturbations at this level. Thus the terms we are neglecting in the Taylor
expansions we use to derive the linearization error estimate may not be negligible.
However the order of magnitude of the estimate is similar for most values of . For
the dw field the estimates diverge on most levels after T+12 indicating that these
terms cannot be neglected for this field and the estimate is unlikely to be accurate.
We also note that for the 46 field on level 15 and for the dw field on level 1, there
is a large deviation in the estimates of the T+18 solution error when a value of
~ =0.01 is used. A closer examination of the actual fields shows that this is caused
by rounding error with such a small value of v, leading to very large values of the
estimate at a few single grid points. For fields other than dw we see that the dashed
curve is very close to the converged solution for most levels away from level 1. This
curve corresponds to v = 0.2 and so we use this value of the parameter for our
estimates from this point on.

In Figure 6.5 we compare the evolution of the actual PFM solution error Eg
with the estimated TLM solution error calculated using (6.100) and a value of the
parameter v = 0.2. The PFM error Ey is calculated from (3.22)

rms(E")

Es = morms(zvn[aUO])’

(6.101)

with the linearization error E defined by the difference between the nonlinear per-
turbation and the PFM solution. We plot the same five levels as previously, with
the actual PFM solution error shown by the solid line and the estimated TLM er-
ror shown by the dashed line. For perturbations to u, v and € the actual solution
error follows a very similar evolution to the estimate for levels 12, 15 and 21 (the
orange, blue and red lines). On level 1 we find that the perturbation forecast model

performs better than expected, while on level 31 the actual error is much worse for
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Figure 6.4: Evolution of estimated solution error from T+6 to T+24 on individual levels.
The levels shown are level 1 (black), level 12 (orange), level 15 (blue), level 21 (red) and
level 31 (green). For each level estimates using values of v = 0.5,0.2,0.1,0.01 are plotted

using the lines dotted, dashed, dot-dashed and solid respectively.
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these fields.

Of particular interest in Figure 6.5 is the solution error for the pressure field. We
see that for all the levels plotted the actual error is much higher than the estimated
error. The other fields in this figure, dp and dw, show a reasonable agreement at
T+6, but much variation thereafter, with some levels having good agreement and
others showing a large error. However, the strong nonlinearity of the dw fields,
which is reflected in Figure 6.4 by the large variation of the estimate with changes
in 7, means that we are less confident in the error estimate for this field.

To investigate further the errors seen at all levels for the dp field and at higher
levels in the other fields, we plot in Figure 6.6 the correlation coefficient (3.23)
between the linear and nonlinear perturbations for each level at validity time T+12.
We recall from Chapter 3 that the correlation coefficient for two fields x = {z;} and
y = {y;} of length N is defined by

C[X,y] _ Ef\;l(xl - j;)(yl - g) : (6.102)
(Xl = 0 X, (s = 0)?)

where 7,y are the mean values of the components of x and y respectively. The

L
2

validity time of T+12 is chosen since it allows comparison with previously published
results. It is also likely that we would want to use the linear model for an incre-
mental 4D-Var data assimilation system with a twelve hour time window and so it
is important that the model is valid over this period. We see from Figure 6.6 that
all fields except dw have a correlation coefficient of greater than 0.9 above model
level 20 and that the pressure perturbation shows a correlation coefficient of greater
than 0.93 everywhere. These values compare with correlations published by Li et
al. [50] of 0.94 for du, 0.91 for v and 0.96 for the perturbation to their pressure
variable. We see from Figure 6.6 that our results match the published values at
higher vertical levels in the model. The lack of agreement at lower levels may be
due to the absence of friction and vertical diffusion in both the perturbation forecast

model and the nonlinear model generating the linearization states.
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Figure 6.5: Comparison of evolution of actual PFM and estimated TLM solution errors
from T+46 to T+424 on individual levels. The levels shown are level 1 (black), level 12
(orange), level 15 (blue), level 21 (red) and level 31 (green). For each level the solid
line indicates the actual error from the perturbation forecast model and the dashed line

indicates the estimated TLM error.
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Figure 6.6: Correlation coefficient between nonlinear and linear perturbations plotted

against model level for each model field.
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From our investigations of different error measures in Section 3.1.2, a good cor-
relation coefficient but high solution error would imply that the linear model is
predicting the same pattern of perturbations as the nonlinear model, but that the
amplitudes are incorrect. To determine if this is the case we define a damping

coefficient Cp by
rms(L(t,,t0)0U°)

¢ = rms(N"[6U°])

(6.103)

Thus for values of Cp < 1 the perturbation forecast model field is damped with
respect to the nonlinear perturbation. We plot this coefficient for each field in
Figure 6.7. It is evident that for all fields except dw the perturbation forecast model
i1s damping with respect to the nonlinear model. The damping is particularly strong
for dp between level 12 and 15, but is also present for du and dv around level 15 and
for the other fields slightly higher. For the dw field we have an amplification in the
perturbation forecast model with respect to the nonlinear evolution. However, we
expect this field to be particularly sensitive to the lack of a friction scheme in the
linear model in areas of steep orography. Hence we leave investigation of this field
until such a scheme has been implemented. We concentrate our attention on the

other fields and now look at the perturbation fields themselves.

6.3.4 Perturbation fields

In this section we continue to look at the fields at validity time T412 and concentrate
our attention on model level 15. This level is chosen for two reasons. Firstly, we
have seen from Figure 6.7 that this is the level at which the heaviest damping occurs
for the pressure and horizontal wind fields. Secondly, this level is at approximately
500h Pa, which is a level used in other studies we shall compare with. We begin
by considering a field which the solution error showed to be in good agreement
with the estimated tangent linear model solution error. This will enable us to judge

whether our choice of the parameter v = 0.2 was suitable. We consider the potential

186



Damping coefficient at T+12 for u field
T T R A e

Dec 98: Damping coefficient at T+12 for v field
g T T T T T
- 31
] ]
s B 3 21
° o
° °
o o
= =
i 15
12 - 12
1 1 1 1 1 1 1 1 1 1
0.75 0.80 0.85 0.90 0.80 0.85 0.90 0.95 1.00
Damping coefficient Damping coefficient
Dec 98: Damping coefficient at T+12 for w field Dec 98: Damping coefficient at T+12 for p field
Ry IR R o e e  AARRARRENS A RRE AR Y e e e e R e B R B o
31
] T
s 3 21
° ]
° °
o o
= =
15
12
P T A T A A A A A A A A A A A A S v ST N A A A 1 T S T N T S S O S S |
1.10 1.20 1.30 1.40 1.50 1.60 0.70 0.75 0.80 0.85 0.90
Damping coefficient Damping coefficient
Dec 98: Damping coefficient at T+12 for rho field Dec 98: Damping coefficient at T+12 for theta field
38 T T T 38 T T T
31 31 -
2 2
T 21 & 21 -
] ]
° °
o o
= =
15 15 -
12 12 -
1 L L 1 L L L L 1 L L L L 1 L L T L 1 L L L 1 L L L L 1 L L L n L L L
0.80 0.85 0.90 0.85 0.90 0.95

Damping coefficient Damping coefficient

Figure 6.7: Damping coefficient (6.103) plotted against model level for each model field.
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temperature field on level 15 at T4+12. From Figure 6.5 we see that the actual PFM
and estimated TLM solution errors agree very well for this field and Figure 6.6
shows that the correlation coefficient exceeds 0.94. We show a comparison of the
nonlinear and linear perturbations in Figure 6.8. In this figure Plot A shows the
perturbation predicted by the nonlinear model, Plot B the perturbation predicted
by the perturbation forecast model, Plot C the difference between these and Plot D
the estimated TLM linearization error calculated from our formula (3.32). It is clear
first of all that the general pattern of the perturbations is the same in the linear and
nonlinear models. A comparison of plots C and D shows that in general where there
are linearization errors in the perturbation forecast model these also appear in our
estimate of the TLM linearization error. The RMS value of the PFM linearization
error is 0.53 compared with 0.54 for the estimated TLM error. Thus we see that the
error arising from the use of a perturbation forecast model is no greater than that
which would be expected with a tangent linear model. We conclude that for this
field the main differences between the linear and nonlinear perturbations are due
to nonlinear effects rather than approximations in the linear model. The similarity
between plots C and D in both pattern and magnitude also reinforces the confidence
we have in our error estimate with the chosen parameter.

We now consider the perturbations to pressure at T4+12. We note however
that because of the choice of grid, level 15 for p is staggered from level 15 for 4.
We found in Section 6.3.3 that at this level there was a good correlation between
the linear and nonlinear perturbations but a high level of damping in the linear
model. Figure 6.9 shows the perturbation fields for this level. Again we plot the
nonlinear perturbation, the linear model perturbation, the true PFM linearization
error and the estimated TLM linearization error. It is immediately noticeable that
the linear model perturbation contains many of the same features as the nonlinear
perturbation, but is damped in magnitude almost everywhere. A comparison of

actual PFM and estimated TLM linearization errors, plots C and D, indicates that
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Figure 6.8: 6 perturbation on level 15 at T+12. Plot A shows the nonlinear perturbation,

Plot B shows the perturbation forecast model perturbation, Plot C shows the actual PFM
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this is not due to nonlinear effects and would not be expected if we had an exact
tangent linear model. Thus it appears that for the pressure field the perturbation
forecast model causes a damping which cannot be explained solely by nonlinear
effects.

We find a similar damping of the perturbation to the v component of the wind
on this level. Figure 6.10 shows the dv on level 15 at T+12, with the four plots as
in the previous two figures. For this field we particularly notice a damping of the
linear perturbation near the North Pole with respect to the nonlinear perturbation.
A comparison of the actual PFM and estimated TLM linearization errors indicates
that this damping is not due to nonlinear effects. Although the damping is not as
evident in this field as in the pressure, it is useful to note since this field provides a
comparison with published results. In studies of the tangent linear of a mesoscale
model [27], [28], the authors showed perturbations of the v component of the wind at
500h Pa to agree well with the nonlinear perturbation after 12 hours. This provides
further evidence that the damping we see is due to approximations in the perturba-
tion forecast model rather than nonlinear effects. However this comparison must be
made with care, since the nonlinear perturbations themselves were decaying in the
experiments of [28] while they are not in our model. This decay in the nonlinear
perturbations can probably be explained by the fact that [28] used a limited area
model. Other studies have shown that perturbation growth is restricted in limited
area models compared to global models by the assumption of zero perturbations on
the lateral boundaries [25].

We have seen so far that in general the patterns of the linear and nonlinear
perturbation fields match well, with most of the error being in the amplitude. How-
ever it is possible that the correct pattern is being predicted simply because the
perturbations are not changing very much in time. In order to account for this we
would like to measure how well the linear model predicts the change in perturbation

from one time step to the next. One way of doing this is to compare tendencies

190



G8¢ G/¢ G911 GG GG— G9l-G/C- G8¢—

CCT/8G96E ‘SNY £C1°99¢— UIN vGCTCES XD
306 0 MoB 081
E —T— - T 1S06

4S6v

INGY

NO6

cl +1 10 Gl |9A8] UO 8unssaig
J0JJds uonozupasull N1 pesidwisy g

G801 G/L G9% GGl GGl— G9v— GLL-G80l—

£6260°CyL ‘SN 1OV L LL— “UIN 69%°6YL PN
306 0 MOB 081
S06

1S6¥

NGy

4 NO6

cl J,ﬂ 10 G| 6,>9 uo wéw,m@i
ploly uonoginpad N4id :g

G8¢ G/LC GS91 G5 66— G91- G/LC— G8Y—

CYe6eL°06 ‘SNY €60 709~ UIN ¥S1°0GF XON
306 0 MO6 08l
3506

cl +1 10 G| |9A8] UO ounssald
J0Jds uonpzuoaull N4d D

G801 G/L G9¥ GG} GGl—G9¥— GL/—-G80l—

GGGEL'GLC 'SNY L¥'0gCL— “UIN LZO'GL6 XD
306 0 MO6 08l

7l 4110 G| [9A3] UO 24nssald
PRy COJOngﬁ@Q JD3UlUON 1Y

Figure 6.9: Pressure perturbation on level 21 at T+12. Plot A shows the nonlinear

perturbation, Plot B shows the perturbation forecast model perturbation, Plot C shows

the actual PFM linearization error, and Plot D shows the estimated TLM linearization

error. Units are Pa.
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in the perturbations. For the purpose of this study we define the tendency field
to be the perturbation field after one time step minus the initial perturbation and
do not normalize by the time step. A comparison of this change in the nonlinear
and perturbation forecast models allows a judgement to be made as to whether the
linear model is changing the initial fields in the correct way.

Before looking at the tendencies it would be useful if we had some estimate of
the error we would expect in the tendencies if we had an exact tangent linear model,
in a similar way to the error estimate we produced for the fields themselves. We
outline a method of achieving this. We suppose that we have an initial perturbation
dU° at time t5. Now let the nonlinear perturbation after one time step be written
NAt[dUO] and the linear model perturbation be written L(ta¢,t0)dU®?. Then we

can write the nonlinear tendency AydU? as
AndU° = N2[§U° — 6U° (6.104)
and the perturbation forecast model tendency ApdU? as
ApdU° = L(tay, t0)0U° — 6U°. (6.105)
Then the error in the tendency E, is given by

E. = AxdU° — ApsU°
= N2U°) — L(ta, to)dU°. (6.106)

Thus we see that the error in the tendency is equal to the difference between the
perturbation fields themselves after one time step, or in other words the tendency
error is equal to the one-time-step linearization error. Since we have a method of
estimating how much of the linearization error is due to the TLM linear approxima-
tion, we can apply this method to the one-time-step fields and estimate how much
of the tendency error is due to the TLM linear approximation.

We look first at a field that we have already judged to be well forecast at T+12,

the potential temperature on level 15. Figure 6.11 shows the tendency field for § on
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level 15. In this figure Plot A shows the tendency field from the nonlinear model,
Plot B shows the perturbation forecast model tendency, Plot C is the difference
between them and Plot D is the estimated tendency error of a tangent linear model.
It is clear that the tendency pattern of the perturbation forecast model is very
similar to that of the nonlinear model perturbation and in general is of the same
sign, indicating that perturbation forecast model forces the initial perturbation in
the correct sense. However, as for the fields themselves, we find a difference in
magnitude between the nonlinear and linear tendencies. From Plot D it is clear that
most of the errors we do see are associated with areas where nonlinear effects are
important. For this field the actual and estimated errors (Plots C and D) agree well
both qualitatively and quantitatively.

We now consider the pressure perturbation tendency on this level. Figure 6.12
compares the nonlinear and linear tendencies, with the plots in the same format
as Figure 6.11. Again we find that in general the tendencies are in the correct
place and are of the correct sign. However we note that the perturbation forecast
model has an excessive tendency at the North Pole. This may be due to an error in
the formulation or simply a coding bug and will require further investigation in the
future. We find for this field the error in the tendencies (Plot C) does not correspond
very well with the estimated TLM error (Plot D). Experiments to investigate the
sensitivity of this estimate to the value of the parameter v in the estimate formula
have shown that while the extreme values at a few grid points may be sensitive
to this, the general pattern is not. The pressure tendency error we see in the
perturbation forecast model is quite different from that which we would expect from
a tangent linear model. Nevertheless the linearization error of the perturbation
forecast model is smaller than the expected error. Thus it would seem that at least
the initial tendencies are not responsible for the damping we see in the pressure
field.

In order to understand how dependent the damping we see is on the particular
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Figure 6.11:

Plot B shows the PFM tendency, Plot C shows the difference between them and

tendency,

shows the estimated TLM tendency error. Units are K.
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Figure 6.12: Initial tendency of pressure perturbation on level 15.

Plot B shows the PFM tendency, Plot C shows the difference between them and

tendency,

Plot D shows the estimated TLM tendency error. Units are Pa
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case chosen, we have also run from another set of data, changing from a Northern
Hemisphere winter to a Northern Hemisphere summer period, July 1999. The initial
data were produced in the same way as described in Section 6.3.1. For this case the
levels were set up differently and so we have that level 14 is the top of the boundary
layer, level 19 is at 500h Pa, level 27 is at 250h Pa and the first constant height level
is level 35. We plot the damping coefficient (6.103) for this case in Figure 6.13. A
comparison with Figure 6.7 on page 187 shows that for this case the perturbations
from the linear model are damped in a similar way to the December 1998 case.
Again we see a large damping of pressure, which is worst between the boundary
layer top and 500h Pa, and a damping of the v and v perturbations, peaking slightly
higher than 500~ Pa. A look at the fields themselves also reveals a similar behaviour
to those of the December 1998 case (not shown). Thus we find that the damping
for both cases follows the same pattern and even though the model levels are set up
differently for the two experiments, the damping peaks at approximately the same
pressure level.

Since the damping does not seem to be dependent on the data we must assume
that it is caused by a difference between the schemes of the linear and nonlinear
models. One likely candidate for the problem is the fact that we have a first order
time error in the treatment of the perturbation wind term arising from the lin-
earization of the advection step. This comes from the fact that we treat this term
at the arrival point at time level n, as in the second perturbation forecast model of
Chapter 5. Although this did not show up as a problem in the shallow water model
experiments of Chapter 5, this may be just because of the restricted set of tests we
were able to run. It has been shown by Durran that for a linear finite difference
scheme of order r applied to the oscillation equation, the amplitude error is of order
At", where n = r+ 1 if r is odd and n > r 4+ 2 if r is even [20]. This means that
for a first order scheme the amplitude error is O(At#?), whereas for a second order

scheme it is at most O(At*). We would therefore expect that the first order error in
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Figure 6.13: Damping coefficient (6.103) plotted against model level for each model field

for the July 1999 case.

198



Dec 98: Damping coefficient at T+12 for p field
38 T T T

21 -

Model level

1 | | |
0.85 0.90 0.95
Damping coefficient

Figure 6.14: Damping coefficient (6.103) for ép plotted against model level for each model
field for the December 1998 case with a 900s time step.

the linear model could contribute to the difference in amplitude between the linear
and nonlinear perturbations.

Ideally we would like to test the effect of truncation error on our results by
running the experiment with a different time step and a different spatial resolution
such that the ratio of the spatial and temporal steps remains constant. For the
three-dimensional model this is not yet possible, since we do not have facilities to
change spatial resolution easily. To give some kind of insight as to whether the
truncation error may be the source of the damping problem we run the linear model
using half the original time step (900s), but keeping the spatial resolution as before.
The nonlinear model is run with the original 1800s time step and so the linearization
state in the linear model is only updated every 1800s or two time steps. This avoids
the extra complication as to the effect of a change in linearization state. In Figure
6.14 we plot the damping coefficient (6.103) for the pressure perturbation for this
run, using the data from December 1998. A comparison with the corresponding
plot for the run with an 1800s time step in Figure 6.7 shows that the variation of
damping with height is unchanged. However the minimum value of the damping

coefficient has been changed from 0.65 in the 1800s time step run to over 0.8 in the
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900s time step run, with the damping reduced at all other levels. Plots for other
variables show a similar reduction of the damping. Thus we see that running with
a smaller time step results in a much more accurate prediction of the amplitude of
the perturbations. Although this does not provide a strict test of truncation error,
since the spatial resolution remains constant, it does provide some evidence that the
amplitude errors are caused by our first order treatment of these extra terms. We

outline in Section 7.2 how we propose to investigate this hypothesis further.

6.4 Linearization state

In each of the above experiments we have taken the nonlinear base state to be at the
start of the time step, time level n. We have shown in Section 5.5 that in general
this will be only first order in time, whereas averaging the linearization state to the
centre of the time step for the forcing terms will be second order in time. However,
in the three-dimensional perturbation forecast model we are treating the extra term
arising from the linearization of advection (du.V) as in the shallow water model
PFM2 of Section 5.2.4, which we found in Section 5.3.3 to be always first order in
time. Thus for our three-dimensional model we do not expect any extra accuracy
from averaging the linearization state to the centre of the time step.

In order to test this we ran again the experiment described in Section 6.3, but
with the linearization state taken to be the average of the time level n and time level
n + 1 values. The control run with which we compare is the run described above
with the nonlinear base state taken at time level n. We summarize the results in
Table 6.2. In this table we show for each variable the maximum absolute difference
between the new perturbation forecast model run and the control (Column A), the
model level on which this difference occurs (Column B) and the maximum absolute
PFM linearization error on this level (Column C). For each of the variables we find

that the maximum change from averaging the nonlinear base state is less than 10%
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of the maximum linearization error. We conclude that for this particular model the
more accurate linearization state does not have a significant impact, as expected
from the theory. However, a greater sensitivity to the linearization state may be

found if we were to replace the present first order scheme with one which is second

order.
A B C
Field | Maximum absolute difference | Level | Maximum absolute linearization error
Su 4.5 ms! 3 78.6 ms™!
dv 3.8 ms™1 2 62.7 ms1
dw 0.05 ms1 15 1.75 ms™!
dp 49.8 Pa 1 1530 Pa
dp 0.01 kgm™3 1 0.32 kgm™3
66 3.5 K 1 48.0 K

Table 6.2: Comparison of difference between run of the perturbation forecast model with
the nonlinear base state at the start and the centre of the time step. Column A shows
the maximum absolute difference between the fields, Column B shows on what level this
difference occurs and Column C shows the maximum PFM linearization error from the

control run on this level.

6.5 Summary

In this chapter we have applied the semi-continuous method to derive the lineariza-
tion of a full three-dimensional numerical weather prediction model. In doing so we
have made use of the study of the shallow water model in Chapter 5 to help vali-
date our results. Firstly, we have seen clearly that deriving a perturbation forecast
model for a partial differential equation system implies some degree of freedom in

the choice of the scheme made. One example of this is the perturbation wind term
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arising from the linearization of advection. In the three-dimensional model of this
chapter we treated this term at the arrival point at time level n, in a similar way
to the shallow water model PFM2 of Section 5.2.4. However, in Section 5.3.3 we
showed that the scheme is only first order accurate in time. Although this did not
seem to be a problem in the simple shallow water model, it may have a greater effect
in the three-dimensional model.

Another example of a particular choice we made for this model is in the treatment
of the Coriolis terms. Considerations for developing the adjoint model required that
these terms be treated in a different way from corresponding terms in the nonlinear
model. In order to treat them in a stable manner but outside our elliptic equation
we developed an alternative scheme particular to the perturbation forecast model.

We have also seen that as for the shallow water perturbation forecast model of
Chapter 5 testing was made more difficult by the fact that the linearization error
does not tend to zero as the perturbation size is reduced. In order to provide a
method for validating our perturbation forecast model, we have made use of the
formula derived in Section 3.3 to estimate the error that a tangent linear model
would give. This has proved invaluable in tests of the three-dimensional model,
since it has allowed us to evaluate how much of the errors we see are likely to be
due to approximations we have made rather than nonlinear effects. For example, at
middle levels we have seen a damping in the perturbations, especially in the pressure
field. For this case we have seen that this damping would not be expected if we had
an exact tangent linear model and so this indicates that the present formulation
of our perturbation forecast model is not sufficiently accurate for the purposes we
require. The evidence we have suggests that this damping may be due to the first
order treatment of terms arising from the linearization of advection. We return to
this question in Section 7.2 where we consider how we may increase the accuracy of
these terms.

However despite such problems, experiments with this first version of the model
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are encouraging. As for the simple models developed in Chapters 4 and 5, we have
found for the three-dimensional model that the linear model developed using the
semi-continuous method is able to predict the approximate evolution of a pertur-
bation. For some of the fields we have validated this prediction was as accurate
as that which we would expect from a tangent linear model, even for a 24 hour
forecast. This was particularly true for perturbations to the horizontal wind compo-
nents and the potential temperature away from the model boundaries. We expect
that with considered modifications of the numerical scheme this accuracy could also
be achieved for the other fields. We discuss some further ideas for achieving this in

Section 7.2.
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Chapter 7

Conclusions and future work

In Chapter 3 we posed the question “Can the semi-continuous method provide us
with a linear model which is as accurate as the tangent linear model formed by
the discrete method while avoiding some of the problems associated with linearizing
discrete numerical models?” We now summarize the results we have found which

begin to answer this question and discuss some ideas for further work.

7.1 Summary of results

In examining the linear model formed by the semi-continuous method we have con-
sidered its accuracy from three different perspectives which we defined in Chapters
2 and 3. These are truncation error, correctness and validity. For the ordinary
differential problem of Chapter 4 it was also possible to examine the linear stability
of the models.

We have seen that the linear model is ‘correct’, as defined by Definition 3.2, if it is
formed by the discrete method, whereas the perturbation forecast model formed by
the semi-continuous method is not usually correct in this sense. This became more
apparent when we looked at a PDE problem in Chapter 5, since it is clear that some

degree of freedom is available when discretizing the continuous linear equations.
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In terms of truncation error, for the examples of the schemes we studied the
tangent linear model was found to be as accurate as the discrete nonlinear model
from which it is derived. For the perturbation forecast model this is not necessarily
the case. The example of the ODE problem of Chapter 4 and the shallow water
problem of Chapter 5 have shown that the accuracy of the perturbation forecast
model may be compromised by two factors, the way in which the numerical scheme
is applied and the choice of linearization state. The first of these arises only in the
PDE problem, again from the freedom with which the linearized equations may be
discretized. This was illustrated by the two versions of the perturbation forecast
model for the shallow water problem of Chapter 5. We found that two slightly
different discretizations gave schemes with different orders of accuracy. In Chapter 6
we proposed this as a possible reason for the damping we see in the three-dimensional
perturbation forecast model and we discuss how we intend to investigate this further
in Section 7.2.

The choice of linearization state on the other hand was found to influence the
truncation error of both the ODE and PDE problems. We have shown that changing
the point at which the linearization state is taken within the time step window
can change the order of the scheme. It may be possible that this formal loss of
accuracy may not be important in practice. Other studies using tangent linear
models have shown that provided the linearization state is not too rapidly changing,
acceptable results can be obtained without updating every time step, even though
this formally introduces an error in the linearization (for example [28]). However, in
the case of the shallow water problem of Chapter 5 we found that by averaging the
linearization state within the semi-Lagrangian advection step it was possible that
the scheme produced was no longer consistent. This may pose more of a problem
for the general use of perturbation forecast models, since it implies that for similar
schemes the linearization state must be updated on every time step. This is probably

the most serious restriction on the use of the semi-continuous method that we have
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discovered in this work. Although it is not relevant to the present three-dimensional
model of the Met Office, any future changes to the numerical scheme introducing
the semi-Lagrangian advection of nonlinear quantities may cause problems for the
present design of the linear model.

The validity of a linear model is a more subjective test than correctness and
truncation error and yet is probably the one of most interest. In tests of simple
models of an ODE problem in Chapter 4 and a PDE problem in Chapter 5 the
perturbation forecast model was demonstrated to have a similar validity to the
tangent linear model. However we recognize that the range of possible tests on
these models was limited. Ways of extending these are discussed in Section 7.2.
The study of the shallow water model also allowed the verification of a formula
designed to estimate the linearization error of the tangent linear model. This formula
has formed the basis of our validation of the three-dimensional perturbation forecast
model. By means of this formula we have shown that much of the linearization error
that we see in tests of the three-dimensional model is due to nonlinear effects rather
than the fact of deriving the model by the semi-continuous method. Nevertheless,
other significant errors are apparent, particularly in the damping of the pressure
perturbation.

Overall we have shown that a linear model formed by the continuous method
may be as accurate as a tangent linear model. This will depend particularly on how
the numerical scheme is applied to the continuous linear equations and on how the
linearization state is chosen. The viability of using this method has been shown in
simple models. In the three-dimensional model the results were encouraging, but
it is clear that the present version of the model is not yet satisfactory. Further
modifications to the scheme will be tested in order to improve this.

There still remains to summarize the answer to the second part of our question,
that is does the semi-continuous method allow the avoidance of problems associated

with discretizing the discrete numerical models? In the shallow water model of
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Chapter 5 it was not clear that either method held any advantage from this point of
view. The linearization of interpolation associated with semi-Lagrangian schemes,
while not necessarily resulting in a ‘correct’ tangent linear, does not appear to cause
problems for the validity of the model in time. This confirms the results found
by Tanguay et al. [81]. For the iterative solution of the elliptic equation, it was
straightforward in the shallow water model to derive the linearized equation to solve
in the tangent linear model. Hence neither the semi-Lagrangian advection nor the
iterative solver caused any problem for deriving the tangent linear.

For the three-dimensional model the use of the semi-continuous method did pro-
vide an extra advantage, since the nonlinear model has several predictor-corrector
steps in the solution procedure. A derivation of the tangent linear model would
have required either the storage or recalculation of the intermediate values from
these steps, which was not necessary for the perturbation forecast model. It was
also possible to make some extra approximations in the equations and in the dis-
cretization, for example by simplifying the way in which the Coriolis terms were
treated. However it is clear that some of these approximations have led to a poor
prediction of the pressure perturbation and so further investigation is required to
understand the effects of each of them on the final solution.

A major practical advantage of using a perturbation forecast model will come
when parametrizations of physical processes are introduced into the linear model.
As we discussed in Section 3.2 these parametrizations often contain discontinuous
processes which cause problems for tangent linear models. It is also the case that as
the schemes for the nonlinear models become more complex, their linearizations will
themselves be complex and expensive without adding any extra useful information to
the linear system. The perturbation forecast model allows simpler parametrizations
to be added with more thought as to what the scheme is trying to do in the linear
model. Thus advantages of the semi-continuous method do remain and it is clear

that perturbation forecast models can be designed to be as accurate as tangent
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linear models. Nevertheless great care must be taken in the design of a perturbation

forecast model to ensure that the accuracy is as good as is required.

7.2 Further work

Having begun to answer the question which we posed, we now consider how this
work may be extended in order to provide further insight into the two methods
for deriving a linear model. The first extension concerns the shallow water model
of Chapter 5. Although the studies of that chapter showed very little difference
between the tangent linear model and perturbation forecast model, the experiments
we were able to carry out were limited in scope. This was partly due to the fact
that it was only possible to find simple problems for the system which were not
too highly nonlinear. A useful exercise would be to extend this model to include
rotation. Such an extension would allow a greater range of experiments to be run.
It would also result in the system having a Rossby mode solution as well as the
two gravity modes. This would enable a study of how well the linear models treat
a Rossby mode, which could be compared with the results found for the gravity
waves.

A second extension of the problem would be to derive the adjoints of the different
linear models. We expect the accuracy of the adjoint to be linked to that of the linear
model. However it may be that using the adjoints in simple sensitivity or assimilation
tests would give a better quantative measure of the difference between the linear
models. This would also be a more stringent test of the adjoint model formed via
the semi-continuous method, since although the application of incremental four-
dimensional variational data assimilation allows an approximate linear model and
adjoint, other applications of adjoints require the gradient to be as accurate as
possible.

At the same time, it is clear that further work is required on the three-dimensional
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model. One problem remaining from this study is the damping effect of our per-
turbation forecast model which we reported in Chapter 6. We conjectured that this
may be due to the treatment of the term arising from the linearization of advection,
which we showed in the study of the shallow water model to be first order in time.
Although this did not seem to be detrimental to the performance of the simple model
it is certainly not desirable to have such an error. The alternative considered in the
shallow water model was to average the term along the trajectory, but this holds
extra complications for the three-dimensional model since it adds extra coupling
between the equations. We therefore require another second order discretization of
this term. The scheme we have identified and intend to test is an extrapolation
in time at the mid-point of the trajectory, in much the same way as the departure
point calculation is performed. Thus, for example in the linearized thermodynamic
equation, we would have

Su. V6 g(auw):; _ %((mve);g—l, (7.1)
where m indicates a calculation at the mid-point. We can show that this scheme
is second order in time, but it does contain a small instability ([21], p.55). Its
usefulness will have to be determined experimentally. However, the analysis of the
shallow water model showed that for the linear model to remain second order in
time we also require a second order estimate of the linearization state at the centre
of the time step. Thus it is probable that to see the benefit of this new scheme
we will also need to revise the strategy of using the start of time step linearization
state.

Recently other investigations elsewhere in the Met Office have shown that the
damping in the perturbation forecast model is also sensitive to the treatment of
the Coriolis terms. We introduced in Section 6.2.4 a discretization of these terms
designed to avoid problems when deriving the adjoint of the linear model. Alter-

native discretizations tested more recently have been shown to lessen the damping
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effect seen in the linear model. However, more work is needed to investigate the

comparative stability and accuracy properties of these different schemes.
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Appendix A

Convergence of iterative procedure

We prove here the conditions for which the iterative procedure of the nonlinear
shallow water model of Section 5.2.1 converges to the solution of the discrete elliptic
equation we are trying to solve. The equation we wish to solve is equation (5.51)
on page 93,

1
q)ref

i

Al
q)ref7 ( )

~Cly + (20 + o ) = CH_y = R~ In(@pes + &) +

with C > 0,®@,.y > 0 and @, + ¢, > 0 for 7 = 1,..., N. This equation can be

represented symbolically by the vector notation
L¢' = R— N(¢'), (A.2)

where ¢’ = {#!}. The matrix L and vector function N are defined by their compo-

nents
Lo) = —Cély+ (20 + 2 )~ € (A.3)
1+1 q)ref P 1—17
Nz(¢/) — 1n(q)ref + Qbi) - ;47 (A4)
ref
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and R is the vector of components R;. The iterative procedure proposed to solve

this equation is given by equation (5.52) on page 93,

m 1 m m
0ol (204 g )l - o,

q)ref
qb’»(m)
= Ri—In(®ey + ¢\™)+ 2 (A.5)
q)ref
This is a fixed point iteration which can be written in the form
¢ = L7 (R - N(¢"")). (A.6)

In order to show the conditions under which this iteration will converge, we make
use of the fixed-point theorem, taken from [62]. We first define a general iteration
of the form

g(xm+) x(my — ¢, m=0,1,2,... (A7)

We denote by gx and gy the n x n matrices

oo = (). se=(Few). @y

We also require the definition of the spectral radius of a matrix:

Definition A.1 Let C be a matriz with eigenvalues A, Ag, ..., A,. Then the spec-
tral radius of C, written p(C), is defined by

o(C) = mase ] (4.9)
We then have the following theorem:

Theorem A.1 (Fixed-point theorem) Let S’ be an open neighbourhood of a point
x* € R". Assume that g € C'(S' x '), gx~* is defined and continuous on S’ x S’
and g(x*,x*) = 0. Define

C = —[gu(x",x7)] gy (x", x7) (A.10)

and suppose that p(C) = XA < 1. Then there exists a neighbourhood S of x* such

that for any initial vector xo € S the sequence generated by (A.7) converges to xX*.
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In order to apply this theorem to our iteration (A.6) we first note that it can be
written in the form (A.7) by defining

g(¢ ", ¢ ) = L") 4 N~ R, (A.11)

We define matrices

9
= g N, (A.12)
C = -L7'D. (A.13)

From (A.4) we see that D is a diagonal matrix with entries along the diagonal given

by

1 1 1 q)ref
— + = — 1——F]. Al4
q)ref q)ref + Qb; q)ref ( q)ref + Qb;) ( )

Then using Theorem A.1 the fixed point iteration (A.6) will converge to a correct

solution of the nonlinear system (A.2) if
p(C) < 1. (A.15)

It remains to find the conditions under which (A.15) holds.

We first set out two lemmas.

Lemma A.1 (Similarity transform) Let P be a nonsingular matriz. Then for

matrices C, C with C = P~1CP, the eigenvalues of é, denoted )\(é), are equal to

the eigenvalues of C, A\(C). Hence we also have p(C) = p(C).

Lemma A.2 (Symmetric transform) Let P be a nonsingular matriz and let C, C
be matrices with C = PTCP. Then C is a symmetric positive definite matriz if and

only zfé s a symmetric positive definite matriz.

We now note that the matrix L is symmetric and strictly diagonally dominant

with positive diagonal entries and hence L is symmetric positive definite. This
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implies that L and L~! have unique symmetric positive definite square roots which

we write L2, L™% respectively (see, for example, [36]). We define a matrix

A = L:CL: (A.16)
= —L:DL=. (A.17)

Then from Lemma A.1 the eigenvalues of A are equal to the eigenvalues of C and we
also have that A is symmetric, since D is diagonal. The eigenvalues of A, denoted
A;, are therefore real. We consider matrices By =1+ A, B, =1 — A and establish

the following lemma:

Lemma A.3 If By, By are symmetric positive definite matrices then the conver-

gence criterion (A.15) is satisfied.

Proof of Lemma A.3

Let u;, v; be the eigenvalues of By, By respectively. Then p; = 14+ A; and v; = 1— ;.
If By, B, are symmetric positive definite then we have y; > 0 and 1v; > 0 for all ¢.

Hence

and 1—X; >0,

which implies that |A] < 1. Hence p(A) < 1 and so by Lemma A.1 p(C) < 1 and
the convergence criterion (A.15) holds.O
It remains to find the conditions for which By, B, are symmetric positive definite.

We now consider the matrices

N
N

L>(I+A)L? =L+D. (A.18)

Since L7 is symmetric, by Lemma A.2 we have that I+ A will be symmetric positive

definite if L £ D is symmetric positive definite. Since L is a tridiagonal matrix and
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D is a diagonal matrix with entries given by (A.14), we find that L + D is the

tridiagonal matrix with entries

1 1 D,
—C,20 + + 1 - —C). A.19
( Pref  Dres ( Prey + ¢2> ) (8.19)

A sufficient condition for this matrix to be symmetric positive definite is that it be

strictly diagonally dominant. This will certainly occur if

1 1 q)ref
> 1——11. A .20
q)ref - ‘ q)ref ( q)ref + qb;) ‘ ( )

For ¢! > 0 this condition always holds. For ¢! < 0 (A.20) holds for

®7’€
|| < 5 I (A.21)

Hence (A.21) provides a sufficient condition for the convergence of the iteration
(A.5).
We note also that from (5.48) we have ®,.; + ¢;' = ¢'t', the value of &; at the

new time level, and so we can write the convergence condition (A.20) as

1 1 B,
> 1 — } A.22
Doy ‘(I)ref ( ¢?+1>‘ (4.22)

Hence a sufficient condition for convergence is that ®,.5 < qb?"'l. We can therefore

guarantee convergence by choosing a value of @, less than any expected value of

¢; at the new time level.
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Appendix B

Helmholtz equation for

3-dimensional model

The Helmholtz equation for the perturbation forecast model resulting from substi-

tution into (6.98) takes the following form:

1
cos ¢

~J A 1)
+ 9, {0225,7511 —Cs (ij” +C,.Y" )}

1
M (Conr X) + m&b (CynY) (B.1)

+ Cs [Czanaﬂ’ }

— ¢ = RHS,
with X and Y are defined by
X = Chu (aﬂsﬂ’ — C,yCa0, 611 A) : (B.2)
Y = Cyypo <a¢5ﬂ’ — C,,C,0,611 (b) : (B.3)

and the notation following that introduced on Page 160. The coefficients are given

by

A
pOy,r
™
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—r A
aqazAte,f

Corao = B.5
: 7 cos ¢ (B.5)
,06,77“(;S cos ¢
Cyy = o (B.6)
ST
Ate,b
nyZ = 051043F¢Cp s (B.7)
agayc, Atp"0
C..=—"22"" B.8
0,rG (B8)
Oé20é4CpAt(962,«(9
z — 5 B.
¢ 0,rG (B.9)
Ohr
sz I S—— B.10
7 cos ¢ ( )
Ogr
C,. = %, (B.11)
c,, = 20 (B.12)
6
Ogr
Cyp = g% (B.13)
Cs = pg:?r, (B.15)
_ (L =r)pdyr
Ca = kIIAt (B.16)
. OézAtazr . ' -
RHS = p9At< < 5w> —p(95,0>
— ¢
1 PO 1 pOyr y
+ COSQba)\ <a1 — 5 ) Cosqba(b <a1 5 cos ¢pov )
A — ?
. { adw* adu= o
49, (,0 ( e v U )) (B.18)
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