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Abstract

This dissertation considers the behaviour of water waves within a harbour. The problem

is motivated by both real world applications as well as being of interest from a purely

abstract mathematical perspective. The harbour is modelled as a simple rectangular do-

main which is partially open on one side to the ocean. Techniques used in previous work

on wave diffraction around a breakwater are adopted, and Partial Differential Equation

and Integral Equation methods are used to formulate the equations describing the wave

field within and outside of the harbour.

The governing integral equation that is formed is solved numerically using Galerkin’s

method, and graphical representations of the wave field are plotted. The effects of varia-

tions in the angle of the incident wave, and the wave number are analysed. In particular

the phenomenon of harbour resonance is investigated, focusing on what wave numbers

cause a resonant effect, but also examining the effect of changes in the incident wave

angle, the size of the opening onto the ocean, and the dimensions of the harbour.
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Chapter 1

Introduction

The aim of this project is to examine the behaviour of water waves within a harbour,

in particular investigating the phenomena of harbour resonances. The engineering of

harbour design is highly dependent on the behaviour of water waves within a harbour.

It has to provide both defensive walls against flooding, and also safe mooring for boats.

Figure 1.1: Mullion harbour, Cornwall and West Bay, Bridport

Harbour resonance is a particular issue as relatively small harbour oscillations can cause

considerable damage to ships that are moored. This phenomenon is called a seiche, which

is a standing wave oscillation of an enclosed water body, such as a lake, bay, harbour
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CHAPTER 1. INTRODUCTION 2

(or bathtub!) It acts in a pendulum fashion even after the original causative force has

ended (Scripps Institution of Oceanography, UC San Diego [4]). According to Jansa,

Monserrat and Gomis [3], “every port, bay or inlet has a natural oscillation mode or se-

iche with a period determined by the physical characteristics of the water body...Natural

seiches usually have very small amplitude (of the order of a few centimetres at most)

and can hardly be visually detected. They appear when the body water oscillates around

the equilibrium after some small perturbation. However, sometimes they can reach large

amplitudes when they are amplified due to resonance with an external exciter.”

An example of such an occurence is the rissaga (local name for a seiche) at Ciutadella

Harbour in Spain. Here the rissaga occurs several times a year, mostly in the summer,

and is generally approximately one metre in amplitude, and lasts around 10 minutes [3].

However on 15 June 2006 a rissaga of roughly five metres amplitude occurred, resulting

in damage to many boats within the harbour.

Figure 1.2: Ciutadella harbour, Spain, 15 June 2006 [3]
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Figure 1.2 shows the effect of this event as the water rapidly changes in height within the

harbour leaving boats suddenly beached, and then pulled off their moorings/anchorage

and flung against the harbour walls. While seiches are often caused by dramatic atmo-

spheric or seismic events such as earthquakes or atmospheric pressures oscillations, they

can however be brought about by simple tidal action - if this is at the specific frequency

that will cause resonance.

In Chapter 2 we shall discuss the work on water wave diffraction through breakwa-

ters that has been done by Porter [1] and Linton & McIver [2]. This will be used in

Chapter 3 to guide our approach to formulating the equations that describe the wave

behaviour both inside and outside of the harbour. We shall be using Partial Differential

Equation (PDE) and Integral Equation methods in order to model a simple rectangular

domain, that is partially open to the ocean. Equations will be set up to describe the

wave field inside and outside of the harbour, and these will then be matched at the

harbour mouth where they meet.

We then go on to look at our chosen method of solution, the Galerkin method, in

Chapter 4. We will discuss how to deal with singularities that occur in the integral

equation in question, and also how to adapt the method to cope with an asymmetric

opening to the ocean. In Chapter 5 the process of writing a program in Matlab to

numerically solve the integral equation will be described, and evidence of convergence

in the program’s results will be discussed.

The results for a basic model of the harbour, varying wave numbers and angles for

the incident wave, will then be shown and discussed in Chapter 6. This will then be

followed up in Chapter 7 with a look at the case where resonance occurs. In particular

we shall be exploring what wave number produces a resonant effect, and whether the

angle of the incident wave, the dimensions of the harbour, and the width of the gap in

the harbour mouth have any impact on this resonance.

In Chapter 8 we shall then summarise our conclusions, and discuss some of the fur-

ther paths of enquiry remain for the future.



Chapter 2

Background

In this chapter we will discuss some of the literature relevant to the harbour modelling

problem, and look at the mathematical processes from this literature that can be adapted

and used in solving the harbour problem.

2.1 The previous literature

The two main works that are referred to in this project are Porter’s Wave diffraction

around breakwaters [1] and Handbook of Mathematical Techniques for Wave/Structure

Interactions by Linton & McIver [2].

In Porter’s work [1] a number of scenarios involving breakwaters are addressed in order

to develop the use of methods involving integral equations. The most relevant scenario

is a model looking at an infinite, straight breakwater with a gap. In Linton & McIver’s

work [2] Chapter 4.7 also deals with diffraction of waves by a breakwater in order to

illustrate integral equation methods. The formulation and solution of the breakwater

problem is similar to that of the harbour problem looked at in this project, and therefore

a number of techniques used by both [1] and [2] will be adopted.

The breakwater problem is therefore described in Section 2.2 below, before going on

to set up the harbour problem in the following chapter.

4



CHAPTER 2. BACKGROUND 5

2.2 The breakwater problem

2.2.1 The scenario

The breakwater is modelled as a solid, infinite, straight rectangular wedge of thickness

2d, with a gap of width 2b. The origin is placed so that it is at the centre of the

gap as shown in Figure 2.1 below. An incident wave is then prescribed which hits the

breakwater at an angle α to the outer wall of the breakwater, and is partly reflected

and partly diffracted by it. To simplify the model it is assumed that the breakwater is

perfectly reflecting, and that the water is inviscid, incompressible, homogeneous and in

irrotational motion.

Figure 2.1: View of the breakwater model from above

Since irrotational flow is assumed, and therefore the velocity field q satisfies ∇ × q =

0, we can write q = −∇Φ where the potential function Φ(x, y, z, t) satisfies Laplace’s

equation. We can eliminate dependence on the vertical space variable z and time t by

setting Φ as

Φ = Re

{
gcoshk(z + h)

iσcosh(kh)
φ(x, y)e−iσt

}
(2.1)
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where σ is the imposed wave frequency, z is measured vertically upwards with z = 0 at

the undisturbed free surface and z = −h at the sea bed, and the local wave number k

is given by the dispersion relation

σ2 = gk tanh(kh). (2.2)

If Φ is substituted into Laplace’s equation, the equation reduces to the Helmholtz equa-

tion in terms of φ,

φxx + φyy + k2φ = 0. (2.3)

The solution φ(x, y) is made up of different components and we may write these as

follows

φ(x, y) = φi(x, y) + φr(x, y) + φd(x, y), y > d,−∞ < x <∞
= φd(x, y), |y| < d, |x| < b, and

y < −d,−∞ < x <∞
(2.4)

where φi is the incident wave, φr is the reflected wave and φd is the diffracted wave. The

incident wave can be represented by

φi(x, y) = Aeikdsinα−ik(xcosα+ysinα) (2.5)

where A is a prescribed amplitude. The reflected wave component is represented by

φr(x, y) = Ae−ikdsinα−ik(xcosα−ysinα). (2.6)

2.2.2 Boundary conditions

There are a number of conditions that need to be satisfied. At the corners of the

breakwater, derivatives cannot exist, so an edge condition is specified in order to avoid

source-like behaviour. Therefore the requirement that

∂φ

∂r
≈ r−δ, r → 0, δ < 1 (2.7)
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where r is the radial distance from the corners of the breakwater, is imposed. Considering

the breakwater as a wedge of angle θ, then for θ < π this gives

δ =
(π − θ)

(2π − θ).
(2.8)

The Sommerfeld radiation condition

lim
r→∞

r
1
2

(
∂

∂r
− ik

)
φd = 0 (2.9)

where r =
√
x2 + y2, must also be satisfied uniformly in θ in order to ensure that the

diffracted wave decays in the far-field. The diffracted wave φd must also satisfy the

Helmholtz equation (2.3), the boundary conditions:

∂φd
∂y

= 0, y = ±d, |x| < b

∂φd
∂x

= 0, x = ±b, |y| < d

(2.10)

and also the jump conditions

φd(x, d+ 0)− φd(x, d− 0) = −2Ae−ikxcosα

φd(x,−d+ 0)− φd(x,−d− 0) = 0

φdy(x, d+ 0)− φdy(x, d− 0) = 0

φdy(x,−d+ 0)− φdy(x,−d− 0) = 0 for |x| < b

 (2.11)

which ensure continuity of surface elevation and fluid velocity across y = ±d, |x| < b.
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2.2.3 Method of solution

Green’s formula is used to convert the governing PDE into a pair of integral equations.

Green’s formula states that∮
C

{φ(x0, y0)
∂

∂n0

G(x, y|x0, y0)−G(x, y|x0, y0)
∂

∂n0

φ(x0, y0)}dC0

=


φ(x, y) if (x, y) ∈ D
1
2
φ(x, y) if (x, y) ∈ C

0 if (x, y) /∈ D + C


(2.12)

where D is the domain, C the surrounding boundary, and n0 the normal to the boundary

C. Here the Green’s function G(x, y|x0, y0) is a solution of

(∇2 + k2)G = −δ(x− x0)δ(y − y0) (2.13)

so that

G ≈ − 1

2π
logR as R =

√
(x− x0)2 + (y − y0)2 → 0. (2.14)

An important solution is therefore

G0 =
1

4
iH

(1)
0 (kR) (2.15)

where H
(1)
0 is the Hankel function of the first kind, of order zero given by

H
(1)
0 (x) = J0(x) + iY0(x) (2.16)

where J0(x) is a Bessel function of the first kind and Y0(x) is a Bessel function of the

second kind which is singular at the origin. Both Bessel functions exhibit oscillatory

and decaying behaviour.

The boundary value problem for φd at this point is completely stated, and is then

converted into integral equations. Porter [1] uses the breakwater symmetry, to produce

two independent integral equations, one for the symmetric part and one for the anti-

symmetric part. A variational method is then applied to obtain a numerical solution.



CHAPTER 2. BACKGROUND 9

In Linton and McIver’s work [2] a very similar process is used to set up the break-

water problem. However as they deal with the special case of thin barrier problem

(d = 0), only one integral equation is constructed by matching the solution above and

below the breakwater. They then use both a collocation process, and a Galerkin method

to solve this integral equation.

2.2.4 Comparison to the harbour problem

The breakwater problem has a number of similarities to the harbour modelling problem

that will be studied in this dissertation. The initial set-up of the problem is similar, in

that the simplifying assumptions relating to the fluid and the breakwater walls, referred

to in Section 2.2.1 still apply. There are only two regions - within and outside of the

harbour - in the new problem rather than the three of the breakwater problem (above

and below the breakwater, and within the gap). However the overall solution can still

be split up into the same two components as modelled in (2.4) with an incident wave

coming in at angle β to the coast, reflected waves travelling away at an angle π − β to

the coast, and diffracted waves created by the area within the harbour.

A boundary value problem then needs to be set up, just as within the breakwater prob-

lem and formulated into an integral equation which can be solved numerically. However

in the harbour modelling problem, the solution within the harbour will be set up using

separation of variables as an alternative to using Green’s function. Linton and McIver’s

approach of matching the solution within and outside of the harbour will be followed

since the coastal walls will be treated as thin. This will then be solved numerically using

Galerkin’s method.



Chapter 3

Formulating the harbour problem

In this chapter, we shall describe the harbour modelling problem in detail, and set up

the relevant equations that need to be solved. This will be done separately for the wave

field inside and outside the harbour. These two sets of equations will then be matched

to produce an integral equation that needs to be solved.

3.1 The scenario

The harbour is modelled as a rectangular domain of width 2a and length b, with the

origin placed in the centre of the harbour mouth. The coastal wall extends across the

entrance to the harbour, as shown in Figure 3.1 below, so that the harbour mouth is of

width 2g ∈ (0, 2a). The gap is not extended to reach exactly 2a as this would affect the

corner condition that is applied and require a slightly different computational approach.

The wall and gap are kept symmetric, though at a later point the adjustments needed

to model asymmetry will be discussed. The wall is modelled as infinitely thin.

An incident wave comes towards the harbour at an angle β to the coast. Where this

hits the coastal wall, it will be perfectly reflected back out to sea at an angle π−β, and

where it is able to travel through the harbour mouth, it will be diffracted. Therefore

within the harbour, the wave solution is made up solely of the diffracted wave φ−d and

outside the harbour the wave solution is the sum of the incident, reflected and diffracted

10
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Figure 3.1: View of the harbour model from above

waves: φi + φr + φ+
d where

φi = Ae−ik(x cosβ+y sinβ) (3.1)

and

φr = Ae−ik(x cosβ−y sinβ). (3.2)

3.2 Formulating the problem inside the harbour

Within the harbour in order to model the assumption that the walls are solid and

perfectly reflecting, the relevant boundary conditions are that

∂φ−d
∂x

= 0, x = ±a, −b < y < 0

∂φ−d
∂y

= 0, y = −b, |x| < a

∂φ−d
∂y

= 0, y = 0, −a < x < −g and g < x < a.

(3.3)

As discussed in Chapter 2, the Helmholtz equation

φxx + φyy + k2φ = 0 (3.4)



CHAPTER 3. FORMULATING THE HARBOUR PROBLEM 12

needs to be solved for the diffracted wave in the harbour area, and this will be done

with the method of separation of variables. If we let

φ−d (x, y) = X(x)Y (y) (3.5)

then substituting this into the Helmholtz equation (3.4) and re-arranging we get

X ′′Y +XY ′′ + k2XY = 0

⇒X ′′

X
= −Y

′′

Y
− k2 = −λ2

(3.6)

which implies that

X ′′ + λ2X = 0,

Y ′′ + (k2 − λ2)Y = 0,
(3.7)

where λ is the separation constant. This leads to the general solution for X of

X = Acos[λ(x+ a)] +Bsin[λ(x+ a)]. (3.8)

The boundary conditions (3.3) then need to be applied to find the particular solution.

These imply that X ′(−a) = 0, so B = 0, and also X ′(a) = 0, so that either A = 0 or

else λ = λn = nπ
2a

, for n ∈ N ∪ {0}. We therefore have the particular solutions for X

Xn = Ancos
[nπ

2a
(x+ a)

]
, n ∈ N ∪ {0} , (3.9)

and can perform a similar process to solve for Y . From (3.7) we have that

Y ′′n + (k2 − λ2
n)Yn = 0, n ∈ N ∪ {0} . (3.10)

For ease of notation if we now let

α2
n = k2 − λ2

n (3.11)
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which gives us a value of

αn =

{ √
k2 − λ2

n k > λn

i
√
λ2
n − k2 k < λn

(3.12)

then this leads to the general solution for Yn of

Yn = Cncos[αn(y + b)] +Dnsin[αn(y + b)]. (3.13)

Similarly to before, using the derivative boundary conditions (3.3) gives Y ′n(−b) = 0, so

Dn = 0, and

Yn = Cncos[αn(y + b)]. (3.14)

Using (3.5) then gives φ−d as

φ−d =
∞∑
n=0

fncos
[nπ

2a
(x+ a)

]
cos[αn(y + b)]. (3.15)

In order to find the unknown constants fn we use a Fourier series approach, initially

differentiating with respect to y, and putting y = 0,

∂φd
∂y

(x, 0) =
∞∑
n=0

−fnαncos
[nπ

2a
(x+ a)

]
sin[αnb]. (3.16)

Then by integrating both sides with respect to x, multiplying by a cos term and then
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using properties of orthogonality we can find that∫ a

−a

∂φd
∂y

(x, 0)cos
[mπ

2a
(x+ a)

]
dx

=
∞∑
n=0

−fnαnsin[αnb]

∫ a

−a
cos

[mπ
2a

(x+ a)
]
cos

[nπ
2a

(x+ a)
]
dx

=

{
0 for m 6= n,

−aεnfnαnsin[αnb] for m = n,

(3.17)

where

εn =

{
2 n = 0,

1 n ≥ 1.
(3.18)

So the solution for the diffracted wave within the harbour is

φ−d =
∞∑
n=0

{
−

cos
[
nπ
2a

(x+ a)
]
cos[αn(y + b)]

aεnαnsin(αnb)

∫ a

−a

∂φd
∂y

(x0, 0
−)cos

[nπ
2a

(x0 + a)
]
dx0

}
(3.19)

which can be written as

φ−d =

∫ g

−g

∂φd
∂y

(x0, 0
−)

[
∞∑
n=0

−cos[λn(x0 + a)]cos[λn(x+ a)]cos[αn(y + b)]

aεnαnsin(αnb)

]
dx0. (3.20)

The integration boundaries have been altered from the maximum harbour gap of−a to a,

to the gap that is defined by g. This can be done since on the coastal wall ∂φd

∂y
(x0, 0) = 0,

so there will only be a non-zero result from the integral within the ranges (−a,−g) and

(g, a).

There is a possibility that for particular values of a, b and k, αnb may be an exact

multiple of π, leading to a zero denominator in the kernel of this integral. This case will

be dealt with in Section 3.5 and for the time being we suppose that αnb
π
∈ Z.
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3.3 Formulating the problem outside the harbour

The Helmholtz equation (3.4) again needs to be solved for the diffracted wave in this

region. This can then be combined with the incident and reflected waves to construct

the full solution outside the harbour. A Green’s function approach will be used to solve

for the diffracted wave rather than separation of variables as used inside the harbour

since this is an unbounded domain.

The diffracted wave needs to satisfy the Sommerfeld radiation condition which ensures

that waves decay in the far field. This is

lim
r→∞

r
1
2

(
∂

∂r
− ik

)
φ+
d = 0, r2 = x2 + y2 (3.21)

uniformly in θ, as well as the boundary condition that models the coastal wall as solid

and perfectly reflecting, namely

∂φ+
d

∂y
= 0, |x| > a, y = 0+. (3.22)

Applying Green’s formula we let G(x, y|x0, y0) satisfy

∇2G+ k2G = −δ(x− x0)δ(y − y0) in D

∂G

∂y
= 0, y = 0

(3.23)

where D represents the semi-circular finite domain, with centre at the origin as shown

in Figure 3.2 below, and C represents the edge of the domain D. G must also satisfy

the Sommerfeld radiation condition as stated in (3.21).

Then by applying Green’s identity in conjunction with the boundary conditions (3.22)
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Figure 3.2: View of the harbour model from above

and (3.23) we get∫ ∫
D

φ+
d∇

2G−G∇2φ+
d dx dy =

∫ ∫
D

φ+
d (∇2G+ k2G)−G(∇2φ+

d + k2φ+
d )dx dy

=

∮
C

φ+
d

∂G

∂n
−G

∂φ+
d

∂n
dC

=

∫
gap

φ+
d

∂G

∂y
+G

∂φ+
d

∂y
dx

+

∫
coast

φ+
d

∂G

∂y
+G

∂φ+
d

∂y
dx

+

∫
far-field

φ+
d

∂G

∂r
+G

∂φ+
d

∂r
dr

=

∫
gap

+G
∂φ+

d

∂y
dx

(3.24)

where n is a normal and ∂φ
∂n

= n · ∇φ. Therefore the solution outside the harbour for

the diffracted wave is of the form

φ+
d (x0, y0) = −

∫
gap

G|y=0
∂φ+

d

∂y
|y=0dx0 (3.25)
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where G is based upon a Hankel function, which therefore decays for large x, y so

satisifying the Sommerfeld radiation condition (3.21), and can be written in the following

way using the method of images to ensure G satisfies the derivative boundary conditions

(3.23):

G(x, y|x0, y0) =
i

4
[H

(1)
0 (k

√
{(x− x0)2 + (y − y0)2})

+H
(1)
0 (k

√
{(x− x0)2 + (y + y0)2})].

(3.26)

The solution will also need to satisfy the edge condition as given in equations (2.7) and

(2.8) with θ = 0 for a thin wall. This means we require

∂φ

∂r
= O(r−

1
2 ) + o(r−

1
2 ) (3.27)

around the corners of the harbour mouth. The effect of this condition can be seen in

Section 4.2.

Across the harbour mouth (gap) the required Green’s function therefore gives the solu-

tion for the diffracted wave as

φ+
d (x0, 0

+) = − i
2

∫
gap

∂φd
∂y

(x, 0+)H
(1)
0 {k|x− x0|}dx. (3.28)

In order to match the notation for the expression within the harbour, x and x0 are now

interchanged. The complete solution outside the harbour, φ+, is then made up of the

incident, reflected and diffracted waves:

φ+(x, y) =Ae−ik(xcosβ+ysinβ) + Ae−ik(xcosβ−ysinβ)

− i

2

∫
gap

∂φd
∂y

(x0, 0
+)H

(1)
0 {k

√
(x− x0)2 + y2}dx0.

(3.29)

3.4 The whole picture

Across the gap in the harbour mouth, the solution for the diffracted wave within the

harbour (3.20) has to match the total solution for the diffracted, incident and reflected
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waves outside the harbour (3.29). Equating these two expressions gives the integral

equation

2Ae−ikxcosβ =

∫
gap

∂φd
∂y

(x0, 0)

[
i

2
H

(1)
0 {k|x− x0|}

+
∞∑
n=0

−cos[λn(x0 + a)]cos[λn(x+ a)]cos[αnb]

aεnαnsin(αnb)

]
dx0

(3.30)

which will then need to be solved for the unknown derivative ∂φd

∂y
(x0, 0). Once this has

been found, it can be substituted back into the two expressions for the solution inside

(3.20) and outside (3.29) of the harbour, and this can then be plotted. For ease of

notation, the derivative function ∂φd

∂y
(x0, 0) will also be referred to as vβ(x0), and the

kernel
i

2
H

(1)
0 {k|x− x0|}+

∞∑
n=0

−cos[λn(x0 + a)]cos[λn(x+ a)]cos[αnb]

aεnαnsin(αnb)
(3.31)

will be referred to as K(x, x0) = K(1)(x, x0) +K(2)(x, x0) with

K(1)(x, x0) =
i

2
H

(1)
0 {k|x− x0|} (3.32)

and

K(2)(x, x0) =
∞∑
n=0

−cos[λn(x0 + a)]cos[λn(x+ a)]cos[αnb]

aεnαnsin(αnb)
. (3.33)

The integral equation across the gap then becomes

2Ae−ikx cos(β) =

∫ g

−g
vβ(x0)[K

(1)(x, x0) +K(2)(x, x0)]dx0. (3.34)

3.5 The special case for αmb = wπ

This case is also dealt with by Porter [1] for the breakwater problem and his solution can

be directly applied to the harbour problem as follows. If for a particular set of values

of a, b and k we let αmb = wπ where w is an integer, then the eigenfunction

φm−d (x, y) = cos[
mπ

2a
(x+ a)] cos[

wπ

b
(y + b)] (3.35)
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which satisfies the boundary conditions

∂φm−d
∂x

= 0, x = ±a

∂φm−d
∂y

= 0, y = −b
(3.36)

now also satisfies
∂φm−d
∂y

= 0, y = 0. (3.37)

The effect of vβ(x0) = 0 in this case is that fm cannot be found in equation (3.17) in

the same way as before. However an arbitrary amount of φm−d (x, y) may be included

in φ−d (x, y) and the coefficient fm determined by the continuity requirements of φ−d (x, y).

Since fm cannot be related to vβ(x0), kernel K(2)(x, x0) (3.33) needs to be modified

by excluding the n = m term in the integral equation (3.34), and by replacing it with

fmφ
m−
d (x, 0) = fm cos[

mπ

2a
(x+ a)] cos(wπ) (3.38)

which is the n = m term expressed without dependence on vβ(x0).

2Ae−ikx cos(β) =

∫ g

−g
vβ(x0)[K

(1)(x, x0) +K(2)(x, x0)]dx0

=

∫ g

−g
vβ(x0)[K

(1)(x, x0) +K(2)′(x, x0)] + vβ(x0)K
(n=m)(x, x0)dx0

=

∫ g

−g
vβ(x0)[K

(1)(x, x0) +K(2)′(x, x0)]dx0 + fm cos[
mπ

2a
(x+ a)] cos(wπ)

(3.39)

where the kernel K(2)(x, x0) is split up into K(2)′(x, x0) without the n = m case, and

K(n=m)(x, x0) being the n = m case. Then since the integral equation is linear, vβ(x0)

can be written in the form

vβ(x0) = v
(1)
β (x0)− fmv

(2)
β (x0) (3.40)
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where ∫ g

−g
v

(1)
β (x0)[K

(1)(x, x0) +K(2)′(x, x0)]dx0 = 2Ae−ikx cos(β) (3.41)∫ g

−g
v

(2)
β (x0)[K

(1)(x, x0) +K(2)′(x, x0)]dx0 = cos[
mπ

2a
(x+ a)] cos(wπ). (3.42)

Both vβ(x0)
(1) and vβ(x0)

(2) can then be solved for and since for sin(αmb) = 0 equation

(3.17) implies that ∫ g

−g
vβ(x) cos[

mπ

2a
(x+ a)]dx = 0 (3.43)

then fm can be evaluated by combining (3.43) and (3.40) to give∫ g

−g
v

(1)
β (x0) cos[

mπ

2a
(x0 + a)]dx0 = fm

∫ g

−g
v

(2)
β (x0) cos[

mπ

2a
(x0 + a)]dx0. (3.44)

Once fm has been evaluated, it can be substituted back into equation (3.40) in order to

find vβ(x0) and the waves inside and outside the harbour can be plotted as before.



Chapter 4

Solving the integral equation

In this chapter we shall examine the method of solution of the integral equation (3.34).

In particular, since the kernel of the integral equation contains singularities, we shall

look at how to remove these and deal with them analytically (in order to isolate the

quantity remaining to be evaluated numerically).

4.1 Finding the weak form of the equation

In order to use the Galerkin method to solve this integral equation, we first write it in

operator notation as

(K̂vβ)(x) = Fβ(x), for x ∈ (−g, g) (4.1)

where Fβ(x) = 2Ae−ikx cos(β) and the operator K̂ is given by

(K̂vβ)(x) =

∫ g

−g
K(x, x0)vβ(x0)dx0. (4.2)

An approximation ṽβ(x0) ≈ vβ(x0) is chosen by selecting a set of trial functions χl for

(l = 0....P ) and approximating vβ(x0) with

ṽβ(x0) =
P∑
p=0

tpχp. (4.3)

21
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The scalars tp are to be determined with the requirement that the residual to the ap-

proximation is orthogonal to each of the trial functions, that is,

< K̂ṽβ − Fβ, χl >= 0 for l = 0, 1...P (4.4)

must be true, where the inner product is defined as

< f, h >=

∫ g

−g
f(x)h(x)dx. (4.5)

The trial function needs to satisfy the edge condition ∂φ
∂r
≈ r−

1
2 [see (2.7), (2.8) and

(3.27)] around the corners of the harbour mouth. Therefore an appropriate choice is

χl(x) =
Tl(

x
g
)√

g2 − x2
, (4.6)

since this denominator will give the required value

ṽβ(x) ≈

{
(x+ g)−

1
2 as x→ −g,

(g − x)−
1
2 as x→ g.

(4.7)

The numerator could be any function of x,but choosing it to be the Chebyshev polyno-

mial of the first kind Tl(x) allows a number of analytical simplifications in the following

work. Putting the integral equation into the weak form with this choice of test function

and approximation for vβ(x0) then gives

P∑
p=0

tp < K̂χp, χq >=< Fβ, χq > for q = 0.....P (4.8)

producing a set of P + 1 simultaneous equations to be solved, for the coefficients tp.

By using the substitution x = g cosu, the identity Tn(x) = cos(n cos−1(x)) and an inte-

gral representation of the Bessel function (Abramowitz and Stegun [5] section 9.1.21),
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the right hand side of (4.8) simplifies in the following way:

< Fβ, χq > = 2A

∫ g

−g
e−ikxcosβ

Tq(
x
g
)√

g2 − x2
dx

= 2A

∫ π

0

e−ikgcosucosβcos(qu) du

= 2Aπ(−i)qJq(kgcosβ),

(4.9)

where Jq denotes a Bessel function of the first kind. On the left hand side of (4.8), we

have

< K̂χp, χq > =

∫ g

−g

∫ g

−g

{
i

2
H

(1)
0 (k|x− x0|)−

∞∑
n=0

cos[λn(x0 + a)]cos[λn(x+ a)]cos[αnb]

aεnαnsin(αnb)

}

×

{
Tp(

x
g
)√

g2 − x2

Tq(
x0

g
)√

g2 − x2
0

}
dx dx0

(4.10)

which requires further analytical work before a numerical evaluation is attempted.

4.2 Dealing with the singularities on the left hand

side of (4.8)

If we now define the following operator functions as

(K̂(1)vβ)(x) =

∫ g

−g
K(1)(x, x0)vβ(x0)dx0,

(K̂(2)vβ)(x) =

∫ g

−g
K(2)(x, x0)vβ(x0)dx0

(4.11)

then in both these terms there will be a singularity when x = x0. This needs to be

dealt with separately and evaluated analytically, whereas the rest of the equation can

be evaluated numerically.
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4.2.1 The Hankel function

First of all we will look at the term in equation (4.10) with the Hankel function,

< K̂(1)χp, χq >, and having split this up into a non-singular and singular part, directly

evaluate the latter. This process follows very closely that used by Linton & McIver [2]

in their solution of the breakwater problem.

Using the substitutions x = gcosu and x0 = gcosv the term in question becomes

< K̂(1)χp, χq >=
i

2

∫ π

0

∫ π

0

{
H

(1)
0 (kg|cosu− cosv|)cospucosqv

}
du dv. (4.12)

Depending on the values of p and q, this can be completely or partially evaluated

analytically. If we apply the substitutions u = π − u and v = π − v in equation (4.12)

the Hankel function term becomes:

< K̂(1)χp, χq >

=
i

2

∫ 0

π

∫ 0

π

{
H

(1)
0 (kg|cos(π − u)− cos(π − v)|)cosp(π − u)cosq(π − v)

}
du dv

=
i

2

∫ π

0

∫ π

0

{
H

(1)
0 (kg|cos(u)− cos(v)|)(−1)p cos(pu)(−1)q cos(qv)

}
du dv.

(4.13)

However when the sum of p and q is odd, (4.13) is equal to

− i
2

∫ π

0

∫ π

0

{
H

(1)
0 (kg|cosu− cosv|)cospucosqv

}
du dv = − < K̂(1)χp, χq > . (4.14)

Therefore

< K̂(1)χp, χq >= 0 for p+ q odd. (4.15)

For other values of p and q, the expression for < K̂(1)χp, χq > can be re-arranged in the

following way, splitting up the Hankel function into its two constituent Bessel functions.

Combined with the i
2

factor, this creates a non-singular imaginary part, and a real part

with a singularity. However this singularity can be subtracted and added back on, in
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order to isolate it from the remaining terms. Thus

i

2

∫ π

0

∫ π

0

{
H

(1)
0 (kg|cosu− cosv|)cospucosqv

}
du dv

=

∫ π

0

∫ π

0

{
i

2
J0(kg|cosu− cosv|)cospucosqv − 1

2
Y0(kg|cosu− cosv|)cospucosqv

}
du dv

=

∫ π

0

∫ π

0

{
i

2
J0(kg|cosu− cosv|)cospucosqv

− 1

2

[
Y0(kg|cosu− cosv|)− 2

π
ln|cosu− cosv|

]
cospucosqv

− 1

π
ln|cosu− cosv|cospucosqv

}
du dv.

(4.16)

The first two terms of this expression are now smooth and so can be readily evaluated

numerically, and the final term can be calculated as follows.

Using the identity from Appendix C of [7]

ln[2|cosA− cosB|] = −
∞∑
n=1

2n−1cos(nA)cos(nB) (0 ≤ A,B ≤ π,A 6= B) (4.17)

the final term can be re-written as∫ π

0

∫ π

0

ln|cosu− cosv|cospucosqv du dv

=

∫ π

0

∫ π

0

[
−ln2−

∞∑
r=1

2r−1cos(ru)cos(rv)

]
cospucosqv du dv.

(4.18)

This expression then needs to be examined for different values of p and q. Once it has

been evaluated, this value needs to be added back in after the remaining part of the

Hankel function term has been calculated numerically.
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For p = q = 0,∫ π

0

∫ π

0

[−ln2−
∞∑
r=1

2r−1cos (ru)cos(rv)] cospucosqv du dv

=

∫ π

0

∫ π

0

[
−ln2−

∞∑
r=1

2r−1cos(ru)cos(rv)

]
du dv

=

∫ π

0

∫ π

0

−ln2 du dv −
∞∑
r=1

2r−1

∫ π

0

cos(ru) du

∫ π

0

cos(rv) dv

=− π2ln2.

(4.19)

For p 6= q,

∫ π

0

∫ π

0

[
−ln2−

∞∑
r=1

2r−1cos(ru)cos(rv)

]
cospucosqv du dv

=− ln2

∫ π

0

cos(pu) du

∫ π

0

cos(qv) dv −
∞∑

r=1,r 6=p,q

2r−1

∫ π

0

cos(ru)cospu du

∫ π

0

cos(rv)cosqv dv

− 2p−1

∫ π

0

cos2pu du

∫ π

0

cos(pv)cosqv dv − 2q−1

∫ π

0

cos(qu)cospu du

∫ π

0

cos2qv dv

=0.

(4.20)

Lastly for p = q 6= 0,

∫ π

0

∫ π

0

[
−ln2−

∞∑
r=1

2r−1cos(ru)cos(rv)

]
cospucosqv du dv

=− ln2

∫ π

0

cos(pu) du

∫ π

0

cos(pv) dv −
∞∑

r=1,r 6=p

2r−1

∫ π

0

cos(ru)cospu du

∫ π

0

cos(rv)cospv dv

− 2p−1

∫ π

0

cos2pu du

∫ π

0

cos2(pv) dv

=− π2

2p
.

(4.21)
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We therefore now have

< K̂(1)χp, χq >

=
i

2

∫ π

0

∫ π

0

{[
H

(1)
0 (kg|cosu− cosv|)− 2

π
ln | cosu− cos v|

]
cospucosqv

}
du dv

+


π ln 2 p = q = 0,
π
2p

p = q 6= 0,

0 p 6= q.

(4.22)

4.2.2 The sum of trigonometric functions

In the same way as for the Hankel function, we need to isolate the singularity in this

term, and evaluate it analytically on its own, before adding it back into the rest of

the expression after it is calculated numerically. The singularity occurs for the term

< K̂(2)χp, χq > when x = x0 since the sum no longer converges as the nth term becomes

proportional to 1
n

as shown below. When x = x0

∫
gap

∫
gap

∞∑
n=0

{
cos[λn(x0 + a)]cos[λn(x+ a)]cos[αnb]

aεnαnsin(αnb)

} {
Tp(

x
g
)√

g2 − x2

Tq(
x0

g
)√

g2 − x2
0

}
dx dx0

=

∫
gap

∫
gap

∞∑
n=0

{
cos2[λn(x0 + a)]cos[αnb]

aεnαnsin(αnb)

} {
Tp(

x0

g
)Tq(

x0

g
)√

g2 − x2
0

}
dx0 dx0

=

∫
gap

∫
gap

∞∑
n=0

{
(1 + cos[2λn(x0 + a)])cos[αnb]

2aεnαnsin(αnb)

} {
Tp(

x0

g
)Tq(

x0

g
)√

g2 − x2
0

}
dx0 dx0

=

∫
gap

∫
gap

∞∑
n=0

{
cos[αnb]

2aεnαnsin(αnb)
+

cos[2λn(x0 + a)]cos[αnb]

2aεnαnsin(αnb)

} {
Tp(

x0

g
)Tq(

x0

g
)√

g2 − x2
0

}
dx0 dx0

(4.23)

The first term in the integral in the one that causes the problem since for large n,
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αn ≈ iλn = inπ
2a

. This means that when n is sufficiently large, then

cos[αnb]

2aεnαnsin(αnb)
≈

cos[ inbπ
2a

]

inπsin( inbπ
2a

)

=
cosh(nbπ

2a
)

inπisinh(nbπ
2a

)

= −
cosh(nbπ

2a
)

nπsinh(nbπ
2a

)

=
−1

nπ
+ o(

1

n
),

(4.24)

the sum of which does not converge. In fact, identity (4.17) shows that a log singularity

forms in K(2) when x = x0. As before, this problem can be avoided by both adding

and subtracting the singularity by using the rearrangement shown in (4.25). The n = 0

term in the sum term is separated out, in order to make use of the identity (4.17) in

further simplification.

∫ g

−g

∫ g

−g

∞∑
n=0

{
cos[λn(x0 + a)]cos[λn(x+ a)]cos[αnb]

aεnαnsin(αnb)

} {
Tp(

x
g
)√

g2 − x2

Tq(
x0

g
)√

g2 − x2
0

}
dx dx0

=

∫ g

−g

∫ g

−g

{
cos(kb)

2aksin(kb)
+

∞∑
n=1

cos[λn(x0 + a)]cos[λn(x+ a)]

a

[
cos(αnb)

αnsin(αnb)
+

2a

nπ

]

−
∞∑
n=1

2cos[λn(x0 + a)]cos[λn(x+ a)]

nπ

}{
Tp(

x
g
)√

g2 − x2

Tq(
x0

g
)√

g2 − x2
0

}
dx dx0.

(4.25)

The first summation term now converges, and the log singularity has been isolated in

the second summation term, which then needs to be integrated analytically. In order to

do this the following rearrangement of this second summation term needs to be made,

using equation (4.17). This process is also used by Porter [1] in his work. Then the
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substitutions x = gcosu and x0 = gcosv are made as before. Thus,

∫ g

−g

∫ g

−g

2

π

∞∑
n=1

cos[λn(x0 + a)]cos[λn(x+ a)]

n

{
Tp(

x
g
)√

g2 − x2

Tq(
x0

g
)√

g2 − x2
0

}
dx dx0

=− 1

π

∫ g

−g

∫ g

−g
ln

{
2
∣∣∣cos[

π

2a
(x0 + a)]− cos[

π

2a
(x+ a)]

∣∣∣}{
Tp(

x
g
)√

g2 − x2

Tq(
x0

g
)√

g2 − x2
0

}
dx dx0

=− 1

π

∫ π

0

∫ π

0

ln
{

2
∣∣∣cos[

π

2a
(gcosv + a)]− cos[

π

2a
(gcosu+ a)]

∣∣∣} cos(pu) cos(qv) du dv

=− 1

π

∫ π

0

∫ π

0

ln
{

2
∣∣∣sin[

π

2a
gcosu]− sin[

π

2a
gcosv]

∣∣∣} cos(pu) cos(qv) du dv

=− 1

π

∫ π

0

∫ π

0

{
ln

∣∣∣∣ sin[ π
2a
gcosu]− sin[ π

2a
gcosv]

(cosu− cosv)πg
2a

cos(πg
2a

cosv)

∣∣∣∣
ln(2|cosu− cosv|) + ln

∣∣∣πg
2a

cos(
πg

2a
cosv)

∣∣∣} cos(pu) cos(qv) du dv.

(4.26)

The first and third terms are smooth and can be added back into the rest of the original

summation to be integrated numerically. The second term is the only part with the

singularity which now needs to be integrated analytically. Again the identity (4.17) is

used in order to re-write the log term as a trigonometric function that can be easily

integrated and this gives∫ π

0

∫ π

0

− 1

π
ln(2|cosu− cosv|)cos(pu)cos(qv) du dv

=− 1

π

∫ π

0

∫ π

0

−2
∞∑
n=1

1

n
cosnucosnvcospucosqv du dv

=
2

π

∞∑
n=1

1

n

[∫ π

0

cosnucospu du

] [∫ π

0

cosnvcosqv dv

]
=
π

2p
for p = q 6= 0.

(4.27)
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So we have now found that

< K̂(2)χp, χq >

=

∫ π

0

∫ π

0

{
− cos(kb)

2aksin(kb)

−
∞∑
n=1

cos[λn(gcosv + a)]cos[λn(gcosu+ a)]

a

[
cos(αnb)

αnsin(αnb)
+

2a

nπ

]
− 1

π
ln

∣∣∣∣ sin[ π
2a
gcosu]− sin[ π

2a
gcosv]

(cosu− cosv)πg
2a

cos(πg
2a

cosv)

∣∣∣∣− 1

π
ln

∣∣∣πg
2a

cos(
πg

2a
cosv)

∣∣∣} cospucosqv du dv

+

{
π
2p

p = q 6= 0

0 otherwise.

(4.28)

If we now combine the expressions for < K̂(1)χp, χq > and < K̂(2)χp, χq >, we can get

the expression (4.29) for the quantity that remains to be evaluated numerically. This

evaluation will be done by writing a program in Matlab, which evaluates (4.29) and

then adds in the analytical solutions as detailed above in order to find < K̂χp, χq > for

q = 0......P .∫ π

0

∫ π

0

{
i

2

[
H0(kg|cosu− cosv|)− 2i

π
ln|cosu− cosv|

]
− cos(kb)

2aksin(kb)
−

∞∑
n=1

cos[λn(gcosv + a)]cos[λn(gcosu+ a)]

a

[
cos(αnb)

αnsin(αnb)
+

2a

nπ

]
− 1

π
ln

∣∣∣∣ sin[ π
2a
gcosu]− sin[ π

2a
gcosv]

(cosu− cosv)πg
2a

cos(πg
2a

cosv)

∣∣∣∣− 1

π
ln

∣∣∣πg
2a

cos(
πg

2a
cosv)

∣∣∣} cospucosqv du dv.

(4.29)

4.3 The Asymmetric case: adapting the integral equa-

tion

Up to this point, we have assumed the gap in the harbour mouth to be centred within

the harbour walls. We now consider the more general case in which the gap occupies



CHAPTER 4. SOLVING THE INTEGRAL EQUATION 31

x ∈ (−g1, g2); putting g1 = g2 = g would return us to the simpler case already dealt

with above. We now investigate in some detail how this change affects equation (4.8).

4.3.1 The right hand side of (4.8)

The test function still needs to be a Chebyshev polynomial, but this time in order to

satisfy the edge condition (3.27) we will take

χl =
Tl

(
2x+g1−g2
g1+g2

)
√

(x+ g1)(g2 − x)
. (4.30)

The right hand side of the integral equation once the inner product has been taken

(4.8), will be affected by this change, and now the substitutions that need to be used to

simplify this side are x = 1
2
(g2−g1 +(g1 +g2) cosu) and x0 = 1

2
(g2−g1 +(g1 +g2) cos v).

The right hand side then becomes

(Fβ, χq) = 2A

∫ g2

−g1
e−ikxcosβ

Tq(
2x+g1−g2
g1+g2

)√
(x+ g1)(g2 − x)

dx

= 2A

∫ π

0

e−
1
2
ikcosβ(g2−g1+(g1+g2) cosucos(qu) du

= 2Ae−
1
2
ik cos(β)(g2−g1)π(−i)qJq(1

2
k(g1 + g2)cosβ).

(4.31)

4.3.2 The left hand side of (4.8)

Both the kernels with the Hankel term K(1) and the trigonometric sum term K(2) within

equation (4.10) need to be adjusted to take account of the new gap. Firstly for the Han-

kel term, the inner product given in (4.12) simply needs the substitution g = 1
2
(g1 + g2)

to be made. The results for the various values of p and q that are given in (4.15) to

(4.21) still hold. In the case of u = v, the explicit substitution made in the Matlab

program to deal with the potential singularity given in (5.8) still holds, but again with

the substitution g = 1
2
(g1 + g2).

For the trigonometric sum term, several adaptations need to be made. The substi-

tutions x = 1
2
(g2 − g1 + (g1 + g2) cosu) and x0 = 1

2
(g2 − g1 + (g1 + g2) cos v) need to be
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used when replacing x and x0 in equation (4.25). When dealing with the singularity in

this expression the following changes to the rearrangement as shown in (4.26) need to

be made.

2

π

∞∑
n=1

cos[λn(x0 + a)] cos[λn(x+ a)]

n

=− 1

π
ln

{
2
∣∣∣sin[

π

4a
(g2 − g1 + (g1 + g2) cos u)]− sin[

π

4a
(g2 − g1 + (g1 + g2) cos v)]

∣∣∣}
=− 1

π
ln

∣∣∣∣sin[ π
4a

(g2 − g1 + (g1 + g2) cos u)]− sin[ π
4a

(g2 − g1 + (g1 + g2) cos v)]

(cosu− cos v) π
4a

(g1 + g2) cos[ π
4a

(g2 − g1 + (g1 + g2) cos v)]

∣∣∣∣
− 1

π
ln[2| cosu− cos v|]− 1

π

∣∣∣ π
4a

(g1 + g2) cos[
π

4a
(g2 − g1 + (g1 + g2) cos v)]

∣∣∣ .
(4.32)

The analytical solution in (4.27) still applies, and the limit of the first log term still

tends to one for the same reason as that shown in (5.11).

These adaptations need to be substituted into the Matlab program, which can then

of course be run for both symmetric and asymmetric cases.



Chapter 5

Programming a solution method

In this chapter we shall look at the method used to program a solution to the integral

equation (3.34) using Matlab. In particular, we shall look at the adjustments that need

to be made to take account of the log singularities in the integral equation, and how the

program can be tested to check for convergence in the solution.

5.1 Programming the Galerkin method

Having taken the original integral equation

(K̂vβ)(x) = Fβ(x) (5.1)

and found expressions for the components of the weak form

P∑
p=0

< K̂χp, χq > tp =< Fβ, χq > for q = 0, 1, ....P. (5.2)

this system of simultaneous equations can be written as a matrix equation of the form

κt = F̃ (5.3)

33
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where

κ =



< K̂χ0, χ0 > < K̂χ1, χ0 > . . . . . . . . . < K̂χP , χ0 >

< K̂χ0, χ1 > < K̂χ1, χ1 > . . . . . . . . . < K̂χP , χ1 >
...

...
...

...
...

...
...

...
...

< K̂χ0, χP > < K̂χ1, χP > . . . . . . . . . < K̂χP , χP >


(5.4)

and

F̃ =



< Fβ, χ0 >

< Fβ, χ1 >
...
...
...

< Fβ, χP >


(5.5)

This matrix equation is then solved in Matlab, using the in-built Gaussian elimina-

tion function. The matrix entries < K̂χp, χq > are found using the Matlab function

“dblquad” which numerically evaluates a double integral. Once t is found, vβ(x0) can

be constructed, and then the solution for inside the harbour, φ−d , and outside the har-

bour, φ+ = φ+
d + φi + φr, can be plotted.

5.2 Singularities

Although the log singularities have been removed and dealt with analytically (and are

then added back into the solution within the program), there are three terms within the

integral (4.29) that are to be evaluated where the program will still react poorly to the

apparent appearance of a singularity. Therefore in these cases where u = v, the terms

need to be simplified and explicitly stated within the program to avoid problems.
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For the Hankel function term, the problem is caused when u = v in∫ π

0

∫ π

0

i

2

[
H

(1)
0 (kg|cosu− cosv|)− 2i

π
ln|cosu− cosv|

]
cos pu cos qv du dv (5.6)

where the program will try to evaluate ln(0). In order to avoid this the following

approximation is used and substituted explicitly into the program when |u− v| is very

small. The asymptotic forms of the Bessel functions for small arguments are

Y0(z) ≈
2

π
[ln(

z

2
) + γ]

J0(z) ≈
1

Γ(1)
= 0! = 1

(5.7)

where Γ is the gamma function Γ(n) = (n − 1)! where n ∈ N and γ = 0.57721566

(to 8 decimal places) is the Euler-Mascheroni constant (see Wolfram Mathworld [6]).

Therefore the problem term can be re-written as follows for small |u− v|:

H
(1)
0 (kg|cosu− cosv|)− 2i

π
ln|cosu− cosv|

=1 +
2i

π
{ln[

kg| cosu− cos v|
2

] + γ} − 2i

π
ln|cosu− cosv|

=1 +
2i

π
[ln(

kg

2
) + γ].

(5.8)

In the case of the terms produced by the original trigonometric sum term, the only

problem occurs in the following log term when u = v:∫ π

0

∫ π

0

− 1

π
ln

∣∣∣∣ sin[ π
2a
gcosu]− sin[ π

2a
gcosv]

(cosu− cosv)πg
2a

cos(πg
2a

cosv)

∣∣∣∣ cos pu cos qv du dv. (5.9)

Again, the program will try and evaluate ln(0) unless instructed otherwise. However we

can apply L’Hôpital’s rule, since

lim
u→v

sin[
π

2a
gcosu]− sin[

π

2a
gcosv]

= lim
u→v

(cosu− cosv)
πg

2a
cos(

πg

2a
cosv) = 0

(5.10)
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and therefore work out the limit as u approaches v manually. In fact it can be found

that the limit of the argument of the log term is

lim
u→v

sin[ π
2a
gcosu]− sin[ π

2a
gcosv]

(cosu− cosv)πg
2a

cos(πg
2a

cosv)

= lim
u→v

d
du

(sin[ π
2a
gcosu]− sin[ π

2a
gcosv])

d
du

((cosu− cosv)πg
2a

cos(πg
2a

cosv))
= 1.

(5.11)

This can now be substituted in for the cases where |u− v| is small.

5.3 Checks for convergence

In order to check that the results seem accurate, the amplitude of the diffracted waves

in the far field can be analysed. This can be done by using the approximation to the

diffracted wave outside the harbour. This is found by using the asymptotic forms of the

Bessel functions for large arguments (see Wolfram Mathworld [6])

J0(z) =

√
2

πz
cos(z − π

4
)

Y0(x) =

√
2

πx
sin(x− π

4
)

(5.12)

to obtain

φ+
d (x, y) = − i

2

∫ g

−g
vβ(x0)H

(1)
0 {k

√
(x− x0)2 + y2}dx0

≈ − i
2

∫ g

−g
vβ(x0)

 2ei(k
√

(x−x0)2+y2−π
4
)√

2πk
√

(x− x0)2 + y2

 dx0.

(5.13)

If we now let x = r cosψ and y = r sinψ where x2 + y2 = r2 and ψ is the angle between
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a point (x, y) in the far-field and the coastal wall, then for large x, y

φ+
d (x, y) ≈ − i

2

∫ g

−g
vβ(x0)

2e
i(kr

r
1− 2

r
x0 cosψ+

x2
0

r2−
π
4
)

√
2πkr

 dx0. (5.14)

We can then apply the Binomial expansion, since for large r, 2
r
cosψ is small, and

(x0

r
)2 → 0 giving

φ+
d (x, y) ≈ − i

2

∫ g

−g
vβ(x0)

[
2ei(kr[1−

1
r
x0 cosψ]−π

4
)

√
2πkr

]
dx0

≈
∫ g

−g
vβ(x0)

[
eikre−ikx0 cosψ(−ie−iπ

4 )√
2πkr

]
dx0

≈ Aei(kr−
3π
4

)

(2πkr)
1
2

G(ψ, β)

(5.15)

where G(ψ, β) = 1
A

∫ g

−g vβ(x0)e
−ikx0 cosψdx0 is the diffraction coefficient.

5.3.1 The breakwater problem

If the term K(2) is temporarily deleted from the kernel K in equation (3.34), then the

solution vβ(x0) solves the corresponding thin breakwater problem, a special case (d = 0)

of that described in section 2.2, and results can be compared with those of Linton &

McIver [2]. This process allows the accuracy of a large section of the Matlab code to

be verified. In the following tables, results for various values of P and k are compared,

using ψ = 11π
12

and β = π
12

.

P
kg 5 10 15 20 25
π 3.9961 3.9966 3.9966 3.9966 3.9966
2π 5.2115 5.7156 5.7156 5.7156 5.7156
3π 3.5247 7.1161 7.1336 7.1336 7.1336
4π 2.8843 7.3812 8.4462 8.4468 8.4468

Table 5.1: Results for the breakwater problem.
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In these results, for each of the different wave frequencies it is clear that the scheme is

achieving convergence as P is increased. As k increases the convergence is at a slower

rate due to more rapid variation in the derivative function vβ(x0). My results and those

of Linton & McIver are very close. The slight differences, especially for small P are

probably due to a different numerical computation scheme being used to calculate the

integrals (it is not specified in the work). The almost identical convergence values sug-

gest that my scheme is at least accurate for the Hankel part of the kernel.

P
kg 5 10 15 20 25
π 3.9883 3.9966 3.9966 3.9966 3.9966
2π 3.6659 5.7155 5.7156 5.7156 5.7156
3π 3.4499 7.0447 7.1336 7.1336 7.1336
4π 3.0742 5.6521 8.4435 8.4468 8.4468

Table 5.2: Linton & McIver’s results with the Galerkin method.

5.3.2 The full harbour problem

If vβ(x0) is now worked out for the full integral equation (3.30) for the harbour problem,

then convergence can be analysed both for the number of terms, P , required in the

Galerkin method, and also the number of terms, J , required for the trigonometric sum

term. In the following tables P is kept constant while J is analysed, and vice versa.

Convergence is clearly indicated by the values in Tables 5.3 and 5.4, even for relatively

small values of J and P . In fact the Galerkin method has immediately converged for

k ≤ 6 even when taking only six terms in the sum. As the wave number k increases in

value, it is necessary to take more terms in the Galerkin method, but taking P = 10 is

sufficient for full convergence up to k = 14.

For the trigonometric sum term, again there is immediate convergence taking only

twenty terms when k ≤ 4, and even for a k value as high as fourteen, convergence
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P
k 5 10 15
2 1.7917 1.7917 1.7917
4 2.2201 2.2201 2.2201
6 2.0673 2.0673 2.0673
8 3.0741 3.0805 3.0805
10 0.6474 0.6469 0.6469
12 3.5088 3.6906 3.6906
14 1.4038 1.7694 1.7694
16 2.2603 2.9638 2.9645
18 2.2854 4.5660 4.5786

Table 5.3: Checking for convergence with the Galerkin method for varying values of P , keeping
J = 80.

has occurred by J = 60. The Matlab program needs to be run with values of P and J

that ensure both sufficient accuracy, but also time efficiency. In particular, increasing P

significantly lengthens the time taken to run a program to solve the integral equation,

so the minimum value that can be justified needs to be used.

J
k 20 40 60 80
2 1.7917 1.7917 1.7917 1.7917
4 2.2201 2.2201 2.2201 2.2201
6 2.0672 2.0673 2.0673 2.0673
8 3.0813 3.0806 3.0805 3.0805
10 0.6472 0.6469 0.6469 0.6469
12 3.6914 3.6907 3.6906 3.6906
14 1.7693 1.7694 1.7694 1.7694
16 2.9684 2.9643 2.9639 2.9638
18 4.5698 4.5664 4.5660 4.5660

Table 5.4: Checking for convergence in the sum term for varying values of J , keeping P = 10.
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Results

6.1 Interpretation of the graph plots

In the following graph plots of the harbour and the external area, a shaded contour plot

has been used. The contours represent the heights of the waves at time t = 0, and the

key for the contour colours is shown next to each plot as in Figure 6.1 below. The scale

varies for different plots, but the red areas always indicate peaks, and the blue areas

troughs.

Figure 6.1: Exemplar plot.

For all results in this and following chapters, the plane wave amplitude A has been set

40
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to 0.5. The greatest wave height outside the harbour therefore generally approaches a

maximum of 1m, indicating points where reflected and incident waves of height 0.5m

combine.

The elevation above the undisturbed free surface is given by

η(x, y, t) = Re[φ(x, y)e−iσt] (6.1)

where t represents time and σ is dependent upon the wave number k as defined in (2.2).

For t = 0, the real part of the solution φ(x, y) needs to be plotted in order to represent

the heights of the waves, and all the graphs in this chapter are created by plotting this.

6.2 Continuity over the gap

Before assessing any outcomes from the graph plots of the harbour and its exterior, it is

important to check that the solution plotted inside and outside the harbour is matching

over the gap. In Figures 6.2 to 6.4 the case where k = 1 and β = π
4

is looked at in detail.

In these results, the harbour has been defined with a = b = 1, i.e. width 2 and length

1, and the harbour walls extend in with g = 0.5. In Figure 6.2 the harbour mouth is

magnified so the contour lines can be visually analysed. There is no obvious discrepancy

even at a fairly high level of magnification.

Figure 6.2: Incident wave at an angle β = π/4, and frequency k =1, zooming in on the gap.

In Figure 6.3 several slices are taken parallel to the y axis for both the real and imaginary

parts of the solution. Any discrepancies would be easy to spot on these, but they show

the solution inside and outside the harbour to be continuous, and furthermore the
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derivatives of the functions for these solutions are continuous over the harbour mouth

(at y = 0).

Figure 6.3: Slices parallel to the y axis checking for continuity over the gap for k = 1 and β = π/4,
with x = -0.4, 0 and 0.4 respectively.

In 6.4 a slice parallel to the x axis is taken fractionally above and below the gap for

both the real and imaginary parts of the solution. The solution in the harbour is shown

in green, the solution outside the harbour is in red and the solution across the gap is in

blue. It can be seen that these match up extremely closely through the gap itself.
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Figure 6.4: Slice parallel to the x axis checking for continuity over the gap for k = 1 and β = π/4.

6.3 The effect of changing k, β and g

In this section we analyse the effect of varying the values of the wave number k, the

angle of the incident wave β and the size of the gap g on the behaviour of the waves

within the harbour.

6.3.1 Altering k and β

The following Figures 6.5 to 6.9 contain contour plots for values of k ranging from 1 to

4 respectively, and each figure has a different angle β ranging from π/2 to π/6. The

basic effects of altering either k and β can therefore be seen and will be analysed for

the harbour. In these plots, the harbour has been defined with a = b = 1, and the

harbour walls extend in with g = 0.5. Since the wave amplitude is set at A = 0.5, the

wave heights range from approximately minus one to plus one in height. In the following

accounts, I will describe waves that are approaching 1m in height as being of ‘maximum’

height, waves that are at roughly at the height of the undisturbed free surface as being

of ‘medium’ height, and waves that are close to -1m in height as being ‘low’.

Looking at the effect of changing k first, as k increases the amplitude of the waves always

increases. There is some variation as to whether this is achieved through an increase in

solely maximum height or minimum height, or in some cases changes to both. When

k = 1 the waves in the harbour are always low regardless of angle of incidence. At
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Figure 6.5: Incident wave at an angle β = π/2, and wave numbers k =1,2,3 and 4 respectively.

Figure 6.6: Incident wave at an angle β = π/3, and wave numbers k =1,2,3 and 4 respectively.

k = 2 the waves are still fairly low in the majority of the harbour, but achieve a medium

range height in the gap. By k = 3 the waves generally range from being very low in

the back two corners of the harbour, of medium height throughout most of the rest of

the harbour, and increasing to the maximum height in the gap. For k = 4 the reverse

situation appears, with the maximum wave height occurring in the back (unsheltered)

corner(s) and the low wave heights occurring in the front corners. The middle sections

and gap are then of a medium height.

Figure 6.7: Incident wave at an angle β = π/4, and wave numbers k =1,2,3 and 4 respectively.

The angle of incidence of the incoming plane wave also has some effect on the wave

pattern in the harbour. For the case of β = π/2 there is symmetry, since the gap itself

has been set up to be symmetrical in this case. As the angle increases, one side of the
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Figure 6.8: Incident wave at an angle β = π/5, and wave numbers k =1,2,3 and 4 respectively.

Figure 6.9: Incident wave at an angle β = π/6, and wave numbers k =1,2,3 and 4 respectively.

harbour becomes sheltered from the incoming wave, and both the high and low waves

are reduced in this area. On the non-sheltered side of the harbour, the change in β has

very little effect on the wave heights.

6.3.2 Altering g

For the case where β = π
2
, the length to which the harbour walls extend across the

harbour mouth only makes a limited difference. The symmetry in this particular case

means that the only real impact, as seen in Figure 6.10, is to increase the height of waves

outside the harbour in a vertical channel as water is reflected back out of the harbour,

and to slightly decrease the height of waves at the back of the harbour itself.

However when the symmetry is removed as in the case where β = π
3

in Figure 6.11,

the effect is much more dramatic. When the harbour is almost closed, there is very

little activity within the harbour, with the waves all at a medium height. Outside

the harbour there is symmetry in the incident and reflected waves, showing a lack of

diffracted wave from the harbour. As the gap is increased, the asymmetry grows both

within and outside the harbour. By the point at which there is practially no harbour
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Figure 6.10: Incident wave at an angle β = π/2, wave number k =2 and with g=0.05, 0.35, 0.65 and
0.95 respectively.

Figure 6.11: Incident wave at an angle β = π/3, wave number k = 2 and with g=0.05, 0.35, 0.65 and
0.95 respectively.

wall affording any protection, a significant swell can be seen within the harbour, with

the right hand side having waves of maximum height, and a steep decrease in height to

very low waves on the left hand side.



Chapter 7

Resonance

In this chapter we will look at finding values of k and β that will create a resonant

response within the harbour. In order to start tracking possible resonant frequencies

for the harbour, we can look at the resonant frequencies for a closed rectangular box.

For small g, that is for a very small gap in the harbour wall, we hypothesise that any

resonant frequencies will be very similar to those of the closed box problem.

7.1 Finding a suitable value of k

For a closed rectangular box, with the same dimensions as the harbour (width 2a, length

b), an eigenfunction that will set up a resonant response will be

φ = FCD cos

[
Cπ

b
(y + b)

]
cos

[
Dπ

2a
(x+ a)

]
(7.1)

for some integers C and D. Comparing this to our expression for the solution within

the harbour (3.15) we have an eigenfunction of the form

φD−d = fD cos[αD(y + b)] cos

[
Dπ

2a
(x+ a)

]
(7.2)

where αD =
√

[k2 −
(
Dπ
2a

)2
]. But in order to match the required format for resonance in

the closed box, we need C such that αD = Cπ
b

and therefore the value for k that satisfies

47
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this is

k2 =

(
Cπ

b

)2

+

(
Dπ

2a

)2

. (7.3)

It should be noted that for this definition of k, the special case where αnb may equal

an integer multiple of π as described in Section 3.5 will occur. The Matlab program

must therefore be written to take account of this, and follow the adjusted procedure for

solution.

7.2 Maximising the effect of β

It may be possible to force an even greater response in the harbour with a careful

selection of the angle β which both the incident and reflected waves are dependent

upon. The expression for the plane waves (3.1) and (3.2) at the harbour mouth can be

written as follows:

2Ae−ikx cosβ = 2A[cos(kx cos β)− i sin(kx cos β)]. (7.4)

Comparing this to the eigenfunction for the closed box that we are using as our model

for resonance, at y = 0 we have

φ|y=0 =FCD cos[Cπ] cos

[
Dπ

2a
(x+ a)

]
=FCD(−1)C

[
cos

(
Dπx

2a

)
cos

(
Dπ

2

)
− sin

(
Dπx

2a

)
sin

(
Dπ

2

)]
.

(7.5)

We therefore expect taking k cos β = Dπ
2a

to maximise any resonance within the harbour,

and will test this when looking at results. Taking the value of k that we have previously
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worked out, and combining it with this condition on β gives us√(
Cπ

b

)2

+

(
Dπ

2a

)2

cos β =
Dπ

2a

⇒

[(
C

b

)2

+

(
D

2a

)2
]

cos2 β =

(
D

2a

)2

⇒
(
C

b

)2

cos2 β =

(
D

2a

)2

sin2 β

⇒ tan β = ±2Ca

Db
.

(7.6)

7.3 Results

As in Chapter 6 the incident wave amplitude A is set to 0.5 in all the following plots. As

also detailed in Chapter 6 the elevation above the undisturbed free surface η(x, y, t) is

given by η(x, y, t) = Re[φ(x, y)e−iσt]. Whereas before, we simply set t = 0 and therefore

plotted the real part of the solution φ(x, y) to represent the heights of the waves, when

searching for resonant cases we need to consider other scenarios. For cases where −σt
is equal to odd multiples of π

2
, we get

η(x, y, t) =Re[φ(x, y)e−iσt]

=Re[iφ(x, y)]

=Im[φ(x, y)].

(7.7)

We therefore need to examine both the real and imaginary parts of the solution φ(x, y)

for various values of k, when searching for a resonant case.

7.3.1 A resonant case in the harbour

There are two main indicators of resonance that can be seen in a contour plot of the wave

heights inside and outside the harbour. Firstly the comparative heights of the waves.

In the plots of non-resonant cases in Section 6.3, the maximum wave height outside the

harbour was always more than or equal to the maximum height within the harbour.

However where resonance occurs, the converse is true, and the maximum height should
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appear within the harbour.

The other indicator of resonance relates to the pattern of the wave heights that ap-

pears within the harbour. For the non-resonant cases in Section 6.3 the maximum wave

heights are all focused at one point in the harbour. In contrast, where resonance occurs,

an alternating pattern of minimum and maximum wave heights appears. This can be

seen in Figures 7.1 to 7.3 below.

Figure 7.1: Plots of the real and imaginary solution respectively with C = 4 and D = 3 .

In all the following plots in this chapter, tan β = ±2Ca
Db
, a = b = 1 and g = 0.05

unless otherwise stated. If we look at plots of the real and imaginary parts of the wave

heights for the case C = 4, D = 3 (Figure 7.1) the maximum amplitude is significantly

different in the real and the imaginary case. For the real case, the maximum and mini-

mum heights are 1 and -1 respectively both within and outside of the harbour. However

where the imaginary part of the wave height is plotted, there is a significant difference

in the amplitude of the waves within and outside of the harbour. Inside the harbour

there is clear evidence of a resonant response, with wave heights varying from -2.5 to

+2.5, whereas outside of the harbour the range is still -1 to +1. The difference in wave

heights therefore satisfies our first indicator for resonance in the imaginary case, and in

both the real and imaginary case the alternating pattern of minimum and maximum

wave heights appears.

In Figures 7.2 and 7.3 the graphs are plots of the imaginary part of the solution φ(x, y)

and they demonstrate the two different indications of a resonant effect. In Figure 7.2

they are plotted using a constant value of C = 1 and increasing D. In these plots
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Figure 7.2: Plots of Im(φ) showing resonant response in the harbour, with C = 1 and D = 1, 3, 5
respectively.

the wave heights are the same within and outside of the harbour, but the alternating

pattern of low and high waves within the harbour can be seen. It is also clear that as

k increases, so does the frequency of this pattern. Moreover, this can be linked to the

values of C and D, due to their contribution to the eigenfunction (7.1). C determines

the number of changes from maximum to minimum height in the y direction, whereas

D determines the same in the x direction.

Figure 7.3: Plots of Im(φ) showing resonant response in the harbour, with C = 4 and D = 1, 3
respectively.

In Figure 7.3 the alternating pattern is less clear, but the resonance is obvious in the

larger wave heights that are occurring within the harbour compared to those outside

the harbour.
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7.3.2 The effect of varying C and D

The real and imaginary parts of the maximum heights within the harbour are plotted in

Figures 7.4 and 7.5 below. In both plots the key features appear to be linked to whether

the value of D is odd or even.

Figure 7.4: Plots of the maximum value of Re(φ) within the harbour for g = 0.05 and g = 0.1, as C

and D vary.

It is clear from Figure 7.4 that for these values of C andD the real part of the wave height

does not contribute significantly to the resonant effect, since the maximum heights are

always less than 1.5 for this range of k. However a pattern does emerge from this plot.

When D is even, the maximum real wave height is constant at a value of 1 regardless of

variation in C. However when D is odd, then changing C does have an impact, although

not in a way that is obviously predictable from looking at this graph.

In Figure 7.5 where the maximum imaginary part of the wave heights within the harbour

is plotted, the full resonant effect of potentially high waves can be seen. Whereas for

this range of k, the real part of the maximum wave height barely reaches 1.5, there are

a number of cases for the imaginary part where 1.5 is exceeded, and even 3 is achieved.

Interestingly again it is for odd values of D that higher waves start occurring, whereas

for the even values there is no contribution towards resonance regardless of the values

of C. The case where C = 4 and D = 3 in particular stands out as causing a genuinely

resonant response, with exceptionally large wave heights.
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Figure 7.5: Plot of the maximum value of Im(φ) within the harbour for g = 0.05 and g = 0.1, as C

and D vary.

7.3.3 The effect of β on resonance

We have hypothesised that any resonant response can be excited further by an appro-

priate selection of the incident wave angle, and this now needs to be verified. In Figure

7.6 the resonant case that has been discovered for C = 4, D = 3 will be looked at again,

this time varying the angle β. Following the work in Section 7.2, we are expecting the

largest response for tan β = 2Ca
Db

= 8
3
.

Figure 7.6: Plot of the effect of varying β on maximum wave heights

However the results in Figure 7.6 do not support this and indicate that, for these values

of C,D and g, the smaller the incident angle, the larger the response from Im(φ) within

the harbour. This result suggests that any resonance that the incident wave can excite is
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relatively small in comparison with the effect produced by changes in the wave number

k. It is likely that the reason a small angle produces the most resonance is because as

the angle reduces, the area within the harbour that the incident wave has any impact on

is reduced. Therefore the open harbour becomes more like the closed box case (which

the resonant eigenfunctions are based upon).

7.3.4 The size of the harbour

In order to test the possible effects of altering the ratio of width to length in the harbour,

the length is kept constant at b = 1 and the resonant case for C = 4, D = 3 is then

plotted in Figure 7.7 with β kept constant at a value of tan−1(8
3
). The width 2a of the

harbour is varied taking values of a from 0.2 to 1 in the first graph, then 1 to 5 in the

second.

Figure 7.7: Plot of the effect of varying the harbour width on maximum wave heights

It is clear to see from the plot of Im(φ) that as the ratio of width to length increases,

so does the size of the resonance. However this increase is dependent on whether a

is odd or even - with odd values producing higher maximum wave heights than their

consecutive even values. This is unsurprising given the odd and even pattern that has

already been mentioned for D, since a and D are linked in the governing eigenfunction

(7.1).
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7.3.5 Changing the gap in the harbour mouth

Another factor that might be expected to affect any resonant response in the harbour,

is the size of the gap in the harbour mouth. In Figure 7.8, the resonant case for C =

4, D = 3 is plotted with β kept constant at a value of tan−1(8
3
) whilst g is varied. As

expected, looking at the results for Im(φ), the resonant effect reduces as the size of the

gap is increased, therefore making the harbour less like the closed box scenario, and so

making the choice of eigenfunctions less appropriate.

Figure 7.8: Plot of the effect of varying the size of the gap on maximum wave heights

7.3.6 The value of k

Although we have discovered resonant cases by using the model for a closed box, one of

the key remaining questions is whether the value of k always has to be evaluated based

upon this model in order for resonance to occur. Figure 7.9 shows a graph plotting

values of k between 10 and 15 against Re(φ) and Im(φ). The value of k is plotted for

discrete intervals of 0.05, keeping β constant at a value of tan−1(8
3
) and g = 0.05.

There are clear peaks of maximum height, and the values of k for which these occur

can be compared to the values of k that are gained by putting integer values of C and

D into our eigenfunction (7.1). We hypothesise that these values will closely resemble

each other, although they will not exactly match as the latter are based on the closed

box problem and the harbour is not entirely closed.
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Figure 7.9: Plot of the effect of varying k on maximum wave heights

In Appendix A, k is evaluated for integer values of C and D between one and five.

In Table 7.1 below, the values of k from Figure 7.9 where heights of over 1 are achieved

for either Re(φ) or Im(φ) are given, along with proposed matching values of k from the

Table in Appendix A. For every peak in the graph plot, there is a proposed value of k

Re(φ) Im(φ) Proposed
10.05-10.25 10-10.1 10.0580
11.45-11.55 11.35-11.45 11.3272
12.6-12.65 12.6-12.7 12.6642
13.05-13.1 12.95-13.05 12.9531
13.4-13.5 13.15-13.4 13.4209
14.15-14.3 14.05-14.15 14.0496

14.5 14.8189

Table 7.1: Ranges of k where resonance occurs.

that is very close to the actual value of k. This does suggest that the solution to the

closed box problem, is the appropriate model to apply when creating resonance in a

harbour with a small gap.
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In Figure 7.9, the peaks vary in both height and width. This is partly because some of

the real peaks where very large wave heights are achieved are being hidden due to the

discretisation of k when plotting. Figure 7.10 focuses on k values between 10 and 10.3,

plotting for intervals of 1
300

. The shape now changes significantly, and a gradual peak

Figure 7.10: Focused plot of the effect of varying k on maximum wave heights.

for the imaginary plot of approximately 2, is distinguished into a sharp peak of over 4 in

height, followed by a gradual peak of around 2 (which may well hide yet another sharp

peak). By making the value of k more and more accurate, we are getting closer to the

very specific values that create strong resonance. This graph shows that only when a

very specific value of k is achieved, will large wave heights occur.



Chapter 8

Conclusions

8.1 Summary

In this dissertation we have discussed the work by both Porter [1] and Linton & McIver

[2] on the diffraction of water waves around breakwaters. The techniques used in this

work have then been applied when modelling the behaviour of waves in a harbour,

modelled as a rectangular box that is partially open to the ocean on one side. PDE

and Integral Equation techniques have been used to set up expressions describing the

wave field both inside and outside of the harbour, and these two expressions were then

matched over the harbour mouth where they meet. The resulting integral equation was

then solved numerically using Galerkin’s method, and issues relating to singularities

occuring within the integral equation were discussed and resolved.

A Matlab program was then written to carry out the numerical solution of the integral

equation, and the results were then also plotted using Matlab. Evidence of convergence

was provided for the harbour solution, and also convergence results for the breakwater

problem were found with an adapted version of the harbour program, and these were

compared to those of Linton & McIver [2] in order to verify much of the program.

It was then hypothesised that the eigenfunctions required for resonance in a rectan-

gular closed box would also force a resonant response for a harbour where the gap is so

small as to almost be a closed box. This was then tested for a gap in the coastal wall that

58
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was one twentieth the width of the harbour. The effect of changing the wave number,

the angle of the incident wave, the dimensions of the harbour, and the size of the gap

were then analysed. The effect of the wave number was focused on, in order to verify

whether resonance only occurred when eigenfunctions based on a resonant response in

the closed box were used.

8.2 Future work

8.2.1 The asymmetric gap

Although the asymmetric case has been discussed, there has been no time to actually

program this scenario and get any results. The main result that is expected would

be that the positioning of focal points for high and low waves would be altered. For

example, whereas symmetry along the y axis is currently produced when plotting an

incident wave of angle β = π
2
, this is unlikely to continue to be the case if the gap is no

longer centred within the harbour mouth.

8.2.2 The harbour

Throughout this dissertation, the harbour has been modelled as a simple rectangular

box. However very few harbours are actually constructed, or naturally occur in such a

shape. Variations in the geometry of the harbour would substantially alter the behaviour

of the waves. Cases of resonance would undoubtedly occur for different values of k than

have been found for the rectangular case, and might also have different effects within

the harbour.

8.2.3 The coastal wall

The model has been set up with the coastal wall extending into the harbour. However,

the case where this does not occur also needs to be examined. The mathematical impact

of this alteration would be a change to the corner condition (3.27) which has been used

to model wave behaviour around the edges of an infinitely thin wedge, rather than a

corner.
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8.3 Conclusions

The comparison of the contour plots in Chapters six and seven, led us to two main

indicators when classifying a resonant case. The first was the comparative amplitudes

of the waves inside and outside of the harbour. For non-resonant cases, the maximum

heights of the waves outside the harbour are always at least the size of the maximum

height within the harbour. The converse is true for the resonant case. The second

indicator was the pattern of the contours within the harbour. In the non-resonant case,

there is generally just one focal point for maximum wave heights, and the same for min-

imum wave heights. However for the resonant case, there is a strong alternating pattern

between minimum and maximum height waves within the harbour, and the number of

these changes in the x and y direction is dependent upon the values of C and D that

are used to define the wave number k (7.3).

In order to force a resonant response, it was hypothesised that for a very small gap

in the harbour mouth, the behaviour of the waves would be analogous to those in a

closed rectangular box of the same dimensions. This was tested by setting the eigen-

function in the solution for φd to be one that would induce a resonant response in a

closed box. Values of the wave number k and the angle of the incident wave β were then

evaluated based on the parameters used in this eigenfunction.

In order to analyse the effect of changing the values of k, β, a and g, the maximum

wave height within the harbour was found. Using a value of k and β that we predicted

to induce resonance, the length a of the harbour was varied, and it was found that mak-

ing the harbour wider increased the effect of resonance when judged by the maximum

wave height within the harbour.

The results for varying β and the gap size g both supported the hypothesis that a

harbour with a very small gap would react in a very similar way to a closed box. The

largest resonant response was found to occur when β and g were very small, and this

response decreased as both these variables were increased. An increase in β would

heighten the effect of the incident wave on the harbour, thereby making it less similar

to a closed box. Clearly enlarging the gap also reduces the similarity to the closed box
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problem. Therefore the results support the hypothesis that resonance occurs within a

rectangular harbour with only a small opening onto the ocean, for very similar values

of k as for a closed box.

The wave number was then analysed more closely by plotting a range of values of k

against the maximum height within the harbour. The values of k which produced a

resonant response were all found to be extremely close to values of k which were pre-

dicted to induce resonance following the open box analogy. It therefore seems clear that

predictions of a resonant response within a rectangular harbour with only a small open-

ing onto the ocean, can be made based upon values of k which would cause a resonant

response within a closed box.

Using the knowledge gained about the effect of β and k, a very large response can

be forced within the harbour. In Figure 8.1 this has been done by using a value of

k = 14.05 and β = π
20

. From the table in Appendix A, it can be seen that there is

a value of k = 14.0496 (C = 4, D = 4) given for resonance in the closed box which

is extremely close to this choice for k. As stated earlier, the selection of an extremely

small angle β most effectively mimics the closed box case. The result of these choices

for k and β is to force a disastrously strong resonant response within the harbour.

Figure 8.1: Plot of Re(φ) showing resonant response in the harbour, with k = 14.05 and β = π/20.



Appendix A

Values of k

C D k C D k
1 1 3.5124 4 1 12.6642
1 2 4.4429 4 2 12.9531
1 3 5.6636 4 3 13.4209
1 4 7.0248 4 4 14.0496
1 5 8.4590 4 5 14.8189
2 1 6.4766 5 1 15.7863
2 2 7.0248 5 2 16.0190
2 3 7.8540 5 3 16.3996
2 4 8.8858 5 4 16.9180
2 5 10.0580 5 5 17.5620
3 1 9.5548
3 2 9.9346
3 3 10.5372
3 4 11.3272
3 5 12.2683

Table 1: Values of k given various values of C and D.
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