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Abstract

In this thesis we present a review of the recent developments in the semi-Lagrangian

method. This numerical method for advection problems has found particular favour in

the meteorological community, where it provides particular advantages for operational

weather forecasting. Our approach is to describe, in some detail, a selection of the signif-

icant contributions to the method’s development which have appeared in the literature

since the 1991 review of Staniforth and Côté.

We begin with an examination of available interpolation routines, and the need for

shape-preserving properties in interpolation. The noninterpolating framework is next

discussed.

The latter part of the thesis is directed towards identifying schemes optimised for

use in global atmospheric simulation. We discuss a method for solving the shallow-

water equations, using a fully semi-Lagrangian discretisation for both linear and nonlinear

advection.

Finally, two issues of particular importance in atmospheric applications are discussed.

First, we see that the lack of formal conservation properties in early semi-Lagrangian

schemes has been addressed by various authors in the literature. Several schemes are

now available which offer exact, or nearly exact conservation. Secondly, the problem of

spurious numerical resonance is examined. Semi-Lagrangian methods have been found to

be prone to spurious resonance in models containing orography. Again, suitable remedies

for this problem have appeared in the literature, further demonstrating the richness of

the semi-Lagrangian method as an area for development.
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Introduction

For much of its history, the modern science of meteorology has been dominated by weather

forecasting [41]. Even slight gains in forecasting accuracy are of great benefit to areas

such as aviation, shipping and farming. Forecasting now commands the use of extensive

ground-based and satellite data gathering networks. Weather simulations are run on the

largest and most powerful computers. Newer uses of atmospheric simulation range from

the long term predictions of climate modelling, to the modelling of local environmental

effects of weather. Climate models have an impact on long-term policy making at a

national and international level. While at the local level, the contribution of atmospheric

modelling to areas such as pollution dispersion, building design and flood and storm

warnings is just as great. The uses for atmospheric modelling increase to keep pace with

this rapidly developing area of research.

Many physical processes may be represented in atmospheric models. Climate predic-

tion requires the coupling together of many physical systems. Important considerations

in this respect are, for instance, the coupling between the oceans and atmosphere; the

interaction between cloud formation and the global energy budget [27]; and the feedbacks

operating between the biota and the environment [26]. Basic to any model involving spa-

tial and temporal variations in the atmosphere, must be a representation of the dynamics

of atmospheric flow.

Of concern in this thesis will be the numerical methods employed in solving the

equations describing fluid flow. In particular, we examine the semi-Lagrangian method

which has found increasing popularity in atmospheric modelling [55]. Our approach will
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be to survey the recent literature on this method.

In Chapter 1 we provide an outline of what constitutes a semi-Lagrangian (SL)

method. One of the key elements of the basic SL method will be seen to be interpolation

of spatially distributed data. In Chapter 2, 3 and 4, therefore, we examine methods

of interpolation. The problem of interpolating data distributed in several dimensions is

examined in Chapter 5.

Chapter 6 describes practical alternatives to the use of interpolation in SL schemes.

The non-interpolating formalism is seen to offer a broad theoretical basis for the devel-

opment of new numerical advection schemes.

In Chapter 5 we return to the meteorological theme, to consider global atmospheric

modelling with SL.

Chapter 7 considers the application of the semi-Lagrangian method to nonlinear

advection equations. This is done in the context of the one-dimensional Burgers’ equation,

which provides a simple analogue of the nonlinear momentum equation of fluid dynamics.

Chapter 8 presents a discussion of a line of development of SL schemes, towards

conservative form.

In Chapter 10 a simple, but demanding test problem is applied to a selection of the

schemes described in earlier chapters.

Chapter 11 concludes the thesis by demonstrating the flexibility of SL methods.

A problem arising from the early use of SL methods in weather forecasting, was the

generation of spurious resonance in the vicinity of mountain ranges. The breadth of the

SL framework allowed a solution to be found to this problem [46], which we describe.

This final chapter serves to underline the growing importance, and range of application,

of the semi-Lagrangian method in atmospheric modelling.
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Chapter 1

The Semi-Lagrangian Method

1.1 Introduction

Mathematical descriptions of fluid flow divide into two groups: Eulerian and Lagrangian.

Eulerian descriptions work within a single fixed frame of reference, through which the

fluid flows. This is rather like observing the flow of a river while stood on one of its

banks. The second manner of description is that from within the fluid. This second kind

of formalism is known as the Lagrangian description. Here the observer is moving with

the fluid — the view-point is that of a swimmer drifting with the river. In contrast to

the Eulerian system Lagrangian frames of reference are typically both space and time

dependent, according to the nature of the fluid flow.

From these two basic forms of description we can envisage correspondingly distinct

forms of numerical model. Representative examples are depicted in figure 1.1. In the

Eulerian model we have fixed computational regions, or cells. Each fluid property, such

as pressure, density or velocity, is approximated in some way within each cell. For instance

the scheme may work with cell-averaged quantities, where each variable is represented by

a single value within each cell. To obtain a time dependent simulation of fluid flow the

movement of fluid between cells is modelled by considering fluxes across cell-interfaces.

So in this kind of model the two basic constructions are cells and fluxes. The Lagrangian

3



particles + trajectoriescells + fluxes

Eulerian Lagrangian

Figure 1.1: Eulerian and Lagrangian numerical models

model, by contrast, does not represent the fluid in terms of continuum ideas at all. The

two basic constructions within the Lagrangian model are individual particles and their

trajectories. Each particle carries values for all the fluid properties, and moves with

the velocity of the fluid flow. Semi-Lagrangian models may be viewed as a hybrid of

Eulerian and Lagrangian models. An approach to SL modelling, which combines cells

with trajectories as its basic elements, will be examined in detail in Chapter 9.

Other model constructions are of course possible. The finite difference form of Eu-

lerian model in particular provides a simple starting point for SL models. In a finite

difference Eulerian scheme cells are replaced by nodes, each node being a point where

values of fluid variables are held. Instead of fluxes, a finite difference scheme couples

together the variables at different nodes through averaging and differencing operations.

The form of these operations derives directly from the differential equations governing the

fluid flow. This results in a model which does not necessarily encompass bulk aspects of

the flow. For instance, by calculating fluxes between cells we have a frame-work for the

global accounting of the movement of mass within a flow. Consequently the principle of

mass conservation may quite naturally be incorporated into such a scheme. Whereas a

scheme based on local differencing and averaging has no such global organisation, with

the result that it may well fail to simulate conservation of mass exactly.

In fact any numerical model we make inevitably has limitations. One failing of a flux-
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based Eulerian scheme is the difficulty of achieving stable and accurate simulations with

long time-steps. For time-steps sufficiently long to allow fluid to move across several cells

in a single step, the sequence of flux transfers between cells becomes extremely difficult to

represent [22]. In practice, schemes of this form are operated such that only flows between

each cell and its immediate neighbours need be considered during any single time-step.

If the scheme is explicit this constraint becomes a necessary condition for stability (the

Courant–Friedrichs–Lewy stability condition [6]).

Lagrangian schemes operate with a far less severe restriction on the time-step length,

especially where the flow is strongly advection dominated, as is much the case in meteo-

rological applications. For such flows the Lagrangian form of the evolution equations are

more tractable numerically than are the equations in Eulerian form. As a result the time-

step may be substantially increased beyond what would be acceptable for an Eulerian

scheme, yet without detriment either to stability or accuracy.

However, Lagrangian numerical schemes are still methods of approximation and as

such subject to limitations of some kind or other. The basic particle–trajectory model

invariably falls foul of the profusion of scales which are typical in any realistic fluid flow.

An initially evenly distributed collection of particles may, with time, become broken up

into clusters and voids. The consequence of this is a loss of model representation for the

fluid as a whole.

Semi-Lagrangian models address the above characteristic failings of Eulerian and

Lagrangian methods. SL methods are Eulerian-Lagrangian hybrids, which retain the

desirable properties of the two formalisms while avoiding their less desirable failings.

Like Lagrangian methods, SL methods permit long time-step integrations by tracing

trajectories of particles. Yet, like an Eulerian method, SL methods retain the same

fixed computational grid throughout the duration of a simulation. This is achieved by

producing the solution on the fixed grid at the end of each time step, rather than tracing

the long-term histories of individual particles.

In the next section we apply the semi-Lagrangian method to a class of one-dimensional
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linear advection problems.

1.2 Linear Advection using SL

In this section we consider how the semi-Lagrangian method may be used to solve linear

advection equations in one dimension. The problems to be solved are of the following

general form:

∂u

∂t
+ a(x, t)

∂u

∂x
= g(x, t)

u(x, 0) = u0(x).

(1.1)

We shall develop a SL scheme for (1.1) in three steps. For the first two steps we restrict our

attention to the homogeneous equation, for which g ≡ 0. For the first step a SL scheme

is derived for advection at a constant velocity. The second step extends this result to any

general velocity field. Finally, the third step deals with the source term, represented by

g(x, t) in (1.1). Each of the three steps highlights one of the three components required

in a SL scheme for the full advection problem. These are interpolation, trajectory tracing

and time discretisation.

1.2.1 Homogeneous Constant Velocity Advection

Setting a(x, t) ≡ a (constant) the advection equation to be solved is

∂u

∂t
+ a

∂u

∂x
= 0. (1.2)

The analytical solution of this equation may be found using the method of characteristics,

from which we obtain a system of two ordinary differential equations (ODE’s):

dx

dt
= a (1.3)

du

dt
= 0, (1.4)

where there are now two object functions to be found, x(t) and u(x(t), t). Equation (1.3)

describes the trajectory of a particle moving with the advecting velocity. If this particle
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is at the point x = x0 when t = 0, then the solution of this equation is

x(t) = x0 + at, t > 0.

The equation (1.4) for the advected quantity u has the solution

u(x(t), t) = constant,

which states that u remains constant along a characteristic. Combining the solution of

the two ODE’s, we see that u satisfies

u(x0 + at, t) = u(x0, 0), t > 0.

From this we obtain the solution of the linear advection problem (1.2):

u(x, t) = u0(x− at).

We may follow the same basic outline as described above to obtain a numerical

scheme for solving the advection problem. Doing so results in a semi-Lagrangian scheme

for (1.2), which we next describe. This scheme introduces the first component required

in the construction of a SL scheme for the more general problem, (1.1).

Step 1: Interpolation

The scheme uses a finite difference (grid point) representation of the solution. If the grid

has space and time mesh ∆x and ∆t respectively, then un
j approximates the solution

u(xj, tn), where xj = j∆x and tn = n∆t. To construct a semi-Lagrangian scheme we

begin by assuming the solution is known at time t = tn, and make a forward time step

using the method of characteristics. That is, we are given the function u(x, tn) as initial

condition and we wish to find the finite difference solution, un+1
j , at time tn+1 at each of

the grid point xj . Figure 1.2 shows the particular characteristic which passes through the

grid-point x = xj at time tn+1. This characteristic is a straight line with gradient 1/a,

as are all the characteristics for this problem. Extending the characteristic back to time

tn it passes through a point xd at that time. This is the departure point for the particle
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Figure 1.2: Basic SL method

which, starting at time tn, arrives at the grid-point xj at the later time tn+1. How this is

done for a general velocity field is considered in the next section.

To continue with the development of the SL scheme, we next make use of the an-

alytical solution which states that u remains constant on any characteristic. For more

general advection problems it is at this point where suitable time discretisations must be

considered. These are discussed in section 1.2.3 and Chapter 11. For now, we use this

property of characteristics to obtain

un+1
j = un

d , (1.5)

where un
d represents the value of u at the departure point. This equation provides the

finite difference solution at the new time-level, from the data at the old level. There are

now two possibilities. First, if xd happens to coincide with a grid-point, say xd = xi, then

(1.5) provides the scheme

un+1
j = un

i .

Generally the departure points will not be coincident with grid-points. This is where

interpolation is required. For this purpose polynomial interpolation may be used. For

instance, if xd lies between grid-points xi and xi+1, then linear interpolation of the finite
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difference data at these points provides

un
d =

(
xd − xi

xi+1 − xi

)
un

i+1 +

(
xi+1 − xd

xi+1 − xi

)
un

i ,

where un
d is now only an approximation to u(xd, tn). Using once again the constancy of u

along characteristics, now coupled with the above interpolation, equation (1.5) provides

a numerical scheme for obtaining the finite difference solution at time tn+1 from the finite

difference data at tn. This scheme has only first order accuracy. A more useful, higher

order scheme may be obtained by using a higher order of interpolation. The subject of

interpolation will be considered in Chapters 2 and 5. In the next section we continue with

the development of the semi-Lagrangian method, towards a scheme applicable to the full

advection problem, as outlined at the beginning of section 1.2.

1.2.2 Non-constant Velocity Advection

The semi-Lagrangian scheme outlined in the previous section solved the homogeneous

advection equation in two stages. First, for each grid-point the associated departure

point must be found. Then the existing finite difference data are interpolated to these

departure points. And hence, by the method of characteristics, the new solution is found.

Finding the departure points when the advecting velocity is a constant is a particularly

simple matter. To be able to do this for any given velocity field, a(x, t), a numerical

approach is required for finding departure points.

Step 2: Trajectory Tracing

A method which has found favour for use in SL methods is the implicit mid-point rule

[55]. Our goal is to solve the trajectory equation (1.3),

dx

dt
= a(x, t),

subject to the condition x(tn+1) = xj , in order to find x(tn). The point x(tn) is then the

departure point xd corresponding to the grid-point xj .
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The implicit mid-point rule is based on a discretisation of the trajectory equation

which is centred both in time and space, giving second order time accuracy. The method

may be derived by making the assumption that the velocity remains fixed at its mid-step

value, during each time-step. This results in an approximation where each trajectory is

linear. The mid-point of such a trajectory is simply the mean of the positions of its end

points. Using these approximations and a two-level discretisation of the derivative term,

we arrive at the following discretisation of (1.3):

xj − xd

∆t
= a(xm, tn + ∆t/2), (1.6)

where xm =
1

2
(xj + xd). This implicit equation may be solved for xd using fixed-point

iteration. If the displacement along a trajectory is defined as

α = xj − xd,

then (1.6) may be re-written as α = ∆t a(xj − α/2, tn + ∆t/2). From this we obtain the

fixed point iteration

α[r+1] = ∆t a
(
xj −

1

2
α[r], tn +

1

2
∆t
)
.

Typically only 2 or 3 iterations are used to obtain sufficient accuracy in practice. Once the

displacement α has been found in this way, the departure point is given by xd = xj − α.

Within a full fluid simulation model the flow velocity is one of the prognostic variables.

(Prognostic variables in a numerical model are those which the integration solves for;

diagnostic variables are functions of prognostic variables, which may be evaluated directly

from the current model fields at each time step. As such only its representation on the

finite difference grid is available. Furthermore, the mid-point of the trajectory, at which

the velocity is to be evaluated, will not generally coincide with a grid-point. Interpolation

of the spatially distributed velocity data is therefore required. Similarly we must also

expect that velocity data is available only for the model time-levels up to the most current.

That is, for times t = 0, t1, t2, . . . , tn. Yet our discretisation requires the velocity at the

forward time tn+1/2 = tn + 1
2
∆t. Extrapolation of the existing data is therefore necessary.

10



Simple extrapolation formulae may be obtained by considering Taylor series expansions.

We mention here the two most practical formulae obtained in this way:

• 2nd order accurate: an+1/2 =
1

2
(3an − an−1) + O(∆t2)

• 3rd order accurate: an+1/2 =
1

8
(15an − 10an−1 + 3an−2) + O(∆t3).

Using interpolation in space and extrapolation in time we are able to evaluate the veloc-

ity values required by the fixed point iteration, and this completes the departure point

method. The rest of the SL solution of the homogeneous advection equation follows as

for the constant velocity case.

So far we have only considered homogeneous advection, for which we are able to

exploit the method of characteristics exactly. Next we consider how SL schemes accom-

modate source terms.

1.2.3 Source Terms

With the presence of a source term in the advection problem (1.1) the value of u is no

longer constant along trajectories. The evolution equation which u now satisfies along

trajectories is

du

dt
= g(x(t), t).

The time discretisation of this equation forms the third aspect of the general SL scheme.

Step 3: Time Discretisation

To discretise this equation we already have available the positions of departure points,

from solving the trajectory equation as described in the previous section. This allows us

to make a two-level discretisation of the form

un+1
j − un

d

∆t
= (1− θ)gn

d + θgn+1
j . (1.7)

In this formula un
d ≈ u(xd, tn) and similarly for gn

d ; θ is an implicitness parameter, with

θ = 1 corresponding to a fully implicit discretisation and θ = 0 fully explicit. Other
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values of θ provide semi-implicit discretisations. Since these schemes only involve two

time-levels, they give results which are at best second order accurate. Greater accuracy

may be obtained by increasing the number of time-levels used. Such schemes are discussed

in Chapter 11.

A solution procedure is required for obtaining un+1
j from (1.7). This will depend

on the nature of the source terms. Explicit terms are evaluated by interpolation of the

existing finite difference data. Implicit terms, however, may involve other fluid variables.

Consequently there will be a system of discretisations of the form (1.7), one for each fluid

variable. These together with whatever other equations are required to represent the

fluid system are to be solved simultaneously for all fluid variables. This is the case, for

instance, when solving the shallow water equations, as discussed in Chapter 8.

Interpolation is a procedure for increasing the extent of a given amount of data.

This can only be achieved by making assumptions about the quantity represented by

this data. For this reason it is not surprising that the quality of any SL scheme depends

strongly on the chosen interpolation method. In the following two chapters we examine

the development of interpolation methods suitable for SL advection.

1.3 Nonlinear Advection

Semi-Lagrangian methods are not restricted solely to linear advection problems. Central

to any model of fluid flow is a nonlinear advection equation representing the transport of

momentum.

The appropriate momentum equation in atmospheric simulation is the Navier-Stokes

equation. Models which are used in practice are built around some approximation of this

equation. In addition to a momentum equation, further equations describing continuity

of mass, thermodynamic state and transport of fluid properties are required in a complete
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model. The non-hydrostatic model of Tapp and White [58] uses the equation set

∂u

∂t
+ (u.∇)u = F + g −

1

ρ
∇p momentum

∂ρ

∂t
+ u.∇ρ = −ρ∇.u continuity of mass

∂cpT

∂t
+ u.∇(cpT ) = Q conservation of heat

ρ =
pMr

RT
equation of state

where the model variables are

u velocity

ρ density

p pressure

T temperature

and the other parameters are

g gravity

F friction

cp heat capacity

Q heat source terms

Mr relative molecular weight of air

R gas constant.

The above system of equations is written in Eulerian form, where x and t are the

independent variables. In Lagrangian coordinates a and t are the independent variables,
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where a is a label for individual particles. A suitable label is provided by a particle’s

position at some reference time, as that uniquely specifies a particle for all subsequent

times. In order to distinguish time derivatives in the Lagrangian coordinate system from

those in the Eulerian system, the notation
D

Dt
is often used in place of

d

dt
. Since the

transformation between the two coordinate systems is simply translation with the fluid

velocity u, the following identity holds

D

Dt
≡

∂

∂t
+ u.∇.

In the Lagrangian system the particle labeled a has position x(a, t) at time t. Hence

particle position is a dependent variable of the Lagrangian model in addition to those

listed for the Eulerian model. As such it must also have an evolution equation. This is

just the trajectory equation, that states that each fluid particle moves with the local fluid

velocity:

dx

dt
= u(x(t), t).

The other equations of the flow are

Du

Dt
= F + g −

1

ρ
∇p

Dρ

Dt
= −ρ∇.u

cp
DT

Dt
= Q,

and the equation of state is as before. When the SL method is applied to such a system of

equations, the trajectory equation is first used to determine departure points. Then the

remaining evolution equations are dealt with through suitable time-discretisations and

spatial interpolations as described in section 1.2.

In this thesis our concern is with the numerical simulation of advection, which is

a purely dynamical process. This leads us to consider equation sets which exclude all

physical processes, other than the dynamics associated with advection. The shallow-
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water equations are just such a set, and take the form

Du

Dt
= −g

∂h

∂x

Dv

Dt
= −g

∂h

∂y

Dh

Dt
= −h(

∂u

∂x
+
∂v

∂y
).

The three model variables are u and v, the two-dimensional velocity components, and h

the fluid depth; g is the gravitational constant. This two-dimensional model of fluid flow is

derived from a vertical integration of the momentum and continuity equations of the Tapp

and White model, neglecting friction and assuming hydrostatic balance. In Chapter 8 we

examine how the semi-Lagrangian method may be applied to these equations in spherical

geometry.
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Chapter 2

Interpolation: One-Dimensional

Schemes

2.1 Introduction

In this chapter we begin the description of how multi-dimensional semi-Lagrangian meth-

ods are constructed. Any practical weather prediction simulation requires the modelling of

fully three-dimensional flows. The three aspects of the semi-Lagrangian method outlined

in the first chapter each apply in any number of space dimensions. No new theoretical

considerations arise for the SL method as a whole. The task is one of finding suitable

algorithms for each of the three stages: trajectory calculation, interpolation and time

discretisation.

The algorithms presented in Chapter 1 for time discretisation and trajectory calcu-

lation may be extended for use in more than one dimension. This involves no further

complication other than the use of vector-valued quantities for velocity and position.

Unfortunately the same does not hold true for the interpolation stage of the scheme. In-

terpolation of data distributed in several dimensions introduces complications not present

in one dimension. For this reason the largest part of our current task is to identify and

assess methods for multi-variate interpolation. We begin by examining the options for
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interpolation in one dimension.

2.2 Univariate Interpolation

Multivariate interpolation is typically carried out by combining several univariate in-

terpolations. Tensor product interpolation provides the most familiar example of this

approach, for which details are given in Chapter 5. A further method of this kind has

been developed recently by Purser and Lesley [39], [40], [23]. In what they call “cascade

interpolation” data is transferred efficiently from one grid to another. Such an emphasis

on transferring whole representations of multivariate functions makes this method par-

ticularly suitable for SL. Cascade interpolation is also described in Chapter 5. Before

considering these methods we must first examine the options for interpolation in one-

dimension, from which multi-dimensional methods In choosing an interpolation method,

the ultimate end for which it is to be used dictates the constraints to be satisfied by the

interpolant. For instance, if we know that the data to be interpolated represent a quantity

which is everywhere non-negative, such as atmospheric water content, then there will be

an advantage in finding an interpolant which respects this property. This leads us to

consider how the degrees of freedom possessed by an interpolant may be used to satisfy

some externally imposed constraint.

We assume there is a set of data,

S = {(xi, fi) : i = 0, · · · , N},

for which an interpolating function, p(x), is required. Throughout this chapter we take

fi to be scalar. For univariate interpolation xi is also scalar. In Chapter 5 multi-variate

interpolation is discussed, and there xi is vector-valued. Continuing with the univariate

case, we may impose an ordering on the labelling of the interpolation knots, or grid-points

{xi}. If the data and its interpolant are defined on the interval [a, b] then we assume the

ordering

a = x0 < x1 < · · · < xN = b.
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The interpolant p(x) is a function with a finite number of degrees of freedom. If p has

M degrees of freedom, then we must impose M conditions on p for it to be determined

completely. Since p(x) is required to be interpolant for the set S it must be consistent

with S. That is, p must be such that M ≥ N , and it must satisfy the interpolation

conditions

p(xi) = fi i = 0, · · · , N (2.1)

If it is the case that M = N+1 then (2.1) determine the interpolant completely. However,

only piecewise constant functions fit this description. For most practical applications

smoother interpolation is required, and we are led to consider interpolants for which

M > N + 1. In addition to the N + 1 interpolation conditions, a further M − N − 1

conditions must be specified for such an interpolant, and we are free to choose what these

should be. For example, consider piecewise interpolation using cubic polynomials.

2.2.1 Example: Piecewise Cubic Interpolation

On each sub-interval [xi, xi+1] the interpolant is a cubic polynomial,

p(x) = pi(x) = Aix
3 +Bix

2 + Cix+Di.

Since there are N such sub-intervals and each cubic has four degrees of freedom the

interpolant has M = 4N degrees of freedom. We can match conditions to these degrees of

freedom in various ways. Piecewise cubic Lagrange interpolation is obtained by requiring

pi(x) to interpolate the four points {(xi+k, fi+k) : k = −1, 2}, which surround its interval

of definition. To ensure the interpolants in the first and last sub-intervals also satisfy four

such conditions, two extra data points are required, one beyond each end of the interval

[a, b].

It is not necessary for all four degrees of freedom in each cubic to be assigned through

Lagrange interpolation. In order for the interpolant to satisfy the conditions (2.1) and be

continuous, each cubic pi(x) need only interpolate the data points at the two ends of its

sub-interval, [xi, xi+1]. This accounts for 2N degrees of freedom, half the number which
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must be specified. If we require the interpolant to be continuous in its first and second

derivatives, so guaranteeing a large degree of smoothness, we obtain a further 2(N − 1)

conditions:

p′i(xi) = p′i+1(xi)

p′′i (xi) = p′′i+1(xi)





i = 1, · · · , N − 1.

Interpolants having global properties of smoothness are termed splines.

In total there are now 4N − 2 conditions, leaving 2 final conditions to be specified

in order to completely determine the interpolant. Again it is at the boundaries of the

interval where extra information is required. The specifics of the particular application

for which the interpolation is to be used often suggest appropriate boundary conditions.

We mention only the ‘natural’ boundary conditions, for which the interpolant has zero

slope at either end of the interval:

p′0(a) = 0

p′N(b) = 0

— the final two conditions required to determine p(x).

Finally, a third option would be to begin again with the 2N conditions required

for continuous interpolation. But now, rather than impose smoothness conditions, we

could require derivative values to be interpolated at the ends of each sub-interval. This

is Hermite interpolation which, together with Lagrange interpolation, will be examined

in detail later in this chapter.

2.3 A First Order Scheme

The accuracy of an interpolant is assessed by introducing a notional smooth function

f(x) underlying the data set S. That is, f(xi) = fi for all i. Accuracy is then described

in terms of the order of convergence of p → f as N → ∞, in some suitable norm. For
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piecewise polynomial interpolation of order n, using the maximum norm, the order of

accuracy is O(hn+1) where h = max
i

(xi+1 − xi).

Although formal accuracy is an important consideration, it is not a sufficient criterion

for selecting an interpolant for SL advection. As indicated earlier, it may often be desirable

to build certain known properties of the data, such as positivity, into the interpolant. It

is apparent that the only way to reliably compare different interpolants when applied to

SL, is to apply each of them to a suitably chosen advection test-problem. Our needs are

met by the following simple test-problem:

∂u

∂t
+ a

∂u

∂x
= 0 0 > t, −∞ < x <∞

u(x, 0) = u0(x)

a = const > 0.

(2.2)

The initial profile, u0(x), must be specified. Analytically the solution for this problem

consists of the initial profile moving to the right, without change of shape, at constant

speed a.

This problem may be solved numerically by making a regular discretisation of the

domain, using time and space mesh lengths ∆t and ∆x respectively. The space and time

locations of the grid points are denoted xj and tn respectively, where j, n ∈ ZZ. A SL

discretisation requires the governing PDE to be written in Lagrangian form,

Du

Dt
= 0.

A two time-level time discretisation of this leads to an explicit semi-discrete scheme,

un+1
j = un(xd) (2.3)

where un
j = u(xj , tn), u

n(x) = u(x, tn); and xd is defined in the following. To complete

the SL scheme, the trajectory equation,

dx

dt
= a,
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must be solved to find the departure point xd corresponding to each grid point xj . Since

the velocity is constant this is a simple matter, and the analytical solution may be used:

xd = xj − a∆t. (2.4)

It is important to note that, for this particular test problem, the time discretisation

behaves exactly as the analytical solution: along particle trajectories, u remains con-

stant. The only part of the SL scheme in this case, therefore, which is not exact is the

interpolation required to approximate un(xd). Smolarkiewicz and Grell [52] have pro-

vided a formal framework in which numerical advection and interpolation are seen to be

equivalent operations. We shall return to this in Chapter 4.

Before applying piecewise linear interpolation to the test-problem, we first non-

dimensionalise the displacement represented in (2.4). For this problem the dimensionless

displacement is identical to the dimensionless velocity, or Courant number,

ν = a
∆t

∆x
=
xj − xd

∆x
.

The integer part of ν represents the number of whole cells traversed in one time-step. If ν

happens to be an integer then we may use un(xd) = un
j−ν, and the resulting fully discrete

scheme agrees with the exact solution. In general, however, the fractional part of ν, which

we define by ξ = ν − int(ν), will be non-zero. This quantity (ξ) is a convenient form for

the one independent variable of the scheme. It takes values in the range 0 ≤ ξ < 1.

Using the above definitions, we see that if xd lies within the kth grid-cell, that is if

xk−1 < xd ≤ xk, then linear interpolation provides

un(xd) ≈ (1− ξ)un
k + ξun

k−1, (2.5)

since ξ increases from zero at x = xk and approaches unity as x decreases towards xk−1.

The result of applying SL to (2.2) using linear interpolation is shown in figure 2.1. In

figure 2.1(a) the initial data is shown; after one hundred time steps, figure 2.1(b), the wave

profile has advanced, though it lags behind the analytical solution shown by the dotted

line. The peak height of the numerically advected wave has decreased to around forty
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Figure 2.1: First order SL scheme, using linear interpolation

percent of the initial height, while its spatial extent has correspondingly spread. Despite

these poor results, the scheme does have several significant properties: throughout all

time steps the initially positive data remains positive; no new local extrema have been

introduced; and lastly it is found that the area beneath the profile is the same at all

time steps. This last property corresponds to the conservation of mass in the advection

process. More precisely, if we define the numerically advected mass after n time steps to

be

Mn =
∑

j

un
j ∆x,

then it is a simple matter to verify that this is a constant of the motion:

(2.5) =⇒
∑

j

un+1
j ∆x = (1− ξ)

∑

j

un
j ∆x+ ξ

∑

j

un
j−1 ∆x

=
∑

j

un
j ∆x.

Hence Mn+1 = Mn.

In the case where there are spatial boundaries, any difference between Mn+1 and

Mn is wholly accounted for by boundary processes. We shall treat the issue of mass

conservation in greater depth in Chapter 6. Our aim for the present will be to find

interpolants more accurate than linear interpolation, ideally possessing the properties of

positivity, conservation of mass and monotonicity.

By increasing the order of the interpolating polynomial we are able to gain higher
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accuracy. We shall continue to use a local piecewise approach, first as it may be argued

that this reflects the local nature of advection; and secondly to avoid the increasingly

oscillatory, non-convergent behaviour to which polynomial interpolation is prone as the

order is increased. Since accuracy is the prime goal, the possibility of directional bias is

avoided by using only centred interpolation stencils. That is, we require the interpolant

to use data which is symmetrically distributed about the point of interpolation. As a

consequence of this we are lead to consider odd degree polynomials. Cubic and quintic

polynomials therefore provide suitable classes from which to select interpolants.

2.4 Higher Order Schemes

In order to gauge how well a particular interpolant performs in a SL scheme, it is not

sufficient to consider only its order of accuracy. Different interpolants with the same

order of accuracy need not lead to identical results in a SL fluid simulation. A detailed

analysis of numerical errors is required. The analysis we employ is in the context of

the test problem (2.2). The analytical solution of this problem is a traveling wave, and

consequently any analysis of numerical errors ought to reflect this fact.

We have so far mentioned a number of quantities relating to bulk motion, namely pos-

itivity, monotonicity and mass conservation, in which minimisation of error is desirable.

To this list we now add the wave properties of phase velocity and dispersion.

The first high order interpolants we examine will be linear functions in the interpo-

lated data. To analyze the SL schemes formed by these interpolants we therefore employ

the machinery of Fourier analysis. However, as may be anticipated with reference to any

text on numerical analysis [16], these schemes suffer from severe loss of positivity and

monotonicity under certain conditions. Only by allowing the interpolant to be nonlinear

are these problems to be avoided. It is therefore necessary to find a more general approach

to analyzing errors in numerically propagated waves, which does not rely on linearity.
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2.4.1 Linear Schemes

Lagrange Interpolation

A unique polynomial of degree n can always be fitted to n + 1 data points, provided

all the points are at distinct spatial locations. Many algorithms exist for finding such

interpolating polynomials. Lagrange interpolation constructs the polynomial from basis

functions, li(x). Each basis function is a degree n polynomial, satisfying the interpolation

conditions,

li(xj) =





1 i = j

0 i = 1, · · · , n+ 1; i 6= j

The unique polynomials satisfying these conditions may be expressed in the form

li(x) =
n+1∏

j=1
j 6=i

x− xj

xi − xj
.

With the basis functions defined in this way, the interpolating polynomial for n+1 points

of the data set S is

p(x) =
n+1∑

i=1

fi li(x). (2.6)

As indicated earlier, our principal interest lies with cubic and quintic interpolating polyno-

mials. It is instructive to examine the form the basis functions take for cubic interpolation

of regularly spaced data. Figure 2.2 shows the basis function which takes value one at the

first of the four interpolation nodes, and figure 2.3 shows the second basis function. The

other two basis functions are merely reflections of the first two. A standard theorem of

approximation theory (see, for instance, [36]) states that the interpolating polynomial is

most accurate between the two central nodes. This provides some justification for using

a centred stencil for interpolation in a SL scheme. In addition, von Neumann stability

analysis shows that off-centred stencils are liable to form unstable schemes. In figure 2.2

we see that not all of the cubic basis functions are positive in the central interval. This

leads us to expect that, for certain arrangements of positive data, the interpolating poly-

nomial may be non-positive. Figure 2.4 shows the failure of positivity for advection of
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Figure 2.3: Lagrange basis function l2(x) for cubic interpolation

25



a square pulse, using cubic interpolation; equally apparent is the loss of monotonicity in

the numerical solution.
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Figure 2.4: High order SL using cubic interpolation

Divided Difference Interpolation

In practice, interpolating polynomials are often constructed using the method of divided

differences. This approach allows the order of the interpolant to be increased through

successively adding further terms to the interpolant. Divided differences for the data set

S are defined in the following way:

f [xi] = fi

f [xi, xi+1, · · · , xi+j] =
f [xi+1, · · · , xi+j]− f [xi, · · · , xi+j−1]

xi+j − xi
.

The degree n interpolating polynomial through the points {(xi+j , fi+j) : j = 0, · · · , n} is

p(x) = f [xi] + (x− xi)f [xi, xi+1]

+ (x− xi)(x− xi+1)f [xi, xi+1, xi+2]

+ · · ·+ (x− xi) · · · (x− xi+p)f [xi, · · · , xi+n].
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This polynomial is identical to the Lagrange form (2.6), merely being a reordering of its

terms, and is known as Newton’s interpolating formula. The importance of this algorithm

for numerical advection schemes is that a slight nonlinear modification yields an inter-

polant which substantially reduces spurious oscillations. This is the method of essentially

non-oscillatory interpolation (ENO), which will be examined in section 4.1.

Hermite Interpolation

The interpolating polynomials discussed so far may be used to approximate a function,

f(x), by matching the function at n + 1 points xi+j , j = 0, · · · , n. That is, a degree n

polynomial is obtained from the interpolation conditions

p(xi+j) = f(xi+j), j = 0, · · · , n.

If we wish to increase the order of accuracy of the interpolation, this is achieved by in-

creasing the number of points to be interpolated. This necessarily involves using data

progressively further and further from the region where the interpolation is to be evalu-

ated.

Hermite and Hermite-Birkhoff interpolation, alternatively, offer the possibility of

increasing the accuracy while retaining a compact stencil. The extra interpolation con-

ditions required to achieve this are obtained by requiring the first and possibly higher

derivatives of f(x) to be matched at some, or all, of the nodes xi+j . In Hermite interpola-

tion the number of derivatives to be matched is the same at each node. Hermite-Birkhoff

interpolation allows the number of conditions to differ from node to node.

Hermite cubic interpolation offers a combination of simplicity and accuracy which

makes it particularly suitable for SL schemes. This method requires values of the function

and its first derivative to be given at two nodes, xi and xi+1. The four interpolation

conditions are:

p(xi) = fi, p(xi+1) = fi+1;

p′(xi) = di, p′(xi+1) = di+1,
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where fi = f(xi) and di = f ′(xi). The polynomial may be constructed from basis func-

tions, in much the same way as for Lagrange interpolation [15]:

p(x) = fiH1(x) + fi+1H2(x) + diH3(x) + di+1H4(x),

where

H1(x) =
(xi+1 − x)

2

h2
+ 2

(x− xi)(xi+1 − x)
2

h3
,

H2(x) =
(x− xi)

2

h2
+ 2

(xi+1 − x)(x− xi)
2

h3
,

H3(x) =
(x− xi)(xi+1 − x)

2

h2
,

H4(x) = −
(xi+1 − x)(x− xi)

2

h2
,

and h = xi+1 − xi.

To obtain a complete SL scheme using Hermite interpolation we require some means

of estimating the derivative values, di and di+1. At this point we appear to be no fur-

ther forward than with Lagrange interpolation, since to approximate derivatives to an

accuracy consistent with cubic interpolation a broad stencil is necessary. However, the

value of Hermite interpolation is the flexibility it allows through the selection of derivative

estimates. Rasch and Williamson [43] show how this flexibility may be used to obtain SL

advection schemes which conserve monotonicity. The technique they use will be presented

in section 4.2.

Derivative estimates may either be linear or non-linear in the data {ui}. Linear

estimates are perhaps the most suitable for SL schemes, since they find a simple and

natural expression in terms of the discrete piecewise gradient of the data. The discrete

gradient on the cell [xi, xi+1] is

∆i =
ui+1 − ui

xi+1 − xi
.

By taking weighted averages of discrete gradients, high order approximations to the first

derivative may be obtained. Hermite interpolation requires values of derivatives at grid

points; the most accurate estimates for this purpose are obtained from centred approxi-

mations, Table 2.1.
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Method Formula Accuracy

Arithmetic Mean di =
∆i−1 + ∆i

2
O(h2)

Hyman [14] di =
−∆i−2 + 7∆i−1 + 7∆i −∆i+1

12
O(h4)

Priestley [37] di =
−3∆i−2 + 19∆i−1 + 19∆i − 3∆i+1

32
O(h4)

Table 2.1: Centred derivative estimates, employing linear combinations of discrete slopes.

As an example of a non-linear derivative estimate, we mention the Akima method [1]:

di =
a∆i−1 + b∆i

a+ b

where a = |∆i+1 −∆i| and b = |∆i−1 −∆i−2|. In regions where this estimate fails, it may

be replaced by its nearest linear equivalent, the arithmetic mean.

2.4.2 Linear Analysis

The techniques of Fourier analysis provide a good deal of useful information about numer-

ical advection schemes. This form of analysis describes how well a given scheme represents

the amplitude and phase speed of an infinite, single frequency, progressive harmonic wave.

Given the initial data

u0(x) = eikx,

where k is the wavenumber, the analytic solution of the advection problem (2.2) is

u(x, t) = eik(x−at).

From this we see that solutions separated by a time interval ∆t are related by

u(x, t+ ∆t) = e−ika∆tu(x, t). (2.7)
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For general initial data the solutions at different times are related through the evo-

lution operator, E:

u(x, t+ ∆t) = E(∆t) u(x, t)

≡ u(x− a∆t, t).

The factor exp(−ika∆t) in (2.7) is therefore the Fourier symbol of the evolution operator.

In order to apply Fourier analysis to a numerical advection scheme, its evolution op-

erator must first be identified and corresponding Fourier symbol calculated. Differences in

the modulus and argument between the numerical and analytic Fourier symbols represent

errors in the amplitude and phase, respectively, of the numerically advected wave.

So far the numerical solution depends on four variables, namely the time-step ∆t, the

spatial mesh ∆x, the wave speed, a, and the wavenumber k. From these four variables

two dimensionless parameters may be formed, on which alone the solution depends. The

first of these is the Courant number

ν =
a∆t

∆x
.

This indicates the number of cells crossed by a trajectory in one time step. The wavenum-

ber of the analytic solution is related to the wavelength, λ, through the relation

k =
2π

λ
.

From the ratio of the wavelength to the mesh, λ/∆x, we may define a dimensionless

wavenumber:

φ =
2π

λ/∆x
≡ k∆x.

With these definitions, the analytic Fourier symbol (F ) becomes

F = e−ika∆t = e−iφa∆t/∆x

= e−iνφ.

To summarise, we have found that the analytical solution of (2.2) has the following

properties:
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• Evolution operator: u(x, t+ ∆t) = E u(x, t) ≡ u(x− a∆t, t)

• Fourier symbol: F = e−iνφ.

We next demonstrate how equivalent properties are found for a numerical scheme,

using linear interpolation as an example. Let S be the spatial shift operator, defined by

S ui = ui+1.

In a SL scheme the finite difference stencil adapts to the trajectory of the flow. To

represent this mechanism in the analysis, the Courant number is split into its integer and

non-integer parts:

ν = l + α 0 ≤ α < 1, l ∈ {0, 1, 2, . . .}.

The scheme may now be written in the form

un+1
i = (1− α)un

i−l + αun
i−l−1

= S−l[(1− α) + αS−1] un
i .

Hence the numerical evolution operator is

E1 = S−l[(1− α) + αS−1],

where the subscript denotes linear interpolation.

The Fourier symbol, F1, for this scheme is found by considering the action of the

evolution operator E1 on the discrete wave function exp(ijφ), where j is a spatial index:

F1 = E1e
ijφ = e−ilφ[(1− α) + αe−iφ].

This differs from the amplification factor of the first order upwind scheme by the factor

exp(−ilφ). Since this factor has modulus unity, the von Neumann stability analysis for

this SL scheme is identical to that of the upwind scheme with Courant number in the range

[0, 1). It follows from this that the SL scheme with linear interpolation has unconditional
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linear stability. Next considering the complex argument of F1 we again see that the integer

part of the Courant number is rendered exactly by the numerical scheme:

arg(F1) = arg[e−ilφ(1− α + αe−iφ)]

= arg(e−ilφ) + arg(1− α + αe−iφ)

= −lφ+ arg(1− α + αe−iφ).

The last term in the above is an approximation relating to the fractional part of the

Courant number:

arg(1− α + αe−iφ) = −αφ+ O(αφ3).

For any linear SL scheme on a regular grid the Fourier symbol has a factor exp(−ilφ),

due to the shift in the stencil. Consequently, as demonstrated above, a complete analysis

need only consider Courant numbers in the unit interval, 0 ≤ ν ≤ 1.

Once the Fourier symbol, Fs, of a scheme has been found, we may define two error

measurements:

• Amplitude error: ǫa =
|Fs|

|F |
= |Fs|

• Phase error: ǫp =
arg(Fs)

arg(F )
= −

arg(Fs)

νφ

Figure 2.5 shows the dependency of these errors on wavenumber for the SL scheme with

linear interpolation; results for several representative values of the Courant number (“nu”)

are plotted.

For the next example we consider cubic Lagrange interpolation. Restricting the

Courant number to the unit interval, this scheme takes the following form:

un+1
j = −

(1− ν)ν(1 + ν)

6
un

j−2 +
(2− ν)ν(1 + ν)

2
un

j−1

+
(2− ν)(1− ν)(1 + ν)

2
un

j −
(2− ν)(1− ν)ν

6
un

j+1

32



-90 0 90

wavenumber (degrees)

0.0

0.25

0.5

0.75

1.0

0.0

0.25

0.5

0.75

1.0

nu=0.9

nu=0.75

nu=0.5

amplitude

180-180 -90 0 90

wavenumber (degrees)

0.0

0.25

0.5

0.75

1.0

1.25

0.0

0.25

0.5

0.75

1.0

1.25

nu=0.75

nu=0.9

nu=0.5

nu=0.1

phase

180-180

Figure 2.5: Fourier analysis of SL using linear interpolation

Setting un
j = exp(ijφ), the scheme reduces to the evolution equation for a single Fourier

mode,

un+1
j = F3(ν, φ)eijφ,

where F3(ν, φ) is the Fourier symbol for the scheme. The amplitude and phase errors

for the cubic scheme are shown in figure 2.6. Comparing these results with those for

the linear interpolation scheme we find the following. First, the amplitude for the cubic

scheme remains closer to the analytic value (one) over a wider range of wave-numbers than

does the linear scheme. Both schemes show their most severe attenuation in amplitude

for Courant numbers of one-half.

In terms of the phase error cubic interpolation performs better than linear, at all

Courant numbers, for wave-numbers within π/2 (90 degrees) of zero. Beyond this point,

where |φ| > π/2, the two schemes have practically identical phase errors; only at low

Courant numbers does the cubic scheme significantly improve on the linear. Since φ =

k∆x = 2π∆x/λ, a wavenumber φ = π/2 corresponds to a wavelength of λ = 4∆x.

Wavelengths of less than 4∆x are therefore subject to similar phase errors in SL schemes

using either linear or cubic Lagrange interpolation.

Finally, we apply the linear analysis of this section to Hermite cubic interpolation,
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Figure 2.6: Fourier analysis of SL using cubic interpolation

using Priestley’s method for estimating the derivative values [37]. Applying the definitions

of section 2.4.1 to a regular grid of unit mesh, the scheme takes the form,

un+1
j =

3ν2(1− ν)

32
un

j−3 −
(3 + 19ν)(1− ν)ν

32
un

j−2

+
(11− 7ν)ν(1 + 3ν)

16
un

j−1 +
(1− ν)(4− 3ν)(4 + 7ν)

16
un

j

−
(1− ν)ν(22− 19ν)

32
un

j+1 +
3(1− ν)2ν

32
un

j+2.

The results of Fourier analysis are shown in figure 2.7. The amplitude error shows im-

provement over the cubic Lagrange scheme, while the phase errors for these two schemes

are almost identical. It is interesting to note that these two schemes have the same or-

der of accuracy, by which we mean they have the same convergence rate under mesh

refinement.

All of the schemes described in this chapter are dissipative — they each attenuate

advected waves. Only under two conditions are waves propagated without attenuation

in these schemes. The first of these results from the “unit CFL property”, which is a

product of the interpolation conditions (2.1): the numerical solution is exact for integer

Courant numbers. Second is the trivial case when the wavenumber is zero, that is, when

both the analytic and numerical solutions are constant everywhere.
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Figure 2.7: Fourier analysis of SL with Hermite cubic interpolation

From the Fourier analysis of the three example schemes presented here, we see that

attenuation is dependent on wavenumber. The highest wave-numbers and, consequently,

shortest wavelengths are damped the most. This behaviour is favourable in an advection

scheme, where the shortest wavelengths are least well resolved by the grid, and are prone

to being non-physical in a fluid simulation. Unfortunately it is often found in practice

that the degree of damping inherent in these schemes is insufficient. Additional methods

are required for selectively damping the non-physical, short-wave modes.
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Chapter 3

Quadratic Interpolation

Introduction

Semi-Lagrangian schemes are generally constructed with polynomial interpolants of odd

order. Linear interpolation gives insufficient accuracy for most purposes. Quintic inter-

polation requires considerable extra computational effort for diminishing returns, when

compared with cubic interpolation. For this reason cubic interpolation is most often used.

However, even-order polynomial interpolants are equally applicable to SL schemes as are

odd order interpolants. One reason for not choosing an even-order interpolant is that

they are the unique interpolating polynomials for an odd number of data points. Con-

sequently, if an even-order unique interpolator is used then the interpolation stencil will

have an odd number of points. This means that the interpolation is not centred and will

have some directional bias. However, by relaxing the requirement of unique interpolation,

even-order interpolants may be constructed using data at an even number of points, thus

providing a centred stencil.

In this section we examine two forms of quadratic interpolation which use a four

point stencil.
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3.1 Centred Quadratic Interpolation

Consider a grid of regularly spaced points with mesh interval ∆x :

xj = j∆x j = 1, · · · , N. (3.1)

Let fj be data values on this grid. These data are to be interpolated to a departure point

xd, which has been calculated as part of a semi-Lagrangian advection step. Let xk be the

grid point immediately to the left of xd,

xk ≤ xd < xk+1, (3.2)

for some value of k. Let q(x) be a piecewise quadratic interpolating polynomial for the

data. And let qk(x) be the quadratic polynomial which interpolates the data for values

of x in the range [xk, xk+1).

Define the interpolation parameter,

ξ =
xd − xk

xk+1 − xk
. (3.3)

A unique quadratic interpolation polynomial may be constructed by selecting three points

at which the data are to be interpolated. Since our aim is to construct a viable advection

algorithm, we are not free to select any three points. We should wish the scheme to be-

have appropriately under certain special circumstances. For instance, the scheme should

not alter the initial data when time-stepping with a timestep set to zero. If the chosen

interpolant does not interpolate the data at grid point xk, this will not be the case. Fur-

ther, if the interpolant is chosen to interpolate to grid point xk, then the semi-Lagrangian

scheme will give exact results for advection at constant integer Courant numbers. This is

because departure points will lie precisely on grid points under such conditions, so that

xd = xk. The data should also be interpolated at point xk+1. If this were not the case,

then the interpolant would behave differently in the limit as xd approaches a grid point

xi, according to whether it approaches from the right or from the left.

From the above considerations we see that any interpolating polynomial, qk, for use
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in a semi-Lagrangian scheme, must necessarily satisfy only two interpolation conditions

qk(xk) = fk (3.4)

qk(xk+1) = fk+1. (3.5)

We are free to determine the remaining degrees of freedom of the polynomial in any way

we choose. It is still necessary, though, to analyse the stability properties of the resulting

SL scheme, since interpolation alone doesn’t guarantee stability. We next consider three

centred quadratic interpolants.

Interpolant 1: Mean of Left and Right Interpolants

For a quadratic polynomial which satisfies the interpolation conditions (3.4) and (3.5),

there remains just one degree of freedom to be determined. There are two possibilities

for a further interpolation condition which we might consider. Either the next data point

to the left may be interpolated, giving

qL
k (xd) = −

ξ(1− ξ)

2
fk−1 + (1− ξ2)fk +

ξ(1 + ξ)

2
fk+1. (3.6)

Or the next data point to the right may be used, for which case the interpolating poly-

nomial is

qR
k (xd) =

(1− ξ)(2− ξ)

2
fk + ξ(2− ξ)fk+1 −

ξ(1− ξ)

2
fk+2. (3.7)

For Courant numbers in the range between zero and one, the second of these interpolants

corresponds to the Lax-Wendroff advection scheme; the first corresponds to the second or-

der upwind scheme of Warming and Beam [31]. The interpolants (3.6) and (3.7) represent

the semi-Lagrangian generalisation of these two schemes to arbitrary Courant numbers.

Both the interpolants (3.6) and (3.7) employ a one-sided interpolation stencil. A

centred stencil may be obtained by taking the mean of these two,

qF
k =

qL
k + qR

k

2

= −
ξ(1− ξ)

4
(fk−1 + fk+2) +

(1− ξ)(4 + ξ)

4
fk +

ξ(5− ξ)

4
fk+1. (3.8)
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This polynomial provides the SL equivalent of Fromm’s scheme. The polynomial (3.8)

interpolates, as required, to the two central data points at xk and xk+1. It doesn’t

interpolate the data at any other grid-points.

For interpolation on an irregular grid, we may still use qF as a piecewise interpolant.

However, on such a grid it is no longer the mean of two quadratic interpolants. This is

because (3.6) and (3.7) are the interpolating quadratic polynomials only on a regular grid.

If instead we define qL and qR to be quadratic interpolants for arbitrarily placed knots,

xk−1, xk, xk+1 and xk, xk+1, xk+2, respectively, then we may define the mean quadratic

interpolant,

qM =
1

2
(qL + qR). (3.9)

It is convenient to write this interpolant in terms of divided differences,

qM = f [xk]+(x−xk)f [xk, xk+1]+
1

2
(x−xk)(x−xk+1) (f [xk−1, xk, xk+1] + f [xk, xk+1, xk+2]) .

(3.10)

Interpolant 2: Least Squares Minimisation

On a regular grid it may be shown that qM
k is the quadratic which minimises the quantity,

Q =
1

2
[qk(xk−1)− fk−1]

2 +
1

2
[qk(xk+2)− fk+2]

2 . (3.11)

This suggests that best-fitting, in a least squares sense, is a possible criterion to use in

determining the extra degree of freedom in even-order interpolants. On an irregular grid,

the quadratic qM
k no longer minimises Q. We derive the quadratic polynomial which does,

which is known as Bessel’s second interpolation formula.

Let the quadratic polynomial obtained by minimising Q be qQ
k . This polynomial

must interpolate the data at xk and xk+1. By inspection, we see that any quadratic which

interpolates to these two points may be written as

qk = lk(x) + C(x− xk)(x− xk+1), (3.12)

where C is some constant to be determined and lk(x) is the linear interpolant,

lk(x) =
(xk+1 − x)fk + (x− xk)fk+1

xk+1 − xk
. (3.13)
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We next determine the value of C for the quadratic which minimises Q.

Substituting (3.12) into (3.11), we obtain

Q =
1

2
[Ca+ lk(xk−1)− fk−1]

2 +
1

2
[Cb+ lk(xk+2)− fk+2]

2, (3.14)

where

a = (xk − xk−1)(xk+1 − xk−1), (3.15)

b = (xk+2 − xk)(xk+2 − xk+1). (3.16)

Applying the minimisation condition,

dQ

dC
= 0, (3.17)

we obtain

C =
a[fk−1 − lk(xk−1)] + b[fk+2 − lk(xk+2)]

a2 + b2
. (3.18)

Interpolant 3: Weighted Least Squares Minimisation

Minimisation of the quantity Q gives an equal weighting to the outlying data points, at

k−1 and k+2. On an irregular grid, one of these points may be considerably further from

the interpolation point, xd, than is the other. Such grid irregularity may be represented

in the minimisation process by introducing weighting factors. Consider the weighted

quantity,

W =
(xk+2 − xk+1)

2
[Ca+ lk(xk−1)− fk−1]

2 +
(xk − xk−1)

2
[Cb+ lk(xk+2)− fk+2]

2, (3.19)

where the weight factors are simply the lengths of the two outer-most mesh intervals.

Minimisation of W provides the weighted minimisation quadratic, qW (x), for which

C =
(xk+1 − xk−1)[fk−1 − lk(xk−1)] + (xk+2 − xk)[fk+2 − lk(xk+2)]

(xk+1 − xk−1)a+ (xk+2 − xk)b
. (3.20)

3.2 Computational Tests

We next conduct a series of computational tests with the quadratic interpolants described

above. The aim of these tests is to investigate the relative merits of these interpolants for
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use in semi-Lagrangian schemes. We begin by examining interpolation error and then SL

advection error.

3.2.1 Test 1: Interpolation

We compare the three interpolants qM , qQ and qW , together with the quadratic ENO

interpolant qE , see Section 4.1. The data to be interpolated are given by the function

f(x) =





cos
[
π

2
(x− 1)

]
, 0 ≤ x < 2

x− 2, 2 ≤ x < 3

4− x, 3 ≤ x < 4

1, 4 ≤ x < 6

exp [−25(x− 7)2] , 6 ≤ x ≤ 8.

(3.21)

Data obtained with this function are interpolated on K different irregular grids. Let

these grids be x(n), where n = n1, · · · , n1 +K − 1. Grid x(n) has n + 1 grid points, x
(n)
j ,

j = 0, · · · , n, where x
(n)
0 = 0 and x(n)

n = 8. For the results presented here, we use n1 = 24

and K = 217. With this choice of parameters, the first grid has approximately six grid

intervals covering each of the four sections in the initial data; the last grid has ten times

that number. The interior grid points are given by first calculating yj, j = 0, · · · , n, where

y0 = 0

yj = yj−1 + 2 + sin(j), j = 1, · · · , n.

(3.22)

The required grid points are then obtained using

x
(n)
j = 8

(
yj

yn

)
, j = 0, · · · , n. (3.23)

For each grid x(n), the data are interpolated to m points, which are equally spaced

41



between x
(n)
1 and x

(n)
n−1. Let these points be zi, i = 1, · · · , m. We use m = 4000 for all the

grids tested here.

Define the error for each interpolant, q, on each grid, x(n), by

err(n)[q] =

[∑m
i=1(q(zi)− f(zi))

2

m

] 1
2

. (3.24)

For each interpolant, a weighted summation is made of the error on all the grids,

err[q] =

∑N1+K−1
n=n1

n err(n)[q]
∑n1+K−1

n=n1
n

. (3.25)

This provides an over-all measure of interpolation error for each interpolant. Another

important factor to consider, is the degree to which each interpolant undershoots or

overshoots the limits set by the interpolated data. Figure 3.1 shows the results obtained

on the coarsest resolution grid. All of the interpolants, apart from quadratic ENO, show
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Figure 3.1: Interpolated function on a 24 point grid.

significant overshoots. ENO, however, does tend to clip extrema in an uneven fashion.

Table 3.1 shows the interpolation error for each of the interpolants. Also shown are

the maximum and minimum values that each interpolant achieves throughout interpola-

tion on all the grids. Any values below zero represent an undershoot, and values above

one are an overshoot. We see that each interpolant, apart from ENO, has significant
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Interpolant (q) err[q] ∗ 10−2 min[q] max[q]

qM 6.40 -0.16 1.14

qQ 6.21 -0.14 1.09

qW 6.24 -0.15 1.08

qE 6.03 -0.12 1.00

Table 3.1: Interpolation error and maximum and minimum values for four quadratic

interpolants.

undershoots and over shoots of ten to fifteen percent. The interpolation error is much the

same for each interpolant, with that for qM being slightly larger than for the rest.

3.2.2 Test 2: Advection Test

Next we apply the same four interpolants to semi-Lagrangian advection. Again we use

an irregular grid but one which is extended sufficiently to allow advection of the initial

data. Let the advection equation be

∂u

∂t
+ a

∂u

∂x
= 0, (3.26)

and the initial data be given by

u(x, 0) =





f(x), 0 ≤ x ≤ 8

0, x < 0, x > 8,

(3.27)

where f(x) is defined by (3.21). In the notation of the Section 3.1, we use grid x(96) to

span the non-zero part of the initial data. That is, the interval 0 ≤ x ≤ 8 is spanned by

approximately 96 mesh intervals. This grid is then extended to larger values of x, again

using the irregular grid formula (3.22).
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At each time step the advected distance is 0.02, which provides a range of local

Courant numbers between 0.16 and 0.48. One thousand timesteps are made. The L2 error

in the numerical solution is calculated using only those grid points at which the analytical

solution is non-zero. Results are summarised in Table 3.2. The solution obtained with

Interpolant (q) errL2[q] min[q] max[q]

qM 0.180 -0.105 1.118

qQ 0.157 -0.092 1.068

qW 0.159 -0.091 1.082

qE 0.269 -0.004 1.001

Table 3.2: Advection error and maximum and minimum values for four quadratic inter-

polants.

each scheme is plotted in Figure 3.2. Although all these schemes are of the same formal

order of accuracy, we see that the ENO method performs significantly less well than

the other methods. In terms of computational expense, qM is the most efficient of the

four interpolants so far considered. We conclude this chapter by making three further

advection tests with this interpolant.

3.2.3 Test 3: Monotone Advection

The ENO method is close to being monotone. In this test we examine whether this

is the reason for the ENO interpolant’s poor performance. The mean of left and right

quadratics, qM , provides a monotone advection scheme when used with the monotone

limiter of Bermejo and Staniforth [3], see Section 4.3. Linear interpolation is used for the

low order, monotone scheme required by this limiter. The algorithm is as follows:

1. Calculate the maximum and minimum values of the data neighbouring the departure
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Figure 3.2: Constant speed advection test for four different centred quadratic interpolants,

on an irregular grid. Advected fields shown after 1000 timesteps, with local Courant

number varying between 0.16 and 0.48.

point,

umin = min
(
un

k , u
n
k+1

)
(3.28)

umax = max
(
un

k , u
n
k+1

)
; (3.29)

2. Limit the quadratic interpolation to lie within the bounds set by umin and umax,

un+1
j ← min

(
max

(
un+1

j , umin

)
, umax

)
. (3.30)

Figure 3.3 shows the result obtained when the advection test is repeated with qM made

monotone in this way. Clearly, the ENO approach to monotonicity is not to be favoured

in the context of quadratic interpolation.

3.2.4 Test 4: Comparison with Regular-Grid Scheme

Computationally, the mean quadratic, qM , is more expensive to implement than the

Fromm quadratic, qF . This is because qM is based on interpolants which correctly respect
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Figure 3.3: Advection test comparing qM with monotone filter against quadratic ENO

method. Data advected at constant speed across an irregular mesh for 1000 timesteps.

the positions of the outlying knots, xk−1 and xk+2, on an irregular grid. The Fromm

interpolant assumes that xk−1, xk, xk+1 and xk+2 are equally spaced. Generally, the semi-

Lagrangian method is applied on regular grids, or on grids where the variation in mesh

length is very gradual. The error in using qF , rather than qM as the basis for a quadratic

SL scheme, therefore, may be expected to be slight. The grid used in the current advection

test has more extreme variation in mesh length than would be used in practice. It has

a maximum ratio of successive mesh intervals of roughly 1.7. By way of comparison,

the idealised two-dimensional version of The Met. Office Unified Model Version 5 uses a

maximum mesh ratio of 1.1. Figure 3.4 shows the result obtained when qF is used in

the advection test. In terms of undershoots and overshoots it performs better than qM .

However, the over-all error in the solution is larger for qF , Table 3.3. Nevertheless, the

difference in performance between the two schemes is reasonably small. Therefore the

Fromm scheme may be used as a replacement for the mean scheme, where computational

expense is an issue.
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Figure 3.4: Comparison of mean and Fromm quadratic interpolants. Constant speed

advection test over an irregular grid. Solutions shown after 1000 timesteps.

3.2.5 Conclusion

The computational tests show that the quadratic Fromm interpolant (3.8) compares well

against other, more accurate quadratic interpolants. This scheme has potential for appli-

cation in semi-Lagrangian advection schemes.

Interpolant (q) errL2[q] min[q] max[q]

qM 0.180 -0.105 1.118

monotone qM 0.210 0.000 1.000

qF 0.221 -0.071 1.075

Table 3.3: Advection error and maximum and minimum values for four quadratic inter-

polants.
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Chapter 4

Nonlinear Schemes

Linear schemes with high order accuracy introduce spurious small-scale oscillations into

the numerical solution, as shown in Figure 2.4. In order to prevent these oscillations

nonlinear interpolation methods are required. Three such methods are reviewed here.

4.1 ENO Interpolation

The essentially non-oscillatory (ENO) interpolation employed by Harten, Engquist, Osher

and Chakravarthy in their advection schemes [12], [11] is immediately applicable to SL

schemes. In this context ENO is a nonlinear adjustment to the Lagrange interpolating

polynomial in divided difference form. The following description of ENO interpolation

employs the notation of Section 2.4.1.

Starting with linear interpolation, the order of accuracy of the ENO interpolant

is increased by the addition of successive terms, producing a sequence of interpolants

q1, . . . , qN up to the desired accuracy. Each new term is a polynomial in x and has a

divided difference, of appropriate order, as leading coefficient. ENO differs from standard

divided difference interpolation through involving a wider range of divided difference

values which may be calculated from the data. Using the notation of Section 2.4.1, the
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first order ENO interpolant at the point x, where xi ≤ x < xi+1, is

q1(x) = f [xi] + (x− xi)f [xi, xi+1].

Second order ENO interpolation, q2(x), is formed by adding a quadratic term to the

above, of the form

f [ , , ](x− xi)(x− xi+1),

where f [ , , ] is a second divided difference. The first divided difference, in the linear

term, uses data at the two points xi and xi+1. These same two points occur in two second

order divided differences, namely f [xi−1, xi, xi+1] and f [xi, xi+1, xi+2]. It is at this point

that ENO interpolation first differs from Newton interpolation. For now it is whichever

of these two values which has least modulus that is used to form the second order term.

At the next stage, where a cubic term is added to q2 to form q3, ENO interpolation

again differs from the Newton formula. Not only do we select the third divided difference

of least modulus for the coefficient of this term, but also the cubic polynomial must be

chosen to be consistent with the quadratic term already chosen. If the coefficient of

the quadratic term was f [xi−1, xi, xi+1], then the polynomial in the cubic term must be

(x−xi−1)(x−xi)(x−xi+1); otherwise the cubic polynomial is (x−xi)(x−xi+1)(x−xi+2).

All subsequent terms needed to form q4, q5, . . . are calculated in the same manner.

The essentially non-oscillatory property of this interpolation is best described in

terms of the total variation of the data [10], which is defined by

TV{un
j : −∞ < j <∞} =

∑

j

∣∣∣un
j+1 − u

n
j

∣∣∣ .

The ENO interpolation, composed of terms up to and including order N polynomials,

preserves the total variation of the data to order ∆xN . That is, a SL advection scheme

using ENO interpolation of order N satisfies

TV{un+1
j } = TV{un

j }+ O(∆xN ). (4.1)

A number of consequences follow from this property. The most important of these is that

any spurious oscillations introduced into the numerical solution by ENO interpolation can
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only grow at a rate limited by (4.1). In practice such oscillations remain small compared to

those introduced by Lagrange interpolation. Furthermore the oscillations remain localised

about steep gradients in the data, and are rapidly damped away from these regions. A

second consequence of (4.1) also makes ENO beneficial for us in advection schemes: pre-

existing extrema in the data are damped to a lesser degree than they would be by Lagrange

interpolation. Unfortunately these first two properties lead to a third which diminishes

the suitability of ENO interpolation for some applications. Since ENO allows the depth

of a minimum point in the solution to decrease, positivity of interpolation may be lost

even when the data are strictly positive. This would make a SL scheme based on ENO

interpolation unsuitable for moisture calculations, for instance, unless further steps are

taken to preserve positivity.

4.2 Hermite Cubic Interpolation

We briefly mention here a method for constructing “shape-preserving” interpolation which

has been well surveyed in the SL literature, [61], [43]. By shape-preserving we mean

any interpolation which respects some assumed property of the data, such as positivity,

monotonicity and convexity, [7]. The shape, in the above sense, of Hermite interpolation

is determined by the values given to the derivative estimates. Fritsch and Carlson [8]

show that the following procedure produces monotone interpolation with a Hermite cubic

polynomial.

Let p(x) be the Hermite cubic interpolant on the interval [xi, xi+1], see Section 2.4.1.

Four conditions are required to determine a cubic polynomial. The first two are simply

the interpolation conditions,

p(xi) = f(xi)

p(xi+1) = f(xi+1).

Two degrees of freedom remain. These are to be accounted for by assigning derivative
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values to the Hermite cubic at the ends of the interval:

di ≈ f ′(xi)

di+1 ≈ f ′(xi).

Any method, such as one of those listed in Section 2.4.1, may be used for the derivative

estimates. Once initial estimates for di and di+1 have been made, these are then adjusted

if necessary to ensure the interpolant remains monotone across the interval. This is done

by comparing the estimates against the discrete slope of the data across the interval,

∆i = (f(xi+1) − f(xi))/(xi+1 − xi). If ∆i = 0 then the interpolation will be monotone

across the interval only if both derivative estimates are zero, producing a constant valued

interpolation. That is, if ∆i = 0 then di and di+1 are set to zero, regardless of their

original values. If ∆i is non-zero, then a sufficient condition for monotonicity is given in

terms of the ratios between derivative estimates and the discrete slope. Let α = di/∆i

and β = di+1/∆i. The interpolation is monotone if the following conditions are satisfied:





0 ≤ α ≤ 3

0 ≤ β ≤ 3.

The simplest approach to ensuring these conditions are satisfied, is to reset the derivative

estimates according to

di ← 0 if α < 0

di ← 3∆i if α > 3.

The value of di+1 is adjusted with reference to β in the same way.
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4.3 Quasi-Monotone Schemes

Introduction

Bermejo and Staniforth [3] describe a general method for implementing monotone inter-

polation in SL schemes. This method, which they term quasi-monotone semi-Lagrangian

(QMSL), is general in the sense that it may be applied to any existing SL scheme. The

term monotone is here used to denote any interpolation which does not introduce new

extrema into the data. Indeed the method is applicable in any number of dimensions,

being monotone in the above sense. In this section we describe the method in detail.

It is assumed that there is a high accuracy, non-monotone scheme which we wish to

make monotone. Also available is a scheme using monotone interpolation, but which is

of a low order of accuracy. Following an approach similar to the flux-corrected transport

algorithm of Boris & Book [4] and Zalesak [62], solutions from the two schemes are merged

to produce a new monotone, high-order solution. The algorithm for merging the solutions

is as follows.

4.3.1 QMSL Algorithm

Let the high order and low order solutions at node j be un+1
Hj and un+1

Lj respectively. And

let umax
d and umin

d be the maximum and minimum values respectively of the solution at

the previous time-level, in the neighbourhood of the departure point of node j. This

neighbourhood may be defined as the grid-points forming the corners of the cell in which

the departure point lies. If the result of merging the two solutions is the new solution

un+1
j , then the scheme is monotone if

umin
d ≤ un+1

j ≤ umax
d .

Priestley [38] provides an extension to QMSL, which allows its use in nonlinear or

inhomogeneous advection problems. In such problems the solution at one time-level does

not necessarily provide a local bound for the solution at the next. By allowing the low

52



order, but monotone, solution to provide a less severe bound where required, we avoid

any difficulties in this respect. So, following Priestley, we set

u+
j = max{umax

d , un+1
Lj }

u−j = min{umin
d , un+1

Lj },

and require the QMSL solution to satisfy

u−j ≤ un+1
j ≤ u+

j . (4.2)

This requirement ensures that no new extrema are created by the interpolation stage of

the QMSL scheme. Next we consider how to merge the high and low order solutions to

obtain a solution satisfying the constraint (4.2), while preserving the maximum degree of

accuracy possible.

Beginning with the low order solution, a correction is sought which will increase the

accuracy in the solution,

un+1
j = un+1

Lj + δn+1
j .

The correction term δn+1
j is derived from the high order solution. In the following com-

putations the time superscript is dropped for clarity. Let

δj = αj(uHj − uLj), 0 ≤ αj ≤ 1,

where αj are to be determined. If all the αj = 1 the QMSL solution is just the high

order solution. The task is now to find αj as large as possible, within the allowed range,

such that the monotonicity constraint (4.2) is yet satisfied. This may be achieved by first

computing the maximum and minimum allowable corrections,

Q+ = u+
j − uLj

Q− = u−j − uLj,

and the difference between the two existing solutions,

P = uHj − uLj.
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There are now three possibilities:

1) P > 0 : αj = min{1,
Q+

P
}

2) P < 0 : αj = min{1,
Q−

P
}

3) P = 0 : αj = 0.

It is a simple matter to verify that these formulae provide the desired result,

un+1
j =





un+1
Hj if u−j ≤ un+1

Hj ≤ u+
j

u+
j if u+

j < un+1
Hj

u−j if un+1
Hj < u−j .

A simpler computational route to the same result is

un+1
j = min[max(un+1

Hj , u
−
j ), u+

j ].

However, there is a considerable advantage to be gained in calculating the correction

terms αj, as will be seen in Section 9.4.3.

4.4 A Computational Example

We conclude this chapter with a brief illustration of the benefits to be gained from stable

advection calculations at high Courant number. For an Eulerian explicit advection scheme

the CFL stability criterion imposes a restriction on the length of a time-step, this limiting

value being proportional to the flow speed. As we shall see in the next chapter, the

corresponding stability restriction for a SL scheme is often far less severe, and depends

on the rate of deformation of the flow. Freedom to take longer time-steps allows a given

forecast time to be reached with fewer steps. Two benefits accrue from this. First, since

fewer steps are taken it is possible to reduce the total operation count for the forecast, so
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gaining operational speed. Secondly, by reducing the number of steps the accumulated

error may be reduced, so improving forecast quality. Neither of these advantages follows

automatically from switching to a SL scheme, but may be realised by appropriate choices

for the operational details of the scheme. For instance, computational speed may be

lost by using an unduly computationally intensive interpolation algorithm; and reduction

of accumulated errors depends on careful balancing of the time-step length with the

truncation error of the time discretisation.

We shall not pursue a thorough investigation of these issues here, but merely illustrate

some of the issues with the following set of numerical tests. Again it is the linear advection

problem that we solve, using initial data

u0(x) =





cos2

[
π

2

(x− 15)

5

]
10 ≤ x ≤ 20

0 elsewhere,

and the discretisation lengths are ∆t = ∆x = 1. This pulse is advected through a

distance of 1000 grid cells. Figure 4.1 shows the results obtained using cubic Lagrange
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Figure 4.1: Cubic Interpolation without monotonicity constraint

interpolation, without any control for monotonicity. The accuracy of the result obtained

is seen to depend strongly on the number of time steps taken. When 423 time steps are

taken, which corresponds to a CFL number of 1000/423 ≈ 2.36, the peak height of the
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numerical solution drops to about 75% of that of the exact solution. The position of the

pulse appears to be very close to being exact, though with a slight lag, as anticipated by

the Fourier analysis of Section 2.4.2

Repeating the simulation once more, this time using 2327 time-steps to achieve the

total displacement of one thousand cells (CFL ≈ 0.43), a quite different result obtains.

The peak height has now dropped close to 50% of its exact value. and there is a slightly

greater lag in the position of the pulse. In addition, we see that the extent (or support)

of the numerical solution has increased considerably: the plots show the portions of the

solution where the magnitude is one percent or more of the exact peak height. From this

we may conclude that the reduction in accumulated error, which results from running

simulations at high Courant numbers, is a significant advantage for SL schemes.

Both of the above numerical solutions show a loss of monotonicity at the leading

and trailing edges of the pulse. As a consequence positivity is also lost in these regions.

Using the monotonicity preserving method of Bermejo and Staniforth (Section 4.3), and

repeating once more the calculation with 423 time-steps, the result of which is shown in

Figure 4.2, we find that positivity and monotonicity are preserved. The position of this
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Figure 4.2: Monotone solution

new solution is comparable in accuracy to the two previous cases, and the support of the

solution shows some improvement in compactness. Unfortunately these gains are achieved
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at the expense of a large error in the value of peak height: the peak height for 423 steps

with monotone interpolation is roughly that obtained by 2327 steps with unconstrained

interpolation. In terms of the accuracy of the peak value, any gain made by solving at a

high Courant number is lost when monotonicity constraints are enforced.
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Chapter 5

Interpolation: Multi-Dimensional

Schemes

5.1 Introduction

In Chapter 2 we reviewed a selection of methods for univariate interpolation. All of these

methods were immediately applicable to SL schemes for one-dimensional problems. Any

meaningful approach to numerical weather prediction (NWP) must, however, involve a

representation of data throughout a three dimensional domain. Only in such a large

model can we hope to describe adequately the processes of the atmosphere. There is a

need, therefore, to find multivariate interpolation methods suitable for SL advection.

A simulation using finite differences typically involves a large array of grid points,

structured into layers, rows and columns. For each of these grid points a SL scheme

would have to compute a departure point. Then for each departure point perform a

number of interpolations, one for each model variable. The precise number of variables in

a model depends on the number of physical processes to be simulated. A basic weather

model would include variables to describe the three components of velocity together with

pressure, temperature and moisture. Atmospheric chemistry models may involve many

chemical species, each requiring its own model field. Consequently, a SL model may
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often involve an extremely large number of interpolations at each time-step. It is readily

apparent that much of the computational effort in such simulations will be spent on

interpolation. The viability of a SL scheme rests on the efficiency of its interpolation.

A number of methods exist for interpolating multi-dimensional data. Since we require

interpolations on a regular grid, we shall restrict our attention to methods suitable for such

an arrangement. The most familiar method of this kind is tensor product interpolation,

which is described in the next section. Basis-spline methods have recently been applied

to SL schemes [28]. Lastly, Section 5.3 contains details of cascade interpolation, whose

flexibility is becoming apparent in SL schemes [39], [23], [42].

5.2 Tensor Product Interpolation

Tensor product interpolation consists of repeated univariate interpolations along coordi-

nate directions. A simple example serves as a description of the method.

Let fij be data values on a two-dimensional grid. The nodes of this grid lie at the

intersection points of the lines

x = xi

y = yj,

where i and j nodal indices We wish to interpolate the data to a point (a, b) within the

grid. If the interpolation point lies in grid-cell (i, j), then

xi ≤ a < xi+1

yj ≤ b < yj+1

for some i and j. Bi-cubic, tensor product interpolation consists of applying univariate

cubic interpolation along each of the lines

y = yj+k, k = −1, 0, 1, 2.
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Each of these interpolations is evaluated at the point x = a. Then a final cubic interpo-

lation is made of the data just obtained, which is evaluated at the point y = b. If li(x)

and lj(y) are the basis functions for cubic Lagrange interpolation on the grid, then the

bi-cubic tensor product is

f(a, b) =
2∑

r=−1

2∑

s=−1

fi+r j+s lr(a)ls(b).

5.3 Leslie and Purser: Cascade Interpolation

The cascade method of Leslie and Purser [39] is a method for multi-dimensional interpo-

lation fulfilling many of the requirements of SL schemes. Recently it has been shown how

the method can be made conservative [23].

The notation to describe this method is rather cumbersome, but the idea itself is

straightforward. Instead of considering each interpolation in isolation, Purser and Leslie

address the task of transferring data form the regular computational grid, to the irregular

grid formed by all the Lagrangian departure points.

At time level tn finite difference data {φijk} is available on the grid formed by the

intersection of the planes

x = x̂i i = 1, · · · , I

y = ŷj j = 1, · · · , J (5.1)

z = ẑk k = 1, · · · , K

At the intersections of each of these planes, we have the grid points (x̂i, ŷj, ẑk). By tracing

back along a parcel trajectory from each point (x̂i, ŷj, ẑk, t
n + ∆t), to time level tn, we

arrive at the departure points. Equivalently we can consider this same mapping applied to

each of the planes in (5.1). In general each plane will map to some curved surface, and the

intersection points between all these surfaces are just the departure points. However these

curved surfaces also provide the notion of a departure grid (or Lagrangian grid) embedded

within the computational grid. By locating the points of intersection between the two
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grids, we can perform a sequence — or cascade — of one dimensional interpolations that

transfers data from one to the other. Under certain conditions on the velocity field, the

Lagrangian grid surfaces will provide a valid curvilinear coordinate system, (X, Y, Z).

x

y

z

X = X̂a

z = ẑk

y = ŷj

Figure 5.1: Hybrid Grids

The cascade method consists of a sequence of intermediate interpolations, which

produce approximations to φ at points where the two grids intersect. These points of

intersection are referred to as hybrid grid points. By transferring data through successive

hybrid grids, we arrive at a representation of φ on the Lagrangian grid. We next consider

this process in detail.

To illustrate what is meant by a hybrid grid point, consider first the regular grid
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of points (x̂i, ŷj, ẑk). The two coordinate planes, y = ŷj and z = ẑk, intersect in a line

(ŷj, ẑk). This line is cut by the plane x = x̂i at the regular grid point (x̂i, ŷj, ẑk). Similarly

the Lagrangian grid is obtained from the intersection of the coordinate planes X = X̂a,

Y = Ŷb, Z = Ẑc, where the indices take the same ranges as in the regular grid. Each

such plane in the (X, Y, Z) coordinate system will, in general, correspond to a curved

surface in the (x, y, z) system. Now by considering intersections between (x, y, z) planes

and (X, Y, Z) surfaces, we can construct various hybrid grid structures. For instance, the

point of intersection between the planes z = ẑk and y = ŷj with the surfaceX = X̂a defines

the hybrid grid point (X̂a, ŷj, ẑk). These various geometrical structures are indicated in

figure 5.1.

The method splits into two parts. First we must find the (x, y, z) coordinates of

certain hybrid grid points. Once these have been found, a cascade of one dimensional in-

terpolations extends the representation of φ from the regular grid, to the Lagrangian grid.

We shall first describe how the cascade of interpolations is organised, before considering

how the location of hybrid grid points might be found. By considering the interpolation

stage first, we can also see how each of the hybrid grids becomes involved.

Consider again the coordinate line (ŷj, ẑk). This line is cut by the coordinate plane,

or surface, X = X̂a at the hybrid grid point (X̂a, ŷj, ẑk). If we know the x-coordinate —

x(X̂a, ŷj, ẑk) — of this hybrid point, then we can interpolate φ to that point using the

available finite difference data along the line (ŷj, ẑk). That is, we form a one dimensional

interpolant on the data set {(x̂i, φ(x̂i, ŷj, ẑk)) : i = 1, · · · , I}. Evaluating this interpolant

at x = x(X̂a, ŷj, ẑk), we obtain an approximation for φ(X̂a, ŷj, ẑk). The interpolation used

here is local, perhaps a Lagrange interpolant or shape preserving Hermite cubic. The

procedure is repeated for all the hybrid points (X̂a, ŷj, ẑk).

The next step in the interpolation part of the scheme builds on the data we have

gathered at the hybrid grid points (X̂a, ŷj, ẑk). Our aim is eventually to find φ(X̂a, Ŷb, Ẑc).

We can move a step nearer this goal by replacing ŷj by Ŷb in the hybrid representation

we have just obtained. This can be done in much the same way as we replaced x̂i by
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X̂a above. So consider the curve of intersection, (X̂a, ẑk), between X = X̂a and z = ẑk.

This curve is cut by the plane Y = Ŷb at the hybrid grid point (X̂a, Ŷb, ẑk). All along the

curve (X̂a, ẑk) we have values of φ at the hybrid grid points (X̂a, ŷj, ẑk). If we know the

y-coordinate of each of these hybrid points, and also the y-coordinate of the new hybrid

point (X̂a, Ŷb, ẑk), then we can interpolate to find φ(X̂a, Ŷb, ẑk). Again this is repeated for

all the new hybrid grid points.

The final step is straightforward. Following the usual procedure, we consider the

intersection of Z = Ẑc with the curve (X̂a, Ŷb). This is just the Lagrangian grid point

(X̂a, Ŷb, Ẑc). As this is a departure point we’re assuming we already know its (x, y, z) coor-

dinates. This means the interpolation can follow immediately: we know the z-coordinate

of all the hybrid grid points (X̂a, Ŷb, ẑk), and we know the z-coordinate of the point

(X̂a, Ŷb, Ẑc); so a one dimensional interpolation in the z-direction gives us φ(X̂a, Ŷb, Ẑc).

The above procedure allows us to interpolate the data from the regular grid to all

the departure points using only three one dimensional interpolations per point. It only

remains to find the locations of all the hybrid grid points. This must be done before any

of the interpolations can proceed.

In the cascade procedure just described, we made use of the (x, y, z) coordinates of

hybrid grid points. But initially we only have the coordinates of the Lagrangian grid

points. The first stage of the whole interpolation method, therefore, is to extend our

coordinate information to cover all the hybrid grid points. Just as in the cascade stage,

we will achieve this using a sequence of interpolations starting from the known data.

The problem can be set out as follows.

We know (x(X̂a, Ŷb, Ẑc), y(X̂a, Ŷb, Ẑc), z(X̂a, Ŷb, Ẑc)) ∀a, b, c, as these are just the departure

points found by solving the trajectory equation. The cascade of interpolations requires

the x-coordinates of one set of hybrid grid points, and the y-coordinates of another set of

hybrid points. These coordinates are x(X̂a, ŷj, ẑk) and y(X̂a, Ŷb, ẑk) respectively.

First consider the curve (X̂a, Ŷb). Along this curve we know all the y- and z-

coordinates of the Lagrangian grid points. This allows us to interpolate the function
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y , along the curve (X̂a, Ŷb), to the point where z = ẑk.

Secondly we require x(X̂a, ŷj, ẑk). This is slightly more complicated to achieve, and

requires a two-step approach. Just as we found y(X̂a, Ŷb, ẑk), we can also find x(X̂a, Ŷb, ẑk).

Thus we have values of x, considered as a function of y, at points along the line (X̂a, ẑk).

These can then be interpolated to evaluate x at y = ŷj. The result of this is x(X̂a, ŷj, ẑk),

and the algorithm is complete.

When implemented in a SL code, the method of cascade interpolation is found to

be substantially faster than the Cartesian product method. The formal accuracy of the

method, however, is not a simple quantity to identify. Experimentally it is found that, for

reasonably smooth Lagrangian grids, the accuracy of the two methods is much the same.

Neither is grid smoothness a problem. The cascade method relies on the Lagrangian

coordinates being single valued functions of the regular coordinates. This will be the case

if the deformational Courant number, ∆t
∂u

∂x
, is less than one. This condition is precisely

the convergence condition we have from the trajectory calculation, so we see that the

cascade method is well suited to semi-Lagrangian advection.
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Chapter 6

Non-interpolating Methods

In this chapter, we shall look at an alternative form for semi-Lagrangian schemes, which

avoids the need for explicit interpolation. Two problems with the interpolation stage of SL

algorithms have been identified, both of which have important implications for numerical

weather prediction. The first is the damping which is associated with most interpolants.

This is seen to present particular problems for climate models, where model resolution

is low enough to allow such damping to seriously degrade accuracy. The second problem

is one of computational efficiency: interpolation is an expensive operation, especially for

three dimensional models. Ritchie [44] addresses these problems by proposing a non-

interpolating version of the SL method.

Ritchie’s approach is to decompose each fluid parcel trajectory into two components:

one which connects grid points between time levels and a residual displacement. The

scheme is designed such that the residual component is always sufficiently small to be

treated stably by an Eulerian approach. The original form of his scheme has a three time-

level format, but more recent work by Olim [34], and Smolarkiewicz and Pudykiewicz [53],

has developed the method as a, now more conventional, two time-level scheme.
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6.1 Ritchie’s Scheme

Ritchie’s original derivation of a non-interpolating scheme proceeds first by splitting the

advecting velocity into two components. If u is the advecting velocity, then the decom-

position is:

u = u0 + u′, (6.1)

where u0 is a vector field connecting grid points between time levels, and u′ is a residual

velocity field. Applying (6.1) to the linear advection equation

∂φ

∂t
+ u.∇φ = 0, (6.2)

we obtain

∂φ

∂t
+ u0.∇φ = −u′.∇φ. (6.3)

The scheme proceeds by first assigning node-by-node values to the two velocity fields,

u0 and u′. The vector u0 is chosen to connect the arrival node, xi, with the node, [xd],

which is closest to the departure point xd. Once u0 has been assigned the residual

component u′ is found from (6.1). For the one-dimensional problem, with a regular grid

of spacing ∆x, a two time-level scheme takes the following form.

For a given node, at position xi , (see Fig. 6.1):

1) Find [xd], and let p be the number of mesh lengths from this node to the arrival

point xi.

2) Split the advection velocity: u = p
∆x

∆t
+ u′.

3) The SL solution of (6.3) is given by:

φ(xi, t+ ∆t)− φ(xi − p∆x, t)

∆t
=

(
−u′

∂φ

∂x

)(
xi −

p∆x

2
, t+

∆t

2

)
. (6.4)

The derivative terms in (6.4) are represented by central differences.

This method can be extended, in a straightforward manner, for use in two and three

dimensional problems.
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Figure 6.1: Ritchie’s scheme

6.2 Olim’s Scheme

Olim [34] points out that Ritchie’s scheme does not totally eliminate the need for inter-

polation. The right hand side of (6.4) does not, in general, coincide with a grid point.

Some form of interpolation must be used to carry information to the correct location. For

the one dimensional scheme, this situation arises whenever p is an odd number, for then

xi −
p∆x

2
lies between grid points. The situation becomes more complicated in two and

three dimensions, for then the point of evaluation can lie at any of a considerable number

of different positions within each grid cell. In a truly non-interpolating scheme, the right

hand side would always be evaluated at a grid point. Olim achieves this by applying the

Lax-Wendroff method, along characteristics, to solve (6.3).

Olim’s scheme is derived by rewriting (6.3) as the Lagrangian equation,

dφ

dt
= −u′.∇φ (6.5)

where
d

dt
represents differentiation along the trajectories given by

dx

dt
= u0.

Expanding φ in a Taylor series along a trajectory, we have

φ(x(t+ ∆t), t+ ∆t) = φ(x(t), t) +
∞∑

r=1

∆tr

r!

(
d

dt

)r

φ(x(t), t). (6.6)
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Since the field, φ, is quite general, (6.5) provides the identity

(
d

dt

)r

= (−u′.∇)
r
.

When this is substituted into (6.6) and truncated after the first two terms, we obtain the

semi-Lagrangian, Lax-Wendroff method:

φ(xi, t+ ∆t) = φ(xi − u0∆t, t) +

[
2∑

r=1

∆tr

r!
(−u′.∇)r

]
φ(xi − u0∆t, t) + O(∆t2). (6.7)

The spatial derivatives occurring in (6.7) are represented by centred differences to obtain

the complete scheme.

6.3 Smolarkiewicz et al.

6.3.1 Stokes’ Theorem

Smolarkiewicz and Pudykiewicz [53] carry the development of non-interpolating SL schemes

a stage further. They offer an approach which allows the Eulerian and Lagrangian aspects

of the scheme to be clearly separated. This non-interpolating framework builds on the

work of Smolarkiewicz and Rasch [54] and Smolarkiewicz and Grell [52].

Consider the linear advection equation,

∂φ

∂t
+ u.∇φ = R. (6.8)

Stokes’ Theorem, on the time-space domain, is applied to the field φ, to connect data at

different points in the domain with integrals along arbitrary contours. If xi is a grid point

and x∗ is some arbitrary point, then Stokes’ Theorem provides an integral representation

of (6.8):

φ(xi, t
n + ∆t) = φ(x∗, tn) +

∫

C

(
∂φ

∂t
,∇φ

)
, (6.9)

where C is any arbitrary contour, connecting (x∗, tn) with (xi, t
n + ∆t). Using (6.8), we

can eliminate the time derivative in (6.9) to produce

φ(xi, t
n + ∆t) = φ(x∗, tn) +

∫

C
∇.(dx− udt) +

∫

C
R dt. (6.10)
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In order to obtain numerical schemes from (6.10), we must select a point, x∗, and a

contour, C.

There are three possibilities for x∗ which lead to numerical schemes:

(i) x∗ = xi : Eulerian schemes

(ii) x∗ = xd : Lagrangian schemes

(iii) x∗ = [xd] : non-interpolating SL schemes

where xd is the departure point, at time level tn, for the parcel trajectory which passes

through (xi, t
n+∆t); and [xd] is the grid point nearest to xd. Making the particular choice

x∗ = [xd], we now look at how the contour, C, might be chosen to produce numerical

schemes.

xi

[T ]

T

C′

[xd]

xd

tn+1

tn

Figure 6.2: Contour Decomposition

6.3.2 Contour Decomposition

The contour C is effectively a route along which information held at ([xd], t
n) is to be

transferred to (xi, t
n + ∆t). Smolarkiewicz and Rasch [54] investigated two classes of
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contours. By introducing a little more notation, (see Fig. 6.2), we can write these as:

(A) C = C′
⋃
T , where C′ is an arbitrary contour in the t = tn plane, connecting [xd] to

xd; and T is the fluid parcel trajectory from (xd, t
n) to (xi, t

n + ∆t).

(B) C = [T ], where [T ] is the straight line trajectory from ([xd], t
n) to (xi, t

n + ∆t).

Contour (B) leads to a class of schemes which includes Ritchie’s scheme. It can be in-

terpreted as a local coordinate transformation, which establishes a new moving frame

of reference displacing grid points to grid points, over one time step. However, for rea-

sons elaborated by Smolarkiewicz and Rasch, contour (B) poses certain design problems

if we wish to derive second order time accurate schemes. Selecting contour (A), Smo-

larkiewicz and Pudykiewicz produce a broad class of non-interpolating schemes, which

we now consider.

With the choice of contour (A), equation (6.10) becomes

φ(xi, t
n + ∆t) = φ([xd], t

n) +
∫

C′

∇φ.dx +
∫

T
R dt. (6.11)

Here we have used a few simple facts about the chosen contour. For the first integral in

(6.10), dx − udt = 0 along the parcel trajectory T ; and dt = 0 along C′, since C′ lies in

the plane t = tn.

We now have one last arbitrary quantity to fix, namely the little contour C′. Two

particular options can be identified immediately, both of which lead to numerical schemes.

(a) C′ = linear contour joining ([xd], t
n) directly to (xd, t

n), and

(b) C′ = sum of linear contours parallel to the coordinate axes.

We shall first consider contour (a). If we use s to parameterize the contour, so that

s = tn corresponds to the point ([xd], t
n) and s = tn + ∆t corresponds to (xd, t

n), then

(6.11) becomes

φ(xi, t
n + ∆t) = φ([xd], t

n)−
∫ tn+∆t

tn
∇.(φU)([xd], s) ds+

∫

T
R dt, (6.12)
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where U =
[xd]− xd

∆t
. If we ignore the source term R for the moment, we can see that

(6.12) is the formal integral, between s = tn and s = tn + ∆t, of the constant coefficient

advection equation

∂φ

∂s
+ ∇.(φU) = 0. (6.13)

There are many Eulerian schemes available for the solution of such equations. In particular

there are classes of schemes which possess desirable properties such as monotonicity and

shape-preservation ([4], [62], [57], [12], [11]). If, together with some suitable discretisation

of the source term, we apply such a scheme to (6.12) then we finally arrive at a non-

interpolating SL scheme.

If we were to choose contour (b) above, then the residual equation (6.13) would be

replaced with a set of one dimensional advection equations: one equation for each space

dimension. Applying a one dimensional Eulerian scheme to each of these would result in

a dimensional splitting scheme.

Through the above approach, we have a means of extending any Eulerian scheme

into a SL scheme. This allows the CFL stability limit of Eulerian schemes to be relaxed.

Through our choice of contours, (b) or (a) respectively, we can combine one dimen-

sional schemes for use in higher space dimensions, or use fully multidimensional Eulerian

schemes. The generalized scheme inherits properties of shape-preservation from the origi-

nal Eulerian scheme. However, conservative Eulerian schemes do not lead to conservative

SL schemes using this approach.

This approach to constructing non-interpolating schemes replaces the conventional

interpolation operators of SL schemes with Eulerian advection schemes. This equiva-

lence between interpolation and numerical advection with finite differences is discussed

in considerable detail by Smolarkiewicz and Grell [52].
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6.4 Non-interpolating Trajectory Methods

In Chapter 1 we described the implicit mid-point rule for solving the trajectory equation

in semi-Lagrangian schemes. This method requires interpolation of the finite difference

data representing the velocity field. To eliminate interpolation from all aspects of SL

schemes, Smolarkiewicz and Pudykiewicz [53] apply the advection-interpolation equiva-

lence to solving the trajectory equation. With an Eulerian advection scheme in place

of a more conventional interpolation operator, such methods may be considered non-

interpolating.

A more elegant route to removing computationally expensive interpolations from tra-

jectory calculations, has been suggested by McGregor [30]. In this approach to calculating

departure points, the trajectory equation is no longer solved using the implicit mid-point

rule. Instead, finite difference approximations of a truncated Taylor series expansion are

used.

If the trajectory equation is

dx

dt
= u(x, t),

where x(t) is the position along the trajectory at time t, and u is the velocity, then a

Taylor series expansion of x(tn) about time tn + ∆t may be truncated to give

x(tn) ≈ x(tn + ∆t) +
M∑

r=1

(−∆t)r

r!

drx

dtr
(tn + ∆t).

In this approximation the Taylor expansion has been truncated after M terms. The

summation involves terms all to be evaluated at the forward time level, data which is

not available directly from the finite difference solution computed to time tn. Further

approximations are therefore necessary. Use is made of the formal equivalence between

the Eulerian convective derivative and the Lagrangian time derivative,

d

dt
≡

∂

∂t
+ u.∇.

An approximate form of this is

d

dt
≈ û(x(tn + ∆t, tn +

1

2
∆t).∇.
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The new velocity, û, in this equation is located at the arrival point x(tn + ∆t), which

we are here assuming to be a grid point as discussed in Chapter 1. It is to be evaluated

mid-way through the time step for second order time accuracy. This may be accomplished

by the use of time extrapolation, again using the formulae given in Chapter 1. For the

higher order derivative terms, centred differencing may be used. The advantages of this

scheme are that it does not require complicated interpolations, and all the calculations

may be carried out relatively quickly.

By calculating the product û.∇ in spherical polar coordinates, McGregor demon-

strates that his scheme is applicable to advection schemes on the sphere. In the next

chapter we examine the applicability of SL methods in general to global weather simula-

tion, where the issues arising from spherical geometry must be addressed.
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Chapter 7

Nonlinear Advection

Introduction

Up to this point we have only considered linear advection. Referring back to Section 1.3,

we see that the semi-Lagrangian method must also be applied to nonlinear advection

equations. In this chapter we investigate the behaviour of SL schemes when applied to

the Burgers’ equation. This equation provides a simple one-dimensional analogue of the

nonlinear equation for momentum, which occurs in mathematical models of fluid flow.

7.1 Burgers Equation

The viscous form of Burgers’ equation is

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
, (7.1)

where u is the flow velocity and ε a viscosity parameter. The left-hand side of this

equation represents the advection of the velocity field. Advection of the field u(x, t), by

the velocity u(x, t) gives rise to the nonlinear term in this equation.

We shall also be interested in the inviscid form of Burgers’ equation,

∂u

∂t
+ u

∂u

∂x
= 0, (7.2)
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which is obtained from (7.1) by setting ε = 0. While solutions of the viscous Burgers’

equation are always smooth, the inviscid Burgers’ equation is derived from an integral

conservation law which admits shocks. Kuo and Williams [19] found that the semi-

Lagrangian technique can be successfully applied to the inviscid Burgers’ equation, in

the context of stationary shock formation. Numerical schemes exist which are designed

specifically to correctly handle such discontinuous solutions in conservation laws, [24]. We

briefly summarise the important considerations in the design of such schemes.

First, it should be observed that solutions of the differential equation (7.2) must

have well-defined first derivatives. However this equation, where it occurs in any physical

application, will have been derived from an integral conservation law. The solutions of

such integral equations need not be continuous. Hence there is a problem for any numerical

scheme which attempts to solve the conservation law using the derivative form, (7.2).

Suitable numerical methods may be obtained by integrating (7.2) as a product with a

smooth test function. Solutions obtained in this way are termed weak solutions. A further

problem arises from this approach, namely that weak solutions are not necessarily unique.

Extra constraints are required. in order that the correct physical solution is obtained.

Such constraints are obtained by applying further physical principles, in addition to the

conservation law. These constraints are generally termed entropy conditions. Finally we

note that physically realistic solutions are obtained for the inviscid Burgers’ equation from

solutions of the viscous equation (7.1) in the limit as ε approaches zero.

In view of the above considerations, we see that the inviscid Burgers’ equation

presents a significant challenge to the semi-Lagrangian schemes so far described. Our

purpose here is not to derive SL schemes to meet this challenge. Rather, we shall apply

the SL scheme to equations (7.1) and (7.2) in the spirit of destructive testing. Since

the SL method is used for discretising the momentum equation in NWP models, it is

important to understand their behaviour when applied to nonlinear advection.

75



7.2 Setting up Computational Tests

Two sets of test problems will be considered, one with the viscous Burgers’ equation and

one with the inviscid equation. We begin by describing the experimental set-up which we

shall apply to both the viscous and inviscid Burgers’ equation.

For both sets of test problems the solution is computed on the domain

0 ≤ x ≤ 10.

Fixed boundary conditions are imposed, which are set by the initial data.

A semi-implicit semi-Lagrangian discretisation is used for the viscous Burgers’ equa-

tion,

un+1 − un
d

∆t
= αεδ2

xu
n+1 + (1− α)ε

(
δ2
xu

n
)

d
, (7.3)

where ∆t is the timestep and α is the implicitness parameter. The discretisation of the

inviscid equation is simply

un+1 = un
d . (7.4)

It is apparent from an examination of (7.3) and (7.4), that the SL method does not require

discretisation of the nonlinear terms. The nonlinearity is subsumed within the departure

point calculations and the interpolation of u to those departure points. We therefore

expect to see, in the following results, some sensitivity to the choice of departure point

and interpolation schemes.

Initially each test problem is solved using cubic Lagrange interpolation, for evaluating

quantities at departure points. The departure points are calculated using the implicit

mid-point method, with time extrapolation of the velocity and linear interpolation to

trajectory mid-points. This we term the standard SL scheme. Changes to the standard

scheme are then made by changing the form of interpolation and changing the departure

point scheme.
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7.3 Inviscid Burgers’ Test Problem

Initial data for the inviscid problem is chosen to lead to the formation of a shock in the

solution after a finite time. Up until this time the evolution of the solution is smooth.

This provides a test of the time accuracy of the SL scheme in the early, smooth stages of

the flow. At around the time of the shock formation, the design assumptions of the SL

scheme no longer hold. At this point the numerical solution is liable to fail in some way.

The initial data for the inviscid problem has the form

u(x, 0) =





umin + (umax − umin) cos2
[
π

2

(
x− xc

a

)]
, |x− xc| ≤ a

umin, |x− xc| > a,

(7.5)

with parameter values

umin = 0.0

umax = 1.0

xc = 3.0

a = 2.0.

A grid of 200 equally spaced mesh intervals is used, giving a mesh length ∆x = 0.05. For

this grid there are eighty mesh intervals covering the central feature of the initial data.

For selecting the time step, the important parameter to consider is the ratio of temporal

and spatial mesh intervals,

ν =
∆t

∆x
. (7.6)

For the current problem, this mesh ratio parameter corresponds to the maximum Courant

number at the initial time.

7.3.1 Reference Solution

A reference solution is obtained using a numerical scheme specifically designed to converge

on the correct weak solution. The accuracy of SL solutions is assessed by comparison

77



against this reference solution.

The scheme used for the reference solution is Roe’s first order upwind scheme. For

the general conservation law,

∂u

∂t
+

∂

∂x
f(u) = 0, (7.7)

this scheme takes the form

un+1
j = un

j −
∆tR
∆xR

(
f̂j+ 1

2
− f̂j− 1

2

)
, (7.8)

where ∆tR and ∆xR are the time and space mesh intervals; the numerical flux function,

f̂ , is

f̂j+ 1
2

=
1

2
[f(un

j ) + f(un
j+1)]−

1

2
|A| (un

j+1 − u
n
j ) (7.9)

and

A =
df

du
. (7.10)

This scheme is in conservation form. It is this which guarantees that its solutions will

converge, under mesh refinement, to a weak solution of the differential equation (7.7),

[21, 24].

Applying Roe’s scheme to the inviscid Burgers’ equation, the flux function is

f(u) =
1

2
u2. (7.11)

This leads to the numerical flux function

f̂j+ 1
2

=
1

4

[
(un

j )
2 + (un

j+1)
2 −

∣∣∣uj + un
j+1

∣∣∣ (un
j+1 − u

n
j )
]
. (7.12)

In order to obtain sufficient accuracy in the reference solution, (7.8) is solved on a higher

resolution grid than is used for the SL scheme:

∆xR = 0.1∆x. (7.13)

The time step for Roe’s scheme must be chosen to respect a Courant number condition;

we choose

∆tR
∆xR

≈ 0.1, (7.14)

with the precise value being chosen to ensure that an integer number of Roe integration

steps is made for each SL step.
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7.3.2 Time of Shock Formation

The method of characteristics may be used to calculate the time at which the shock first

forms. Consider the inviscid Burgers’ problem,

∂u

∂t
+ u

∂u

∂x
= 0, u(x, 0) = u0(x). (7.15)

We wish to solve this for u(x, t), t > 0. This may be done by considering characteristics.

The characteristics of (7.15) are the solution curves of

dx

dt
= u(x(t), t). (7.16)

Along a characteristic, the time rate of change of u is

du

dt
=

∂u

∂t
+
dx

dt

∂u

∂x

=
∂u

∂t
+ u

∂u

∂x

= 0, (7.17)

where we have made use first of (7.16) then of (7.15). Hence u is constant in time along

a characteristic. Consequently, the characteristic equation (7.16) may be written as,

dx

dt
= u0(x0), (7.18)

where x0 is the position at time t = 0 of the characteristic which passes through the point

x at time t. Integrating (7.18), we have

x = x0 + tu0(x0). (7.19)

If this last equation can be solved for x0 then the original problem (7.15) is solved,

u(x, t) = u0(x0). (7.20)

Even if (7.19) is not amenable to analytical solution, which depends on the nature of

the initial data u0, it still provides a means of determining when and where a shock will

form. A shock forms where characteristics first cross. In order to determine this point,
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we treat (7.19) as a family of curves, parametrised by x0. The set of intersections of

curves belonging to a family is termed the envelope of the family of curves. For a general

family of curves, φ(x, y;λ) = 0, with parameter λ, the envelope is found by simultaneously

solving

φ(x, y;λ) = 0 (7.21)

∂φ

∂λ
= 0. (7.22)

For initial data defined by (7.5), the characteristics are parallel straight lines, except

those for which the parameter x0 lies in the range [xc−a, xc+a]. Without loss of generality,

we set xc = 0 for the purposes of calculating the shock time. The characteristics are given

by

x0 + umint+ (umax − umin)t cos2
[
πx0

2a

]
− x = 0. (7.23)

Differentiating (7.23) with respect to the parameter x0, we obtain

1− (umax − umin)t
π

2a
sin

(
πx0

a

)
= 0. (7.24)

Hence, on the envelope of the characteristics,

t =
2a

π(umax − umin) sin[πx0/a]
, −a ≤ x0 ≤ a. (7.25)

For t > 0 the minimum value of t on this curve occurs when

x0 =
a

2
, (7.26)

from which we obtain the shock time,

ts =
2a

π(umax − umin)
. (7.27)

Using (7.23) and (7.27), we see that the shock occurs at position

xs =
a

2
+
a(umax + umin)

π(umax − umin)
. (7.28)

So far we have only used part of the initial data in calculating the shock position and

time. If the above computed value of xs is greater than a, then some of the characteristics
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with −a ≤ x0 ≤ a will have crossed characteristics with x0 > a at some earlier shock

time. Even if this is not the case, it is still necessary to check that characteristics from

these two regions of initial data do not cross earlier than time ts. For the case umin = 0

we find that

xs =
(
π + 2

2π

)
a < a. (7.29)

Finally, a graphical check may be made to ensure that no characteristic with x0 in the

range [−a, a] has reached x = a by time ts. Here we simply show the plausibility of ts

being the earliest shock time, as follows. The position of each of these characteristics at

time t = ts is given by

x(ts) = x0 +
2a

π
cos2

(
πx0

2a

)
, −a ≤ x0 ≤ a. (7.30)

Expanding (7.30) in a power series about x0 = a,

x(ts) = a− (a− x0)−
π

2a
(a− x0)

2 + O((a− x0)
4). (7.31)

Hence characteristics close to x0 = a have not reached x = a by time ts. This suggests

that the crossing of characteristics at position xs, time ts, is the earliest time at which a

shock occurs.

7.3.3 Results

Inviscid Test 1: Standard Scheme.

Semi-Lagrangian schemes are of interest precisely because they allow long time steps to

be used. Setting

ν = 1.70,

the standard SL scheme produces the results shown in Figure 7.1. For comparison, the

same problem is solved using Roe’s scheme and is shown by the dashed lines. The solution

is plotted at intervals of ten timesteps for a total of fifty timesteps. The semi-Lagrangian

solution follows the reference solution remarkably well as it slumps towards the right and
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Figure 7.1: Solution of inviscid Burgers’ equation using standard SL scheme: cubic inter-

polation; departure points calculated using time extrapolated velocity, four iterations of

implicit mid-point method. Dashed lines show solution obtained by Roe’s scheme on a

finer mesh.

forms a shock. Once the shock has formed, however, sharp, spurious spikes enter the SL

solution. These are due to the lack of smoothness in the solution around the shock.

It would appear from this first result that the standard SL method is giving a solution

which is qualitatively correct: it gives an accurate solution while the flow is smooth and

has a shock moving at more or less the correct speed. However this result is due mainly

to a favourable choice of parameters. If we change the initial data by setting umin = 0,

then the result is as shown in Figure 7.2. The behaviour of the standard SL scheme is

now quite different. The spikes at the shock position are much reduced, but now the

shock speed is entirely wrong. Having verified that the standard SL scheme only solves

the inviscid Burgers’ equation up to the time of shock formation, we look more closely at

82



0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

u(
x,

t)

x

Figure 7.2: Solution of inviscid Burgers’ equation using standard SL scheme: as Figure 7.1

except umin = 0 in initial data.

the scheme’s accuracy during this smooth stage of the flow.

Inviscid Test 2: Accuracy of Solution before Shock Formation.

The initial data parameters are now set as:

umin = 0.0

umax = 0.01

xc = 4.5

a = 4.0.

In order to pose a more severe test, both the mesh interval and the mesh ratio are

doubled: ∆x = 0.02, ν = 3.40. For this combination of parameters the shock occurs at

time t ≈ 254.65; the timestep is ∆t = 0.68. Making a total of 375 steps, and plotting the
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solution after every 75 steps, the solution obtained with the standard scheme is shown in

Figure 7.3.
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Figure 7.3: Solution of inviscid Burgers’ equation using standard SL scheme: initial data

and SL solution shown at 75 step intervals; reference solution in dashed line. SL solution

is well-behaved for times before shock forms.

Next we define two measures of error for the numerical solutions. The first is the L2

norm of the difference between the SL solution and the reference solution,

eL2(tn) =

∑N
j=1[(u

n
j )

2
SL − (un

j )
2
Roe]

N
, (7.32)

where (un
j )SL is the SL solution for time tn = n∆t at position xj = j∆x, and (un

j )Roe is

the reference solution for the same time and place; N is the number of grid points in the

interior of the domain. Since the SL schemes considered here do not have the numerical

conservation property, it is appropriate also to consider the error in conservation,

em(tn) =
Mn

M0

, (7.33)
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where Mn is the numerical “mass” at time tn, given by the summation

Mn =
N∑

j=1

un
j ∆x. (7.34)

The error measurements defined by (7.32) and (7.33) allow us to compare results

obtained with different SL schemes. Figure 7.4 shows error quantities plotted against

model time, for four different interpolants: the cubic Lagrange of the standard scheme;

cubic ENO; the quadratic ‘Fromm’ interpolant, and quintic Lagrange. All four schemes

behave in broadly the same manner. Each scheme performs well up until roughly time

t = 200. Beyond this time all the solutions become increasingly erratic as the shock time

is approached. The ENO scheme performs least well. This is due to the steepening of the

solution near the forming shock. The ENO scheme will respond to this loss of smoothness

by shifting the interpolation stencil to where the solution is smoothest. Though still

formally of fourth order accuracy, the one-sided shift of the stencil leads to comparatively

large interpolation errors. The quadratic ‘Fromm’ interpolant performs best. This may

be attributed to the fact that this method requires less smoothness in the data, than

do the higher order interpolants, in order to fully realise its formal order of accuracy.

In general we may conclude that semi-Lagrangian schemes are capable of tracking the

smooth development of the flow, almost to the point of shock formation.

Test 3: Variation of Mesh Ratio Parameter

For this group of tests, we use umax = 0.1, for which the shock forms at approximately

time t = 25.5. We examine the effect of varying the mesh ratio parameter on the solutions

obtained. For fifty evenly spaced values of ∆t/∆x between 0.1 and 6.0, numerical inte-

grations are made up to just one time step before the shock time. The maximum error

during each integration is plotted against the value of the mesh ratio, Figure 7.5. We

see that the quadratic Fromm scheme performs better than both the cubic and quintic

Lagrange schemes, at all values of the mesh ratio. The cubic Lagrange scheme is more

accurate than the quintic scheme, for mesh ratios below about 2.5. Beyond this point the

quintic scheme gives results which are more accurate than those with the cubic scheme.
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Figure 7.4: Plots of L2 error and conservation error against time for SL solution of inviscid

Burgers’ equation. Results shown for four different interpolation methods.

Next the integration is run up to time t = 20, which is just under eighty percent of

the shock time. At this time the spurious behaviour as the shock is approached has not

yet begun. This can be seen in Figure 7.4, where each method becomes wildly erratic

only after time t = 200, which corresponds to t = 20 in the current tests. As may be seen

in Figure 7.6, the quadratic scheme still performs better than the higher order methods.

7.4 Viscous Burgers’ Test Problem

The viscous Burgers’ equation (7.1 is discretised using the semi-implicit, semi-Lagrangian

discretisation (7.3). This discretisation provides a linear system of equations for the finite

difference data at the new time level. Applying index notation to (7.3), this system of
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Figure 7.5: Maximum error against mesh ratio parameter. The maximum error is the

largest error for inviscid Burgers simulation which runs to just before the time of shock

formation.

equations may be written

(1 + 2αµ) un+1
1 − αµun+1

2 = αµu0(x0) +R1 (7.35)

−αµun+1
j−1 + (1 + 2αµ) un+1

j − αµun+1
j+1 = Rj , j = 2, · · · , N − 1 (7.36)

αµun+1
N−1 + (1 + 2αµ) un+1

N = αµu0(xN+1) +RN , (7.37)

where

Rj =
[
un + (1− α)µ δ2

xu
n
]
d(j)

, (7.38)

subscript d(j) denotes interpolation to the departure point of node x(j), and the mesh

Peclet number is

µ =
ε∆t

∆x2
. (7.39)
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Figure 7.6: Maximum error against mesh ratio, for SL solution of inviscid Burgers’ prob-

lem. The integration extends only to eighty percent of the shock time.

This is a tridiagonal system of N equations for the N unknowns, un+1
j , which we solve

using the Thomas algorithm.

7.4.1 An Analytical Solution

We shall use an analytical solution of the viscous Burgers’ equation as the basis for

testing a number of semi-Lagrangian schemes. This analytical result maybe obtained by

applying the Cole-Hopf transformation to the viscous Burgers’ equation. Here we outline

a construction of the same solution.

The solution we seek is a travelling wave front, which connects two regions of differing

values of u. Let these two different states be u→ UL as x→ −∞ and u→ UR as x→∞.
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For the wave to move in the positive x direction we choose

UL > UR > 0.

Next we look for solutions of (7.1) which are constant velocity, constant profile waves,

u(x, t) = f(x− st), (7.40)

where f(y) is an arbitrary function and s is the speed of the front. Substituting (7.40)

into (7.1) we obtain,

d

dy

[
ε
df

dy
+ sf(y)−

1

2
f(y)2

]
= 0. (7.41)

Integrating, we have

ε
df

dy
+ sf(y)−

f(y)2

2
= C, (7.42)

where C is some constant. This constant is determined by applying the two boundary

conditions, from which we obtain

sUL −
U2

L

2
= C (7.43)

sUR −
U2

R

2
= C, (7.44)

where we have also made the assumption that

∂u

∂x
→ 0 as x→ ±∞. (7.45)

Solving (7.43) and (7.44) gives

C =
ULUR

2
. (7.46)

Next, integrating (7.42), we have

f(y) = s− β tanh

[
β

2ε
(x− x0)

]
, (7.47)

where x0 is the position of the front, and β2 = s2−ULUR is a parameter determining the

width of the front. Finally, using (7.40), the moving front solution of the viscous Burgers’

equation is

u(x, t) = s− β tanh

[
β

2ε
(x− x0 − st)

]
(7.48)
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7.4.2 Test 1: Departure Point Iterations

For the numerical tests the parameter values are as follows. For the initial data,

s = 0.6

β = 0.4

ε = 0.01

x0 = 0.5,

and for the semi-Lagrangian scheme,

∆x = 0.025

ν = 1.70

α = 0.5.

The computational domain is 0 ≤ x ≤ 10 and the grid has 400 equally spaced mesh

intervals. With this choice of parameters there are roughly a dozen grid points within

the width of the front. The integration is run for 335 timesteps. The total elapsed time

is roughly 14 and the front moves through approximately 340 mesh intervals.

We begin by applying the standard semi-Lagrangian scheme, employing cubic La-

grange interpolation. Initially only two iterations are made to solve the implicit mid-point

rule for determining trajectories. The result is shown in Figure 7.7. Increasing the number

of departure point iterations to four, the result shows marked improvement, Figure 7.8.

In view of this result we shall continue to use four iterations in calculating departure

points, unless otherwise stated.

7.4.3 Error Measurements

In order to quantify the error in the numerical solution, we define two measures of error.
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Figure 7.7: Moving front solution of viscous Burgers equation. Analytical solution (dashed

lines) and SL solution (solid lines) after 0, 71, 142, 213, 284 and 355 steps. Mesh ratio

∆t/∆x = 1.7. Two iterations for calculating departure points.

Position Error

Consider a moving front of the following form,

u(x, t) =





uL, x < x̂F (t)

uR, x > x̂F (t),

(7.49)

where x̂F (t) is the position of the front at time t. At time t, let xL be a point upstream

of the front and xR be point downstream. Integrating the solution between these points,

we have
∫ xR

xL

u(x, t) dx = [x̂F (t)− xL] uL + [xR − x̂F (t)] uR. (7.50)
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Figure 7.8: As Figure 7.7 but with 4 iterations of departure point scheme.

This may be rearranged to provide a formula for the position of the front,

x̂F (t) =
1

(uL − uR)

[
xLuL − xRuR +

∫ xR

xL

u(x, t) dx
]

(7.51)

The front defined by (7.48) has a symmetrical form and so the analytical position of the

front at time t is simply,

x̂F = x0 + st. (7.52)

In defining the position of a numerically advected front, we may make use of (7.51).

Provided points xL and xR can be found sufficiently far from the front at all times, then

the formula (7.51) provides a definition for the position of a front of any shape. Using

piecewise constant quadrature, (7.51) may be discretised to provide a numerical estimate

of the front’s position,

xF (tn) =
1

(uL − uR)


xLuL − xRuR +

∆x

2
(uL + uR) +

N∑

j=1

un
j ∆x


 , (7.53)
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where

xL = x0

xR = xN+1

uL = un
0

uR = un
N+1.

Using the numerical and analytical definitions for the position of the front at time t,

we may calculate the position error at time tn,

errpos(tn) =
xF (tn)− x̂F (tn)

∆x
. (7.54)

Shape Error

Once the position of a numerically advected front has been determined, we may calculate

the L2 error in the shape of the front. This we define by,

errshp(tn) =




∑N
j=1

(
un

j − u (xj + x̂F (tn)− xF (tn), tn)
)2

N




1
2

. (7.55)

This formula shifts the analytical solution to have the same front position as the numerical

solution, before calculating the difference of the two solutions. It is, therefore, a measure

of the error in the shape of the front and does not reflect phase errors in the numerical

solution.

7.4.4 Test 2: Interpolation

In this test we apply three different forms of interpolation: cubic and quintic Lagrange,

and the centred quadratic Fromm interpolation. Again running the integration for 355

steps, the resulting errors are shown in Figure 7.9.

All three interpolants give roughly the same position error. The shape error, however,

does not reflect the formal accuracy of the interpolant used. Cubic interpolation gives

the most accurate results for this particular case. Quintic interpolation, which is a higher
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Figure 7.9: Position and shape error for SL integration of viscous Burgers’ equation,

through 355 timesteps. Results shown for three different interpolants used to evaluate

quantities at departure point.

order scheme, gives the worst results. The quadratic scheme performs marginally better

than the quintic scheme. In order to verify that the poor performance of the quintic is

not due to lack of resolution, the test is repeated using linear advection to displace the

front. All parameters remain the same in this test as for the Burgers’ equation test. The

result is shown in Figure 7.10. The linear advection speed is chosen to be identical to the

speed of the front in the analytical solution of the viscous Burgers’ equation. For linear

semi-Lagrangian advection, the accuracy of the solution now corresponds directly to the

order of the interpolation. This confirms that the front is sufficiently well resolved on

the grid for each interpolant to give its expected accuracy. This suggests that the error

in nonlinear semi-Lagrangian advection is depends on properties of interpolation, other

than formal accuracy. To examine this possibility further, additional tests should be made
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Figure 7.10: Shape error for linear advection of front at constant speed. The accuracy of

the solution depends precisely on the order of accuracy of the interpolation used.

where the viscous Burgers’ problem is solved for a range of different grid resolutions.

7.4.5 Test 3: Departure Point Method

The results of the interpolation test show that increasing the order of interpolation im-

proves the error in the shape of the front. Increasing the accuracy of interpolation,

however, has little effect on the error in the position of the front. In the first test we

saw that the number of iterations used in finding departure points did improve the po-

sition error. We continue further in this direction by considering alternative methods of

calculating departure points.

The first departure point method we define is the method used so far, which we give

here for completeness.

Method 1: Time Extrapolation Method

The method is based on the implicit mid-point rule, with linear extrapolation in time of

the wind field:

xd = x−
∆t

2

[
3un

(
x+ xd

2

)
− un−1

(
x+ xd

2

)]
. (7.56)

This is solved iteratively for xd. The wind fields are evaluated at the trajectory mid-points

using linear interpolation.
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The departure point formula (7.56) is based on linear extrapolation of the wind field

to time tn + ∆t/2. We may also consider extrapolation of the wind along trajectories.

This provides a second method for calculating departure points:

Method 2: Extrapolation along Trajectories

xd = x−
∆t

2

[
3un(xd)− u

n−1(xdd)
]

xdd = xd −
∆t

2

[
un(xd) + un−1(xdd)

]
.

(7.57)

This formula calculates the position of a single trajectory, which passes through point xdd

at time tn−1, through xd at time tn and arrives at the point x at time tn+1. In this respect,

the method is closely akin to a standard Adams method for solving the trajectory ODE.

Again, this formula is solved iteratively for xd and the wind is interpolated using linear

interpolation. This scheme requires twice the number of interpolations per iteration,

compared with the standard scheme. This is because the wind at times tn and tn−1 are

to be interpolated to different points. Consequently, for this scheme alone, we reduce the

number of iterations to two. In this way each method will expend roughly equivalent

amounts of computational effort in calculating departure points.

Both of the methods described above compute departure points solely from the ex-

isting wind fields, at times tn and tn−1. Another approach to calculating departure points

is to use the wind data at time tn only. The differential equation governing the wind

field is used to provide an extrapolation of the wind from this time to time tn + ∆t/2.

A second order accurate approximation to the departure points is then made using this

extrapolated wind field. Now, since our purpose is to solve the differential equation gov-

erning u, we do not want to commit much effort to solving this same equation for the

purpose of finding departure points. Our approach is to make a series expansion of u

about time-level tn and then use the inviscid form of Burgers’ equation to eliminate time

derivatives.

96



The power series expansion in t of the wind field at time tn + ∆t/2 is

u
(
x, tn +

∆t

2

)
= u+

∆t

2

∂u

∂t
+

∆t2

8

∂2u

∂t2
+ O(∆x3), (7.58)

where quantities on the right-hand side are evaluated at time tn. Next we approximate

the solution of the viscous Burgers’ equation by neglecting the viscosity term,

ut + uux = 0, (7.59)

where we have used subscript notation to denote derivatives. Differentiating (7.59) with

respect to x and with respect to t, we obtain

utx + (uux)x = 0 (7.60)

utt + utux + uutx = 0. (7.61)

Combining these last three equations, we obtain expressions for the time derivatives solely

in terms of space derivatives:

ut = −uux (7.62)

utt =
(
u2ux

)
x
. (7.63)

By substituting (7.62) and (7.63) into the power series expansion, (7.58), we obtain a

third order accurate extrapolation formula. However, this formula must be discretised

in space if it is to be of practical use. If a two-point difference is used to approximate

ux, then an O(∆x2) error is introduced. As a result no greater accuracy will be obtained

by including terms of higher than first order, in the series expansion (7.58). Using the

discretisation,

(uux)j = uj

(
uj+1 − uj−1

2∆x

)
, (7.64)

we arrive at the extrapolation formula:

Method 3: PDE Extrapolation

u
n+ 1

2
j = un

j

[
1−

∆t

2∆x

(
un

j+1 − u
n
j−1

)]
. (7.65)

97



Departure points are obtained by iterative solution of,

xd = x−∆tun+ 1
2

(
x+ xd

2

)
, (7.66)

with un+ 1
2 (x) being evaluated by linear interpolation of the finite difference data.

Results

In order to compare the three departure point methods, we make a series of model in-

tegrations for varying values of the mesh ratio parameter. The timestep and number

of timesteps for each model run are chosen so that the front is advected through the

same distance in each case. This distance is chosen to be 8.5 with the current choice

of model parameters. For each model run the maximum shape error is recorded. Using

the numerical definition for the position of the front, xF as defined by (7.53), we may

calculate the average speed of the numerically advecting front. We define the ratio of this

quantity to the analytical speed of the front to be the speed error. Figure 7.11 shows the

maximum shape error and the speed error plotted against mesh ratio parameter, for the

three departure point methods.

In terms of speed error, Method 1 and Method 3 are comparable at all values of the

mesh ratio. Both of these methods show a more or less monotonic decline in the front

speed, as the mesh ratio is increased. Method 2 shows an acceleration of the front speed,

over the analytic speed, for mesh ratios close to one. Thereafter the numerical speed

of the front given by this method decreases with increasing mesh ratio. However, the

speed remains closer to the analytical speed than for either of the other methods. All the

methods give a very accurate front speed for values of mesh parameter below about one

half.

For most values of the mesh ratio, the lowest shape error is given by Method 2.

For values of mesh ratio below two, all three methods show much the same variation in

shape error. Method 1 gives a more rapidly increasing shape error for larger mesh ratios,

compared to the other with methods.

98



0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

0.005

0 0.5 1 1.5 2 2.5 3 3.5 4

sh
ap

e 
er

ro
r

Mesh ratio

Method 1
Method 2
Method 3

0.75

0.8

0.85

0.9

0.95

1

1.05

0 0.5 1 1.5 2 2.5 3 3.5 4

sp
ee

d 
er

ro
r

Mesh ratio

Method 1
Method 2
Method 3

Figure 7.11: Error in speed of front and error in shape of front plotted against mesh ratio,

for three different methods of calculating departure points.

7.4.6 Conclusion

We conclude from this test that there may be some advantage in using methods other

than the standard method for calculating departure points. This conclusion only holds,

however, in the limited setting of the tests conducted here. For calculating departure

points in two and three dimensions, the standard method has much in its favour, [59].

7.5 Idealised Atmospheric Flow Results

In order to show that quadratic interpolation may be advantageous in a full atmospheric

model, the centred quadratic, qM , is introduced to a Met. Office NWP model. This

model is derived from The Met. Office Unified Model version 5.0 (UM5.0), which is a

nonhydrostatic semi-Lagrangian model. The model we consider here is an idealised two-
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dimensional vertical slice version of UM5.0. It also lacks the physics parametrisations of

the full model, and is a stand-alone code for two-dimensional, nonhydrostatic, inviscid

dynamics.

As part of the validation work for UM5.0, idealised tests have been performed with

the vertical slice model, in addition to tests with shallow water and vertical column mod-

els. One such test involves a neutrally stratified atmosphere, which flows over periodic,

sinusoidal terrain. By neutrally stratified, we mean that the vertical profile of tempera-

ture is such that no buoyancy forces act, when air is displaced vertically. Under conditions

of stable stratification in the atmosphere, buoyancy acts as a restoring force on vertically

displaced air-parcels. This mechanism is associated with one of the categories of wave

motion that occur in the atmosphere, so-called gravity waves. Unstable stratification

leads to unopposed ascent of air-parcels, resulting in convective upwelling. The choice of

neutral stratification for our idealised test, therefore, corresponds to a test of the evanes-

cent response of the model. Tests using stable stratification have also been made, which

we do not present here.

The domain for the evanescent test has periodic lateral boundaries and free-slip

boundary conditions on the vertical boundaries. The top of the model is a rigid lid, set

at height z = H . Initially the atmosphere is in hydrostatic balance; the vertical wind

field is everywhere zero, and the horizontal wind field has the same constant value, U ,

everywhere. The lower boundary has the sinusoidal form

h(x) = h0 cos
[
π
(

2x− L

L

)]
, (7.67)

where L is the length of the domain (ie. the periodic length), h0 is the amplitude of the

orography and h(x), the orographic height at position x. The parameter values used in

the test are:

U = 10m/s

h0 = 200m

H = 6000m
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L = 4000m.

The model uses a semi-implicit time integration scheme. In the following, all the implicit

weights are set to one half, which corresponds to a fully time-centred Crank-Nicolson

scheme [31]. A terrain following grid is used, which relaxes linearly to the flat, hori-

zontal upper boundary. Laterally, the grid has a constant mesh length. Twenty mesh

intervals are used in the horizontal and forty in the vertical. A timestep is chosen which

gives Courant numbers of approximately 0.15. All fields are interpolated using bi-cubic

interpolation.

When the model is integrated forward in time, there is a short period during which

the flow adjusts to the orography. After this, a quasi-steady state is reached. Figure 7.12

shows the horizontal and vertical wind components produced by the model after 2500

timesteps. These show the character of this flow problem: the wind slows down in the

Figure 7.12: Horizontal and vertical wind fields at quasi-steady state. Model represents

neutrally stratified and inviscid flow.

valleys and speeds up over the crest of the hill. Both fields are close to the analytical

steady state at this point.

During the quasi-steady phase the flow gradually decelerates. The model doesn’t
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achieve the analytical steady state, due to the dissipation inherent in the semi-Lagrangian

scheme. An indication of this slowing down is given by the total kinetic energy of the

flow. When the order of interpolation of the model fields is varied, it is found that there

is sensitivity only in the wind field interpolation. Figure 7.13 shows the total kinetic

energy, normalised against that of the initial data, plotted against time. The time-span
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Figure 7.13: Normalised kinetic energy against time, showing deceleration of the quasi-

steady state. Results shown for four interpolants of different formal accuracy applied to

wind fields.

plotted represents ten thousand timesteps. The kinetic energy is shown for four different

interpolants applied to the wind fields. All other fields are interpolated with cubics. The

centred quadratic is the mean quadratic, qM . This is made into a bi-quadratic interpolant

through combining five univariate quadratics in a Cartesian product. Similarly, this is how

the bi-cubic and bi-quintic interpolants are formed from univariate Lagrange interpolation.

The ECMWF (European Centre for Medium Range Weather Forecasting) quasi-cubic, is a

method where three univariate cubic and one linear interpolation are used to form a ‘quasi-

Cartesian’ product. In effect it is a slightly degraded bi-cubic interpolant, which is quicker

to calculate than the full bi-cubic. We see that quintic interpolation provides the best

conservation of kinetic energy, among these four interpolants. The cubic interpolant gives

the worst results. This is improved upon slightly by the ECMWF reduced cubic, which

in turn is slightly inferior to the quadratic interpolant. A similar trend, for unexpectedly

poor performance by cubic interpolation, has also been observed in idealised dynamical
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tests with the global three-dimensional version of UM5.0.

7.6 Conclusion

The results presented in this chapter demonstrate a potential advantage which quadratic

interpolation may have over cubic, in semi-Lagrangian advection. Truncation error analy-

sis shows cubic interpolation to have a higher formal order of accuracy than has quadratic

interpolation. Consequently linear advection using a cubic semi-Lagrangian method is

more accurate than with a quadratic SL scheme. This is observed unambiguously in com-

putational results. However, in the case of nonlinear advection the correlation between

truncation error and computational accuracy is less clear. Even at moderately high levels

of mesh refinement, a low order interpolant may give better results than a high order one,

when applied to nonlinear advection of the wind fields. This is likely to hold at the levels

of grid resolution currently used in NWP models.

One explanation for this discrepancy, between analysis and computational results, is

suggested by the viscous Burgers’ equation test. In this test the nonlinear advection acts

to increase the steepness of the front. This tendency is balanced by the diffusion term,

which acts to smear out the front. In a numerical solution of this problem, the truncation

error of the scheme will contribute to the smoothing effect of the diffusion. For cubic

interpolation the leading order truncation error depends on the fourth spatial derivative,

while for a quadratic it is the third derivative. The balance obtained in a numerical

solution, between the steepening and dissipative effects, therefore differs qualitatively as

well as quantitatively between cubic and quadratic schemes. This difference in the order of

derivatives may play some part in explaining the observed results. Another consideration

is the degree to which non-conservative SL schemes correctly model a conservation law.

If a quadratic interpolant more accurately meets the conservation requirement, than does

a cubic, this could explain the observed results.

We conclude that further analysis is required, in order that nonlinear advection with
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semi-Lagrangian schemes be fully understood.
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Chapter 8

Global Forecasting

Introduction

In the preceding chapters we have examined the application of SL methods to fluid flows

in more than one dimension. Our aim is to identify SL methods particularly suitable for

use in weather simulation models. Unless the model covers a very limited geographical

region, it must take account of the Earth’s curvature. As a first approximation we take

the Earth to be a perfect sphere.

In this chapter we shall only consider modelling of atmospheric flows over the whole

sphere. The special case of limited area modelling does not raise any further issues which

do not arise in a global model.

The advantage of computational speed available when using a semi-Lagrangian scheme

is maximised when using a regular computational grid. A regular grid allows for both

efficient interpolation and fast location of departure points. For this reason the initial

development of SL methods has been to problems in domains covered by a Cartesian

coordinate system, where the coordinate directions generate a regular, rectangular grid.

Such methods are immediately applicable to limited area atmospheric modelling.

For extending the method for use in global simulations it is necessary to consider the

problems posed by spherical geometry. These problems arise from the fact that the sphere
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can not be covered by a single coordinate system without singularities. In particular, if we

use equal angular spacings along lines of longitude and latitude to generate the grid, then

the grid will share the singularities of the coordinate system at the poles. This singularity

is reflected in the grid indexing by a degeneracy at the poles: since a line of latitude has

zero length at a pole, all the grid- points along that line are coincident with the pole.

Yet for all these difficulties there are significant benefits to be obtained by the use

of a latitude-longitude grid. Most importantly, finite difference calculations on such a

grid have the simplicity commonly associated with a regular Cartesian grid on a plane

rectangular domain. For if (λ, θ) are coordinates of longitude and latitude of points on the

sphere, then in the λ-θ plane the grid is regular and rectangular. The singularity at the

poles takes the form of an indexing degeneracy: along the lines θ = π/2,−π/2 all points

correspond to the North and South poles respectively. Unfortunately the components of

velocity in this coordinate system present particular difficulties for the SL method: one of

the components has a polar singularity, which must be taken into account in calculations

of trajectories and momentum components near the poles.

Bates et al. [2] present perhaps the best current set of remedies for the problems

of spherical geometry in SL schemes. The equations of momentum, which in component

form involve polar singularities, are discretised in vector form. This avoids metric terms

explicitly occurring in the discrete equations. The picture, however, is less clear for the

trajectory calculation. Away from the poles the coordinate lines have low curvature, and

we can apply methods of trajectory calculation designed for Euclidean geometry. Closer

to the poles, a separate local coordinate system is set up for each grid point. The new

coordinates are obtained by rotating the polar axis of the spherical coordinates, so that

the near-polar grid point now lies on the coordinate equator. In these coordinates the

trajectory equation can once again be solved using methods for flat geometry. Finally at

the poles themselves a Fourier method is used. Before looking at these methods in more

detail, we shall first review the spherical coordinate system used in meteorology.
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8.1 Geophysical Spherical Coordinates

Let λ and θ be the longitude and latitude respectively of a point P , which is a distance

r from the Earth’s centre. The geophysical spherical coordinates of this point are then

(λ, θ, r). It is conventional to denote the unit vectors at P in the coordinate directions

λ, θ, r by i(P ), j(P ), k(P ) respectively. For brevity, we shall refer to the unit vectors at

any point P as simply i, j, k, but it is important to remember that these vectors depend

on the coordinates of P .

Now let I, J , K be the Cartesian unit vectors, with J aligned along the polar axis

directed from South to North. The vector K is directed from the Earth’s centre to the

point of zero longitude on the equator (fig. 8.1). The two sets of basis vectors are related

by

i = M11I + M12J + M13K

j = M21I + M22J + M23K

k = M31I + M32J + M33K

(8.1)

where the matrix of coefficients M = (Mαβ) is

M(λ, θ) =




cosλ 0 − sin λ

− sin θ sinλ cos θ − sin θ cosλ

cos θ sinλ sin θ cos θ cosλ




. (8.2)

Use will be made of this result in deriving a discretisation of the momentum equation

in vector form. This result also allows us to compute the partial derivatives of the unit

vectors i, j, k with respect to λ, θ and r. From these partial derivatives vector differential

quantities may be computed in coordinate form. Again we shall be making use of this

when discussing the semi-Lagrangian treatment of momentum, where the relevant result
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is

(v.∇)v = i

[
u

r cos θ

∂u

∂λ
+
v

r

∂u

∂θ
+ w

∂u

∂r
+
u

r
(w − v tan θ)

]

+ j

[
u

r cos θ

∂v

∂λ
+
v

r

∂v

∂θ
+ w

∂v

∂r
+

1

r
(vw + u2 tan θ)

]

+ k

[
u

r cos θ

∂w

∂λ
+
v

r

∂w

∂θ
+ w

∂w

∂r
−

(u2 + v2)

r

]
.

(8.3)

8.2 Shallow Water Equations on the Sphere

Many of the important aspects of global atmospheric flow are represented by the shal-

low water equations [60]. These result from a vertical integration of the primitive flow

equations. In vector form, the shallow water equations on the sphere are:

(
Dv

Dt

)

H
= −fr ∧ v −∇φ (8.4)

(
Dφ

Dt

)

H

= −φ∇.v (8.5)

where φ is the geopotential height (ie. the integral of g×density through the depth of the

atmosphere); f is the Coriolis parameter; r is the radius of the Earth; v is the horizontal

velocity (v = ui + vj) and
(
D

Dt

)

H
≡

∂

∂t
+

u

r cos θ

∂

∂λ
+
v

r

∂

∂θ
. In component form, using

(8.3)

(
Dv

Dt

)

H
= i

[
u

r cos θ

∂u

∂λ
+
v

r

∂u

∂θ
−
uv

r
tan θ

]

+ j

[
u

r cos θ

∂v

∂λ
+
v

r

∂v

∂θ
+
u2

r
tan θ

]
.

(8.6)

A discretisation of this, in the λ-θ plane, will have advective velocity components
(

u

r cos θ
,
v

r

)
.

The first component contains singularities at the poles, where θ = ±π/2. In consequence

any numerical scheme, based on this form of discretisation, will require special considera-

tion to be given to the polar regions. This lack of uniformity, in the numerical modelling

in different regions of the sphere, is simply due to the approach of generating a scheme

through a single coordinate system. A remedy would be to use a different coordinate

system in the regions close to the poles: one which didn’t contain singularities there.
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Such an approach is described by McDonald and Bates [29]. This approach is not entirely

satisfactory, and in the case of the momentum equation the difficulty can be avoided by

making a vector discretisation.

8.3 Vector Discretisation of Momentum Equation

Consider the nonlinear equation for horizontal advection,

[
Dv

Dt

]

H
= 0. (8.7)

We have seen that when this equation is written in component form (8.6), singularities

are encountered at the poles. A further complication is the fact that we must also take

account of the metric terms. These occur due to the dependency of the basis vectors

on the coordinates in spherical geometry. An alternative approach is to discretise the

equation (8.7) in vector form, giving

1

∆t
(vn+1

i − vn
d) = 0. (8.8)

If the components of a vector, w, in the spherical coordinate system are ((w)1, (w)2, (w)3)

then we can express (8.8) in terms of the basis vectors at the arrival and departure points:

1

∆t

[
3∑

α=1

(vn+1
i )αeα(λi, θi)−

3∑

α=1

(vn
d)αeα(λd, θd)

]
= 0 (8.9)

where e1 = i, e2 = j, e3 = k and (λi, θi), (λd, θd) are the arrival and departure points of

a trajectory on the sphere.

To obtain a discretisation which avoids the need to represent metric terms explicitly,

we replace the two sets of basis vectors in (8.9) by a single set. For this purpose, the

spherical basis vectors at the mid-point of the trajectory are used. A simple method

for achieving this uses the Cartesian basis vectors (I, J , K) in an intermediate step.

Using the matrix of transformation coefficients, (8.2), we can relate the two sets of basis

functions, at the arrival and departure points, to the set of Cartesian basis functions.

The inverse transformation (which exists, since detM = 1) allows the Cartesian basis to
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be expressed in terms of the basis vectors at the trajectory mid-point {eα(λm, θm) : α =

1, 2, 3}.

Consider the basis vectors for the spherical coordinates at the arrival point. These

can be expressed relative to the Cartesian basis as follows:

eα(λi, θi) =
3∑

β=1

Mαβ(λi, θi)Eβ α = 1, 2, 3 (8.10)

where Mαβ are the components of (8.2) and E1 = I, E2 = J , E3 = K. The Eβ basis

vectors are replaced using the inverse transformation at the trajectory mid-point:

Eβ =
3∑

γ=1

[M(λm, θm)−1]βγeγ(λm, θm) β = 1, 2, 3. (8.11)

From (8.10) and (8.11) we obtain

eα(λi, θi) =
3∑

γ=1

M̃(λi, θi)eγ(λm, θm) α = 1, 2, 3

where the matrix of coefficients for this transformation is:

M̃(λi, θi) =M(λi, θi)M(λm, θm)−1. (8.12)

A similar result holds for the basis vectors at the departure point. When these results

are combined we obtain the following trajectory-centred discretisation:

Dv

Dt
→

1

∆t

{
3∑

α=1

[(vn+1
i )αM̃αγ(λi, θi)− (vn

d)αM̃αγ(λd, θd)eγ(λm, θm)

}
. (8.13)

Source terms are treated following the same procedure, and are trajectory centred by

taking averages of values at the arrival and departure points.

This method provides a discretisation of the momentum equations which avoids the

problems associated with a discretisation of the equations in spherical coordinates. The

method is quite independent of whatever grid might be chosen to cover the sphere. In

Bates et al. the Arakawa C-grid is employed, but other grids are equally applicable.
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8.4 Calculating Departure Points

In order to calculate the departure points used by the semi-Lagrangian method we must

solve the trajectory equation. In geospherical coordinates the trajectory equation is

d

dt




λ

θ




=
1

a cos θ




u

v cos θ



. (8.14)

For regions away from the poles it is possible to use the implicit mid-point rule to solve

this, just as for the corresponding equation in plane geometry. Hence we make the ap-

proximation that the right hand side of (8.14) remains constant throughout a time step,

and equal to its value at the trajectory mid-point. Integration of (8.14) then results in

the equations

λd = λi −

(
un+1/2

m

a cos θm

)
∆t

θd = θi −

(
vn+1/2

m

a

)
∆t,

(8.15)

where subscript m denotes the mid-point of the great arc from (λd, θd) to (λi, θi), and

the velocity components are interpolated to this point and extrapolated to the mid-time

level. These equations are then solved iteratively for (λd, θd).

Sufficiently close to the poles, the assumption that the right hand side of (8.14)

remains constant through a time step is no longer valid to any degree of accuracy. To

deal with this problem, McDonald and Bates [29] introduce a new coordinate system for

each grid point within some preset neighbourhood of a pole. Assume that node i, with

coordinates (λi, θi), is such a node. Then the new coordinates, (λ′, θ′), are such that

node i is at (λ′ = 0, θ′ = 0) and the (i, j) unit vectors of the two coordinate systems are

coincident at node i. Consideration of the geometry of this construction reveals that the
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two coordinate systems are related through

λ = λi + tan−1

[
cos θ′ sin λ′

cos θ′ cosλ′ cos θi − sin θ′ sin θi

]

θ = sin−1[cos θ′ cosλ′ sin θi + sin θ′ cos θi]

(8.16)

and that the velocity components transform according to




u′

v′




=




a −b

b a







u

v




(8.17)

where

a =
1

cos θ′
[cos θ cos θi + sin θ sin θi cos(λ− λi)]

b =
1

cos θ′
sin θi sin(λ− λi).

In the (λ′, θ′) coordinate system, the coordinate lines near node i have low curvature

and so it is valid to use the implicit mid-point rule in these coordinates. Once the

departure point has been found in the primed coordinates, the (λ, θ) coordinates are

obtained from (8.16).

At the pole itself there is a singularity in the (λ, θ) coordinate system, making the

above approach invalid. The method employed by McDonald & Bates to treat the poles

depends crucially on the distribution of the variables on the chosen grid. They use the

Arakawa C-grid, for which the pole is surrounded by a latitude circle of grid points holding

values of v. By constructing a Fourier representation of the velocity field from this data,

an approximation for the polar departure point can be found. Full details of all these

methods are contained in [29] and [2].

We conclude this chapter by returning to the task of determining departure points

in regions away from the poles.
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8.5 A Geodesic Method for Calculating Departure

Point Coordinates.

In a three-dimensional global NWP model, the time rates of change of longitude, latitude

and height are, respectively,

dλ

dt
=

u

r cos φ
(8.18)

dφ

dt
=

v

r
(8.19)

dr

dt
= w, (8.20)

where u, v and w are the wind components with respect to local unit basis vectors, i,

j, k, (see [13] and Chapter 8). When the semi-Lagrangian method is used to discretise

the governing equations, the departure points will be calculated from a discretisation of

(8.18)-(8.20). This approach is only valid in regions sufficiently far from the coordinate

poles. In polar regions it is necessary to apply a coordinate transformation, in order

to avoid the removable singularity in the coordinates at the geographical pole. In the

following discussion we consider only regions away from the poles.

It is generally found necessary, in calculating departure points, to treat the horizontal

coordinates, λ and φ, separately from the vertical coordinate, r. This involves making

the “shallow atmosphere” approximation, replacing (8.18) and (8.19) with

dλ

dt
=

u

a cosφ
(8.21)

dφ

dt
=

v

a
, (8.22)

where a is the radius of the Earth. Equation (8.20) is still used to determine the r

coordinate of the departure point. If the grid point (λ, φ, r) at time tn + ∆t has its

time tn departure point at (λd, φd, rd), then the implicit mid-point rule, applied to (8.20),

provides

r − rd

∆t
= w

(
λm, φm, rm, tn +

∆t

2

)
, (8.23)
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where subscript m denotes the mid-point of the trajectory. As always, applying this

formula to a finite difference model requires extrapolation of the wind fields forward in

time, to tn + ∆t/2; and wind fields are evaluated at trajectory mid-points using linear

interpolation of the data. This equation is solved iteratively for rd. Similar formulae

for the horizontal components must also be iterated simultaneously, together with (8.23),

since all the formulae are necessarily coupled through the position of the trajectory mid-

point. We next turn to a consideration of the horizontal displacement equations, (8.21)

and (8.22).

In solving these two equations, to determine the horizontal coordinates of a departure

point, it is necessary to ensure that the trajectory remains on the surface of the sphere.

That is, any vertical displacement of a fluid parcel must be due only to the vertical

wind field. (Reasons for this requirement are connected with issues of stratification and

stability of the atmosphere.) Hence, we must apply an additional constraint in solving

(8.21) and (8.22). One such constraint is to assume that fluid parcel trajectories lie along

great circles. One way of viewing this procedure is to view the departure point calculation

as taking place in a curved, two-dimensional space, the surface of a sphere.

The following assumptions are generally made in SL schemes, when determining the

trajectory of a fluid parcel (for purposes of calculating departure points):

• The trajectory is a straight line;

• The speed along the trajectory is constant during the timestep.

In a curved space the natural generalisation of the first of these assumptions is, that the

trajectory should be a geodesic. The second assumption then becomes, that the speed

along the geodesic should be constant during the timestep. On the sphere, geodesics are

great circles. Hence we see that the shallow atmosphere approximation, coupled with the

great circle constraint, lead us to consider how departure points might be calculated in

an arbitrary curved space, or “Riemannian manifold”, [49], [48]. This we do by way of

an example, describing the procedure for the case of a sphere.
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Before doing so, we consider what further requirements might be needed of a depar-

ture point scheme for use with the SL method. Accuracy is one issue. We shall require the

method to have a second order truncation error in time. Efficiency is also a consideration,

particularly in NWP applications. A departure point scheme requiring many expensive

evaluations of trig functions, at each timestep, would not be of much use. Our list of

desirable properties for the departure point scheme is:

• Trajectories should closely follow geodesics, with constant speed during each timestep;

• Departure points should be evaluated to at least second order accuracy in time;

• Any quantities dependent only on the geometry of the space, and which remain

constant in time, should be evaluated at grid points.

The last of these items addresses the issue of efficiency. Spherical geometry, for instance,

inevitably involves the use of trigonometric functions. These are computationally expen-

sive to evaluate. If trig functions are required to be evaluated only at grid points, then

they need be calculated just once and stored for use at each timestep. A departure point

scheme on the sphere, meeting all these criteria, has been described by Ritchie and Beau-

doin [45]. Their approach is to use three-dimensional coordinate geometry to determine

great circles. Here we shall re-derive their scheme using the formalism of geodesics.

8.5.1 Geodesic Equations for the Sphere

The equations for a geodesic may be obtained by considering the affect of variations on

arc length, over all paths.

Variational Principle

Let the following be defined:

a = radius of sphere

λ = longitude
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φ = Latitude

s = arc length along surface of sphere. (8.24)

For the longitude-latitude coordinate system, the line element is

ds2 = a2 cos2 φ dλ2 + a2 dφ2. (8.25)

Let λ′ =
dλ

ds
and φ′ =

dφ

ds
, and define

L(λ(s), φ(s), λ′(s), φ′(s)) =
1

2
a2 cos2 φ (λ′)2 +

1

2
a2(φ′)2. (8.26)

Then geodesics satisfy the variational principle

δL = 0, (8.27)

where variations are made in the path (λ(s), φ(s)).

Euler-Lagrange Equations

The Euler-Lagrange equations corresponding to (8.27) are:

(i)

d

ds

∂L

∂λ′
−
∂L

∂λ
= 0 ⇒

d

ds
(a2 cos2 φ λ′) = 0

⇒ a2 cos2 φ λ′′ − 2a2 cosφ sinφ λ′φ′ = 0

⇒ λ′′ − 2 tanφ λ′φ′ = 0. (8.28)

(ii)

d

ds

∂L

∂φ′
−
∂L

∂φ
= 0 ⇒

d

ds
(a2φ′) + a2 cosφ sinφ (λ′)2 = 0

⇒ φ′′ + cos φ sinφ (λ′)2 = 0. (8.29)

Both (8.28) and (8.29) are valid only in regions away from the poles. The polar regions

are not considered here, as they play no part in the two-dimensional vertical slice model.
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Time Derivatives

Let λ̇ =
dλ

dt
and φ̇ =

dφ

dt
, then

dλ

dt
=
ds

dt

dλ

ds
(8.30)

and

d2λ

dt2
=
d2s

dt2
dλ

ds
+

(
ds

dt

)2
d2λ

ds2
. (8.31)

From (8.30) and (8.31) we obtain

λ′ =
λ̇

ṡ
(8.32)

λ′′ =
λ̈

ṡ2
−

s̈

ṡ3
λ̇ (8.33)

Similarly,

φ′ =
φ̇

ṡ
(8.34)

φ′′ =
φ̈

ṡ2
−

s̈

ṡ3
φ̇ (8.35)

Using (8.32) and (8.33) in (8.28), and (8.34) and (8.35) in (8.29), we obtain

λ̈− 2 tanφ λ̇φ̇ =
s̈

ṡ
λ̇ (8.36)

φ̈+ cosφ sinφ (λ̇)2 =
s̈

ṡ
φ̇. (8.37)

8.5.2 Departure Point Scheme — Outline

In this section we derive a geodesic scheme for calculating departure points, which is

based on using the wind fields

u = a cosφ λ̇ (8.38)

v = aφ̇. (8.39)

Trajectories are calculated using time-centred approximations, to provide second

order accuracy. Given the position of a particle at time t + ∆t, we wish to find its

position at the earlier time t. This must be achieved numerically using only values of
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wind components at the intermediate time t+ ∆t/2. In describing the scheme it is useful

to employ the following notation:

λ+ = λ(t+ ∆t), λ0 = λ(t+ ∆t/2), λ− = λ(t) (8.40)

and similarly for other variables, so that u+ = u(t+ ∆t, λ(t+ ∆t), φ(t+ ∆t)) etc.

Following the above considerations, we make Taylor series expansions about time

t+ ∆t/2:

Longitude

λ+ = λ0 +
∆t

2
λ̇0 +

∆t2

8
λ̈0 +

∆t3

48

...
λ0 +O(∆t4) (8.41)

λ− = λ0 −
∆t

2
λ̇0 +

∆t2

8
λ̈0 −

∆t3

48

...
λ0 +O(∆t4). (8.42)

Combining (8.41) and (8.42), we replace (8.42) with

λ− = λ+ −∆tλ̇0 −
∆t3

24

...
λ0 +O(∆t5). (8.43)

Latitude Analogously we have

φ+ = φ0 +
∆t

2
φ̇0 +

∆t2

8
φ̈0 +

∆t3

48

...
φ0 +O(∆t4) (8.44)

φ− = φ+ −∆tφ̇0 −
∆t3

24

...
φ0 +O(∆t5). (8.45)

Equations (8.41) and (8.44) define λ0 and φ0 implicitly, in terms of the time derivatives

of the coordinates at that point. The first stage of a numerical departure point scheme

is therefore to calculate the coordinates of the trajectory mid-point by iterative solution

of these equations. Once the mid-point (λ0, φ0) is known, the departure point (λ−, φ−) is

given explicitly by (8.43) and (8.45). So the scheme is as follows:

Scheme: First Stage

Find (λ0, φ0) by iteration on

λ0 = λ+ −
∆t

2
λ̇0 −

∆t2

8
λ̈0 −

∆t3

48

...
λ0 +O(∆t4) (8.46)

φ0 = φ+ −
∆t

2
φ̇0 −

∆t2

8
φ̈0 −

∆t3

48

...
φ0 +O(∆t4). (8.47)
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Scheme: Second Stage

Once the mid-trajectory coordinates have been found, the time derivatives of λ and φ are

evaluated at that point. The departure point coordinates are then given by (8.43) and

(8.45) to be

λ− = λ+ −∆tλ̇0 −
∆t3

24

...
λ0 +O(∆t5)

φ− = φ+ −∆tφ̇0 −
∆t3

24

...
φ0 +O(∆t5).

8.5.3 Departure Point Scheme — Practical Details

So far we have developed the scheme in terms of time derivatives of the coordinates

λ and φ. For the scheme to be practical it should use only the wind components u

and w evaluated at time t + ∆t/2. The wind field at this mid-time level is obtained

by extrapolation of the data already calculated at time levels t and t − ∆t. In order to

obtain expressions for all the time derivatives required in the above outlined scheme, extra

assumptions about the trajectory are required. These are outlined in the next section.

8.5.4 Great Circle Constant Speed Approximation

Departure point schemes in Cartesian geometry typically make the approximation that

each trajectory follows a straight line, and that the speed along a trajectory is constant

during each time step. Such a scheme is second order accurate in time if the linear

trajectory is constructed from velocity data valid mid-way through the timestep. A

natural generalisation of this scheme to other geometries is to assume that a trajectory

follows a geodesic during each time step. This is equivalent to assuming a straight-line

trajectory in Cartesian coordinates. The constant speed approximation generalises to the

assumption that the time rate of change of arc-length along a trajectory is constant. In

spherical geometry geodesics are great circles, so a suitable scheme may be derived with

a little three-dimensional trigonometry [45]. Here we use the equations for a geodesic on

a sphere (8.28) and (8.29).
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Applying ṡ = constant and s̈ = 0 to (8.28) and (8.29), we obtain

λ̈ = 2 tanφ λ̇φ̇ (8.48)

φ̈ = − cosφ sinφ (λ̇)2. (8.49)

These are the constant speed geodesic equations, from which we observe that the trajec-

tory construction of the current method does not assume λ̇ and φ̇ are constant during a

time step. We also require the third time derivatives of λ and φ, obtained by differenti-

ating the last two formulae:

...
λ = 2(1 + 3 tan2 φ)λ̇φ̇2 − 2 sin2 φ λ̇3 (8.50)

...
φ = −(1 + 2 sin2 φ)λ̇2φ̇. (8.51)

All the higher time derivatives of the coordinates may be expressed in terms of the first

derivatives. At time t+ ∆t/2 the first derivatives are related to the wind components by

λ̇0 =
u0

a cosφ0
(8.52)

φ̇0 =
v0

a
. (8.53)

Using (8.48)-(8.53) the first stage of the scheme now takes the form,

λ0 = λ+ −
∆t

2

u0 sec φ0

a
−

∆t2

4

u0v0 tanφ0 sec φ0

a2

−
∆t3

24

u0 sec φ0

a3
[(v0)2(3 sec2 φ0 − 2)− (u0)2 tan2 φ0] + O(∆t4) (8.54)

φ0 = φ+ −
∆t

2

v0

a
+

∆t2

8

(u0)2 tanφ0

a2

+
∆t3

48

(u0)2v0

a3
(3 sec2 φ0 − 2) + O(∆t4), (8.55)

where we have made use of the identity

1 + tan2 φ0 = sec2 φ0.

This scheme would be computationally expensive to implement, due to the requirement

of calculating trig functions at trajectory mid-points. In the next section we consider a

modification which avoids this problem.
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8.5.5 Efficient use of Trig Calculations

To solve (8.54) and (8.55) iteratively would require repeated calculations of tanφ0 and

sec φ0 for each iteration, at every grid point, at every time step. A considerable gain

in efficiency is made by calculating trig functions just once and storing their values for

every grid point. We therefore wish to replace the trig functions in (8.54) and (8.55) with

functions of φ+, rather than of φ0. Our approach is to adapt the procedure described in

[45].

We begin by considering

φ+ = φ0 +
∆t

2
φ̇0 +

∆t2

8
φ̈0 +

∆t3

48

...
φ0 +O(∆t4).

For a constant speed trajectory along a great circle we may make use of (8.55) to obtain

φ+ = φ0 +
∆t

2

v0

a
−

∆t2

8

(u0)2

a2
tanφ0 −

∆t3

48

(u0)2v0

a3
(3 sec2 φ0 − 2) + O(∆t4). (8.56)

The quantity we require, φ0, appears implicitly in this equation. To obtain a solution we

assume φ0 has an expansion of the form

φ0 = φ+ + p1∆t+ p2∆t
2 + p3∆t

3 + O(∆t4). (8.57)

Substituting (8.57) into (8.56),

φ+ = φ+ + p1∆t+ p2∆t
2 + p3∆t

3 −
∆t

2

v0

a

+
∆t2

8

(u0)2

a2
tan(φ+ + p1∆t+ O(∆t2)) + O(∆t4). (8.58)

Using

tan(φ+ + p1∆t+ O(∆t2)) = tanφ+ + p1 sec2 φ+ ∆t+ O(∆t2)

and equating powers of ∆t, we find

p1 = −
v0

2a
(8.59)

p2 =
(u0)2

8a2
tanφ+ (8.60)

p3 = −
(u0)2v0

24a3
. (8.61)
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Hence

φ0 = φ+ −
v0

2a
∆t+

(u0)2

8a2
tanφ+∆t2 −

(u0)2v0

24a3
∆t3 + O(∆t4). (8.62)

This is now used to evaluate the various trig functions required in the departure point

scheme. The Taylor expansions of tan and sec for a small displacement ǫ about the point

x are

tan(x+ ǫ) = tan x+ ǫ sec2 x+ ǫ2 sec2 x tanx+ O(ǫ3) (8.63)

sec(x+ ǫ) = sec x+ ǫ sec x tan x+
ǫ2

2
sec x(sec2 x+ tan2 x) + O(ǫ3). (8.64)

These expansions give

tanφ0 = tanφ+ −
v0

2a
sec2 φ+∆t+ O(∆t2) (8.65)

sec φ0 = sec φ+ −
v0

2a
secφ+ tanφ+∆t

+

[
(u0)2 tan2 φ+ + (v0)2(2 sec2 φ+ − 1)

8a2

]
secφ+∆t2 + O(∆t3). (8.66)

Combining these last two, we also have

tanφ0 sec φ0 = tanφ+ sec φ+ −
v0

2a
sec φ+(2 sec2 φ+ − 1)∆t+ O(∆t2). (8.67)

8.5.6 Departure Point Scheme — Final Form

With the above expansions, the first stage of the departure point scheme becomes

λ0 = λ+ −
u0

2a
sec φ+ ∆t

{
1 +

[
(u0)2 tan2 φ+ − (v0)2

24a2

]
∆t2

}
+ O(∆t4) (8.68)

φ0 = φ+ −
v0

2a
∆t+

(u0)2

8a2
tanφ+ ∆t2 −

(u0)2v0

24a3
∆t3 + O(∆t4). (8.69)

And the second stage becomes

λ− = λ+ −∆t
u0

a
sec φ+

(
1−

v0

2a
tanφ+∆t

)

+
u0 sec φ+

4a3

[
(v0)2

(
sec2 φ+ −

2

3

)
− (u0)2 tan2 φ+

]
∆t3 + O(∆t4) (8.70)

φ− = φ+ −∆t
v0

a
−

(u0)2v0

8a3

(
sec2 φ+ −

2

3

)
∆t3 + O(∆t4). (8.71)
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This departure point scheme is identical to the Ritchie and Beaudoin scheme, when ap-

plied in the context of a two time-level SL advection scheme. The procedure which we

have followed here, however, has the potential to be applied in curved spaces other than

the surface of the sphere. Possible applications for the method may be found, for instance,

in computational general relativity.
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Figure 8.1: Geophysical spherical coordinates
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Chapter 9

Mass Conserving Schemes

Before considering conservation of mass in numerical schemes it is first helpful to con-

sider what we require of a numerical simulation. An issue of central importance in any

simulation of fluid flow is the degree to which the simulation exhibits the true physics of

the flow. Many of the physical principles we expect to be obeyed by a fluid, though not

all, can be expressed as the conservation of some quantity. For instance, in the regime

of classical physics, we would expect an isolated fluid system to have constant values of

total mass, momentum and energy.

In constructing a mathematical model of a fluid flow, we introduce further principles

to the description of the flow. These are empirically determined relationships between the

various flow variables such as velocity, pressure and temperature. Examples are numerous

and include equations of state, Fourier’s law of heat flow and Darcy’s law for flow in porous

media. These phenomenological principles are referred to as constitutive relations, and

are required to produce a closed set of equations in the fluid variables. The closed set

of equations, which frequently consist of differential and algebraic equations, forms the

mathematical model.

Once we have obtained a mathematical model, we can often identify further relation-

ships between variables, or principles involving quantities derived from the basic variables.

These principles belong properly to the mathematical equation set alone. Examples of
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such dynamical principles, or constraints, which arise in meteorology are the conservation

of potential vorticity and geostrophic balance.

Often the picture is not so clear, and it is somewhat arbitrary how we distinguish

the mathematical from the physical. What is clear, however, is that the whole picture

can change radically when we move on to the stage of solution by numerical methods.

Ill-chosen numerics can destroy all the deep properties to be found in the mathematical

model. This is a topic of much current interest, see for instance Sanz-Serna & Calvo on

numerical methods for Hamiltonian dynamical systems [47].

To obtain a numerical solution of a mathematical model we transform the equations

into finite form. This yields a set of algebraic equations in a finite number of unknowns.

Together with whatever methods we choose to apply to obtain their solution, these equa-

tions constitute the numerical model. No matter how the above discretisation is done, we

expect the loss of some, if not all, of the exact balances which might exist in the mathe-

matical model. The extent to which this has a significant effect on predictions obtained

from the model depends on what kind of prediction we wish to make.

Lorenz ([25]) identifies two categories of prediction. In the first kind the prediction

depends on both the initial data and the boundary conditions. The second kind of

prediction depends on the boundary conditions alone. Weather prediction is an example of

the first kind. Given an initial state of the atmosphere we wish to predict its development

over a period of a few days. For these purposes the boundary conditions can be largely

taken as being constant.

Climate prediction falls into the second category of predictions. For the extended

simulation periods of climate modelling all memory of the initial conditions is lost. The

statistical properties, that is climate, of the prediction depend on the boundary condi-

tions alone. Correct prediction of climate requires comprehensive modelling of all the

atmosphere’s boundary interactions. This will include coupling to the ocean, land and

ice surfaces, interactions with the biota and driving by solar heat. In climate modelling

these are the factors of primary concern. Ideally a numerical model would not introduce
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spurious physical processes when representing atmospheric dynamics. Such errors could

obscure the essential interactions to be represented by the climate model. In practice,

however, this ideal can never be reached. But the manner in which we approximate to

the ideal will have a strong qualitative effect on the end result.

A given property of a mathematical model, such as a conservation principle, may

translate across to the numerical model in one of two ways. It may be the case that

a direct numerical analogue of the original property is found to hold for the discrete

equations, at all levels of mesh refinement. Alternatively it could be the case that no

such property holds, except in the asymptotic limit of refinement. In weather prediction

short term accuracy is the desired goal. Under such a regime it may be sufficient to

approach certain properties of the flow only in the asymptotic limit, provided that this

allows for an advantage in computational speed. The situation is entirely different for

climate prediction, where a strong case can be made for the numerical model to possess

as many exact analogue properties as possible.

We are now in a position to ask how does the semi-Lagrangian method fare in these

respects. At present the answer to this question is still largely incomplete. Until recently

no SL method existed which preserved total advected mass. Analysis of deeper dynamical

properties is wholly lacking.

For the remainder of this chapter, we shall turn our attention specifically to conser-

vation of mass, and other advected quantities, in numerical schemes.

9.1 Conservation and Continuity

Conservation is a global property. For an isolated fluid system we expect a global quantity,

such as total mass, to be conserved. The total mass after any period of time should be

precisely the same as it was initially.

If the system is not isolated then quantities which are free to be exchanged with the

fluid’s surroundings will not be conserved within the system itself. For instance, to a
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good level of approximation the atmosphere does not lose or gain mass on a short time

scale, so its total mass is a conserved variable. Total heat energy, however, has a greater

freedom to fluctuate through radiation processes. Factors such as planetary albedo and

the chemical constitution of the atmosphere determine the flow of heat energy from the

sun, into the atmosphere and back to space. A mathematical framework is required for

describing balance processes such as these.

Variables of state for a macroscopic system fall into two classes [33]. Extensive

variables are ones which refer to the system as a whole. Total mass and total energy are

extensive variables. Variables of the other class are called intensive and describe local

properties of the fluid, such as pressure and temperature.

Consider a volume of fluid, V . Let M(t) be the extensive variable corresponding to

some property, such as mass, of the fluid volume V . To every such extensive variable

there is associated an intensive variable, m(x, t), where the two variables are related by

M(t) =
∫

V
m(x, t) dx. (9.1)

Next we analyse the time evolution of M into two parts. Internal processes gener-

ate a change in M from within V . For instance chemical reactions between atmospheric

components can generate new amounts of one substance, while the amounts of the reac-

tants decrease. Secondly the value of M may vary due to exchanges between V and its

surroundings. The time rate of change of M is thus reduced to the sum of contributions

from internal and external processes :

dM

dt
=
di

dt
M +

de

dt
M. (9.2)

These two processes can be modelled in terms of the intensive variable m, as follows.

First, exchanges between V and its environment are represented by defining the flux,

F (x, t), which represents the flow of m. The net flow of m out of V is then obtained by

integrating the flux over the surface (∂V ) of V ,

de

dt
M = −

∮

∂V
F .dS. (9.3)
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Secondly, internal processes are modelled by the generation of m through a source term

s defined at all points in V ,

di

dt
M =

∫

V
s dx. (9.4)

Using (9.1), (9.3) and (9.4) equation (9.2) becomes

d

dt

∫

V
m dx = −

∮

∂V
F .dS +

∫

V
s dx. (9.5)

Applying Gauss’ Theorem to the first term on the right-hand side of (9.5), and exploiting

the arbitrariness of V , we obtain the balance equation for m in differential form :

∂m

∂t
= −∇.F + s. (9.6)

The system is conservative if the source term s is identically zero. In this case changes

in M depend solely on the flow across the boundary ∂V . If in addition the system is

isolated then we have

dM

dt
= 0. (9.7)

It is important to realise that the conservation equation (9.7) by itself does not

specify the way in which M is conserved. For this we require the modelling in terms

of the intensive variable m, which led to equation (9.6). This equation expresses the

continuity of physical quantities such as mass and electric charge.

9.2 Eulerian Conservative Schemes

Conservative Eulerian schemes can be produced by using the control-volume method of

discretisation. The region occupied by the fluid is partitioned into discrete computational

cells. Fluid variables are represented by their cell-average values in each cell. The de-

velopment of the numerical scheme follows closely the derivation of the Eulerian balance

equation (9.6) in the previous section. That equation is quite general, and could be ap-

plied equally to any extensive fluid variable. For clarity we shall now restrict our attention

to the case where this variable represents the mass distribution of some quantity, which
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is being carried along within the fluid. For instance this could be a gas being released

into the air-stream from an industrial outlet. As a further restriction we assume that this

substance is merely passively advected, without any other processes affecting its motion.

Towards the end of the chapter we shall examine the complications which arise in the

case of transport of momentum, in which case nonlinearities appearing in (9.6) need to

be dealt with appropriately.

Consider a fluid of density ρ(x, t) which occupies a region partitioned into cells {Cj}

with corresponding volumes {Vj}. Define the cell-average value of ρ,

ρj(t) =
1

Vj

∫
ρ(x, t) dx (9.8)

where

Vj =
∫

Cj

dx.

Since mass is a conserved variable, equation (9.6) provides

d

dt

∫

Cj

ρ dx = −
∮

∂Cj

F .dS (9.9)

where the mass flux is F = ρu and u is the fluid velocity.

Combining (9.8) and (9.9) we obtain the evolution equation for the cell-average den-

sity,
dρj

dt
= −

1

Vj

∮

∂Cj

F .dS. (9.10)

This equation indicates that the cell-average densities change according to exchanges of

mass between each cell and its surroundings. By discretising this equation in such a way

that exchanges of mass between cells are balanced, we obtain a mass-conserving scheme.

A particularly simple class of schemes with this conservation property take the form

ρn+1
j − ρn

j

∆t
= −

1

Vj

∑

i6=j

Fij (9.11)

where Fij is a numerical flux function representing the flow of mass from cell i to cell j.

Define total mass at time tn to be

Mn =
∑

j

ρn
j Vj. (9.12)
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Following (9.5), with s = 0, we require

Mn+1 = Mn + boundary terms. (9.13)

This balance is obtained by a natural constraint on the flux function

Fji = −Fij . (9.14)

From (9.11) and (9.12) we obtain

Mn+1 = Mn −∆t
∑

j

∑

i6=j

Fij.

Interchanging the order of summations,

∑

j

∑

i6=j

Fij =
∑

i

∑

j 6=i

Fij.

However, if we merely swap the roles of the indices and then apply (9.14),

∑

j

∑

i6=j

Fij =
∑

i

∑

j 6=i

Fji = −
∑

i

∑

j 6=i

Fij.

Hence
∑

j

∑

i6=j

Fij = −
∑

j

∑

i6=j

Fij.

So we find that the sum of flux terms is zero, and the mass Mn remains constant at its

initial value. If the system is not closed there will be extra contributions to the sum from

cells at the boundary of the region of flow. The local nature of mass balance can also be

built into this numerical framework. For this purpose a distance function must first be

defined for the separation between cell centres or centroids :

d(Ci, Cj) = 0 if Ci = Cj

d(Ci, Cj) > 0 otherwise.

The difference scheme is then said to be local if the numerical flux function satisfies

Fij = 0 whenever d(Ci, Cj) > R, (9.15)

where R is some specified finite radius.

In conclusion we see that the cancellation property of the numerical fluxes provides

conservation of discrete mass. And that the conservative Eulerian discretisation (9.10),

(9.14), (9.15) models the local property of continuity (9.6).
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9.3 Lagrangian Conservative Scheme

We shall attempt to construct a conservative Lagrangian scheme by using once again

the control-volume approach. Yet we must also employ a Lagrangian description of the

fluid, and attach our attention to the motion of individual fluid particles. To this end,

let L be an indexing set for a given collection of fluid particles. The control-volume is

identified with the region occupied at any instant by these particles. The density of the

fluid is ρ(a, t), where a is the indexing coordinate for the fluid particles. That is, (a, t)

are Lagrangian coordinates for the fluid. (For instance we could use a particle’s position

at some reference time t0 as an identifying label : a ≡ x(t0).)

To obtain the total mass contained within the control-volume, we must first associate

a volume element, dτ(a, t), to each particle. By construction no fluid particles enter or

leave the control-volume, so the total mass within the volume remains constant. This is

precisely the statement of mass conservation in Lagrangian form,

d

dt

∫

a∈L
ρ(a, t) dτ(a, t) = 0. (9.16)

The notation D/Dt for the time derivative is not used in this section, since only La-

grangian variables will be used here.

Following the procedure used in deriving a conservative Eulerian scheme, let

ρ =
1

V (t)

∫

L
ρ dτ (9.17)

where

V (t) =
∫

a∈L
dτ(a, t). (9.18)

It is clear from (9.18) that the Lagrangian control-volume is time dependent. This must

be the case since it is comoving with the fluid in a Lagrangian description of the flow.

A complication arises when we wish to base numerical schemes on (9.17) and (9.18),

owing to this time dependency. For if we differentiate (9.17) with respect to time to

obtain an evolution equation for ρ, the resulting equation will contain a term involving

the time derivative of V . Any semi-Lagrangian discretisation would then be obliged to to
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handle these volume derivatives as source terms. A scheme involving more conventional

flow variables can be obtained by using the equivalency of volume change and velocity

divergence,

1

V

dV

dt
≡∇.u.

However such schemes do not possess the exact numerical conservation property (9.13).

A Lagrangian control-volume formulation of the mass conservation equation, (9.16)

better suited to semi-Lagrangian discretisation, is obtained by working with the exten-

sive quantity ρV . Using the Lagrangian conservation equation (9.16) together with the

definition (9.17), the evolution equation for ρV is found to be simply

d

dt
(ρV ) = 0. (9.19)

An approach to conservative schemes along these lines has been pursued by Rančić[42]

and more recently by Plante and Laprise [20].

9.4 The Rezoning Method of Rančić, Plante and Laprise

Using subscript a to denote arrival quantities and d for departure, a straightforward

semi-Lagrangian discretisation of (9.19) yields

ρaVa = ρdVd. (9.20)

In any semi-Lagrangian scheme there is a fixed (Eulerian) grid on which the numerical

solution is to be held as grid-point data. Identifying Va with a cell of the Eulerian grid will

result in an upstream scheme. Alternatively a downstream scheme results from taking Vd

to be a grid cell.

9.4.1 Upstream Scheme

In the following we shall use ρn
j to denote the cell-average value (ρ) of ρ in cell j, at time

tn. Let Vj be the control-volume associated with cell j. Quantities associated with the
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upstream departure region of cell j are labelled subscript d(j). The scheme (9.20) now

takes the form

ρn+1
j Vj = ρn

d(j)V
n
d(j). (9.21)

We shall use V n
d(j) to refer to both the departure region and its volume, allowing context

to dictate the intended meaning.

Just as in the standard semi-Lagrangian framework, the data required by this scheme

at the departure time level (tn) are not immediately available. From the representation

of ρ on the Eulerian grid, {ρn
j , Vj}, a Lagrangian representation {ρn

d(j), V
n
d(j)} must be

found. For general fluid simulations this can only be achieved numerically. Interpolation

is used to approximate ρn
d(j), and V n

d(j) must be approximated by some suitable geometric

construction. The way in which these two quantities are represented numerically will

determine both the accuracy and conservation properties of the scheme. Rančić, and

Plante and Laprise incorporate conservation of mass into (9.21) in the following way.

Neglecting any flow across the boundaries of the model domain, the numerical state-

ment of mass conservation (9.13), using the variables currently defined, becomes

∑

j

ρn+1
j Vj =

∑

j

ρn
j Vj . (9.22)

The treatment of inflow and outflow boundaries does not introduce any particular prob-

lems in the following. So for the present, we assume the velocity field of the flow maps

the model domain onto itself. This is the case, for example, in global simulations on the

sphere.

From (9.21) we see that the conservation requirement (9.22) is satisfied if

∑

j

ρn
d(j)V

n
d(j) =

∑

j

ρn
j Vj. (9.23)

Equation (9.23) is a statement of mass conservation for the transformation from an Eu-

lerian to a Lagrangian representation of the fluid density, ρ. It shows that conservation

in this scheme depends on the numerical treatment of local volume changes, represented

by the quantities V n
d(j).
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If the total volume of fluid to be modelled remains constant, then this ought to be

built into the scheme as a constraint :

∑

j

Vj =
∑

j

V n
d(j) for all n.

However, we may go beyond this global constraint and identify a natural local constraint.

From the theory of differential equations we know that fluid particle trajectories do not

intersect one another. This can be represented numerically by requiring the approxima-

tions of the regions V n
d(j) to form a partition of the whole domain. That is, they should

cover the domain without gaps or overlaps. The result is a collection of control-volumes

whose structure may be associated with a (usually irregular) grid. For instance, such

a grid is formed by the edges of control-volumes. This grid approximates to the true

Lagrangian grid, formed between the regions which flow into separate Eulerian cells after

one time-step, figure (9.1).

Arbitrary Control Volumes Rezoning Control Volumes

True Lagrangian GridEulerian Grid

Figure 9.1: Control Volumes and Grids

The process of numerically transferring a discrete representation of a function from

one grid to another, both occupying the same domain, is known as rezoning . The rezoning
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constraint, described above, allows the right-hand side of (9.21) to be split in two parts

for efficient numerical evaluation. The splitting results from identifying the regions of

intersection between the Lagrangian and Eulerian control-volumes/grid cells. We shall

next describe how this allows the right-hand side of (9.21) to be discretised in such a way

that (9.23) is satisfied.

Since the whole rezoning process involves data only at the departure time level tn,

we shall drop the n superscript for the remainder of this description.

In general Vd(j) will overlap with more than one grid cell, perhaps containing some

entirely. Let Cij be the region of intersection between Vi and Vd(j). By identifying the

overlap regions, we split the right-hand side of (9.21),

ρd(j)Vd(j) =
∑

i
Cij=Vi

ρiVi +
∑

i

Cij 6= ∅

Cij 6=Vi

∫

Vi∩Vd(j)

ρi(x) dx. (9.24)

The first summation in (9.24) comprises contributions from all those grid cells Vi which lie

entirely within Vd(j). It can be evaluated directly. Regions of partial overlap are accounted

for in the second summation. To evaluate this second group of terms numerically we must

make an assumption about the way in which ρ varies within a single cell. In order to

do this we introduce the functions ρi(x), to represent sub-cell variation of the numerical

solution within each cell Ci The only data available, within a scheme, from which to

construct such representations are the cell average values {ρj}. From these averaged

values the piecewise function ρ(x) (defined as ρi(x) on each cell Ci) must somehow be

recovered.

Conservation of mass now becomes a constraint on the reconstruction, or recovery,

of ρ(x). Since {Vj} and {Vd(j)} partition the same domain (9.24) will satisfy (9.23) if

∫

Vi

ρi(x) dx = ρiVi. (9.25)

Given the above design requirements many schemes are possible. Plante and Laprise

follow Rančić in using piecewise parabolic recovery for ρ(x). With constant advection
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speed this is equivalent to using cubic interpolation in a standard semi-Lagrangian scheme,

Plante [35].

A practical rezoning strategy, to obtain the departure regions Vd(j), is given by con-

necting departure points of cell vertices with straight edges. This produces departure

zones which are general quadrilaterals in two dimensions. With this geometry analytic

evaluation of the integrals appearing in the second term of (9.24) is possible, though

cumbersome. This suggests that greater sophistication in the representation of departure

zones would be computationally inefficient.

In three dimensions the corresponding departure regions are three-dimensional figures

with bilinear faces. Identifying regions of intersection with Eulerian grid cells — and

performing exact integration — in this geometry would appear to be a serious challenge.

Further geometric simplifications are likely to be needed.

9.4.2 Downstream Scheme

It is possible to invert the procedure outlined for the upstream scheme, and obtain a

downstream discretisation for the ρ conservation equation (9.19). And again this scheme

takes the basic form (9.20). In such a scheme the departure region, Vd, is taken to

be a grid-cell. From this beginning, the aim is to construct a numerical procedure for

distributing the mass contained in this cell to grid-cells at the arrival time. Just as before,

the transfer of mass between time levels depends on how we model local volume changes.

But in the place of interpolation of the field variable we now have redistribution between

grid-cells. The numerical scheme takes the form

ρn+1
j Vj =

∑

j

mn
ij , (9.26)

where mij is the mass of fluid which flows from cell i, at time tn, to cell j, at time tn+1.

The mass distribution, mij , is calculated in two stages. First the region within cell i

which flows to cell j must be identified. Secondly the mass within this region is calculated

by integration of the recovered sub-grid distribution, ρ(x).
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A computational barrier is presented by the first stage of the scheme. If the geometry

used in the upstream scheme were to be used to approximate the arrival region in the

downstream scheme, the computational cost would be prohibitive. Plante [35] proposes a

simplified geometry, in which the arrival region is approximated by a region whose sides

remain aligned with the grid.

9.4.3 Performance of Schemes

The schemes developed by Rančić, Plante and Laprise offer simulations comparable in

accuracy to standard semi-Lagrangian methods. In addition conservation of advected

quantities is maintained to within machine precision. This is achieved at the expense of

computational speed. The upstream scheme incurs the largest overheads, requiring three

times the cpu usage of a standard scheme for one test case reported by Laprise & Plante

[20]. The downstream scheme only increases cpu usage by a factor of 1.5, compared to a

standard semi-Lagrangian scheme, in the same test. However the downstream scheme is

less accurate than the upstream scheme.

sectionQuasi-Conservative Schemes

Finally in this chapter, we describe an elegant method for introducing conservation

into semi-Lagrangian schemes. This method, due to Priestley [38], builds on the mono-

tone interpolation method of Bermejo and Staniforth, described in section 4.3. In their

QMSL method, correction terms are calculated which improve the accuracy of an existing

monotone SL scheme. Priestley’s method calculates these correction terms under the fur-

ther constraint of conservation of mass. The result is a scheme termed quasi-conservative

semi-Lagrange (QCSL).

We begin by assuming that a monotone and conservative SL solution has been com-

puted up to time tn, and the solution is next to be advanced to time tn+1. A purely

monotone solution is computed using QMSL. As described in section 4.3, this solution is

found by adding an accuracy correction to a low order monotone solution. In the notation
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of section 4.3, the new solution is to take the form

un+1
j = un+1

Lj + δn+1
j , (9.27)

where the correction term is derived from a high order non-monotone solution,

δn+1
j = αj(u

n+1
Hj − u

n+1
Lj ). (9.28)

The factors αj are generated by QMSL to be as large as possible, subject to the mono-

tonicity constraint (4.2). In this section the factors produced by QMSL will be denoted

αmax
j . The QCSL algorithm seeks sub-optimal values of αj , satisfying the monotonicity

requirement 0 ≤ αj ≤ αmax
j together with some further constraint for conservation of

mass.

To make these ideas precise, let Vj be the volume associated with node j of the grid.

The mass of the initial distribution may then be defined as

M0 =
∑

j

u0
jVj .

It is now possible to state conservation of mass as a constraint on the new solution un+1
j :

∑

j

un+1
j Vj = M0. (9.29)

Next we shall use (9.27) and (9.28) to derive from (9.29) a conservation constraint for αj.

Let the mass of the low order solution be

ML =
∑

j

un+1
Lj Vj .

The correction terms δn+1
j must be chosen so that they exactly meet the mass discrepancy

δM = M0 −ML.

That is, we require
∑

j

δn+1
j Vj = δM.

Using (9.28) this last balance equation provides the desired constraint for αj :

∑

j

αjβj = δM, (9.30)
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where

βj = (un+1
Hj − u

n+1
Lj )Vj.

The task is now to find the largest values of αj, in the range 0 ≤ αj ≤ αmax
j , which

satisfy the conservation condition (9.30). It may be assumed that the QMSL algorithm

produces correction terms with a total mass larger than the discrepancy δM . If these two

masses were the same, then the QMSL algorithm would, fortuitously, be conservative. In

such a case further adjustment to the solution would be unnecessary. Alternatively, if

the QMSL corrections have a mass too low to meet the conservation requirement, then a

simple change of sign reverses this ordering :

βj = (un+1
Lj − u

n+1
Hj )Vj

δM = ML −M0.

So, it may be assumed that the QMSL algorithm has produced correction factors αmax
j ,

which are such that
∑

j

αmax
j βj > δM.

values i

Priestley’s approach to solving the above problem is a four stage algorithm :

1:




if βj < 0 αj = αmax
j and flag(j) = 1

else αj = 0 and flag(j) = 0

2: M+ = δM −
∑

flag(j)=1

αjβj

3: α =
M+

∑
flag(j)=0 βj
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4:




if α < αmax
j ∀js.t. flag(j) = 0

then αj = α ∀js.t. flag(j) = 0 : END

else ∀j s.t. flag(j) = 0 and α > αmax
j

put αj = αmax
j and flag(j) = 1

go to 2:

This scheme is termed quasi-conservative, since it may often give slight conservation

errors. In practice this doesn’t appear to be a significant problem [9]. In Chapter 10 we

shall compare this scheme against a fully conservative SL scheme, in the context of linear

advection.
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Chapter 10

Numerical Experiments with

Conservative Schemes

10.1 Introduction

In this chapter we describe a two-dimensional scheme of the form outlined in the previous

chapter. This is a downstream scheme, which identifies overlap regions between the

Eulerian and Lagrangian grids. These regions, which are polygons, are broken down

into triangular regions. Polynomial recovery is applied to the finite difference data on

the Eulerian grid. The polynomials are then integrated over each triangle to transfer the

representation of the data to the Lagrangian grid. Rather than using some approximation

technique for the integration, we shall integrate the polynomials exactly. The resulting

scheme conserves mass to machine accuracy.

A comparison is made between this scheme and the quasi-conservative scheme of

Priestley, described in Chapter 5. Both these schemes are compared against two non-

conservative schemes. The first of these is a basic semi-Lagrangian scheme without any

control for monotonicity. The second scheme is the same as the first, but with the addition

of the quasi-monotone method of Bermejo and Staniforth, described in Chapter 2. All

of the schemes use Lagrange polynomials for interpolation, and as basis functions for the
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remapping scheme. The same method of trajectory calculation is used for all the schemes.

10.2 Remapping Scheme

A remapping scheme has two requirements :

• a method for calculating overlap regions of Eulerian and Lagrangian grids

• integration of a representation of the solution in the overlap regions.

Schemes other than the semi-Lagrangian schemes described here employ algorithms for

these or similar functions. For instance the Lagrange-Galerkin method [18], [17].

10.2.1 Exact Integration

The integration method to be described here is based on a technique for exact integration

of polynomials over arbitrary triangles. An extension of this method to three-dimensional

geometry is possible.

As described in the introduction to this chapter, the overlap regions between the two

grids are analyzed into triangles. A polynomial recovery of the finite difference data must

be integrated over each triangle. In this section we describe a technique for the exact

integration of a bi-variate polynomial over an arbitrary triangle. This technique consists

of five stages :

[1 ] Express the polynomial as a product of linear factors

[2 ] Find the transformation for mapping the unit right-angled triangle onto the given

triangle

[3 ] Apply the transformation found in [2] to each linear factor of the polynomial

[4 ] Collect terms of the same power within the polynomial

[5 ] Integrate over unit triangle.
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In stage [1] the polynomial is to be expressed in the form

pn(x, y) =
n∏

r=1

(arx+ bry + cr). (10.1)

If the polynomial we wish to integrate is known in terms of Lagrange basis functions,

then this first stage is trivial since each basis function is of the form (10.1). The integra-

tion method may therefore be applied to each basis function separately. Summation of

the integrated basis functions, multiplied by the appropriate expansion coefficients, then

yields the required integral.

Assuming the polynomial has been expressed in the form required by stage [1], stage

[2] is to calculate the transformation. Let the vertices of the triangle be labeled 1,2,3.

And let the coordinates of the vertices be (x1, y1), (x2, y2) and (x3, y3) respectively. The

transformation maps the unit triangle in a canonical space with coordinates (ξ, η), to the

triangle 123 in physical space with coordinates (x, y). The canonical triangle has vertices

at (0, 0), (1, 0) and (0, 1). A simple transformation maps from the ξ-η triangle to the x-y

triangle : 


x

y




=




x2 − x1 x3 − x1

y2 − y1 y3 − y1







ξ

η




+




x1

y1



.

Since we shall be evaluating the integral of the polynomial in the transformed coordi-

nate system, we also require the Jacobian (J) of the transformation. This is simply the

magnitude of the determinant of the above matrix and also the area of the triangle,

J = |(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)| .

In the following we use a more compact notation, with the transformation represented

by 


x

y




=




Jxx Jxy

Jyx Jyy







ξ

η




+




Jx

Jy



. (10.2)
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Step [3] requires the transformation to be applied to each linear factor of the poly-

nomial, in order to find the polynomial in the transformed coordinates. Let p̃(ξ, η) be the

transformed polynomial. From (10.1) and (10.2) we obtain

p̃n(ξ, η) =
n∏

r=1

[ar(Jxxξ + Jxyη) + br(Jyxξ + Jyyη) + Jxar + Jybr + cr]

≡
n∏

r=1

(Arξ +Brη + Cr) (10.3)

where

Ar = Jxxar + Jyxbr

Br = Jxyar + Jyybr

Cr = Jxar + Jybr + cr.

The final step will involve integrating this transformed polynomial over the unit

triangle. This task is considerably simplified by step [4], in which terms of the same

power are collected together. So, we wish to find the coefficients Qrs for which

p̃n(ξ, η) =
n∑

r=0

k−r∑

s=0

Qrsξ
rηs

A recurrence procedure offers a simple means of calculating these coefficients.

The recurrence builds through polynomials of increasing order k = 1, . . . , n, by suc-

cessively multiplying by linear factors, until the polynomial (10.3) is reached. The first

level of the recurrence has coefficients Q[0]
rs , where r = 0, 1 and s = 0, r. These coefficients

define the first-level polynomial, which is simply equal to the first linear factor of (10.3) :

Q
[0]
10ξ +Q

[0]
01η +Q

[0]
00 ≡ A1ξ +B1η + C1,

from which we obtain

Q
[0]
00 = C1

Q
[0]
01 = B1

Q
[0]
10 = A1.
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Next, assume the recurrence has been completed up to level k, and we wish to add level

k + 1. If the level k polynomial is

p̃k(ξ, η) =
k∏

r=1

(Arξ +Brη + Cr) ≡
k∑

r=0

k−r∑

s=0

Q[k]
rs ξ

rηs,

then the polynomial at the next level of the recurrence is

p̃k+1(ξ, η) = (Ak+1ξ +Bk+1η + Ck+1)p̃k(ξ, η)

= (Ak+1ξ +Bk+1η + Ck+1)
k∑

r=0

k−r∑

s=0

Q[k]
rs ξ

rηs

≡
k+1∑

r=0

r∑

s=0

Q[k+1]
rs ξrηs.

To find the new coefficients Q[k+1]
rs , we work with p̃k written in the form of a univariate

polynomial in ξ :

p̃k(ξ, η) =
k∑

r=0

q[k]
r (η)ξr,

where the coefficients are polynomials in η,

q[k]
r (η) =

k−r∑

s=0

Q[k]
rs η

s. (10.4)

Using this form we calculate p̃k+1 :

p̃k+1(ξ, η) = (Ak+1ξ +Bk+1η + Ck+1)
k∑

r=0

q[k]
r (η)ξr

= Ak+1q
[k]
k (η)ξk+1 +

k∑

r=1

[
Ak+1q

[k]
r−1(η) +Bk+1ηq

[k]
r (η)

]
ξr+

Bk+1ηq
[k]
0 (η) + Ck+1

k∑

r=0

q[k]
r (η)ξr,

from which we obtain recurrence relations for the coefficients of ξr :

q
[k+1]
k+1 (η) = Ak+1q

[k]
k (η)

q[k+1]
r (η) = Ak+1q

[k]
r−1(η) +Bk+1ηq

[k]
r (η) + Ck+1q

[k]
r (η) r = 1, . . . , k

q
[k+1]
0 (η) = Bk+1ηq

[k]
0 (η) + Ck+1q

[k]
0 (η).
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Applying the definition (10.4) of the q̃k(η) polynomials in terms of the coefficients Qrs,

we obtain recurrence relationships for the coefficients :

Q
[k+1]
k+10 = Ak+1Q

[k]
k 0

Q
[k+1]
r 0 = Ak+1Q

[k]
r−1 0 + Ck+1Q

[k]
r 0 r = 1, . . . , k

Q[k+1]
rs = Ak+1Q

[k]
r−1 s +Bk+1Q

[k]
r s−1 + Ck+1Q

[k]
rs r = 1, . . . , k; s = 1, . . . , k − r

Q
[k+1]
r k+1−r = Ak+1Q

[k]
r−1 k+1−r +Bk+1Q

[k]
r k−r r = 1, . . . , k

Q
[k+1]
0 k+1 = Bk+1Q

[k]
0 k

Q
[k+1]
0 s = Bk+1Q

[k]
0 s−1 + Ck+1Q

[k]
0 s

Q
[k+1]
0 0 = Ck+1Q

[k]
0 0.

Once the coefficients Qrs have been found, stage [5] of the algorithm is to perform

the integration,

I =
∫ 1

0

∫ 1−ξ

0

n∑

r=0

n−r∑

s=0

Qrsξ
rηs dη dξ.

Simply rearranging this, we have

I =
n∑

r=0

n−r∑

s=0

QrsIrs,

where we now have to evaluate the integrals

Irs =
∫ 1

0

∫ 1−ξ

0
ξrηs dη dξ, r = 0, . . . , n; s = 0, . . . , n− r.
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The following provides a reasonably efficient way to evaluate these integrals :

Irs =
∫ 1

0
ξr

∫ 1−ξ

0
ηs dη dξ

=
1

s+ 1

∫ 1

0
ξr(1− ξ)s+1 dξ

=
1

s+ 1

∫ 1

0
ξs+1(1− ξ)r dξ

=
1

s+ 1

r∑

k=0

(−1)k




r

k




1

s+ k + 2
.

The calculations required to evaluate the final addition may be reduced by careful com-

puter programming. Finally, multiplication by the Jacobian of the transformation pro-

vides the integral of the original polynomial over the triangle 123,

∫

123
pn(x, y) dx dy = JI.

This completes the integration algorithm.

It should be noted that this method may be extended to any number of dimensions.

In three dimensions, stages [1] to [5] may be used to integrate polynomials of the form

pn =
n∏

r=1

(arx+ bry + crz + dr)

over arbitrary tetrahedra. If such a tetrahedron has vertices at the points

(xi, yi, zi), i = 1, 2, 3, 4,

then the appropriate transformation at stage [2] is




x

y

z




=




x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1







ξ

η

ω




+




x1

y1

z1




,
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where the canonical space now has coordinates (ξ, η, ω). For a three dimensional scheme

the determination of the overlap regions between the Eulerian and Lagrangian grids will

be a substantial problem. The three dimensional scheme will not be considered further

here.

In the next section we present the numerical results of applying conservative semi-

Lagrangian algorithms to an advection test.

10.3 Results of Comparison Tests

non-monotone

monotone

25 50 75 100

time-step

90

95

100

105

110

115

120

125

130

mass

Figure 10.1: Mass histories for non-conservative schemes

Figure 10.1 shows the loss of mass conservation which results when two SL schemes

are applied to the Smolarkiewicz deformational test [50]. The problem is two dimensional,

and consists of an initial mass distribution, which is purely advected by a highly deforma-

tional velocity field. The domain is a square of side L = 100 mesh units, and the initial

scalar distribution is a cone with base radius 15 units, centred on the domain. The flow
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field is obtained from a stream-function,

ψ(x, y) = A sin(kx) cos(ky),

where A = 8 and k = 4π/L, with the origin located at the bottom left corner of the

square. The analytical solution for this problem [56], consists of spiral distributions which

become wound tighter and tighter within square vortex cells. This provides a challenge

for schemes without variable resolution. As the motion progresses, filaments are produced

within the distribution which are too thin to be resolved by the grid. This may provide

a source for nonlinear instabilities in some schemes [51]. Our present interest is in how

such a flow may affect conservation of mass in SL schemes.

Since the only process present in this problem is advection, the total mass remains

constant for all time. Figure 10.1 plots the percentage of the initial mass present, against

the time-step number. One hundred time-steps are made, with step length ∆t = 2.6376.

After about 20 time-steps, filaments begin to become too narrow to be adequately repre-

sented on the grid. After this point no finite difference scheme is able to follow accurately

the exact evolution of the distribution. Nevertheless, we would require any numerical

scheme to maintain a physically meaningful representation. In particular, the total mass

should remain constant. The monotone scheme uses cubic Lagrange interpolations both

for interpolating velocity values in the trajectory calculations, and for the advected dis-

tribution itself. Three iterations of the implicit mid-point rule were used to determine

departure points. The scheme is made monotone by use of the QMSL algorithm described

in section 4.3. The non-monotone scheme is the same as the above, except without any

extra processing for monotonicity. It can be seen that for this particular problem, the

introduction of monotonicity causes a large error in conservation.

Figure 10.2 shows the final field, after 100 time-steps, when the non-monotone scheme

is used. It shows a good deal of noise. The field should be non-zero except within the six

central cells. Figure 10.3 is the final field from the monotone scheme. It shows a marked

reduction in noise, and there is minimal spreading of the disturbance to regions where

there should be none. We see that the monotone scheme has desirable properties, except
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for its severe lack of conservation.

BELOW 0.0

0.0 - 1.0

1.0 - 2.0

2.0 - 3.0

3.0 - 4.0

ABOVE 4.0

Figure 10.2: Final distribution for non-monotone scheme

Next we apply the QCSL algorithm, described in section 9.4.3, in an attempt to

recover conservation in the monotone solution. The solution produced by this quasi-

conservative scheme is compared with that obtained using the remapping scheme de-

scribed in section 10.2. The particular remapping scheme uses quadratic basis functions,

and trajectory calculations of the same accuracy as above. As expected, the remap-

ping scheme is mass conserving to machine accuracy, while the QCSL scheme is almost

conserving, figure 10.4. However, the solution produced by the remapping method (fig-

ure 10.5), appears far more diffusive than the QCSL solution (figure 10.6). In addition the

computational time for the remapping solution is almost an order of magnitude greater

than for the QCSL algorithm. However, the speed of the remapping scheme could be

significantly improved, through the use of more efficient algorithms to calculate the grid

overlap regions.

In conclusion, we note that the QCSL scheme offers a simple and efficient means

of calculating nearly-conservative numerical solutions. In addition this method may be
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Figure 10.3: Final distribution for monotone scheme

applied directly to any existing SL scheme working on the sphere. This is not true

of remapping schemes. The added complexity of identifying overlap regions, between

Eulerian and Lagrangian grids on the sphere, poses a significant disadvantage for such

schemes.
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Figure 10.4: Mass histories for conservative SL schemes
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Figure 10.5: Final distribution for remapping scheme
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Figure 10.6: Final distribution for QCSL scheme
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Chapter 11

Spurious Orographic Resonance

In their 1991 review, Côté and Staniforth highlight the problem of spurious orographic

resonance. It has been found that weather simulations employing semi-implicit, semi-

Lagrangian discretisations frequently exhibit spurious numerical resonance, triggered by

surface topography. Downstream of major mountain ranges, large scale standing wave

patterns can become established . Wavelengths of these features are of the order 102 or

103 kilometres.

In a paper which addresses this problem, Rivest et al. [46] apply the techniques of

Fourier analysis to a one-dimensional linearised shallow-water model. We now present

the content of this paper.

The same Fourier analysis is applied to both the mathematical model, and to a

standard semi-implicit, semi-Lagrangian discretisation of the model. It is important to

note that this discretisation is fully centred in time, with the orographic forcing term

averaged along trajectories. Analysis of the mathematical model shows that it does

indeed support large wavelength standing wave patterns, driven by orography. However

these waves occur only when the flow speed is supersonic. Consequently the phenomenon

is far from likely to be realised under terrestrial conditions. When the analysis is repeated

for the discrete equation set, it too is found to support orographic standing wave patterns.

However, in contrast to the analytical case, the conditions under which this numerical
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behaviour occurs fall well within the operational range of weather simulation.

The solution proposed in Rivest et al. is to off-centre the weighting between explicit

and implicit parts, in the semi-implicit discretisation. For an equation of the form

DF

Dt
= G, (11.1)

a one parameter family of discretisations is considered :

DF

Dt
→

1

∆t

(
F n − F n−1

)
(11.2)

G →

(
1 + δ

2

)
Gn +

(
1− 2δ

2

)
Gn−1 +

(
δ

2

)
Gn−2 (11.3)

where Hn−r ≡ H(x(tn − r∆t), tn − r∆t). This form of discretisation retains the O(∆t2)

accuracy of the centred approximation (δ = 0) by introducing a third time-level. At this

new time-level, departure points must be found and interpolations performed there, just

as for the t−∆t time-level.

Repeating the Fourier analysis of orographically forced standing waves, it is found

that for this new discretisation resonance will not occur whenever δ is non-zero. Values

of δ away from zero actively inhibit the formation of persistent standing wave patterns.

Stability analysis for the new discretisation shows that a necessary condition for stability

is

δ ≥ 0.

The choice δ = 1/2 is recommended by Rivest et al., since this produces some simplifica-

tion when applied to (11.3) while eliminating orographic resonance.

Before considering further developments of this scheme, we shall outline the various

options for calculating departure points at the extra time-level introduced in (11.3).

Two methods for calculating departure points at the new time-level are examined by

Rivest et al. In the first method it is assumed that a departure point at time t−∆t has

already been found using standard methods. The trajectory thus found is extrapolated,

along a great-circle arc, back to the t− 2∆t time-level to give a departure point there.

The second method requires considerable extra computational time compared to

the first. In this approach the extra level of departure points is found using the same
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techniques as for the first level. For instance if the departure points at time t − ∆t are

calculated using the implicit mid-point rule,

x(t−∆t) = x(t)−∆tu
(

1

2
[x(t) + x(t−∆t)], t−

1

2
∆t
)
, (11.4)

then the same rule is applied to calculating the departure points at time t − 2∆t. In

(11.4) the velocity field at the intermediate time-level is not immediately available, but

must be obtained by extrapolation of the field at time-levels t−∆t and t− 2∆t.

For calculating departure points at t− 2∆t there are two ways in which the implicit

mid-point rule might be applied. In one, a piecewise trajectory between times t and

t− 2∆t is constructed. In the other, two separate trajectories are calculated.

Considering the piecewise method first, the part of the trajectory between t and

t − ∆t is simply that found by solving (11.4). The part between t − ∆t and t − 2∆t is

obtained from

x(t− 2∆t) = x(t−∆t)−∆tu
(

1

2
[(x(t−∆t) + x(t− 2∆t)], t−

3

2
∆t
)
. (11.5)

This formula too involves evaluation of velocities at an intermediate time-level. Rather

than extrapolating from previous time-levels, interpolation may be used here between

data at times t−∆t and t− 2∆t.

However, an alternative formulation of the implicit mid-point rule avoids the com-

plication of extrapolation or interpolation of data. Since the velocity field is known at

time-level t − ∆t, this can be used in an approximation of a separate trajectory across

two time-levels :

x(t− 2∆t) = x(t)− 2∆tu
(

1

2
[x(t) + x(t− 2∆t)], t−∆t

)
.

Rivest et al. compare weather simulations employing the great-circle extrapolation

method with those obtained by using double trajectory calculations. (The piecewise

trajectory method is not considered.) The extrapolation method exhibits slightly inferior

accuracy, but has the advantage of computational speed.
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11.1 Three-Time-Level Schemes

We shall now take the solution to the orographic resonance problem, described above, as a

starting point for a fuller investigation of three time-level semi-implicit, semi-Lagrangian

discretisations of (11.1). We have seen that off-centring the semi-implicit discretisation

of G is an effective approach to removing spurious numerical oscillations. A centred in

time, two level discretisation (Crank-Nicolson) has second order accuracy. However, off-

centring a two level scheme will reduce its accuracy to first order. Second order may

be regained by introducing a third time-level to the discretisation. A paper by Côté ,

Gravel and Staniforth [5] builds on the results of Rivest et al. by applying three time-level

discretisations to both sides of (11.1). Their scheme has two parameters and takes the

form

DF

Dt
→

1

∆t

[
(1 + ǫ)F n − (1 + 2ǫ)F n−1 + ǫF n−2

]
, (11.6)

G →

(
1 + δ + ǫ

2

)
Gn +

(
1− 2δ

2

)
Gn−1 +

(
δ − ǫ

2

)
Gn−2. (11.7)

In this scheme δ decentres the semi-implicit discretisation of G to control spurious oscilla-

tions. The second parameter, ǫ, specifies a three time-level semi-Lagrangian discretisation

along trajectories, allowing reduction of temporal truncation errors.

To identify suitable ranges for the parameter values the Fourier analysis of Rivest et

al. is repeated. Fourier analysis of the traveling wave solutions supported by the discrete

equation set (11.6,11.7) reveals that a necessary condition for stability is

δ > 0,

whenever 1 + 2ǫ > 0.

Fourier analysis of stationary modes shows they are non-resonant provided

1 + 2ǫ > 0.

For negative values of ǫ, although the spurious stationary mode may be stable it will

alternate sign with successive time-steps. A positive but small value of ǫ will damp the

resonant mode and remove its temporal sign-switching.
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Through a series of trial integrations, on a global shallow-water model, optimal values

of ǫ and δ are deduced. A value of δ above 1/6 will sufficiently dampen resonance, but a

value larger than 1/2 will lead to increased temporal truncation errors. It would appear

that the choice of ǫ is less critical, except that it should be small and positive.
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Summary

In this thesis we have examined recent developments in semi-Lagrangian schemes. The

earliest uses of SL schemes in meteorological applications indicated deficiencies which

have lately been addressed [55]. Among these we mention the computational cost of

interpolation, the lack of formal conservation and the problem of orographic resonance.

Two approaches to reducing the computational cost of interpolation have been ex-

amined in this thesis. The noninterpolating methods discussed in Chapter 6 remove

interpolation completely from SL schemes. Eulerian advection schemes are used in place

of interpolation. The noninterpolating formalism therefore offers a framework for the

development of many new schemes.

An alternative to more traditional forms of interpolation has been introduced by

Purser and Lesley, as discussed in Chapter 5. This method significantly reduces the num-

ber of univariate interpolations required to produce a single multivariate interpolation, in

comparison to standard tensor product methods. A further development of this method

has incorporated conservation of mass. To date, it is not clear how this latter scheme may

be implemented in spherical geometry. For this reason the method is not yet applicable

to global atmospheric modelling.

Besides the issue of computational speed, further requirements of interpolation for SL

schemes have been discussed. In Chapter 4 we saw how the introduction of non-physical

errors may be avoided through the use of monotone, or shape-preserving interpolation.

The QMSL algorithm offers a means of rendering any existing SL scheme monotone,

through minimal extra computational effort. In addition, this algorithm has led to a

160



method for making SL schemes conservative, or nearly so. This method, QCSL, was

described in Chapter 9, where we also discussed other approaches to making conservative

SL schemes.

The most frequently used interpolation in semi-Lagrangian schemes is cubic. This is

generally found to give the best compromise between accuracy and computational effort.

In Chapter 3 we examined the largely neglected use of quadratic interpolation in SL

schemes. A possible application where quadratic interpolation might be superior to cubic

interpolation is examined in Chapter 7. This is in the modelling of nonlinear advection,

which we approach by calculating SL solutions of the Burgers’ equation. The results

of this Chapter show that quadratic interpolation does have an advantage over cubic

in this context. This finding is also replicated in idealized tests with a nonhydrostatic

atmospheric model.

In Chapter 10 a comparison was made between a QCSL scheme and a second form of

conservative scheme described in that chapter. Non-monotone schemes were also applied

to the same test problem. The results indicated first the advantages of using a monotone

scheme, and secondly the degree to which conservation may be lost in such a monotone

scheme. The QCSL algorithm successfully retains the shape-preserving properties of the

monotone scheme, while significantly improving conservation. In comparison, a more

sophisticated approach to conservation attains conservation of mass to the significant

detriment of the accuracy of the solution.

The development of SL schemes has taken place almost entirely within the context

of atmospheric modelling [32]. Chapter 8 examined an approach to implementing SL

on the sphere. It was seen that the semi-Lagrangian method may be applied fully to

the linear, and nonlinear, advection terms of the shallow-water equations in spherical

geometry. Also in this Chapter, we presented a formalism for deriving departure point

schemes, for use in curved spaces. This approach is based on the method of geodesics

and provides an alternative derivation of a technique currently used in numerical weather

prediction. However, the generality of the geodesic method has the potential to extend
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the range of possible applications of the SL method.

Lastly, in Chapter 11 we examined the problem of spurious resonance caused by

orography. In early SL models, where mountain topography was included at the lower

boundary, spurious standing wave patterns presented a particular problem. A sequence

of papers has lately addressed this problem, demonstrating further the suitability of semi-

Lagrangian methods in atmospheric modelling.

Future Developments

The semi-Lagrangian method is still an active area for development. Many new algorithms

for the three components of SL (interpolation, trajectory tracing and time discretisation)

may yet be possible. In addition to the development of new schemes, much work still

remains to be done on the error analysis of SL schemes. In particular, analysis may show

the optimum balance between the components of an SL scheme required to achieve a

given level of predictive accuracy.
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