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Abstract

In the past �� years� techniques for eigenstructure assignment have been

widely investigated and applied to many problems� By eigenstructure assign	

ment we mean the use of feedback control in order to alter the eigenvalues and
or

eigenvectors of a system� Eigenstructure assignment has been achieved using both

state and output feedback�

This thesis is an investigation into the application of eigenstructure assign	

ment to aircraft problems� We study the current work� illustrating that feedback

is used to ensure stability� a satisfactory response and good decoupling in the

closed loop system� A desired level of output decoupling is currently obtained by

assigning a speci�ed set of right eigenvectors� we identify a shortfall in current

work that the corresponding left eigenvectors must also be considered to obtain

a desired level of input decoupling� We give an example to demonstrate this�

We then present two minimisation routines that improve the level of input

decoupling� while retaining the output decoupling� It is not generally possible

to achieve the exact levels of input and output decoupling� our routines �nd the

set of vectors that best obtain the desired levels of decoupling� We also control

the robustness of the system and the accuracy of the assigned eigenvalues� The

result is a 
exible� multi	criteria optimisation routine� The �rst routine restricts

the minimisation vectors to lie in subspaces corresponding to speci�ed eigenvalues�

the second allows these vectors to be totally unrestricted�

The minimisation routines generate the set of vectors that best achieve desired

levels of input and output decoupling� we give methods for constructing a feedback

that best assigns these vectors and analyse the errors in these constructions� We

give examples taken from the aircraft industry in which we achieve a trade	o�

between the levels of input and output decoupling� the robustness of the system

and the accuracy of the assigned eigenvalues�



Acknowledgements

Firstly� I would like to thank Dr�N�K� Nichols for helping me through the last

� years� Without her help and encouragement� I would undoubtedly never have

�nished�

The biggest thanks go to my parents� it is to them that I dedicate this thesis�

Without their constant love and support �not just �nancial��� I would not have

obtained my �rst degree� let alone my second� Thanks are also due to my sister

for being a good friend�

I would also like to thank the people who helped me understand the theory of

aircraft 
ight control� Firstly� Lester Faleiro and Roger Pratt at Loughborough

University of Technology� the meetings and discussions I had with them were

invaluable to this work� Thanks are also due to Dr� Phil Smith at R�A�E� Bedford

for taking the time to suggest possible directions for this thesis�

I have made many good friends in Reading� both as an undergraduate and a

postgraduate� I would like to thank them all for making my six years at Reading

University such a good time�

I also acknowledge the receipt of a studentship from the EPSRC�

i



Contents

� Introduction �

� Control systems �

��� General control systems � � � � � � � � � � � � � � � � � � � � � � � �

��� Properties � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Solution of state space equations � � � � � � � � � � � � � � �

����� Stability � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Controllability � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Observability � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Robustness � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Feedback � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Problems of interest � � � � � � � � � � � � � � � � � � � � � ��

��� Literature review � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Eigenstructure assignment � � � � � � � � � � � � � � � � � � ��

����� Application to aircraft problems � � � � � � � � � � � � � � � ��

� Aircraft dynamics ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Control surfaces � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Flight control systems � � � � � � � � � � � � � � � � � � � � ��

����� Gain scheduling � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Aircraft equations of motion � � � � � � � � � � � � � � � � � � � � � ��

����� Equations of motion of a rigid body aircraft � � � � � � � � ��

����� Complete linearised equations of motion � � � � � � � � � � ��

����� Equations of motion in a stability axis system � � � � � � � ��

ii



��� State space representation � � � � � � � � � � � � � � � � � � � � � � ��

����� Aircraft equations of longitudinal motion � � � � � � � � � � ��

����� Aircraft equations of lateral motion � � � � � � � � � � � � � ��

��� Aircraft stability � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Longitudinal stability � � � � � � � � � � � � � � � � � � � � � ��

����� Lateral stability � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Eigenstructure assignment ��

��� State feedback � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Construction of a state feedback � � � � � � � � � � � � � � � ��

��� Output feedback � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Construction of an output feedback � � � � � � � � � � � � � ��

��� Partial eigenstructure assignment � � � � � � � � � � � � � � � � � � ��

����� Aircraft control problem � � � � � � � � � � � � � � � � � � � ��

����� Complete speci�cation of desired eigenvectors � � � � � � � ��

����� Partial speci�cation of desired eigenvectors � � � � � � � � � ��

����� Example choice of desired eigenvectors � � � � � � � � � � � ��

����� Mode output
input coupling vectors � � � � � � � � � � � � ��

����� Example of coupling vectors interaction � � � � � � � � � � � ��

����� Partial eigenstructure assignment algorithm for aircraft prob	

lems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Restricted minimisation algorithm ��

��� Right and left eigenvector partitioning � � � � � � � � � � � � � � � ��

��� Structure of right eigenvector matrix� V � � � � � � � � � � � � � � ��

��� Left eigenvector matching � � � � � � � � � � � � � � � � � � � � � � ��

��� Eigenvector conditioning � � � � � � � � � � � � � � � � � � � � � � � ��

��� Left eigenspace error � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Combined minimisation � � � � � � � � � � � � � � � � � � � � � � � ��

����� Overall objective function � � � � � � � � � � � � � � � � � � ��

iii



����� Scaling � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Preservation of self	conjugacy � � � � � � � � � � � � � � � � ��

����� Main algorithm summary � � � � � � � � � � � � � � � � � � ��

����� Component dimensions � � � � � � � � � � � � � � � � � � � � ��

��� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Convergence histories � � � � � � � � � � � � � � � � � � � � � ��

��� Optimal scaling of assigned right vectors� V� � � � � � � � � � � � � ��

����� Optimal scaling examples � � � � � � � � � � � � � � � � � � ��

���� Alternative scaling of assigned right vectors� V� � � � � � � � � � � ��

������ Summary of results � � � � � � � � � � � � � � � � � � � � � � ��

���� Alternative starting point � � � � � � � � � � � � � � � � � � � � � � ��

���� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Unrestricted minimisation algorithm ��

��� Eigenvector partitioning � � � � � � � � � � � � � � � � � � � � � � � ��

��� Left eigenvector matching � � � � � � � � � � � � � � � � � � � � � � ��

��� Eigenvector conditioning � � � � � � � � � � � � � � � � � � � � � � � ��

��� Combined minimisation � � � � � � � � � � � � � � � � � � � � � � � ��

����� Scaling � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Component dimensions � � � � � � � � � � � � � � � � � � � � ��

����� Notes and summary � � � � � � � � � � � � � � � � � � � � � ��

��� Selection of initial vector set for algorithm � � � � � � � � � � � � � ��

����� Results of partial eigenstructure assignment as a starting

point � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Projection method � � � � � � � � � � � � � � � � � � � � � � ��

����� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Generate initial right vector set �from scratch� � � � � � � � ���

����� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Test results � � � � � � � � � � � � � � � � � � � � � � � � � � ���

iv



��� E�ciency comparison � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� 	Re
construction of feedback ���

��� Methods for calculating an initial right vector set� V � � � � � � � ���

��� Construction of feedback for restricted minimisation � � � � � � � � ���

����� First �re�construction� K� � � � � � � � � � � � � � � � � � � ���

����� Second �re�construction� K� � � � � � � � � � � � � � � � � � ���

����� Relationship between K� and K� and their respective as	

signment errors � � � � � � � � � � � � � � � � � � � � � � � � ���

����� E�ect of scaling on reconstruction of feedback � � � � � � � ���

����� Relationship between original feedback and K� � � � � � � � ���

����� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Construction of feedback for unrestricted minimisation � � � � � � ���

����� Diagonal solver � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Complex solver formulation � � � � � � � � � � � � � � � � � ���

����� Real solver formulation � � � � � � � � � � � � � � � � � � � � ���

����� Algorithm for diagonal solver � � � � � � � � � � � � � � � � ���

����� Solver error analysis � � � � � � � � � � � � � � � � � � � � � ���

����� Constrained diagonal solver � � � � � � � � � � � � � � � � � ���

��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Full examples ���

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Partial eigenstructure assignment � � � � � � � � � � � � � � � � � � ���

����� Apply restricted minimisation algorithm �for decoupling� � ���

����� Apply restricted minimisation algorithm �for conditioning� ���

����� Apply unrestricted minimisation algorithm �for decoupling� ���

����� Results summary � � � � � � � � � � � � � � � � � � � � � � � ���

����� Assign di�erent eigenvalue set � � � � � � � � � � � � � � � � ���

����� Apply restricted minimisation algorithm �for decoupling� � ���

����� Apply unrestricted minimisation algorithm �for decoupling� ���

v



����� Apply unrestricted minimisation algorithm �for conditioning����

����� Example � conclusions � � � � � � � � � � � � � � � � � � � � ���

��� Example � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Partial eigenstructure assignment � � � � � � � � � � � � � � � � � � ���

����� Apply restricted minimisation algorithm �for decoupling� � ���

����� Apply restricted minimisation algorithm �for conditioning� ���

����� Apply unrestricted minimisation algorithm �for decoupling

and conditioning� � � � � � � � � � � � � � � � � � � � � � � � ���

����� Example � conclusions � � � � � � � � � � � � � � � � � � � � ���

��� Conclusions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Conclusions and extensions ���

vi



Chapter �

Introduction

In most applied mathematical research the aim is to investigate and control a

given system� A system is de�ned to mean a collection of objects which are re�

lated by interactions and produce various outputs in response to di�erent inputs�

Examples of such systems are chemical plants� aircraft� spacecraft� biological sys�

tems� or even the economic structure of a country or region� The control problems

associated with these systems might be the production of some chemical product

as e�ciently as possible� automatic landing of aircraft� rendezvous with an arti�

�cial satellite� regulation of body functions such as heartbeat or blood pressure�

and the ever�present problem of economic in	ation�

To be able to control a system� we need a valid mathematical model� How�

ever� practical systems are inherently complicated and highly non�linear� Thus�

simpli�cations are made� such as the linearisation of the system� Error analysis

can then be employed to give information on how valid the linear mathematical

model is as an approximation to the real system�

It is desirable that systems are controlled automatically� that is� they adapt

to behave in a speci�ed manner� without direct intervention� An example is the

room thermostat in a domestic central heating system which turns the boiler on

and o� so as to maintain room temperature at a predetermined level�

To achieve automatic control� information describing the system and the way

it changes is needed� This is provided by a feedback control system� which cal�

culates the di�erence between the measured variables and the desired output

responses� and attempts to change the system to compensate for this�






Ideally� we would like to be able to measure all of the variables� or states of a

system in order to design a feedback� If this is the case� then we are performing

state feedback� In practice� not all of the system states are available� the feedback

then has to use the outputs to control the system� This is called output feedback�

In this thesis we are concerned with eigenstructure assignment by output

feedback to assign simultaneously a set of eigenvalues and their corresponding

right and left eigenvectors� We apply this theory to achieve the satisfactory

handling qualities of an aircraft in 	ight� In the open�loop state� many aircraft are

unstable� or display poor handling� hence feedback is required to force the aircraft

to behave in the desired manner� The main considerations here are to improve

stability� dampen unwanted oscillatory modes and to reduce any modal coupling�

These qualities of the system can be observed and altered via investigation into

the eigenstructure of the system�

In Chapter � we introduce the basic form for control systems and give their

general governing equations� We describe their properties and introduce the

concept of feedback� We then relate this theory to our interests� namely 	ight

control systems� A review of the literature on eigenstructure assignment and its

applications to aircraft problems is presented�

Having introduced our interest in aircraft 	ight control problems� we give in

Chapter � the broad concept of aircraft control and how� physically� the aircraft

is manoeuvred by either the pilot or feedback control� We describe the way

in which the equations of motion are derived in the original non�linear form

and are linearised and simpli�ed into a usable state space form� We de�ne the

state representation of control systems� and give examples of state matrices for

longitudinal and lateral motion� The concept of aircraft stability for both motions

is introduced�

In Chapter 
 we give more detail on the theory and techniques of eigenstruc�

ture assignment� from the basics of pole placement by state feedback to the output

feedback problem� The speci�c aircraft problem is introduced at the end of the

chapter and the application of partial eigenstructure assignment to this problem

is given� An example summarises the theory of Chapter 
 and demonstrates the

shortfall in the current work in that the left eigenvectors should be considered in

�



addition to the right eigenvectors�

Having given the background theory on eigenstructure assignment and its

application to aircraft problems in Chapter 
 we attempt� in Chapter �� to im�

prove on the results calculated in current work� A minimisation technique is

developed that updates a set of vectors to improve the input decoupling �via the

previously unconsidered left eigenvectors�� while retaining the output decoupling

already achieved� The updating vectors are restricted to lie in subspaces cor�

responding to a set of speci�ed eigenvalues� We also control the robustness of

the system via the condition number of the right eigenvectors and the accuracy

of the assigned eigenvalues by minimising the error of the left eigenvectors from

their correct subspaces� The result is a multi�criteria minimisation routine with

weighting parameters that are altered in accordance with the design speci�ca�

tions� This routine is run with a number of parameter combinations to illustrate

its 	exibility�

In Chapter �� to improve the results of Chapter �� we remove the subspace

restriction� allowing the updating vectors to be chosen from anywhere in the

complex plane� We require the full set of vectors to be real� and various methods

for choosing an initial real set of vectors are presented� Again the minimisation is

run with di�erent weightings to demonstrate its performance�

Chapters � and � result in a set of vectors that minimise some set criteria� We

require a feedback that best assigns the vectors� this problem is treated in Chapter

� where we give di�erent methods for the feedback construction� analysing the

errors for each of them�

Examples that demonstrate all of the theory are presented in Chapter �� from

the initial assignment of some set of eigenvalues and their corresponding right

eigenvectors� to the use of one of the minimisation algorithms� and �nally the

construction of a feedback� These examples are taken from the aircraft industry�

and are used to illustrate how we can improve 	ight handling qualities�

We summarise the results in Chapter �� giving conclusions on how our work

improves the methods presently available� We �nish by suggesting some possible

improvements and extensions to the work�
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Chapter �

Control systems

The main topic of this thesis is the application of eigenstructure assignment to

aircraft problems� Before detailing both of these subjects we give some back�

ground theory on control systems and their properties� We de�ne our areas of

interest in the aircraft industry and give a review of the literature on eigenstruc�

ture assignment and its application to aircraft problems�

��� General control systems

In Chapter � we gave practical examples of what we mean by control systems�

here we give a precise de�nition� An open loop control system� that is one which

is not controlled automatically� can be represented as in Figure ���� Here the

Controlled System

State Variables

Inputs Outputs

u  (i=1,...,m) y  (i=1,...,p)

x  (i=1,...,n)

ii

i

Figure ���	 Open loop control system

state variables� xi� describe the condition� or state� of the system� and provide

the information which� together with a knowledge of the equations describing the

system� enables us to calculate the future behaviour from a knowledge of the input






variables� ui� Practically� it is often not possible to determine the values of the

state variables directly� perhaps for reasons of expense or inaccessibility� Instead

a set of output variables� yi� which depend in some way on xi� is measured�

The open loop equations describing the system in Figure ��� are

���
��

�x�t� 
 Ax�t� �Bu�t�

y�t� 
 Cx�t��
�����

where A � IRn�n� B � IRn�m� C � IRp�n are the system matrices� known as

the state� input and output matrices respectively� Practically� control systems

are non�linear� but the set of non�linear di�erential equations can be linearised to

give them in the form of ������ Also� in ����� the systemmatrices are dependent on

time� For our work in this thesis we assume that the systemmatrices are constant

coe�cient matrices taken from the open loop control system at some speci�ed

operating points� Thus� we are working with linear� time�invariant systems� It is

also assumed throughout this thesis that B and C are of full rank�

��� Properties

A system operating in its open loop state� as in Figure ���� has certain well

de�ned properties� Before describing these we need a de�nition of the eigen�

decomposition of a matrix�

De�nition ��� De�ne �i� vi and wT
i to be the eigenvalues and corresponding

right and left eigenvectors� respectively� of A� They satisfy the relationships

Avi 
 �vi

wT
i A 
 �wT

i �
�����

When vi�w
T
i are normalised appropriately then

V �� 
 W T � �����

where V 
 �v�� � � � �vn�� W T 
 �w� � � � �wn�T �

�



����� Solution of state space equations

The solution of the system described by the state space equations in ����� is

x�t� 
 eAtx� �
Z t

�
eA�t�s�Bu�s�ds� ���
�

If we assume that A is non�defective� that is� if an eigenvalue has multiplicity k�

then there exist k independent eigenvectors associated with it� then from De�ni�

tion ���� we may write A 
 V �V ��� where � 
 diag���� � � � � �n�� Then

eAt 
 I �At� A�t�

��
� A�t�

��
� � � �


 I � �V �V ���t� �V�V ����t�

��
� �V�V ����t�

��
� � � �


 V �I � �t� ��t�

��
� � � ��V ��


 V e�tV ��



nX
i	�

vie
�itwT

i

�����

since e�t 
 diag�e��t� � � � � e�nt�� Substitution into ���
� gives the solution

x�t� 

nX
i	�

vie
�itwT

i x� �
nX
i	�

viw
T
i

Z t

�
e�i�t�s�Bu�s�ds� �����

and we can see that the response of the system depends on	

�� the eigenvalues� which determine the decay�growth rate of the response�

�� the eigenvectors� which determine the state variables participating in the

response of each mode�

�� the initial condition of the system� which determines the degree to which

each mode participates in the free response�

From ����� we see that the whole eigenstructure of the system �i�e� both the eigen�

values and the eigenvectors� should be considered when looking at the solution

of control systems�

����� Stability

One of the main concerns of a control system designer is whether or not a system

is stable� In its uncontrolled form a perturbed system may not return to its

original operating condition� it is unstable� Intuitively� by stability we mean that

�



for small perturbations from the equilibrium state� the subsequent motions should

not be too large� There are many concepts and de�nitions of stability� we choose

to de�ne the following	

De�nition ��� An equilibrium state x 
 � is said to be

�i� stable if �� � ���� � �� such that kx�t��k � � � kx�t�k � � ��t � t��

�ii� asymptotically stable if it is stable as in �i� and x�t�� � �as t���

�iii� unstable if not stable as in �i�� i�e� �� � � such that �� � ��

�x�t�� such that kx�t��k � �� kx�t��k � � �for some t� � t��

�����

This de�nition is not easy to relate to our control system given in ������ instead

we can give a result for the algebraic stability of a linear system�

THEOREM ��� Let the eigenvalues of A be �i �i 
 �� � � � � n�� then the time�

invariant� linear system given in �	�
� is

�i� stable	 Re��i� 
 � ���i�

and any eigenvalue with Re��i� 
 � is non�defective

�ii� asymptotically stable	 Re��i� � � ���i�

�iii� unstable	 Re��i� � � �for some �i��

�����

Proof �see Barnett and Cameron �
���

From this we can see that the stability of the control system depends on the

positions of the eigenvalues of the system coe�cient matrix� A� in the complex

plane�

����� Controllability

If we wish to control the open loop system� we must determine whether a desired

objective can be achieved by manipulating the chosen control variables� We can

de�ne the general property of being able to transfer a system from any given state

to any other by means of a suitable choice of control functions�

The linear� time�varying system described by ����� with A� B� C all functions

of time has the following de�nition of controllability�

�



De�nition ��� A system is said to be completely controllable if� for any t��

any initial state x�t�� 
 x� and any given �nal state xf � there exists a �nite time

t� � t� and a control u�t�� t� 
 t 
 t�� such that x�t�� 
 xf �

As with the stability de�nitions� we can give a more speci�c algebraic criterion

for controllability� this time for the linear� time�invariant system given in ������

Equivalent mathematical conditions for a system to be completely controllable

are given in the following theorem�

THEOREM ��� A system is said to be completely controllable if and only if

one of the following equivalent conditions holds�

�i� rank�B�AB� � � � � An��B� 
 n

�ii� rank�B�A� �I� 
 n� ��� � C�

�iii� fsTA 
 	sT and sTB 
 �g �� sT 
 ��

Proof �see Barnett and Cameron �
���

����� Observability

Closely linked to the controllability idea is the concept of observability� that is�

the possibility of determining the state of a system by measuring only the outputs�

For the system governed by the di�erential equations given in ������ where A� B�

C are considered time�varying� we give the following de�nition of observability�

De�nition ��	 A system is said to be completely observable if� for any t� and

any initial state x�t�� 
 x�� there exists a �nite time t� � t� such that knowledge

of u�t� and y�t� for t� 
 t 
 t� su�ces to determine x� uniquely� There is no

loss of generality in assuming u�t� 
 � throughout the interval�

For the linear� time�invariant system in ����� we can give a more speci�c

algebraic criterion for observability� Equivalent mathematical conditions for a

system to be completely observable are given in the following theorem�

�



THEOREM ��
 A system is said to be completely observable if and only if one

of the following equivalent conditions holds�

�i� rank

�
����������������

C

CA

�

�

�

CAn��

�
															



 n

�ii� rank

�
�� A� �I

C

�
	
 
 n ��� � C�

�iii� fAs 
 	s and Cs 
 �g �� s 
 ��

Proof �see Barnett and Cameron �
���

����� Robustness

Another important property of control systems is their robustness� This is de�ned

in the sense that the eigenvalues of the system are as insensitive to perturbations

as possible� If A in ����� is non�defective� then it is diagonalizable and it can be

shown �Wilkinson ����� that the sensitivity of the eigenvalue �i to perturbations

in the components of A depends upon the magnitude of the condition number�

ci� where

ci 

kwT

i kkvik

jwT
i vij

� �� �����

A bound on the sensitivities of the eigenvalues is given by �Wilkinson �����

max
i

ci 
 
��V � 
 kV k�kV
��k� ������

where 
��V � is the condition number of the modal matrix of eigenvectors� V 


�v�� � � � �vn��

����� Feedback

We have given the general de�nition of a control system and its important prop�

erties� However� an open loop system may have poor properties in that it may
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be unstable� or it may be very sensitive to perturbations� Thus� we want to con�

trol the system to behave in some desired manner� or to display some desired

characteristics� To do this we use feedback� as illustrated in Figure ����

Controlled System

State VariablesControlling

Device

Feedback

Inputs Outputs

Reference

Inputs

v  (i=1,...,m) u  (i=1,...,m) y  (i=1,...,p)

x  (i=1,...,n)

i i i

i

Figure ���	 Closed loop control system

In general the objective is to make the system perform in some required way

by suitably manipulating the control variables� ui� this being done by a controlling

device� or �controller�� If all of the state variables of the system are available� then

we may calculate a feedback matrix� F � such that the closed loop system�A�BF �

has the desired characteristics� This is called state feedback�

In practice� it may be expensive to measure all of the state variables� or they

may not all be available for measurement� We then feedback some of the outputs

via a controller in the form

u 
 Ky � v� ������

where K � IRm�p is a constant gain feedback matrix� and v � IRm is a reference

input� The closed�loop system is then given by

�x 
 �A�BKC�x�Bv� ������

This is called output feedback� We deduce that this change in the state ma�

trix produces a change in the system behaviour� and therefore that the feedback

matrix controls the way in which the system behaves�

��



Thus� the aim of feedback� whether it is state or output feedback� is to control

the system so that it behaves in a desired manner� We have shown that the

properties of the systems are functions of its eigenvalues and eigenvectors� so we

�nd a feedback such that the eigenstructure of the closed loop system results in�

for example� that system being stable and robust� The details of this� including

how to construct the feedback� are given in Chapter 
�

����� Problems of interest

We have de�ned the general characteristics of control systems and how feedback

may be used to alter the system� But the way in which the closed loop system

behaves is dependent on the speci�c problem that we are solving�

In this thesis we are interested in the automatic �ight control of aircraft� The

equations of motion for an aircraft are time�varying and non�linear� to be able

to use linear control design methods on these problems we need equations in the

form of ������ To obtain this form� equations are linearised about a set of de�ned

operating conditions� The resulting equations are still not in a usable form�

numerous assumptions and substitutions are used to transform the equations

into a linear� time invariant system� This derivation of the aircraft equations

of motion and their transformation into a usable form is described in detail in

Chapter ��

There are a number of considerations to be taken into account when control�

ling an aircraft using feedback� We want to ensure that the closed loop system

is stable and as robust as possible� We also wish to reduce the level of coupling

evident between the inputs and the outputs� These can all be e�ected via the

eigenvalues and eigenvectors of the system� Hence we use eigenstructure assign�

ment techniques to obtain a satisfactory closed loop �ight control system� The

details of eigenstructure assignment are covered in Chapter 
�

Before giving the theory of the aircraft modelling and eigenstructure assign�

ment in Chapters � and 
 respectively� we give a review of the literature on the

two subjects� and their combination�

��



��� Literature review

There has been a lot of work performed in the control theory �eld in the past three

decades into the control of systems via their eigenvalues and eigenvectors� More

recently� these methods have been successfully applied to aircraft �ight control

systems� The progression of the work in eigenstructure assignment is reviewed�

followed by its application to aircraft problems�

����� Eigenstructure assignment

As shown in the previous sections� the response of a control system depends

most importantly on the eigenstructure of the system� The eigenstructure as�

signment problem in its simplest form was �rst addressed by Wonham ���� in

���� who proved that a system was controllable if and only if a feedback could

be found to make the closed loop system have an arbitrary set of self�conjugate

scalars as its poles� Since then� hundreds of papers have been published on the

subject of pole placement and its applications� For multi�input systems� the feed�

back gain matrix calculated to obtain a desired set of closed loop poles is not

unique� an advantage that can be exploited�

In ����� Moore ���� was the �rst to identify the freedom available in pole

placement beyond eigenvalue assignment� but this was for the case of distinct

eigenvalues� This restriction was overcome by Klein and Moore ����� Numerous

papers followed that used the freedom available in selecting the eigenvectors to

perform full state feedback� as in Porter and D�Azzo �
�� and Fahmy and O�Reilly

����� As the subject became more applicable� so came the need for more reliable

numerical methods� A popular method was to reduce the original system� using

orthogonal similarity transformations� to staircase or upper Hessenberg form� as

in Minimis and Paige ����� Patel and Misra �
��� Arnold and Datta ��� and Petkov

et al� �

�� In ����� Kautsky et al� ���� described methods to select linearly

independent vectors to ensure the matrix of eigenvectors was as well�conditioned

as possible� Alternatives to the standard literature were Keel et al� ���� and

Cavin and Bhattacharyya ���� who attempted to solve the problem via Sylvester�s

equation� and Varga ����� who used a Schur method to sequentially shift and

��



overwrite only the �bad� eigenvalues of a system�

In practice� state feedback is undesirable� not least because of the expense in

measuring and feeding back all of the states� Indeed� all of the state measurements

may not be available� so the more attractive procedure is to use the measured

variables i�e� to perform output feedback�

One of the �rst to address pole placement by output feedback was Davison

���� who showed that if the system is controllable and if rank �C� 
 p� then a

feedback can always be found so that p of the eigenvalues of the closed loop sys�

tem are arbitrarily close to those desired� This result was extended by Davison

and Chatterjee ���� and Sridhar and Lindhor� ���� who proved that if a system

is controllable and observable and if rank �B� 
 m and rank �C� 
 p� then max

�m� p� eigenvalues can be assigned almost arbitrarily� To complement these theo�

retical results� Davison and Chow ��
� produced an algorithm to deal with large�

practical systems� Later Kimura ���� proved that if the system is controllable and

observable� and if n 
 m � p � �� then an almost arbitrary set of n eigenvalues

is assignable� However� this is not usually true for practical applications� but is

worthy of note because of the author�s consideration of the closed loop eigenvec�

tors� rather than the characteristic equation approach of previous authors� The

same results as Kimura ���� were produced by Davison and Wang �����

In contrast to the previously mentioned approaches� Munro and Vardulakis

���� and Porter �
�� investigated the existence of a link between the state and

output feedback matrices� The approach of the former authors involved the com�

putation of generalised inverses� whereas the latter produced a simpler condition

for the link to exist� Other papers to note are those of Patel and Misra �
��� who

extended their state feedback work whereby they consider one column of the in�

put matrix at a time� and Topalogu and Seborg ��
�� who assign min �m�p��� n�

poles subject to certain mild restrictions� and who also introduce the elegant idea

of pole protection by making them uncontrollable�

The previous references for output feedback are concerned with pole place�

ment� On the broader subject of the whole eigenstructure of the system� Sri�

nathkumar ���� is considered a benchmark paper� He proved the following 	

THEOREM ��� Given the controllable and observable system described by �	�
�
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and the assumptions that the matrices B and C are of full rank� then max�m� p�

closed loop eigenvalues can be assigned and max�m� p� closed loop eigenvectors

can be partially assigned with min�m� p� entries in each vector arbitrarily chosen

using output feedback�

Proof �see Srinathkumar ������

Attempts were made to assign the whole eigenstructure of a system such as

by Porter and Bradshaw �
��� �
�� and Fletcher ����� Necessary and su�cient

conditions for a solution to exist were derived by Fletcher et al� ����� but were of

a slightly abstract mathematical nature� not leading to a simple design technique�

Conditions that full eigenstructure assignment was attainable when the right and

left eigenvectors lie simultaneously in their correct subspaces were proved by Chu

et al� ����� who used a least squares minimisation technique to solve the feedback

design problem�

In a di�erent direction� Roppenecker and O�Reilly ���� parameterised the prob�

lem� leading to the work of Fahmy and O�Reilly ����� This extended the paramet�

ric state feedback work of Fahmy and O�Reilly ����� ���� and Fahmy and Tantawny

����� It also extends the idea of pole protection from Topalogu and Seborg ��
�

to protecting the eigenvectors in addition� Owens �
�� used this parameterisation

idea to render a closed loop system eigenvalue totally insensitive by making its

left eigenmode insensitive�

Whilst some authors attempted full eigenstructure assignment� others consid�

ered partial eigenstructure assignment� This idea arises from the fact that not all

of the open loop eigenvalues of a system are necessarily considered undesirable�

Usually� some eigenvalues will be acceptable and it is hence worth assigning some

poles while retaining others� Fletcher et al� ���� set out necessary and su�cient

conditions for assigning k eigenvalues� while retaining the other� original n � k

eigenvalues� These conditions were exploited by Slade ����� who devised an algo�

rithm for assigning m � p poles in two stages� while maximising the robustness

of the solution�

Despite the numerous approaches� no one method has been adopted as stan�

dard� Indeed� the attempt by authors to assign poles exactly may not be as

realistic a problem as assigning them to pre�speci�ed regions� An approach to
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this end was made by Oh et al� �
�� who generate a nonlinear programming

problem with a nonlinear objective function �maximising robustness� and linear

and nonlinear constraints� This approach would bene�t from specifying regions

for each pole� rather than a global interval� but it is not clear how this would be

achievable� Further work by the same authors is presented in Gu et al� ���� using

homotopy methods�

The survey so far illustrates the importance in considering the whole eigen�

structure of a system� for both state and output feedback�

����� Application to aircraft problems

All of these papers are concerned� however� with the mathematical nature of the

problem� usually with a simple example at the end� Here we are more concerned

with the application of eigenstructure assignment by output feedback to the air�

craft industry� In this instance� it is not enough to apply previously formulated

methods to an aircraft problem� but it is desirable to consider the speci�c control

objectives and modify the theory accordingly�

The earliest comprehensive study of applying eigenstructure assignment to

aircraft examples is that of Andry et al� ��� who show that� in practice� it is

unnecessary to specify all of an eigenvector corresponding to a desired eigen�

value� Using Srinathkumar ����� they specify certain components in the desired

eigenvectors to achieve design speci�cations� such as modal decoupling� and these

vectors are projected into the subspace of allowable eigenvectors to �nd the best

achievable vectors in a least�squares sense� However� instead of attempting to as�

sign the whole eigenstructure� they use the theory of Davison ���� to assign rank

C 
 p eigenvalues� They also consider constraining the feedback gain computa�

tion by suppressing certain elements to be zero� thus re�ecting a method of not

feeding back certain outputs to certain inputs� The work of Sobel and Shapiro

����� ���� is presented as a tutorial into the theory of eigenstructure assignment

and its application in the aircraft industry� It covers the same material as Andry

et al� ���� except that a more comprehensive example is considered� as is the

e�ect of feedforward for the purpose of command tracking �see Davison ���� and

O�Brien and Broussard ������ In Sobel and Shapiro ��
� eigenvalue sensitivity� as
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formulated by Gilbert ����� is considered where the minimum sensitivity measure

is attained if and only if all the closed loop eigenvectors are mutually orthogonal�

thus a�ecting the authors� choice of desired eigenvectors� Similarly� Sobel and

Shapiro ���� extended the latter theory to include dynamic compensators in their

design techniques�

Robust methods for eigenstructure assignment for aircraft design were pre�

sented by Mudge and Patton ���� and Spurgeon and Patton ���� where the choice

of eigenvectors was based on one of the robustness methods of Kautsky et al�

����� Although the work in these two papers is for state feedback� they are of

note for their calculation of the achievable spaces using the singular value de�

composition� and of their treatment of complex eigenvalues into their real and

imaginary parts for this application� Similar work is presented by Burrows and

Patton and Burrows et al� ���� implemented in the Ctrl�C design package�

As an alternative approach� a method based on the work of Fahmy and

O�Reilly ���� is presented by White ���� who uses a metric technique to �nd

the best solution from a number of solutions calculated from a space restricted

by eigenvalue speci�cations�

These aircraft papers are restrictive in that once the closed loop eigenvalues

are speci�ed� the allowable subspaces are �xed� The freedom is thus in choosing

the �best set� of eigenvectors from these spaces� To relax this� it has been popular

since the late �����s to allow the eigenvalues to vary� and consider multi�criteria

optimisation with a trade�o� between robustness and performance� There are

many reliable� numerical software packages available for optimisations� the key

to using them e�ectively is in the formulation of the problem objectives�

However� most of this work has been performed using state feedback� not the

main interest here� but� for completeness� a review of them is included� Bur�

rows and Patton ��� evaluate a cost function using a quasi�Newton search with

numerically evaluated gradients to �nd the optimal low sensitivity modalised ob�

server� where the eigenvalues are constrained to be in rectangular regions of the

complex plane� The same authors ��� also use the parametric representation of

state feedback of Fahmy and O�Reilly ���� to assign eigenvalues in a region� con�

sidering low eigenvalue sensitivity and a structurally constrained low norm gain�
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The Davidon�Fletcher�Powell algorithm that requires �rst derivative information

is used� Patel et al� �
�� use the same method for multi�input� �xed output rate

�MIFO� sampling schemes on a Stability Augmentation System of an aircraft�

A di�erent approach was suggested by Wilson and Cloutier ���� who min�

imised a performance index constrained by the linear quadratic regulator alge�

braic Riccati equation� To constrain the eigenvalues� a Valentine transformation

is employed to restrict them to be in some left�hand plane� but this is a very

ill�conditioned transformation� The algorithm is implemented using the Ctrl�C

software language with a conjugate gradient restoration algorithm but� as noted

by the authors� has some drawbacks� For a third order system with two inputs�

the number of optimising parameters is twenty�two� which slows down the per�

formance� hence the authors adopt periodic preconditioning� The same authors

���� improve the previous work by replacing a highly nonlinear performance in�

dex with a quadratic one� at the expense of an increase in the nonlinearity and

number of constraints� This is applied to the Extended Medium Range Air�to�

Air Technology �EMRAAT� airframe� Wilson� Cloutier and Yedavalli ���� ����

extend their work to include time�varying parametric variations and also employ

a Lyapunov constraint�

Most of these techniques use the conditioning of the modal matrix to control

robustness� but another method is in consideration of the singular values� Struc�

tured stability robustness is considered by Apkarian ��� and uses a hybrid design

of a nonlinear programming technique for robustness� and point�wise modal syn�

thesis for performance� Garg ���� uses the sensitivity of the minimum singular

value of the return di�erence matrix� at plant input� to changes in desired closed

loop eigenvalues and speci�ed elements of the desired closed loop eigenvectors�

The algorithm uses gradient information to improve the gain and phase margins�

Optimisation techniques have been used for eigenstructure assignment via

output feedback as demonstrated in various papers by Sobel et al� In ���� Sobel

and Shapiro ���� formulated an objective function to minimise the sum of the

squares of the eigenvalue condition numbers subject to exact eigenvalue assign�

ment� This was solved by selecting ��� points in a user speci�ed region� this

region being the space of vectors that parameterise the eigenvectors� Four it�
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erations were then performed at each point and an optimisation to convergence

on the �ve points with the smallest performance index was carried out� This

was solved using a quadratic extended interior penalty function� and obviously

requires a lot of computational e�ort� Here also the eigenvalue positions are rigid�

but it does demonstrate the need for a robustness�performance trade�o�� Sobel et

al� ���� considered robust control for systems with structured� state space� norm

bounded uncertainty� and extended this �see Sobel and Yu ����� to add the con�

straint of restricting the eigenvalues to lie within chosen regions in the complex

plane� This constrained optimisation problem was solved using the sequential

unconstrained minimisation technique with a quadratic extended interior penalty

function� This theory is applied to design a control for an EMRAAT missile in

Yu et al� ����� The structured uncertainty work is more comprehensively covered

in Yu and Sobel ��
�� and includes a mention of considering robustness via the

minimum singular value of the return di�erence matrix� The work is attempted

in a slightly di�erent way in Piou et al� �
�� by constraining the problem with

a Lyapunov condition and using the delta operator on a sampled data system�

The various work of Sobel et al� over the last ten years in eigenstructure as�

signment for �ight control system design is detailed in Sobel et al� ���� covering

�constrained� output feedback� gain suppression� dynamic compensation� robust

sampled data� pseudo�control� singular values for robustness and Lyapunov con�

straints� calculated using the Matlab Optimisation and Delta toolboxes ����� and

��
� respectively��

A study of the application of eigenstructure assignment to the control of pow�

ered lift combat aircraft was presented by Smith ����� most notable for the consid�

eration of the left eigenvectors� Previous authors considered assigning only a set of

right eigenvectors corresponding to a set of speci�ed eigenvalues� for the purpose

of obtaining modal output decoupling� In addition� Smith considered the assign�

ment of a corresponding set of left eigenvectors to obtain some desired level of

modal input decoupling� This is performed using a Simplex search method� This

thesis considers the simultaneous assignment of right and left eigenvectors cor�

responding to speci�ed eigenvalues to achieve some desired level of output and

input decoupling respectively�

��



The most recent comprehensive study into multi�objective control design prob�

lems arising in aeronautics is by Magni and Mounan ����� The theory is based

on �rst order variations on the gains� eigenvalues� right and left eigenvectors� and

their corresponding output and input directions� The problem is solved itera�

tively� utilising the Matlab Optimisation toolbox ���� whereby� at each iteration�

a quadratic problem under linear equality constraints is solved� The constraints

change step by step in such a way that the �nal step corresponds to the orig�

inal eigenstructure assignment problem considered� Care has to be taken that

the change in the set of constraints is small enough so that the �rst order ap�

proximations are valid� This method requires an interpretation of the results at

each step to identify the objectives for the following step� for example identifying

undesirable coupling or the slowest eigenvalue�

We have shown in this review how� in the last �� years� the subject has pro�

gressed from the basis of changing the poles of a system by state feedback� to

that of eigenstructure assignment by output feedback� It has also been demon�

strated that eigenstructure assignment is a useful tool for aircraft �ight control

system design� although this is not widely accepted in industry� The importance

of considering the robustness of the closed loop system has also been recognised in

the design of automatic �ight control systems� The aircraft industry has speci�c

design objectives that can be considered before attempting to design a control�

rather than just applying an analytical technique� Over the last few years� many

authors have realised the need for multi�objective designs and have turned to

numerical optimisation to solve this� However� much of the work has considered

only state feedback� and those considering output feedback do not consider the

whole eigenstructure in the sense that the right eigenvectors only are used�

The aim of the work here is to apply eigenstructure assignment techniques via

output feedback to aircraft control problems� We pay particular attention to the

simultaneous assignment of both the right and left eigenvectors to obtain decou�

pling in the outputs and inputs of the closed loop system� It will be shown that

this assignment is not� in general� possible� a multi�criteriaminimisation approach

is developed that also emphasises the importance of ensuring the robustness of

the closed loop system�
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In the next two chapters� we explain in detail the derivation of the aircraft

equations of motion into a linear� time�invariant form as in ������ and develop the

theory and techniques of eigenstructure assignment to be used in solving aircraft

problems�
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Chapter �

Aircraft dynamics

This thesis is primarily concerned with the theory of eigenstructure assignment�

with speci�c application to aircraft problems� For completeness� we describe how

the equations of motion for an aircraft are derived� We give the linearisation and

assumptions needed to transform these equations into a form to which eigenstruc�

ture assignment theory can be applied� This chapter closely follows parts of the

�rst three chapters of McLean �����

��� Introduction

Irrespective of the system being considered� we are interested in how e	ectively

it can be controlled from an initial state to a desired �nal state within a certain

time scale� The motion of a vehicle is characterised by its velocity vector� the

control of the vehicle
s path is dependent on physical constraints� For example a

train is constrained by its track� cars must move over the surface of the earth� but

both speed and direction are controlled� Aircraft di	er as they have six degrees

of freedom� three associated with angular motion about the aircraft
s centre of

gravity and three associated with the translation of the centre of gravity� This ex�

tra freedom means that aircraft control problems are generally more complicated

than those of other vehicles�

An aircraft
s stability characterises how it resists changes of its velocity vector�

either in direction or magnitude� or both� The aircraft
s quality of control relates

to the ease with which the velocity vector can be changed� Without control�
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aircraft tend to �y in a constant turn� hence� to �y a straight and level course�

continuous corrections must be made by a pilot� or by means of an automatic

�ight control system �AFCS�� In aircraft� such AFCSs employ feedback to ensure�


� the speed of response is better than at open�loop�

�� the accuracy in following commands is better�

�� the system is capable of suppressing unwanted e	ects arising from distur�

bances to the aircraft
s �ight�

However� the AFCS may have poor stability because such feedback systems

have a tendency to oscillate� Thus� designers must employ a trade�o	 between

the requirements for stability and control�

����� Control surfaces

If a body is to be changed from its present state of motion then external forces�

or moments� or both� must be applied to the body� and the resulting acceleration

vector can be determined by applying Newton
s Second Law of Motion� Every

aircraft has control surfaces which are used to generate the forces and moments

required to produce the accelerations which cause the aircraft to be steered along

its three�dimensional �ightpath to its speci�ed destination�

Conventional aircraft have three control surfaces� elevator� ailerons and rud�

der� with a fourth control available in the change of thrust obtained from the

engines� Modern aircraft� particularly combat aircraft� have considerably more

control surfaces� The required motion in �ight control often needs a number

of control surfaces to be used simultaneously� this often leading to considerable

coupling and interaction between motion variables�

����� Flight control systems

The primary �ying controls are de�ned as the input elements moved directly by

a human pilot to cause the operation of a control surface� The main primary

�ying controls are pitch� roll and yaw control� e	ected by the elevators� ailerons

and rudder� respectively�
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In addition to these surfaces� every aircraft has motion sensors to provide

measures of change in motion variables which occur as the aircraft responds to

the pilot
s commands� or as it encounters some disturbance� These signals from

the sensors can be used to provide the pilot with a visual display� or as feedback

signals for the AFCS�

The �ight controller compares the commanded motion with the measured

motion and� if any discrepancy exists� generates� in accordance with the control

law� the command signals to the actuator to produce the control surface de�ec�

tions which will result in the correct control force or moment being applied� The

aircraft thus responds so that the measured and commanded motion are in cor�

respondence� How the required control law is determined is the primary topic of

this thesis�

����� Gain scheduling

This thesis uses control methods for linear� time�invariant systems� However� an

aircraft in �ight is highly non�linear and is certainly dependent on time� Thus�

the whole �ight envelope of the aircraft is divided into a series of discrete points

around which the system is linearised� Since many �ight control problems are of

very short duration ����� seconds�� the coe�cients of the equations of motion can

be regarded as constant� So for every discrete point we have a constant� linear

system for which an AFCS is designed�

��� Aircraft equations of motion

Problems involving AFCS are relatively short in time� the dynamic situations

rarely last more than a few minutes� Consequently the inertial frame of reference

used is one that has its origin �xed at the centre of the Earth� typically with XE

pointing north� YE pointing east and ZE pointing downwards� Thus� an aircraft

being considered relative to �XE � YE� ZE� must have its own axis system� usually

taken at the centre of gravity with XB pointing forwards through the nose� YB

pointing out through the starboard �right� wing and ZB pointing downwards�

This is known as a body��xed axis system� Other common axis systems are the
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Figure ��
� Body axis system �see McLean �����

principal axis system� the wind axis system and the stability axis system� which

is the most frequently used�

����� Equations of motion of a rigid body aircraft

It is assumed that the aircraft considered is rigid�body� that is the distance be�

tween any two points on the aircraft
s surface remain �xed in �ight� Under this

assumption the motion has six degrees of freedom� Newton
s Second Law can

be applied to obtain the equations of motion in terms of the translational and

angular accelerations� It is also assumed that the inertial frame of reference does

not accelerate� that is� the Earth is considered �xed in space�

Figure ��
 is included to illustrate the various components of the equations

of motion next described� In Figure ��
� �U� V�W � are the roll� pitch and yaw

moments� �P�Q�R� are the angular velocities �roll� pitch and yaw�� ������� are

the roll� pitch and yaw angles�
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Translational motion

From Newton
s Second Law it can be deduced that

F � F� ��F � m
d

dt
fVTg ���
�

M � M� ��M �
d

dt
fHg� �����

where F represents the sum of all externally applied forces� VT is the velocity vec�

tor�M represents the sum of all applied torques andH is the angular momentum�

Also� m is the mass of the aircraft� assumed to be constant� It is convenient when

analyzing AFCSs to regard F and M as consisting of an equilibrium component

�denoted by �� and a perturbational component �denoted by ���

By de�nition� equilibrium �ight must be unaccelerated along a straight path�

during this �ight the linear velocity vector relative to �xed space is invariant� and

the angular velocity is zero� Thus both F� and M� are zero� The rate of change

of VT relative to the Earth axis system is

d

dt
fVTgE �

d

dt
VT

�����
B

� � �VT � �����

where � is the angular velocity of the aircraft with respect to the �xed axis

system� Expressing the vectors as the sums of their components with respect to

�XB� YB� ZB� gives

VT � U i� V j�Wk

� � P i�Qj�Rk�
�����

Evaluating ����� using ����� gives

�X � �Fx � m� �U �QW � V R�

�Y � �Fy � m� �V � UR � PW �

�Z � �Fz � m� �W � V P � UQ��

�����

which are thus the equations of translational motion�

Rotational motion

For a rigid body� angular momentum may be de�ned as

H � I�� �����
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with the inertia matrix� I� de�ned as
�
������

Ixx �Ixy �Ixz

�Ixy Iyy �Iyz

�Ixz �Iyz Izz

�
������
� �����

where Iii denotes a moment of inertia� and Iij a product of inertia for j �� i�

Using ����� in ����� gives

M �
d

dt
H� � �H� �����

Transforming the body axes to the Earth axes system� and considering the indi�

vidual components of H from ������ along with the fact that in general aircraft

are symmetrical about the XZ plane �implying Ixy � Iyz � ��� results in

�L � �Mx � Ixx �P � Ixz� �R � PQ� � �Izz � Iyy�QR

�M � �My � Iyy �Q� Ixz�P
� �R�� � �Ixx � Izz�PR

�N � �Mz � Izz �R � Ixz �P � PQ�Iyy � Ixx� � IxzQR�

��� �

where L� M � N are moments about the rolling� pitching and yawing axes respec�

tively�

Forces due to gravity

The forces of gravity are always present in an aircraft� however� it can be assumed

that gravity acts at the centre of gravity �c�g�� of the aircraft� But� since the

centres of mass and gravity coincide in an aircraft� there is no external moment

produced by gravity about the c�g�� this means gravity contributes only to the

external force vector F�

To resolve the forces� the gravity vector mg is directed along the ZE axis� �

is the angle between the gravity vector and the YBZB plane and � is the bank

angle between the ZB axis and the projection of the gravity vector on the YBZB

plane� Direct resolution of mg into its X�Y�Z components produces

�X � � mg sin�

�Y � mg cos� sin�

�Z � mg cos� cos��

���
��

The manner in which the angular orientation and velocity of the body axis system

with respect to the gravity vector is expressed depends upon the angular velocity
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of the body axis about mg� This angular velocity is the azimuth rate� ��� it is

not normal to �� or ��� but its projection in the YBZB plane is normal to both�

By resolution

P � ��� �� sin�

Q � �� cos� � �� cos� sin�

R � � �� sin� � �� cos� cos��

���

�

where �� �� � are referred to as the Euler angles�

Linearisation of the inertial and gravitational terms

Equations ����� and ��� � represent the inertial forces acting on the aircraft�

Equation ���
�� represents the contribution of the forces due to gravity to these

equations� The external forces acting on the aircraft can be re�expressed as

X � �X � �X

Y � �Y � �Y

Z � �Z � �Z�

���
��

where the � terms are gravitational and the � terms represent the aerodynamic

and thrust forces� For notational convenience� �L� �M and �N are denoted by

L� M and N � thus the equations of motion of the rigid body for its six degrees of

freedom are

X � m� �U �QW � V R � g sin��

Y � m� �V � UR � PW � g cos� sin��

Z � m� �W � V P � UQ� g cos� cos��

L � Ixx �P � Ixz� �R � PQ� � �Izz � Iyy�QR

M � Iyy �Q� Ixz�P � �R�� � �Ixx � Izz�PR

N � Izz �R� Ixz �P � PQ�Iyy � Ixx� � IxzQR�

���
��

Note that ���

� must also be used since those equations relate �� �� � to R� Q�

P � The equations in ���
�� are highly non�linear and are simpli�ed by considering

the motion in two parts� a mean motion to represent the equilibrium �or trim�

conditions� and a dynamic motion for the perturbations to the mean motion�

Thus� every motion variable is considered to have two components� For example

U � U� � u R � R� � r

Q � Q� � q M �M� �m� etc��
���
��
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where � denotes trim and lower�case letters are the perturbations� Note that

m� is the perturbation in the pitching moment� M � not to be confused with the

mass m in ���
��� which is considered constant� In trim there is no acceleration

so we can obtain equations for X�� Y�� Z�� L��M�� N� that are just the equations

in ���
�� with the �U� �V � �W� �P � �Q� �R terms all set to zero� all other components

�except m and g� have the subscript �� The perturbed motion can then be found

by substituting ���
�� into ���
�� and subtracting the equations for X�� Y� etc�

Assuming small perturbations� sines and cosines are approximated to the angles

themselves and unity respectively� products of perturbed quantities are deemed

negligible� The perturbed equations of motion that result are simpler than ���
���

but are still not readily usable� Common practice in AFCS studies is to consider

�ight cases with simpler trim conditions� �ying straight in steady� symmetric �ight

with wings level is an example commonly used� These assumed trim conditions

have the implications


� straight �ight implies �� � �� � ��

�� symmetric �ight implies �� � V� � ��

�� �ying with wings level implies �� � ��

Under these conditions it may also be assumed that Q� � P� � R� � �� giving

the simple equations

x � m� �u�W�q � �g cos�����

z � m� �w� U�q � �g sin�����

m� � Iyy �q

���
��

and

y � m� �v� U�r �W�p � �g cos�����

l � Ixx �p� Ixz �r

n � Izz �r � Ixz �p�

���
��

Here the equations in ���
�� represent the longitudinal motion� and those in

���
�� represent the lateral!directional motion �sideslip� rolling and yawing mo�

tion speci�cally�� This separation is merely a separation of gravitational and

inertial forces� only possible because of the assumed trim conditions�
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����� Complete linearised equations of motion

To expand the left�hand side of the equations of motion� a Taylor series expansion

is used about the trimmed�ight condition� For example� if only elevator de�ection

is involved in the aircraft
s longitudinal motion then the �rst equation in ���
��

becomes

x � �X

�u
u� �X

� �u
�u� �X

�w
w � �X

� �w
�w � �X

�q
q � �X

� �q
�q � �X

��E
�E � �X

� ��E
��E

� m� �u�W�q � �g cos�����

���
��

and similarly for the other equations in ���
�� and ���
��� Note that here �E is

the de�ection to the elevators� If any other control surface on the aircraft being

considered were involved� additional terms would be involved� For example� if

de�ection of �aps �F� and symmetrical spoilers �sp� were also used as controls for

longitudinal motion� additional terms such as

�X

��F
�F and �X

��sp
�sp ���
��

would be added to equation ���
��� For simpli�cation� we de�ne

Xx � �
m

�X

�x

Zx � �
m

�Z

�x

Mx � �
Iyy

�M

�x

���
 �

and Mx� Zx� Xx are called stability derivatives�

Equations of longitudinal motion

If the equations in ���
�� are expanded �as in ���
��� and the substitutions in

���
 � are made� then there results a new set of equations� From the study of

aerodynamic data� it becomes evident that some stability derivatives can be ne�

glected �but this is problem dependent�� The equations of perturbed longitudinal

motion� for straight� symmetric �ight� with wings level can be expressed as

�u � Xuu�Xww �W�q � �g cos���� �X�E�E

�w � Zuu� Zww � U�q � �g sin���� � Z�E�E

�q � Muu�Mww �M �w �w �Mqq �M�E�E

�� � q�

������

where �� � q is usually added for completeness�
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Equations of lateral motion

As in Section �������� we expand the left�hand sides of ���
�� using Taylor series�

make the stability derivative substitutions

Yj � �
m

�Y

�j

Lj � �
Ixx

�L

�j

Nj � �
Izz

�N

�j

����
�

and neglect certain terms� as before� This gives the equations governing perturbed

lateral!directional motion of the aircraft as

�v � Yvv � U�r �W�p � �g cos����� Y�R�R

�p � Ixz
Ixx

�r � Lvv � Lpp� Lrr � L�A�A � L�R�R

�r � Ixz
Izz

�p�Nvv �Npp �Nrr �N�A�A �N�R�R

�p � ��� �� sin��

�r � �� cos���

������

where again the last two equations are usually added for completeness� Note also

the subscripts A and R on the � indicate aileron and rudder respectively�

����� Equations of motion in a stability axis system

In a stability axis system� the orientation is such that W� is zero� Initially� the

stability axis system is inclined to the horizon at some �ight path angle� ��� since

�� � �� � ��� and �� is zero because the axis is orientated so that the XB axis

points into the relative wind� So the equations in ������ become

�u � Xuu�Xww � �g cos���� �X�E�E

�w � Zuu� Zww � U�q � �g sin���� � Z�E�E

�q � Muu�Mww �M �w �w �Mqq �M�E�E

�� � q�

������

The corresponding version of ������ contains cross�product inertia terms� which

are eliminated by the use of primed stability derivatives� Ignoring second order
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e	ects and taking into account the cross�product of inertia terms gives

�v � Yvv � U�r � �g cos����� Y�R�R

�p � L�

vv � L�

pp� L�

rr � L�

�A
�A � L�

�R
�R

�r � N �

vv �N �

pp�N �

rr �N �

�A
�A �N �

�R
�R

�� � p� r tan��

�	 � r sec���

������

��� State space representation

In Chapter � we introduced basic control systems� governed by the equations
�	

	�

�x�t� � Ax�t� �Bu�t�

y�t� � Cx�t��
������

where x� u and y are vectors representing the state� input and output variables

respectively� We also de�ned our interest as being in linear� time�invariant sys�

tems� The �ight of an aircraft� however� is time�varying and its equations are

non�linear� In Section ��
�� we explained the concept of gain scheduling so that

the system matrices� A� B and C� may be considered constant at set operating

conditions relative to some parameter�

In the previous section we showed how the non�linear aircraft equations can

be linearised into a relatively simple form� so that they can be represented in

state space form�

We now illustrate how the simpli�ed aircraft equations of motion are repre�

sented in the form of ������� this is done for both longitudinal and lateral motion�

����� Aircraft equations of longitudinal motion

If the state vector for an aircraft is de�ned as
�
���������

u

w

q

�

�
���������
� ������

where the variables are the perturbations to forward velocity� yaw velocity� pitch

rate and pitch angle� and if the aircraft is being controlled by means of elevator
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de�ection� �E� and change of thrust� �th� then from ������ the state equation is

de�ned as
�
���������

�u

�w

�q

��

�
���������
�

�
���������

Xu Xw � �gcos��

Zu Zw U� �gsin��

"Mu
"Mw

"Mq
"M�

� � 
 �

�
���������

�
���������

u

w

q

�

�
���������
�

�
���������

X�E X�th

Z�E Z�th

"M�E
"M�th

� �

�
���������

�
��
�E

�th

�
�� � ������

Here U� is the equilibrium �or trim� forward velocity� g is gravity� �� is the �ight

path angle and all other unde�ned components are stability derivatives� The

signi�cance of the tilde in the third row of ������ is explained by the fact that in

������

�q � Muu�Mww �M �w �w �Mqq �M�E�E� ������

However� it is obvious that although a term in �w exists on the right hand side of

������� it does not appear in the state equation on the r�h�s of ������� Fortunately�

�w itself depends only on x and u and so we can substitute the equation for �w in

������ into ������� yielding

�q � �Mu �M �wZu�u� �Mw �M �wZw�w � �Mq �M �wU��q

��gM �w sin���� � �M�E �M �wZ�E ��E
� ���� �

Then

�q � "Muu� "Mww � "Mqq � "M�� � "M�E�E� ������

where
"Mu � Mu �M �wZu

"Mw � Mw �M �wZw

"Mq � Mq � U�M �w

"M� � �gMw sin��

"M�E � M�E �M �wZ�E �

����
�

This is shown for the purpose of an illustrative example� other states can be

considered� as can other control inputs� depending on the speci�c AFCS problem�
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����� Aircraft equations of lateral motion

If the state vector is �
�������������




p

r

�

	

�
�������������

� ������

where the variables are de�ned as sideslip angle� the perturbations to roll rate

and yaw rate� and roll angle and yaw angle� and if the aircraft is being controlled

by the ailerons� �A� and rudder� �R� then the state equation is

�
�������������

�


�p

�r

��

�	

�
�������������

�

�
�������������

Yv � �
 g

U�

cos�� �

L
�

� L
�

p L
�

r � �

N
�

� N
�

p N
�

r � �

� 
 tan�� � �

� � sec�� � �

�
�������������

�
�������������




p

r

�

	

�
�������������

�

�
�������������

� Y �

�R

L
�

�A
L

�

�R

N
�

�A
N

�

�R

� �

� �

�
�������������

�
��
�A

�R

�
�� �

������

where again all terms not mentioned in Section �����
� are stability derivatives�

Again this is not a unique representation and is just for the purposes of illus�

tration� For all of the examples used in this thesis� we will describe each of the

variables used�

��� Aircraft stability

In Section ����� we introduced the general concept of stability with respect to

control systems� In aircraft control we are particularly interested in whether the

system remains stable under parameter variations� For the treatment of aircraft

stability� it is assumed here that the aircraft is �xed wing and �ying straight and

level in a trimmed condition� and that its motion is properly characterised by

�������
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����� Longitudinal stability

The characteristic polynomial of the state coe�cient matrix A� known as the

stability quartic� is calculated in the form

�� � a��
� � a��

� � a�� � a� � �� ������

An aircraft may be said to be dynamically stable if all of its eigenvalues have a

real part that is negative� Positive real parts mean the aircraft is dynamically

unstable� So also does a zero real part� since this corresponds to a mode having

simple harmonic motion which� for practical �ight situations� is considered to be

unstable�

For most aircraft types� the quartic factorises into two quadratics�

��� � ��ph
ph � 
�
ph���

� � ��sp
sp � 
�
sp� � �� ������

The �rst factor corresponds to a mode of motion which is characterised by an

oscillation of long period� The damping of this mode is usually very low� and is

sometimes negative� so that the mode is unstable and the oscillation grows with

time� The low frequency associated with the long period motion is de�ned as the

natural frequency� 
ph� the damping ratio being denoted as �ph� This mode is

de�ned as the phugoid mode�

The second factor corresponds to a rapid� relatively well�damped motion as�

sociated with the short period mode whose frequency is 
sp and damping ratio is

�sp�

For the frequency and damping of a mode� if the eigenvalue of a complex mode

is expressed in the form

���� � x� iy� ������

where i � ��
�
�

� � then

� � x

�x��y�	
�

�


 � �x� � y��
�

�

� ������

����� Lateral stability

The characteristic polynomial of lateral motion is a quintic of the form

�
 � d��
� � d��

� � d��
� � d�� � �� ������

��



which can usually be factorised into the following form

��� � e���� f���� � ��D
D�� 
�
D� � �� ���� �

The simple term in � corresponds to the heading �directional� mode� Because

� � � is a root� then once an aircraft
s heading has been changed� there is no

natural tendency for the aircraft to be restored to its equilibrium heading� An

aircraft has neutral heading stability and it remains at its perturbed heading until

some corrective control action is taken� The term ���e� corresponds to the spiral

convergence!divergence mode� which is usually a very slow motion corresponding

to a long term tendency either to maintain the wings level or to #roll o	
 in a

divergent spiral� The term ���f� corresponds to the rolling subsidence mode�

the quadratic term represents the #dutch roll
 motion for which the values of the

damping ratio� �D� is usually small� so that #dutch
 rolling motion is oscillatory�

��� Summary

Here we have given an introduction to the theory of aircraft �ight control systems�

The uses of feedback in AFCS theory has been given as have the physical controls

used to control the aircraft� It has been shown that the equations of motion are

very complicated and highly coupled� but that under certain assumptions and

�ight conditions these can be simpli�ed into a usable form� We have demon�

strated the stability considerations of an aircraft� for both the longitudinal and

lateral motions� In Chapter � we shall explain the basic mathematical theory of

eigenstructure assignment used to control the stability� robustness and transient

response of the aircraft� and show our additional requirements of controlling the

levels of input and output decoupling�

��



Chapter �

Eigenstructure assignment

In Chapter � we introduced the concept of control systems and gave their prop�

erties� We then introduced feedback as a method of forcing the system to behave

in a desired manner� We stated that we seek a feedback to obtain a certain

closed loop eigenstructure� Here we give more detail on how this feedback may

be calculated� We then give the design speci�cations for aircraft problems�

��� State feedback

To perform feedback we use the measured system variables as the new inputs to

the closed loop system� If we assume that all of the state variables are available

for feedback� then the controller takes the form

u � Fx� v� 	
���

Substituting this into 	���� gives the closed loop system

�x � 	A�BF �x�Bv� 	
���

The problem here is to calculate F such that A � BF has the desired eigenval�

ues and eigenvectors� Early works concentrated solely on the eigenvalues� the

problem being formally stated as


Problem �Given the real pair 	A�B� and a self�conjugate set of scalars f��� � � � � �ng�

�nd a real matrix F � IRm�n such that the eigenvalues of A � BF are �i 	i �

�� � � � � n��

��



A solution to Problem � was given by Wonham ����� and gave the link between

complete controllability and eigenvalue assignment�

THEOREM ��� A system is controllable if and only if� for every self�conjugate

set of scalars f��� � � � � �ng� there exists a real matrix F � IRm�n such that the

eigenvalues of A�BF are �i 	i � �� � � � � n��

Proof 	see Wonham ������

Following Wonham�s paper ����� many authors published work on the sub�

ject of eigenvalue assignment� For multi�input systems� however� the calculated

feedback is not unique� a fact that was overlooked by most authors� As covered

in the literature review in Section ���� Moore ���� was the �rst to identify the

freedom o�ered by state feedback beyond speci�cation of the closed loop eigen�

values� He demonstrated that the freedom available occurred in the choice of the

eigenvector corresponding to each desired eigenvalue� and exploited this freedom

to e�ect a desired distribution of modes among the output components� The idea

of calculating a feedback to obtain both desired eigenvalues and eigenvectors of

a system gave rise to the �eld of eigenstructure assignment�

In Section ����� we introduced the concept of stability and showed its depen�

dency on the real parts of the system eigenvalues lying in the open left hand

plane� This criterion can thus be solved by applying Theorem 
��� since we can

choose a set of stable eigenvalues and calculate a feedback matrix that assigns

these as the closed loop eigenvalues�

However� we also illustrated the need to obtain a robust closed loop system

in Section ������ To do this we wish to reduce the condition numbers of the

individual eigenvalues� which are bounded above by the condition number of the

modal matrix of the eigenvectors� as in Section ������ Thus� we wish to assign a

stable set of eigenvalues and a corresponding set of well�conditioned eigenvectors�

The robust eigenstructure assignment problem can be formulated as


Problem �Given the real pair 	A�B� and a self�conjugate set of scalars f��� � � � � �ng�

�nd a real matrix F � IRm�n and a non�singular V satisfying

	A�BF �V � V �� 	
���

��



where V � �v�� � � � �vn�� � � diagf��� � � � � �ng such that some measure of the

conditioning� or robustness� is optimised�

Kautsky et al� ���� gave a number of measures that can be considered as

an optimisation objective of Problem �� We shall now show how to construct a

feedback to solve this problem�

����� Construction of a state feedback

Given that we have a V that optimises some robustness measure� the following

theorem gives a construction of F �

THEOREM ��� Given � � diagf��� � � � � �ng and V non�singular� then there

exists a real F � IRm�n� a solution to ����� if and only if

UT
� 	AV � V �� � �� 	
�
�

where

B � �U�� U��

�
�� ZB

�

�
�� � 	
���

with U � �U�� U�� orthogonal and ZB non�singular� Then F is given explicitly by

F � Z��B UT
� 	V �V

�� �A�� 	
���

Proof 	see Kautsky et al� �����

As a result of this theorem we have the following corollary�

Corollary ��� A matrix V may be chosen to satisfy Problem 	 if we select each

column vi of V � corresponding to each desired eigenvalue �i� so that it belongs to

the null space

Si � N �UT
� 	A� �iI��� 	
���

Proof Follows directly from Theorem 
�� 	see Kautsky et al� ������

So� if we choose to assign a set of distinct eigenvalues� for each i� a vector vi

can be chosen from Si to form V non�singular and as robust as possible� Three

iterative methods for this are given in Kautsky et al� ����� We have shown how we

may construct a feedback to obtain a system that is stable and robust� We also

��



illustrated in Section ����� that this feedback can be used to a�ect the transient

response of the system�

The construction of F has used the fact that all of the state variables are

available for feedback� However� this is not generally the case and we need to

extend our ideas to output feedback�

��� Output feedback

It has been illustrated that we may use feedback to alter the eigenstructure of

a system for three purposes
 to ensure stability� robustness and a satisfactory

response� But all of this has been performed using the state variables� In practice

these will not all be available for feedback� instead we may use the measured

variables� that is� the outputs� Output feedback by eigenstructure assignment is

a much more di�cult problem than for state feedback� and our objectives are


Problem � Given the real triple 	A�B�C� and a self�conjugate set of scalars

f��� � � � � �ng and a corresponding self�conjugate set of n�dimensional vectors�

fv�� � � � �vng� �nd a matrix K � IRm�p such that the eigenvalues of A�BKC are

�i 	i � �� � � � � n�� with corresponding eigenvectors vi 	i � �� � � � � n�� i�e� that

	A�BKC�V � V �� 	
���

where V � �v�� � � � �vn�� � � diagf��� � � � � �ng�

����� Construction of an output feedback

Without any dimensional restrictions on Problem �� an output feedback can be

constructed from Chu et al� �����

THEOREM ��� Given � and V non�singular� then there exists a real K �

IRm�p� a solution satisfying ���
�� if and only if

UT
� 	AV � V �� � � 	
���

	V ��A� �V ���P� � �� 	
����

��



where

B � �U�� U��

�
�� ZB

�

�
�� � C � �ZT

C � ��

�
�� P T

�

P T
�

�
�� � 	
����

with U � �U�� U��� P � �P�� P�� orthogonal and ZB� ZC non�singular� Then K is

given explicitly by

K � Z��B UT
� 	V �V

�� �A�P�Z
�T
C 	
����

Proof The existence of decompositions 	
���� follows from the assumption that

B and C are of full rank� From 	
���� K must satisfy

BKC � V �V �� �A 	
����

and pre� and post�multiplication by UT and P � respectively� gives
�
�� ZB

�

�
��K�ZT

C � �� �

�
�� UT

�

UT
�

�
�� 	V �V �� �A��P�� P��� 	
��
�

from which 	
���� 	
���� and 	
���� immediately follow by comparison of compo�

nents� since V�U and P are all invertible� �

Corollary ��� The right and left eigenvectors� vi and wT
i � of A�BKC� corre�

sponding to the assigned eigenvalues �i must be such that

vi � Si � N �UT
� 	A� �iI�� 	
����

wi � Ti � N �P T
� 	A

T � �iI�� 	
����

where N ��� denotes null space�

Proof Follows directly from Theorem 
�
�

Thus� for n eigenvalues to be assigned exactly by output feedback� their right

and left eigenvectors must simultaneously lie in the spaces de�ned in 	
�����	
�����

respectively� However� it is obvious from the relationship V �� � W T that if the

right eigenvectors are chosen to maximise robustness 	or to alter the transient

response� and so that vi � Si� then the left eigenvectors are immediately de�ned�

without ensuring they are in the correct spaces� To this end Chu et al� ����

proposed an algorithm that minimises a weighted sum of the robustness and the

distance of the left eigenvectors from Ti�


�



De	nition ��
 �Chu et al� ��
�� � Perform QR decompositions on the right and

left eigenvector spaces given in ������������� such that

�UT
� 	A� �iI��

T � � �Si� Si�

�
�� RRi

�

�
�� 	
����

�	A� �iI�P�� � � �Ti� Ti�

�
�� RLi

�

�
�� � 	
����

Then Si� �Si are orthonormal bases for the null space Si and its complement re�

spectively� similarly Ti� �Ti are orthonormal bases for the null space Ti and its

complement respectively�

It can be shown that kwT
i
�Tik�� measures the minimum distance between wT

i and

a vector in the subspace Ti� The weighted sum minimisation from Chu et al� ����

is thus to minimise the functional

F � kDV ��k�F �
nX
i��

��
i kw

T
i
�Tik

�
�� 	
����

where D � diag	d�� � � � � dn� and the di� ��
i are weightings to be chosen� The

computed values of F are non�increasing and� provided F is small� the computed

feedback assigns eigenvalues close to those speci�ed� and such that their individual

sensitivities are small� This can be expressed more speci�cally in a theorem� but

�rst a result is needed�

LEMMA ��� Given that vi � Si� 	i � �� � � � � n�� then K de�ned by ����	�

implies

BKC � 	V �W T �A�	I � P�P
T
� �� 	
����

Proof From 	
����� B � U�ZB and C � ZT
CP

T
� � and also

I � UUT � �U�� U��

�
�� UT

�

UT
�

�
�� � U�U

T
� � U�U

T
� � 	
����

I � PP T � �P�� P��

�
�� P T

�

P T
�

�
�� � P�P

T
� � P�P

T
� � 	
����

Using K from 	
���� we obtain

BKC � U�U
T
� 	V �W

T �A�P�P
T
� � 	
����


�



since V �� � W T from 	����� but vi � Si i�e� UT
� 	A� �iI�vi � � so that

U�U
T
� 	AV � V �� � 	I � U�U

T
� �	AV � V �� � �� 	
��
�

using 	
����� giving 	AV �V �� � U�U
T
� 	AV �V ��� Using this and 	
���� results

in

BKC � 	V �W T �A�	I � P�P
T
� ��� 	
����

The theorem associated with the error involved in assigning the desired eigenval�

ues is

THEOREM ��� �Chu et al� ��
��Given � � diagf��� � � � � �ng and V � �v�� � � � �vn�

non�singular� such that vi � Si and kvik�� � �� then K de�ned by ����	� implies

	A�BKC�V � V � � �EV� 	
����

Proof Using 	
���� from Lemma 	
��� we obtain BKC � 	V �W T � A� �

	V �W T �A�P�P T
� so that

	A�BKC�V � V � � �	V �W T �A�P�P
T
� V� 	
����

and 	
���� follows by writing

E � V 	�W T �W TA�P�P
T
� �� 	
����

Corollary ��
 The error in eigenvalue assignment� E� given in Theorem ���
�

can be bounded such that

kEk�F �
nX
i��

r�i kw
T
i
�Tik

�
�� 	
����

with ri �xed constants�


�



Proof Taking norms of E as de�ned in 	
���� gives

kEk�F � kV 	�W T �W TA�P�P T
� k

�
F

� kV k�� k	�W T �W TA�P�P T
� k

�
F

� kV k��

nX
i��

kwT
i 	�iI �A�P�P

T
� k

�
�

� kV k��

nX
i��

kwT
i 	�iI �A�P�k

�
� 	since P T

� P� � I�

� kV k��

nX
i��

kwT
i
�TiRLik

�
� 	from 	
�����

� kV k��

nX
i��

kwT
i
�Tik

�
�kRLik

�
�

	
����

which gives the required result with r�i � kV k��kRLik�� � nkRLik��� from the

assumption that kvik�� � �� 	i � �� � � � � n�� �

��� Partial eigenstructure assignment

We have shown that the exact re�assignment of all of the eigenvalues depends

on the right and left eigenvectors simultaneously lying in the correct eigenspaces�

However� this cannot be achieved because of the right and left eigenvector depen�

dency 	see 	������ and a minimisation technique is required to make the eigenval�

ues more accurate� Hence� a lot of work is being performed on the eigenvectors�

thus losing us the freedom to choose them to shape the response of the system as

in 	�����

The alternative is to assign a certain set of the eigenvalues exactly according to

dimensional restrictions proved by previous authors� Davison ���� showed that if

the system is controllable and if rank�C� � p� then p eigenvalues of the closed loop

system are arbitrarily close 	but not necessarily equal� to the p desired values�

Thus� it is possible to assign exactly p desired eigenvalues and their corresponding

right eigenvectors� However� the n � p unassigned closed loop eigenvalues and


�



corresponding eigenvectors are uncontrolled and may therefore force the system

to display poor behaviour e�g� it may be unstable or very sensitive� We therefore

note that while partial eigenstructure assignment is a method for obtaining an

exact eigenstructure for a set of modes� we must be careful about what happens

to the unassigned modes� We consider the partial eigenstructure problem

Problem � Given the real triple 	A�B�C� and a self�conjugate set of scalars

f��� � � � � �pg and a corresponding self�conjugate set of n�dimensional vectors�

fv�� � � � �vpg� �nd a real matrixK � IRm�p such that the eigenvalues of A�BKC

contain �i 	i � �� � � � � p� as a subset� with corresponding eigenvectors vi 	i �

�� � � � � p�� i�e� that

	A�BKC�V � V �� 	
����

where V � �v�� � � � �vp�� � � diagf��� � � � � �pg�

THEOREM ���� Given � and V non�singular and assuming that CV is invert�

ible� then there exists K� a solution satisfying ������ if and only if UT
� 	AV�V �� �

� with K given explicitly by

K � Z��B UT
� 	V ��AV �	CV ���� 	
����

Proof From 	
����� K must satisfy

BKCV � V ��AV

� BK � 	V ��AV �	CV ����
	
����

Pre�multiplication by UT gives

�
�� ZB

�

�
��K �

�
�� UT

�

UT
�

�
�� 	V ��AV �	CV ���� 	
��
�

from which UT
� 	AV � V �� � � and 	
���� immediately follows by comparison of

components� �

We have given justi�cation for adjusting the eigenstructure of a system to

obtain certain objectives� but for a general mathematical problem� Next we shall

introduce the details of the aircraft problem� speci�cally how the eigenvectors are

chosen from performance requirements�







����� Aircraft control problem

The importance of considering the whole eigenstructure of a system has been

demonstrated previously� As shown in Section ������ the transient response de�

pends on both the eigenvalues and corresponding right and left eigenvectors 	see

	������ these eigenvectors being chosen for performance requirements depending

on the application being considered� For the aircraft application considered here�

the eigenvectors are chosen explicitly to improve the aircraft�s �ight handling

qualities� This chapter considers the problems of

�� characterising eigenvectors which can be assigned as closed loop vectors and

�� determining the best possible set of assigned closed loop vectors in case the

desired set is not assignable 	since arbitrary eigenvector assignment is not�

in general� possible��

Before explaining the theoretical aspects of calculating the eigenvectors� a de�ni�

tion is required�

De	nition ���� A� is de�ned to be the unique matrix� X � IRn�n that satis�es

the four Moore�Penrose conditions�

	i� AXA � A� 	iii� 	AX�H � AX

	ii� XAX � X� 	iv� 	XA�H � XA

and is the unique minimal F�norm solution to

min
X�IRn�n

kAX � ImkF � 	
����

Note that here the H superscript is the complex conjugate transpose�

����� Complete speci�cation of desired eigenvectors

For an assigned eigenvalue� �i� it has been shown in 	
���� that the corresponding

eigenvector� vi� must lie in the null space of �UT
� 	A � �iI��� From 	
����� Si is

an orthonormal basis for the null space of Si and hence any vector in Si can be

expressed in the form

vai � Si�i 	�i � IRm�� 	
����


�



where the �a� subscript denotes that the vector is achievable� The problem arises

that� in general� a desired eigenvector� vdi� chosen from a performance criteria

will not reside in the prescribed subspace and hence cannot be achieved� Instead

a �best possible� choice is made by projecting vdi into the subspace of achievable

vectors� Si� shown geometrically in Figure 
��

0

vdi

vai

Figure 
��
 Projection to obtain �best� achievable vector

To �nd the value of �i corresponding to the projection of vdi onto the �achiev�

ability subspace�� �i is chosen to solve the problem

minJ � min
�

i

kvdi � vaik
� � min

�
i

kvdi � Si�ik
� 	
����

in a least squares sense� Di�erentiating J with respect to �i gives

dJ

d�i
� �ST

i 	Si�i � vdi� 	
����

and J is at a minimum when dJ

d�
i

� �� hence

�i � S�
i vdi� 	
����

The best achievable vector in a least squares sense that corresponds to a desired

eigenvalue is thus

vai � SiS
�
i vdi� 	
�
��

So� when performing partial eigenstructure assignment� the p desired eigenval�

ues are � � diag f�d�� � � � � �dpg and the corresponding desired eigenvectors are


�



each projected into Si� The set of achievable vectors are augmented in the form

V � �va�� � � � �vap�� and the feedback is constructed as in 	
�����

K � Z��B UT
� 	V ��AV �	CV ���� 	
�
��

����� Partial speci�cation of desired eigenvectors

In many practical situations� complete speci�cation of vdi is neither required

nor known but rather the designer is interested only in certain elements of the

eigenvector� This case is considered by assuming the eigenvector has the form

vdi � �vi�� � � � � x� vij� � � � � x� vin�
T � 	
�
��

where vij are designer speci�ed components 	usually a � or �� and x is an unspeci�

�ed component� The number of elements that can be speci�ed in each eigenvector

is outlined in a theorem from the paper by Srinathkumar ����� who showed that

min	m� p� entries in each vector can be arbitrarily chosen� If there is the need

to specify more than min	m� p� entries for a performance requirement� then the

vector is projected as before to calculate the best least squares �t�

To proceed with the analysis� a permutation matrix� P � is de�ned so that

Pvdi �

�
�� di

ui

�
�� � PSi �

�
�� Di

Ui

�
�� � 	
�
��

where di and ui are the vectors of speci�ed and unspeci�ed components respec�

tively� and Si has been reordered to conform with the reordered components of vdi�

This means that di�ui are composed of the vij and x�s from 	
�
��� respectively�

Proceeding in precisely the same manner as the previous section 	to �nd �i�

with di replacing vdi and Di replacing Si� we obtain

�i � D�
i di

vai � SiD
�
i di�

	
�

�

so that the projection has been carried out on the speci�ed components� Again

the feedback matrix is constructed as in 	
�����


�



����� Example choice of desired eigenvectors

We have shown theoretically how to obtain the best set of achievable vectors�

Here we give example desired vectors� chosen to obtain satisfactory aircraft per�

formance 	taken from Andry et al� ����� For the linearised perturbed longitudinal

equations of an aircraft the state vector may be

x �

�
�������������

�

q

�

u

�e

�
�������������

angle of attack

pitch rate

pitch angle

forward velocity	perturbed�

elevator de�ection

� 	
�
��

Note that this is di�erent from the state vector given in Section ������ There it

was explained that the state vector is not unique� and is dependent on the type

of aircraft and on the design objectives� Here the angle of attack is one of the

angles that orients the forces of lift and drag relative to the body �xed axes 	the

other being sideslip angle� 	��

For this state vector� a good choice of closed loop eigenvectors might be

�
�������������

�

x

x

�

x

�
�������������

�
�������������

x

�

x

�

x

�
�������������

and

�
�������������

�

x

�

x

x

�
�������������

�
�������������

�

x

x

�

x

�
�������������

� 	
�
��

The �rst two vectors are called short period vectors and are chosen such that the

variation in forward velocity is zero and the angle of attack and pitch rate are

coupled together� The last two vectors are the phugoid vectors which couple pitch

angle and 	perturbed� forward velocity while holding angle of attack constant�

This choice of eigenvectors coupled with the �ight dynamics of the problem� i�e�

during the short period mode the pitch angle is small� renders the subvector made

up of the �rst four components of the short period vectors �almost orthogonal�

to the �rst four components of the phugoid vectors� This yields a good degree of

decoupling�


�



If we consider the linearised perturbed lateral axis equations� the state vector

may be

x �

�
����������������

r

	

p




�r

�a

�
����������������

yaw rate

sideslip angle

roll rate

bank angle

rudder de�ection

aileron de�ection

� 	
�
��

Again this di�ers to the state vector in Section ������ as the choice is problem

and aircraft type dependent� A desirable choice of right eigenvectors would be

�
����������������

�

x

�

�

x

x

�
����������������

�
����������������

x

�

�

�

x

x

�
����������������

�

�
����������������

�

�

�

x

x

x

�
����������������

� 	
�
��

The �rst two vectors are the dutch roll vectors in which the yaw rate and sideslip

angle are coupled while roll rate and bank angle are suppressed� The third vector

is the roll subsidence vector where roll rate 	and hence bank angle� are emphasised

while yaw rate and sideslip are set to zero� The e�ect of these choices is to obtain

an orthogonality of the subvector composed of the �rst four components of the

dutch roll vectors with respect to the appropriate subvector from roll subsidence�

����� Mode output�input coupling vectors

We have shown how to choose the eigenvectors both mathematically and prac�

tically� these being used to construct the feedback as in 	
����� However� there

are quantities that can be speci�ed by the designer that give more important in�

formation about the aircraft�s performance than the eigenvectors alone� Writing

	���� in terms of the output equation in 	���� gives

y	t� �
nX
i��

	Cvi�e
�itwT

i x� �
nX
i��

	Cvi�	w
T
i B�

Z t

�
e�i�t�s�u	s�ds� 	
�
��


�



from which it can be seen that the term Cvi determines the outputs participating

in the response of each mode� and that wT
i B determines those modes that are

a�ected by each input� We therefore de�ne the mode output coupling vectors and

mode input coupling vectors to be

G� � CV

G� � W TB�
	
����

respectively� Again the required G� may not lie in the correct spaces and we

consider the achievability criteria as in the previous section� There is signi�cant

advantage in considering the assignment in terms of the output variables rather

than the state variables� This was originally proposed by Moore ����� Again we

consider a desirable mode output coupling vector in the form

gdi � �gi�� � � � � x� gij� � � � � x� gip�
T � 	
����

which is rearranged along with CSi�

gdi �

�
�� di

ui

�
�� � CSi �

�
�� Di

Ui

�
�� � 	
����

into speci�ed components 	di�Di� and unspeci�ed components 	ui� Ui�� respec�

tively� Using 	
���� gives

gai � Cvai � CSi�i� 	
����

so that here the functional to be minimised is

J� � kgdi � gaik
� �

�������

�
�� di

ui

�
��� CSi�i

�������

�

�

�

�������

�
�� di

ui

�
���

�
�� Di

Ui

�
���i

�������

�

�

� 	
��
�

Minimising this over the desired components to �nd �i gives

gai � CSiD
�
i di� 	
����

Noting that gai � Cvai we can construct

vai � SiD
�
i di� 	
����

From hereG� � �ga�� � � � �gap�� V � �va�� � � � �vap� are constructed and the feedback

	
���� becomes

K � Z��B UT
� 	V ��AV �G��� � 	
����

provided G� is invertible�

��



����	 Example of coupling vectors interaction

In Section 
���
 we gave examples of right eigenvectors that could be selected�

from these the projection as in Section 
���� can be performed and K calculated�

However� we have just illustrated that modal coupling can be better observed

in the mode output and mode input coupling vectors� so we now give examples

of these and how to interpret the coupling� Consider a system of dimensions

n � ��m � �� p � �� example mode input and output coupling vectors are

Inputs�j�

G�d � W T
� B �

�
�������������

� �

� �

x x

� �

x x

�
�������������

Modes�i��
	
����

where the ith mode is excited by the jth input according to the 	W TB�i�j element

and

Modes�i�

G�d � CV� �

�
������

� � � x x

� � � x x

x x � x x

�
������
Outputs�k��

	
����

where the kth output depends on the ith mode according to the 	CV �k�i ele�

ment� Here the �st input excites the �st mode 	since 	W TB���� � ��� which is

directly coupled to the �st output 		CV �������� but does not a�ect the �nd output

		CV �������� However� the �
st input excites the 
th and �th modes 		W TB���� � ��

	W TB�	�� � x� which do a�ect the �nd output 		CV ���� � x� 	CV ���	 � x�� These

examples show the interactions between the modes and the inputs�outputs�

����
 Partial eigenstructure assignment algorithm for air�

craft problems

In this chapter we have described the theory of eigenstructure assignment by

output feedback and have detailed the speci�cations of the aircraft industry� The

algorithm used for achieving these objectives is


��



�� specify the system matrices A � IRn�n� B � IRn�m� C � IRp�n

�� specify design requirements� �p � Cp�p� G�d � IRp�p� G�d � IRp�m

�� construct loop to calculate achievable mode output coupling vectors

for i � � 
 p

� calculate re�ordering operator� P � such that Pgdi �

�
�� di

ui

�
��

� calculate Si� the null space of UT
� 	A� �iI�

� use the re�ordering operator so that P 	CSi� �

�
�� Di

Ui

�
��

� calculate best achievable mode output coupling vector gai � CSiD
�
i di

� calculate corresponding eigenvector vai � SiD
�
i di

� augment G�a � �ga�� � � � �gap�� Va � �va�� � � � �vap�

end


� calculate feedback gain matrix

K � B�	Va�p �AVa�G
��
�a 	
����

�� calculate closed loop system A � BKC� check �p 	 �	A � BKC� and

calculate the errors in the mode output and input coupling vectors

E� � kG�d �G�ak�F � E� � kG�d �G�ak�F � 	
����

��� Example

The example used here to illustrate the preceding theory on eigenstructure as�

signment by output feedback and its application to aircraft problems is a model

of an L����� aircraft at cruise condition from ���� We do not give the system

matrices here� or indeed the open loop behaviour as this is all covered in Exam�

ple � of Chapter �� Also� we do not justify the choice of desired eigenstructure�

This example is used to illustrate the achievable results and to demonstrate the

shortfall in these results�

��



For this system� rank 	C� � 
� so that� according to the theory of Davison

����� we can assign 	almost exactly�� four closed loop eigenvalues� These are

�p �

�	

	�
��
 i dutch roll mode

��
 �i roll mode�
	
����

with the corresponding desired mode output and mode input coupling vectors

G�d �

�
���������

x x � �

� � x x

� � � �

� � � �

�
���������
� G�d �

�
���������

� �

� �

� �

� �

�
���������
� 	
����

respectively� To �nd a feedback matrix that best assigns the closed loop eigen�

structure� we use the algorithm in Section 
����� This gives

K �

�
�� ������ ������� �������
 �������

���
�� ������ �������� 
���
�

�
�� � 	
��
�

which assigns the closed loop eigenvalues

closed�loop eigenvalue mode frequency damping sensitivity

�� 
 i dutch roll ������ �����
 ������

��
 �i roll ������ ��

�� ����

�������
 aileron ������
 � �����

������� rudder ������ � ����
�

������� washout �lter ������ � ����

�

The condition number of the eigenvectors of the closed loop system is

�F 	V � � ���� � ���� 	
����

The mode output coupling vectors corresponding to the four desired eigenval�

ues are

G�a �

�
���������

���
�� 
 ��
���i ������ 
 ������i

� ������� 
 ������i

� ������� 
 ������i

� ������

�
���������
� 	
����

��



These are normalised so that the largest element 	in modulus� in each column is

one� giving

G�a �

�
���������

� ������� 
 �����
i

� �

������ 
 ������i ������� 
 ������i

� ������� 
 ��
���i

�
���������
� 	
����

We can see that the exact desired decoupling cannot be achieved in the roll

mode� although the level of coupling is small� The results given here are those

usually obtained by authors investigating eigenstructure assignment applications

to aircraft control� Here we are also concerned with the left eigenvectors via the

mode input coupling vectors� calculated here as

G�a �

�
���������

����
�� � ������i ������
 � ������i

����
�� � ������i ������
 � ������i

������� � ������i �����
 � ������i

������� � ������i �����
 � ������i

�
���������
� 	
����

Again� to view the level of coupling� we normalise each row in G�a such that the

largest element 	in modulus� is one� giving

G�a �

�
���������

� ������� � ����
�i

� ������� � ����
�i

������� � ������i �

������� � ������i �

�
���������
� 	
����

We can see that the mode output coupling vectors� G�a have been achieved to

a satisfactory level� but the mode input coupling vectors� G�a have not been

achieved� The �rst input is exciting inappropriate modes� We require that the

real and imaginary parts of those elements in G�a that correspond to a speci�ed

zero in G�d to be O	����� or less 	i�e � ����� The errors in the matching of the

mode output and input coupling vectors are

kG�d �G�ak�F � 
����� � ����

kG�d �G�ak�F � �������
� 	
����

respectively� The core of the new work that will follow is to attempt to achieve the

desired eigenvalues and corresponding mode output and input coupling vectors

simultaneously� in some kind of �best �t� approximation�

�




��� Summary

This chapter has detailed the theory on the technique of eigenstructure assign�

ment� We have given a state feedback construction for eigenstructure assignment�

but noted that the states are not always available� Hence we introduced out�

put feedback� but as a harder problem� and have shown that full eigenstructure

assignment is not� in general� possible� However� partial eigenstructure assign�

ment can be performed and has been successfully applied to aircraft problems� as

illustrated in the example in Section 
�
� We noted though� that the unassigned

eigenvalues and eigenvectors may have the consequence that the closed loop sys�

tem displays poor behaviour� We have highlighted the fact that the assignment

of the left eigenvectors� in addition to the right eigenvectors� has often been

overlooked� This was seen in the example whereby the right eigenvectors were

matched exactly� but that there was an error in the matching of the left eigenvec�

tors� This is our main concern in the thesis� considering the left eigenvectors� We

have shown that simultaneous right�left eigenvector assignment is not� in general�

possible� In the next three chapters we devise numerical techniques to obtain this

eigenvector assignment in the best way in a de�ned sense�

��



Chapter �

Restricted minimisation

algorithm

As detailed in Chapter �� there is a need to consider eigenstructure assign�

ment when attempting to control stability� robustness or transient response� or

a combination of the three� Having chosen the method of partial eigenstructure

assignment �as in Section �����	� we have shown how to construct an output feed�

back that achieves p desired eigenvalues and corresponding desired eigenvectors�

These eigenvectors are the projections of the desired vectors into the subspaces

of allowable vectors �as in Section ����
	� This is the method generally used by

authors in the �eld� as outlined in Section ���� The recent move into optimi�

sation package solvers also just considers p eigenvalues and their corresponding

right eigenvectors�

However� in Section ����
 it was shown that both the left and the right eigen�

vectors should be considered when altering a system� We also de�ned the mode

output and input coupling vectors� G� and G�� as re
ecting the modal coupling

interactions better than just the right and left eigenvectors� respectively� Some

authors have assigned eigenvalues and their eigenvectors from the right� and then

assigned a di�erent set of eigenvalues and their eigenvectors from the left� but

only Chu et al� ����� Magni and Mounan ���� and Smith �
�� have considered the

right and left eigenvectors corresponding to the same eigenvalue�

The problem is that from Corollary ��
 �Chu et al� ����	� the right and left

eigenvectors must simultaneously lie in certain subspaces corresponding to a de�


�



sired eigenvalue� and hence they cannot be considered independently� Thus we

cannot expect to achieve the perfect desired decoupling in attaining both G� and

G� simultaneously�

��� Right and left eigenvector partitioning

The objective here is to choose a set of eigenvectors to achieve desired decoupling

through attaining G� and G�� We assume that partial eigenstructure assign�

ment by output feedback has been performed and this is used as the starting

point for the minimisation algorithm�

The partial eigenstructure assignment method assigns a set of p eigenval�

ues and eigenvectors � The closed loop matrix is formed� the right and left eigen�

vectors are calculated� and are partitioned as follows

V � �V�� V�� � W T �

�
�� W T

�

W T
�

�
�� � �
��	

where V� � �v�� � � � �vp�� W T
� � �w�� � � � �wp�T � The mode output and input

coupling vectors are de�ned to be

G� � CV � �CV�� CV��� �
��	

G� � W TB �

�
�� W T

� B

W T
� B

�
�� � �
��	

respectively� In using the partial eigenstructure assignment algorithm in Section

��� we have assigned exactly the p desired eigenvectors� V�� Thus we have attained

the desired p eigenvalues and their corresponding mode output coupling vectors�

G�a � CV�� However� the mode input coupling vectors speci�ed have not been

used in constructing the feedback� indeed� they are only calculated from the

closed loop system� and hence the achieved G�a � W T
� B are not as desired�

The minimisation algorithm developed here iterates and updates the unassigned

vectors� V�� to improve the matching of G�a� This will then improve the input

decoupling while retaining the output coupling obtained through the original

eigenstructure assignment � The basis for this is that V �� � W T so that altering

any column of V changes all of the rows of W T � The theoretical details on how

V� is updated are described in the following sections�


�



��� Structure of right eigenvector matrix� V

After partial eigenstructure assignment is performed� the columns of V are nor�

malised such that kvik�� � � �i � �� � � � � n	� In order to be able to see analytically

how to update each vector in V�� partition V in the form

V � �V �vn� �

�
���Q��q�

�
�� R

�T

�
�� �vn

�
��

� �Q��q�

�
�� R QT

�vn

�T qTvn

�
�� �

�
��	

where a QR decomposition has been performed on V � This partitioning is based

on the form in Method � of Kautsky et al� ����� It is then possible to write down

the inverse of V explicitly�

V �� �

�
�� R�� ��R��QT

�vn

�T �

�
��
�
�� QT

�

qT

�
�� � �
�
	

where � � �
qT vn

and is a scalar� Here vn is the last column of V� and is the vector

to be updated to satisfy set minimisation objectives� After it has been updated�

it is moved to the front of V� so that vn�� is the next vector to be updated� i�e�

�V� � ��vn�vp��� � � � �vn���� �
��	

This process is continued on vn��� vn�� etc�� and we thus have a procedure for

choosing a new set of �V� by performing a rank�one update at each iteration� We

shall now de�ne three criteria to be satis�ed when performing the minimisation

algorithm�

��� Left eigenvector matching

The primary aim of the minimisation algorithm is to reduce the error between

the desired and achieved mode input coupling vectors� Thus� we aim to solve the

problem ������	
�����


minJ� � minkG�d �G�ak�F

subject to kvik�� � � �i � �� � � � � n	�

�
��	


�



where the subscripts �d� and �a� denote desired and achieved quantities� respec�

tively� From here onwards we note that every time a minimisation problem ap�

pears� the �subject to kvik�� � � �i � �� � � � � n	� will be omitted for brevity� but it

should be remembered that the condition still holds� However� since we are only

concerned with matching the �rst p mode input coupling vectors� we have

G�a � W T
� B � �Ip� ��W TB

� �Ip� ��V ��B
�
��	

where �Ip� �� �selects� the �rst p rows of W T since Ip is the p�dimensional identity

matrix� We therefore have the following problem to solve

minJ� � min
V
kG�d � �Ip� ��V

��Bk�F � �
��	

It is here that we can exploit the speci�c structure of V �� given in �
�
	� First

we note that

vn � Sn�n� �
���	

so that when we update vn� the new vector is restricted to lie in the eigenspace

corresponding to the desired eigenvalue� �n� Now substituting �
�
	 and �
���	

into �
��	 yields the problem

min
�
n

J� � min
�
n

������� G�d � �Ip� ��

�
�� R�� ��R��QT

�Sn�n

�T �

�
��
�
�� QT

�

qT

�
��B

�������
�

F

� min
�
n

������� G�d � �Ip� ��

�
�� D � �E�nz

T

�zT

�
��
�������
�

F

�

�
���	

where ������	
�����


zT � qTB

D � R��QT
�B

E � R��QT
�Sn�

�
���	

This can be simpli�ed further by noting that D � Cn���m so that� provided

�n � �	 � p� �Ip� �� selects the �rst p rows of D � �E�nz
T � hence the �zT term

makes no contribution to the minimisation� Using this� �
���	 is equivalent to

min
�
n

kFp � �Ep�nz
Tk�F �
���	


�



where Fp � G�d �Dp� and the subscript p denotes that the subscripted matrix

has been pre�multiplied by �Ip� ��� It is not apparent how �n can be chosen as a

solution to �
���	� a Lemma is needed to make things simpler�

LEMMA ��� �Kautsky and Nichols ����� For suitably sized matrices A	B and

vectors v	w �� � it can be shown that

kA�BwvTk�F � �vTv	kA�v�Bwk�� �
pX
i��

�i �
���	

where

�v � v

�vTv�
	 �i � eTi A�I �

vvT

vTv
	ATei � �
��
	

Proof It is observed �rst that from the de�nition of the Frobenius norm� kAk�F �

trace�AA	T � then the l�h�s� of �
���	 may be expressed as

kA�BwvTk�F �
pX
i��

keTi �A�BwvT 	k��� �
���	

where ei is the ith column of the n�dimensional identity matrix� We expand the

r�h�s� of �
���	 using the fact that kvk�� � vTv� To complete the square in this

expansion� the term
pX
i��

eTi Avv
TATei

�vTv	
�
���	

is added and subtracted� and this completes the proof��

It must be noted here that in the above Lemma� the matrices A and B and

the vectors v and wT are generic and are not related to any similar matrices men�

tioned before� Applying Lemma 
�� to �
���	 gives the equivalent optimisation

problem

min
�
n

�J� � min
�
n

�zTz	kFp�z� Ep��nk
�
�� �
���	

where

�z � z

�zTz� � �i � eTi Fp�I �
zzT

zTz
	F T

p ei� �
���	

since �i is independent of �n for all i� Here it is still not possible to solve

�
���	 easily since �n occurs non�linearly� the step necessary to overcome this

is common to this and the next two sections and will thus be explained in the

combined minimisation section�

��



��� Eigenvector conditioning

We have shown how to formulate a problem in order to match the desired mode

input coupling vectors� but this cannot be the only consideration� To calculate

W T � the inverse of V is needed� so updating a vector in V� that makes V ill�

conditioned gives rise to inaccurate results� Thus� it is desirable to update the

vectors in V� while simultaneously controlling the conditioning in the sense that

�F �V 	 � kV kFkV
��kF �
���	

is reasonably small� where � denotes the condition number� As shown in Section

����
� this gives an upper bound on the maximum condition number of the closed

loop eigenvalues� so also provides a robustness measure� In Section 
�� we said

that the columns V are scaled to unity� this implies

kV k�F �
nX
i��

kvik
�
� � n� �
���	

so that

�F �V 	 � n
�

�kV ��kF � �
���	

Hence� to reduce the condition number of V � it is su�cient to reduce the Frobenius

norm of V ��� Here we need to know how to choose �n to reduce the conditioning

of V in addition to matching the mode input coupling vectors� Again we use the

structure of V given in �
�
	 to obtain the objective function

J� � kV ��k�F � trace�V ��V �T 	

�
n��X
i��

eTi �R
��R�T � �E�n�

T
nE

T�T 	ei � ��T

�
n��X
i��

keTi ��E�n	k
� � eTi R

��R�T ei � ��T

� k�E�nk
�
� � k�Sn�nk

�
� �

n��X
i��

�i�

�
���	

where ������	
�����


k�Sn�nk
�
� � ��T

�i � eTi R
��R�T ei�

�
���	

��



since kSn�nk
�
� � kvnk

�
� � �� Our second problem to be solved is

min
�
n

�J� � min
�
n

h
k�E�nk

�
� � k�Sn�nk

�
�

i

� min
�
n

�������
�
�� E

Sn

�
�� ��n

�������
�

�

�
��
	

since �i is independent of �n for all i� Again the overcoming of the non�linearity

introduced by ��n is explained in the combined minimisation section�

��� Left eigenspace error

So far� when formulating the minimisation algorithm� we have aimed to match

the mode input coupling vectors while taking care not to make the problem ill�

conditioned� However� we have done this by updating the vectors in V�� and have

restricted them to be in subspaces corresponding to certain eigenvalues� but have

not said what these eigenvalues should be� There are two choices

�� retain the �� corresponding to the V� calculated from the original partial

eigenstructure assignment by output feedback �i�e� retain the unassigned

eigenvalues	�

�� change at least one of the values in �� to give a new set ����

This gives the advantage of being able to change some of the unassigned eigen�

values if� for example� one of them was unstable� But this also means that we are

trying to perform full eigenstructure assignment in the algorithm� in that we want

to assign the full sets �V � �V�� �V�� and �� � ���� ���� where the tilde denotes the

matrix has been changed from that resulting from the original output feedback�

As demonstrated in Section ������ full eigenstructure assignment requires both

the right and left eigenvectors to be in certain eigenspaces simultaneously� which

is not� in general� possible� In choosing vn � Sn�n we are ensuring that the right

eigenvectors are in their correct spaces� so we need to consider minimising the

distance of the left eigenvectors from their correct spaces�

��



The signi�cance of this error arises when we construct the feedback since the

accuracy of the assigned eigenvalues is dependent on this error� This can be seen

in Chapter ��

Recall from Section ����� that kwT
i
�Tik�� measures the minimum distance be�

tween wT
i and a vector in the subspace Ti� where �Ti is an orthonormal basis for

the range space of Ti �as in �����		� To minimise this distance� we put it into a

form where we can again use the special structure of V �� in �
�
	� observe that

the objective function

J� �
nX
i��

kwT
i
�Tik

�
� �

nX
i��

keTi V
�� �Tik

�
�

�
nX
i��

�������e
T
i

�
�� R��QT

� � �E�nq
T

�qT

�
�� �Ti

�������
�

�

�
n��X
i��

keTi �R
��QT

� � �E�nq
T 	 �Tik

�
� � k�q

T �Tnk
�
�

�
n��X
i��

keTi �Hi � �E�nk
T
i 	k

�
� � k�k

T
nk

�
��

�
���	

where ������	
�����


kTi � qT �Ti

Hi � R��QT
�
�Ti

E � R��QT
�Sn�

�
���	

To simplify �
���	� we apply Lemma 
��� except that the term added and sub�

tracted to complete the square is

n��X
i��

eTi Hikik
T
i H

T
i ei

�kTi ki	
� �
���	

Now de�ne 	i � �kTi ki	
�

� � to give

J� �
n��X
i��

keTi �	
��
i Hiki � 	i�E�n	k

� � k�kTnk
�
� �

n��X
i��

�i� �
���	

where

�i � eTi Hi

�
I �

kik
T
i

	�i



HT
i ei� �
���	

��



To simplify this we make the de�nitions������	
�����


�D � diag�	i	

gi � eTi 	
��
i Hiki

g � �g�� � � � � gn���T �

�
���	

so that �
���	 becomes

J� � kg � �D�E�nk
�
� � 	�nk�k

�
� �

n��X
i��

� i� �
���	

Thus to minimise the error of the left eigenvectors from their correct spaces� we

must solve

min
�
n

�J� � min
�
n

h
k�g � �D�E�n	k

�
� � 	�nk�Sn�nk

�
�

i

� min
�
n

�������
�
�� � �DE

	nSn

�
�� ���n	 �

�
�� g

�

�
��
�������
�

�

� �
���	

since 
i is independent of �n for all i� Again the step needed to overcome the

non�linearity appearing in ��n is described in the next section on the combined

minimisation�

��� Combined minimisation

We have justi�ed the need for a minimisation algorithm� and in the previous

three sections have described three objectives for the routine� each reaching a

stage where the objective function to be minimised involves ��n� We can now

combine the three objective functions so that �n is selected to satisfy all three

criteria� the new objective function to be minimised is thus

J	 � ���
�J� � ��

�J� � ��
�J�	

�

�
��
�kG�d � �Ip� ��W TBk�F � ��

�kV
��k�F � ��

�

nX
i��

kwT
i
�Tik

�
�

�
�

�
���	

Here the ��
i �i � �� �� �	 are weightings to be chosen by the designer according to

the design objectives� where

�� ��
� corresponds to input decoupling�

��



�� ��
� corresponds to the robustness of the problem�

�� ��
� corresponds to eigenvalue accuracy�

����� Overall objective function

Using the expressions obtained in equations �
���	� �
��
	 and �
���	� the objective

function in �
���	 can be written as

�J	 �

�
�����

��z
Tz	kFp�z� Ep���n	k

�
� � ��

�

�������
�
�� E

Sn

�
�� ��n

�������
�

�

���
�

�������
�
�� � �DE

	nSn

�
�� ���n	 �

�
�� g

�

�
��
�������
�

�

�
��� �

�
��
	

Using the fact that kxk�� � xTx� �
��
	 can be re�expressed to give

�J	 �

������������������

�
BBBBBBBBBBBB�

���zTz	
�

�Fp�z

��g

�

�

�

�
CCCCCCCCCCCCA
�

�
BBBBBBBBBBBB�

���zTz	
�

�Ep

��� �DE

��	nSn

��E

��Sn

�
CCCCCCCCCCCCA
���n	

������������������

�

�

� �
���	

Next we show the step to remove the non�linearity in �
���	�

����� Scaling

As noted many times� �n occurs non�linearly in �
���	� so we aim to �x the scaling

of ��n� To do this we �rst need a de�nition�

De�nition ��� �Golub and Van Loan ��
�� � Let v � IRn be non�zero� An

orthogonal n � n matrix PH of the form

PH � I �
�vvT

vTv
�
���	

is known as a Householder transformation�

�




Householder matrices are symmetric and orthogonal and are important because

of their ability to zero speci�ed entries in a matrix or vector� In particular� given

any non�zero x � IRn it is easy to construct v in �
���	 such that PHx is a multiple

of e�� the �rst column of In�

Proceeding� we �nd the orthogonal Householder transformation� PH � such that

qTSnPH � �eT� � �
���	

implying

qTSn�n � �eT�P
T
H�n� �
���	

Notice here that the l�h�s� of �
���	 is equivalent to the inverse of �� so multiplying

�
���	 by � gives

� � eT� �P
T
H���n	� �
���	

implying that the �rst element of �P T
H ���n	 is unity� the rest is a general vector�

We can thus de�ne y such that

�
�� �

y

�
�� � �P T

H���n	� �
���	

The Householder matrix is partitioned such that PH � �pn� �P � giving

���n	 � ���PH

�
�� �

y

�
�� � ����pn� �P �

�
�� �

y

�
�� � ����pn � �Py	� �
���	

This can now be substituted into �
���	� yielding

������	
�����


min
y

�J	 � min
y
kMy � rk��

subject to kvik�� � � �i � �� � � � � n	�

�
���	

where

M �

�
BBBBBBBBBBBB�

���zTz	
�

�Ep

��� �DE

��	nSn

��E

��Sn

�
CCCCCCCCCCCCA

�P �
���	

��



and

r �

�
BBBBBBBBBBBB�

����zTz	
�

�Fp�z

���g

�

�

�

�
CCCCCCCCCCCCA

�

�
BBBBBBBBBBBB�

���zTz	
�

�Ep

��� �DE

��	nSn

��E

��Sn

�
CCCCCCCCCCCCA
pn� �
��
	

This is now ��nally	 in the form of a standard linear least squares problem and can

therefore be solved by a QR �or SVD	 method� Thus we can �nd y to satisfy the

design objectives� but� because we �xed the scaling of ��n� we need to reconstruct

it here� Note that

vn � Sn�n �
SnPH ���y�T

��
�
���	

from �
���	� Now kvnk
�
� � �� which implies

�� � kSnPH ���y�
Tk�� �
���	

and hence

vn �
SnPH ���y�T

kSnPH ���y�Tk�
� �
���	

��	 Algorithm

This algorithm assumes that partial eigenstructure assignment by output feed�

back has been performed as in Section ���� hence we have the closed loop eigen�

structure �V��	 that contain the desired V� � Cn�p� �� � Cp�p� This is used as

the starting point for the algorithm�

STEP �

�� normalise columns of V so that kvik�� � � �i � �� � � � � n	

�� re�order V and � so that V � �V�� V��� � � diag�������

�� if required� choose a new set ��� and calculate �and store	 all right null

spaces Si for ��� using the QR decomposition�

�UT
� �A� �iI	�

T � � �Si� Si�

�
�� RRi

�

�
�� �
���	

for all �i � diag���

��



�� calculate �and store	 all left range spaces �Ti for �� � diag���� ���� using the

QR decomposition�

��A� �iI	P�� � � �Ti� Ti�

�
�� RLi

�

�
�� �
�
�	


� choose weightings ��
�� �

�
�� �

�
� according to design objectives

STEP �

�� partition V � �V �vn�

�� perform QR on V to obtain Q�� q� R

V � �Q��q�

�
�� R

�T

�
�� �
�
�	

�� select Sn from right null space store

�� calculate

zT � qTB

Dp � �Ip� ��R��QT
�B

Ep � �Ip� ��R
��QT

�Sn

Fp � G�d �Dp

�z � z

�zTz�

�
�
�	

��




� calculate necessary left range space components

for i � � � n

select �Ti from left range space store

calculate

kTi � qT �Ti

Hi � R��QT
�
�Ti

	i � �kTi ki	
�

�

gi � eTi 	
��
i Hiki

g � �g�� � � � � gn���T

end

calculate

�D � diag�	i	

select �Tn from left range space store

kTn � qT �Tn

	n � �kTnkn	
�

�

�
�
�	

�� calculate Householder transformation as in �
���	 using the QR decompo�

sition�

STi q � Q

�
BBBBBBBB�

r�

�
���

�

�
CCCCCCCCA

� Qr�

�
BBBBBBBB�

�

�
���

�

�
CCCCCCCCA

� � jr�j

PH �
r�Q

�

�
�
�	

�� partition PH � �pn� �P �

�� formM� r as in �
���	 and �
��
	 respectively� and solve for y the following

min
y
kMy� rk�� �
�

	

STEP �

�� rescale vn to give updated �vn

�vn �
SnPH ���y�T

kSnPH ���y�Tk�
�
�
�	

��



�� re�order V� and ��� to give

�V� � ��vn�vp��� � � � �vn���

�V � �V�� �V��

��� � diag��n� �p��� � � � � �n���

�� � diag���� ����

�
�
�	

�� calculate �W T � �V �� and form �G � �W T
� B

�� calculate value of objective function

J	 � ��
�kG�d � �G�k

�
F � ��

�k�V
��k�F � ��

�

nX
i��

kwT
i
�Tik

�
� �
�
�	

This algorithm is then repeated from Step � with V � �V until J	 has decreased to

some required level� or until the decrease in J	 is less than some tolerance� How�

ever� a word of caution is needed concerning the preservation of a self�conjugate

set of vectors�

����� Preservation of self�conjugacy

A note is needed here on the existence of complex eigenvalues in the closed loop

system� In Problems ��� �	 of Chapter �� it is always a condition that the eigen�

values and eigenvectors both be self�conjugate sets� so the computed feedback

will be real� Here� if vn corresponds to a real eigenvalue �n� then a real update

�vn is generated� If �n is complex then a complex update is generated� Hence� in

order that the eigenvector set remains self�conjugate� the update corresponding

to  �n must be  �vn� the complex conjugate of the computed update for �n�

����� Main algorithm summary

Here we have shown the need for a minimisation algorithm due to the usual

disregard of the left eigenvectors when considering decoupling objectives in the

design problem� We have given a minimisation algorithm that aims to select a

new set of unassigned closed loop right vectors� in order to match the �rst p

left vectors� We have also considered two other objectives in addition to that

of left eigenvector matching for input decoupling purposes � namely robustness

��



and eigenvalue accuracy� and have included these objectives in the problem� The

result is a multi�criteria objective function with weightings to be chosen by the

designer to obtain the design requirements� We have outlined the algorithm in a

more usable form in Section 
��� with a note on how to treat complex eigenvalues�

Before presenting a section on how further to scale the �rst p vectors� we give a

table of the dimensions of the elements of the algorithm for completeness� as well

as some illustrative examples�

��



����� Component dimensions

component number of rows number of columns real!complex

V� n p C

V� n n� p C

�� p p C

�� n� p n� p C

Sn n m C

�Ti n n� p C

V n n� � C

Q� n n� � C

q n � C

R n� � n� � C

zT � m C

Dp p m C

Ep p m C

Fp p m C

�z m � C

kTi � n� p C

Hi n� � n� p C

	i � � C

gi � � C

g n� � � C

�D n� � n� � C

� � � R

PH m m C

pn m � C

�P m m� � C

M �n� p � � m� � C

r �n� p � � � C

y m� � � C

��



��
 Example

We next present an example to demonstrate the minimisation algorithm� The

system used here has �� states� � inputs and � outputs� The system matrices

are given in Example � of Chapter � �Section ���	� The desired eigenvalues and

corresponding right eigenvectors have been achieved by partial eigenstructure

assignment� but again the left eigenvectors have a residual error� This error is

kG�d �G�ak
�
F � ������ � ���� �
�
�	

The results of the algorithm run with di�erent values for the weightings� ��
i �i �

�� � � � � �	 follow� The results are given in tabular form� where the objective func�

tion denotes the quantity

��
� kG�d �G�ak

�
F � ��

� kV
��k�F � ��

�

nX
i��

kwT
i
�Tik

�
� �
���	

In each table� the value of the Frobenius norm condition number of V is given� It

should be remembered that this is not the actual quantity being reduced� From

Section ���

�F �V 	 � n
�

�kV ��kF �
���	

so that kV ��k�F is actually being reduced in order to reduce �F �V 	� Also in the

table� the number of sweeps is given� For this example� n � ��� p � �� and

n� p � �� and hence one sweep is equivalent to updating each of the six vectors

in V�� One iteration is de�ned as updating one vector� so

� sweep � � iterations� �
���	

Parameters	 ���
�� �

�
�� �

�
�	 � ��� �� �	

This is run with zero weighting on the eigenvector conditioning and the left

eigenspace error because the left eigenvector matching is the primary aim of the

��



routine� and hence we are trying to see how close we can make the matching�

sweeps objective function kG�d �G�ak�F �F �V 	
nX
i��

kwT
i
�Tik

�
�

� ������e � �� ������e � �� ������e � �� ������e � ��

� ��
���e � �� ��
���e � �� ������e � �� �����
e � ��

� ������e � �� ������e � �� ������e � �
 ����
�e � �


� ��
���e � �� ��
���e � �� ������e � �� ������e � ��

� ������e � �� ������e � �� ����
�e � �� ������e � ��


 ������e � �� ������e � �� ������e � �� ���
��e � ��

�� ������e � �� ������e � �� ������e � �� ��
���e � ��

�
 
����
e � �� 
����
e � �� ������e � �� ������e � ��

�� �����
e � �� �����
e � �� 
�����e � �� 
�
���e � �


�� ������e � �� ������e � �� ������e � �� ������e � �


From these results we can clearly see that the left eigenvector matching has been

improved quite considerably� but that the conditioning of the eigenvectors is quite

large �as is the left eigenspace error	� Also to note is the fact that most of the

work is done in the �rst � sweeps of the routine and that a lot of computation is

required to reduce the objective function by only a small amount further�

Parameters	 ���
�� �

�
�� �

�
�	 � ��� �� �	

Following the results of the previous test it is obvious that we should also include

weightings on the second and third criteria� but what values" We enforce equal

weightings and use the results as an indication on how to choose the parameters�

sweeps objective function kG�d �G�ak�F �F �V 	
nX
i��

kwT
i
�Tik

�
�

� ���
�
e � �� ������e � �� ������e � �� ������e � ��

� ������e � �� 
�
���e � �� ������e � �� ������e � ��

� ������e � �� ������e � �� ������e � �� ������e � ��

� ����
�e � �� ������e � �� ���
�
e � �� ��

��e � ��

�� ��
���e � �� ������e � �� ��
���e � �� ��

��e � ��

�� ��
���e � �� ���
��e � �� ������e � �� ���
��e � ��

From these results we can see that left eigenvector matching has still been im�

proved considerably� In addition� the conditioning of the eigenvectors has been

��



reduced� as has the left eigenspace error� Also� the algorithm has converged in

�� sweeps�

Parameters	 ���
�� �

�
�� �

�
�	 � ����� �� �	

Although the previous results show an improvement� we remark that we may have

gone to the other extreme in weighting all the criteria equally� because our primary

aim is still to decrease the error in the left eigenvector matching� We therefore

keep weightings of unity for ��
� and ��

�� but increase the relative weighting on ��
��

This is to keep a check on the conditioning and the left eigenspace error� but to

further improve the matching�

sweeps objective function kG�d �G�ak�F �F �V 	
nX
i��

kwT
i
�Tik

�
�

� ������e � �
 ������e � �� ������e � �� ������e � ��

� ��
���e � �� ������e � �� ������e � �� ������e � ��

� ���
��e � �� ������e � �� ����
�e � �� �����
e � ��

�� ��
���e � �� ��
���e � �� ������e � �� ������e � ��

�
 ����
�e � �� ������e � �� ���
��e � �� ������e � ��

Here the results are as expected� we have further reduced the value of the match�

ing error� at the expense of small increments in the other two values�

��	�� Convergence histories

From the previous examples� we can see that most of the reduction work is done

in the �rst few sweeps� We now give a graph of the error in the left eigenvec�

tor matching for the three previous test cases� This can been seen in Figure 
���

We can also see that sometimes the value increases� there are two reasons for this�

�� the complex conjugate problem explained in Subsection 
���� whereby the

second vector is chosen to be the complex conjugate of the previous� not to

minimise the objective function�

�� if the weightings �� and �� are not zero then the error in the left matching

can increase at the expense of the conditioning or the left eigenspace error

decreasing� but the value of the objective function still decreases�

�
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Figure 
��� Convergence histories

Indeed� we should really show the convergence histories of the overall objective

function� but due to the relative weightings� the value of the objective functions

range from O����	 to O���
	 and hence easy comparison would not be possible

on the same graph�

��� Optimal scaling of assigned right vectors�

V�

In the preceding sections� a minimisation routine was developed that updated

only the last n� p columns of the eigenvector set� V � This was desirable in order

to retain

G�d � CV�� �
���	

where V � �V�� V��� The main aim of the algorithm is to solve

min
vi�V�

J� � min
vi�V�

kG�d �W T
� Bk

�
F � �
���	

with the eigenvector conditioning and the left eigenspace error also being taken

into consideration� However� since G� is column normalised to obtain a � in the

correct position to re
ect coupling� the actual value of the individual elements is

��



not important� Thus we may impose any scaling on the columns of V� to reduce

some error� Here we use it to reduce the value of the objective function in �
���	�

and hence we would like to see the e�ect of this scaling on the left eigenvectors�

Consider scaling W T
� by a matrix D�� while leaving W T

� unchanged��
B� D� �

� In�p

�
CA
�
B� W T

�

W T
�

�
CA �

�
B� D�W

T
�

W T
�

�
CA � �
��
	

giving

�V�� V��new � �W T 	��

�
B� D� �

� In�p

�
CA
��

� �V�� V��

�
B� D��

� �

� In�p

�
CA

� �V�D
��
� � V���

�
���	

The aim is to �nd D� to solve �
���	� The idea is that we use the previous routine

to update vn� then rescale V� by �nding D� as the solution to

min
D�

�J� � min
D�

�������G�d � �Ip� ��

�
�� D� �

� In�p

�
��V ��B

�������
�

F

� min
D�

kG�d �D�W
T
� Bk

�
F �

�
���	

If we denote the rows of G�d and W T
� B by gHi and �wH

i respectively �i � �� � � � � p	�

then

�J� �
pX
i��

keTi �G�d �D�W
T
� B	k�� �

pX
i��

�gHi � di �w
H
i 	�gi � di �wi	� �
���	

It is evident that each term is exclusive in that the scaling factor di a�ects only

the ith row of W T
� � and hence we can select each di separately to minimise �J� as

in �
���	� Now to solve min
D�

�J� we must solve

min
di

�Ji � min
di

�gHi � di �w
H
i 	�gi � di �wi	 ��i � �� � � � � p	

� min
di

�gHi gi � dig
H
i �wi � di �w

H
i gi � d�i �w

H
i �wi	 ��i � �� � � � � p	�

�
���	

To �nd the minimum of this expression� di�erentiate with respect to di and set

to zero� giving

�Ji
�di

� � 	 �gHi �wi � �wH
i gi � �di �w

H
i �wi � �� �
���	

��



implying that

di �
gHi �wi � �wH

i gi

� �wH
i �wi

� �
���	

The problem here is that when calculating the D�� we are not taking into account

the a�ect on the left eigenspace error� Hence we may actually increase the the

objective function being minimised by updating the V� set�

It will also a�ect the condition number of �V but is not a cause for concern

since it will just mean that we will increase the value of the upper bound� �F �V 	�

for the sensitivity of the individual eigenvalues� it will not a�ect the conditioning

of the eigenvalues themselves� So it is not guaranteed to converge� but intuitively

this scaling on V� should not have too bad an e�ect on the results� In summary

we have a two stage minimisation process

�� update the last column of V� to satisfy a minimisation problem

�� scale V� to further minimise some criteria�

We apply this theory to some of the examples from Section 
�� to show the

expected improvement� The results given have values for the conditioning of the

vectors and the left eigenspace error calculated before the scaling is implemented

at each iteration� The left vector matching error is calculated with the scaling

implemented since this is what the scaling reduces� The objective function is still

valid because at each iteration the scaling of the full set of right vectors is �xed�

��
�� Optimal scaling examples

We use the same example as in Section 
��� but this time we shall apply the

optimal scaling onto V� as described previously�

��



Parameters	 ���
�� �

�
�� �

�
�	 � ��� �� �	

Here we are only trying to improve the matching of the left eigenvectors� and

hence set the weights of the other two criteria to zero�

sweeps objective function kG�d �G�ak�F �F �V 	
nX
i��

kwT
i
�Tik

�
�

� ������e � �� ������e � �� ������e � �� ������e � ��

� ������e � �� ������e � �� ������e � �
 ������e � ��

� �����
e � �� �����
e � �� ������e � �
 ���
��e � �


� ����
�e � �� ����
�e � �� ������e � �
 ������e � �



 ������e � �� ������e � �� ��

��e � �
 ������e � ��

�� ����
�e � �� ����
�e � �� ������e � �
 ���
��e � ��

We can see than the introduction of scaling on the V� set vastly improves the

attainable accuracy�

Parameters	 ���
�� �

�
�� �

�
�	 � ��� �� �	

Here we include the conditioning of the eigenvectors and on the left eigenspace

error in the minimisation�

sweeps objective function kG�d �G�ak�F �F �V 	
nX
i��

kwT
i
�Tik

�
�

� ������e � �� ������e � �� ������e � �� ������e � ��

� ������e � �� ���
��e � �� ������e � �� ������e � ��


 ������e � �� ������e � �� ������e � �
 ����
�e � ��

�� ���
��e � �� ��

��e � �� ������e � �� ���
�
e � ��


� ����
�e � �� ������e � �� ������e � �� ������e � ��

From these results we can again see that the left eigenvector matching is improved

quite considerably� however this a large di�erence from before� As we can see

from both scaling examples� the conditioning of the eigenvectors is very large in

comparison with Subsection 
��� However� we have noted that this just means

that we have increased the value of the upper bound for the individual eigenvalue

sensitivities� it does not actually a�ect the individual eigenvalue sensitivities�

From experimentation we have observed that the scaling has little e�ect on the

left eigenspace error� since it only a�ects the �rst p eigenmodes and then only

��



changes their values by a negligible amount� More theoretical work may be done

on the exact e�ect of scaling on the value of the conditioning of the eigenvectors

and the left eigenspace error� Note that the algorithm seems to have converged

at around 
� sweeps�

���� Alternative scaling of assigned right vec


tors� V�

We perform the minimisation to reduce the error between G�d and G�a� How�

ever� we are more concerned with the errors between the ratios of the compo�

nents in each row of G�d and G�a� If we reduce kG�d �G�ak�F signi�cantly� then

we obtain small errors between these ratios� but we have shown that� due to

dimensional restrictions� this is not always possible� In fact� in reducing the

matching error� we may actually increase these ratios� For example� if for one

row G�d � �� � ��� G�a � ��� � �� then kG�d � G�ak�F � �� and the ratios

are G�a � �� ��� ����� If the minimisation gives the result G�a � �� � ��� then

kG�d � G�ak�F � �� but the ratios are G�a � �� ��
 ��
�� i�e� they have increased

even though the left matching error has decreased�

To this end we may choose the scaling matrix� D�� in �
��
	� so that G�a �

W T
� B is row normalised by those elements that correspond to a � in G�d� In

implementing this scaling� we can show values that below which the left matching

error must fall in order to ensure the desired level of input decoupling�

THEOREM ��� If �G�a denotes that G�a is normalised so that the largest ele�

ment �in modulus� in each row is unity	 then

kG�d � �G�ak
�
F 
 
 �p�m� �	 �
���	

is a necessary condition to obtain the desired level of input decoupling in that the

non�unity elements of �G�a are less than 
 � Also

kG�d � �G�ak
�
F 
 
 � �
���	

is a su
cient condition�

��



Proof

Necessity � If we consider one row of G�d � �G�a then

�G�d � �G�a	i � �� � � � � � � � ���
h
gi�
gij

� � � � � � � gim
gij

i
�
h
�gi�

gij
� � � � � � �� gim

gij

i � �
���	

Then

k�G�d � �G�a	ik
�
� �

�
��gi�

gij


�

� � � � �

�
gim

gij


�
�
� � �
��
	

where there are m� � terms in the sum� There is one of these sums for each row�

and we require �gi�
gij

	 � 
 � �gi�
gij

	� � 
 �� giving

kG�d � �G�ak
�
F 
 
 �p�m� �	� �
���	

a necessary condition for the desired level of input decoupling to be achieved�

Su�cency �

kG�d � �G�ak
�
F � 
 � � max

�����gi�gij
�����
�



X
k

�����gikgij
�����
�

� 
 ��� �
���	

For our purposes here we choose 
 � ���� This means that if the matching

error goes below ����p�m � �	� then we may have achieved the desired level of

input decoupling� but it is not guaranteed until the error reaches O�����	�

Parameters	 ���
�� �

�
�� �

�
�	 � ��� �� �	

Here we give results of the alternative scaling on V��

sweeps objective function kG�d �G�ak�F �F �V 	
nX
i��

kwT
i
�Tik

�
�

� ������e � �� ������e � �� ������e � �� ������e � ��

� ����
�e � �� ����
�e � �� ��
���e � �� ����

e � ��

� ���
��e � �� ���
��e � �� ��
���e � �� 
�����e � ��

� ������e � �� ������e � �� ������e � �� ����
�e � ��

� 
����
e � �� 
����
e � �� ������e � �� ���
��e � ��


 
��

�e � �� 
��

�e � �� ���
��e � �
 ������e � ��

Even though we have not reached the desired level of decoupling� this scaling

ensures the largest element in each row is in the correct place�

��



������ Summary of results

The previous examples show that the minimisation algorithm can be used to

reduce the objective function that represents set criteria� but that quite a lot of

computation is needed� As with most multi�criteria optimisation routines� it is

not clear how best to choose the individual weightings� although the examples do

give some indications�

���� Alternative starting point

In the preceding theory� it has been assumed that partial eigenstructure assign�

ment has been performed� this being used as the starting point for the minimisa�

tion algorithm� As an alternative� we may remove the need for �rst using partial

eigenstructure assignment as follows�

�� specify design requirements �p� G�d� G�d�

�� perform the projection as in Section ����� to obtain the best set of achievable

vectors� G�a� from this extract V� � Va�

�� specify a set of eigenvalues � �n�p� Take an initial V� from the null spaces

of the � � �n�p�

�� set

� �

�
�� �p �

� �n�p

�
�� � V � �V�� V��� �
���	

Here the computation is reduced by not having to construct the feedback

matrix� However� we expect to need more work in the minimisation algorithm to

reduce the objective function� especially the left eigenspace error since the initial

eigenstructure will most likely not be exactly assignable by any K�

���� Conclusions

This chapter has described the �rst of the new work� A minimisation routine has

been developed to improve the unsatisfactory results generated by output feed�

back with respect to the coupling inherent in the left eigenvectors� The algorithm

��



iterates through the unassigned right vectors until some minimisation criteria is

satis�ed� In the development of the theory for the algorithm it has been shown

that it is wise to include measures of the eigenvector conditioning and the left

eigenspace error�

The algorithm was run for an example with various parameter weightings to

illustrate the trade o� achievable between the left vector matching� the vector

conditioning and the left eigenspace error�

We have also included theory on how V� can be further scaled to make im�

provements to the left eigenvector matching� but more work may be done to

analyse the exact e�ects on the conditioning bound and the left eigenspace er�

ror� The same example was used as a comparison to that performed without the

scaling�

While the algorithm does reduce the objective function� it is not always to

the desired level� This is due to the small dimension of the subspace from which

the minimisation vectors are chosen�

This is overcome in the next chapter where we allow the minimisation vectors

to be free�

��



Chapter �

Unrestricted minimisation

algorithm

As we have seen in the chapter on the subspace restricted minimisation� the theory

allows us to improve on the results of the partial eigenstructure assignment algo�

rithm via a minimisation routine� In this routine we can choose weightings to put

an emphasis on the improvement of the decoupling� the robustness of the system

or the accuracy of the desired eigenvalues�

However� from the examples� it can be seen that a lot of computation is

required to improve the speci�ed objective function� This is due to the fact that

any vector chosen to decrease the objective function must lie in the subspace

given by

Si � N �UT
� �A� �iI�	� �
���

where UT
� is calculated from the QR decomposition of the input matrix� B� This

space has dimensionm and hence the updated vector is made up of a linear combi�

nation of these m columns� Since m is usually small� this means the minimisation

algorithm decreases the objective function quite slowly�

This suggests that we would like to increase the size of the allowable subspace�

One idea is to replace a single desired eigenvalue by a desired eigenvalue region�

but it is not clear if it is possible to specify a null space corresponding to a region

in the imaginary plane�

Instead we go to the extreme and allow the new vector to lie anywhere in

the complex plane� This will allow the algorithm to decrease the value of the

�




objective function much quicker� but will give rise to problems when trying to

reconstruct the feedback� as will be explained in the next chapter�

��� Eigenvector partitioning

We assume that we have a set of n linearly independent vectors� V � which are

column normalised so that kvik�� � � �i � �� � � � � n�� We partition V in the form

V � �V�� V�	 � W T �

�
��
W T

�

W T
�

�
�� �
���

where V� � �v�� � � � �vp	� W T
� � �w�� � � � �wp	T � The method is almost exactly the

same as for the restricted minimisation in Chapter �� we again partition V in the

form

V �

�
���Q��q	

�
��
R

�T

�
�� �vn

�
�� � �
���

so that the inverse of V is given by

V �� �

�
��
R�� ��R��QT

�vn

�T �

�
��

�
��
QT

�

qT

�
�� � �
�
�

where � � �
qT vn

is a scalar� We shall now de�ne the two criteria �as opposed to

three in Chapter �� that we want to satisfy when performing the minimisation

algorithm�

��� Left eigenvector matching

Again the primary aim of the minimisation algorithm is to reduce the level of

coupling inherent in the mode input coupling vectors� Thus� we aim to solve the

problem
������	
�����


minJ� � minkG�d �G�ak�F � min
V
kG�d � �Ip� �	V

��Bk�F

subject to kvik�� � � �i � �� � � � � n�

� �
���

As in Chapter �� we leave out the �subject to� constraint for brevity in the following

theory� although it is important to remember that it still applies� At this point

��



in the algorithm in Chapter �� vn was expressed as

vn � Sn�n� �
�
�

where �nding �n corresponds to restricting vn to be in the subspace corresponding

to the desired eigenvalue� �n� Here we leave it as vn� so that we choose vn � C
n

to minimise some criteria�

Following the theory from Section ���� we substitute for V �� from �
�
� to

reduce �
��� to

min
vn

J� � min
vn

�������
G�d � �Ip� �	

�
��
D � �Evnz

T

�zT

�
��

�������

�

F

� �
���

where ������	
�����


zT � qTB

D � R��QT
�B

E � R��QT
� �

�
���

Note that D � Cn���m� and �Ip� �	 only multiplies the �rst p rows of D��EvnzT �

therefore if �n� �� � p� the last row� �zT � of V ��B makes no contribution to the

minimisation� Then �
��� is equivalent to

min
vn
kFp � �Epvnz

Tk�F � �
���

where Fp � G�d �Dp� and the subscript p denotes that the subscripted matrix

has been pre�multiplied by �Ip� �	� We apply Lemma ��� to �
��� to give

min
vn

�J� � min
vn
�zTz�kFp�z� Ep�vnk

�
�� �
����

We note here that if we were only aiming to minimise �
����� then zTz could be

removed as a constant factor multiplying the objective function at each step� If

we include other criteria� then it must remain� either explicitly� or incorporated

into a weighting factor on �J�� As before� we explain the second criteria to be

satis�ed before describing how the non�linearity in �vn can be dealt with�

��� Eigenvector conditioning

In the unrestricted minimisation� as with the restricted minimisation� the objec�

tive function is calculated from an inversion of V � thus we must take precautions

�




that its condition number is kept low� The columns of V are normalised to one

which implies that

�F �V � � n
�

�kV ��kF � �
����

so that we restrict the condition number by keeping a bound on the Frobenius

norm of the inverse of V � Using the structure of V given in �
�
� results in the

objective function

J� � kV ��k�F � trace�V ��V �T �

�
n��X
i��

eTi �R
��R�T � �Evnv

T
nE

T�T �ei � ��T

�
n��X
i��

keTi ��Evn�k
�
� � eTi R

��R�Tei � ��T

� k�Evnk�� � k�vnk
�
� �

n��X
i��

�i�

�
����

where ������	
�����


k�vnk�� � ��T

�i � eTi R
��R�T ei�

�
����

since kvnk�� � �� Our second problem to be solved is

min
vn

�J� � min
vn

h
k�Evnk

�
� � k�vnk

�
�

i

� min
vn

�������

�
��
E

In

�
�� �vn

�������

�

�

�

�
��
�

since �i is independent of vn for all i� Note that In is the n�dimensional identity

vector� Again the overcoming of �vn as a non�linear term is explained in the

combined minimisation section�

��� Combined minimisation

Obviously here� since we are not restricting the new vectors to lie in certain

subspaces� there is no left eigenspace error as in Chapter �� Thus we have just

��



two criteria to be satis�ed� our objective function to be minimised is

J� � ���
�J� � ��

�J��

�
h
��
� kG�d � �Ip� �	W TBk�F � ��

� kV
��k�F

i
�

�
����

where ��
� and �

�
� are weightings to be chosen� Using the expressions found in

�
���� and �
��
�� the objective function is

�J� �

�
�����

��z
Tz�kFp�z� Ep��vn�k

�
� � ��

�

�������

�
��
E

In

�
�� ��vn�

�������

�

�

�
��� � �
��
�

Using kxk�� � xTx� �
��
� can be re�written to give

�J� �

�����������

�
BBBBB


���zTz�
�

�Fp�z

�

�

�
CCCCCA
�

�
BBBBB


���zTz�
�

�Ep

��E

��In

�
CCCCCA
��vn�

�����������

�

�

� �
����

Next we show the step to remove the non�linearity in �
�����

����� Scaling

We deal with �vn by �xing its scaling� We �nd the orthogonal Householder

transformation� PH � such that

qTPH � 	eT� � �
����

and de�ne y such that �
��
�

y

�
�� � 	P T

H��vn�� �
����

We partition PH � �pn� �P 	 and substitute

�vn � 	���pn � �Py� �
����

from �
���� into �
���� to give

������	
�����


min
y

�J� � min
y
kMy� rk��

subject to kvik
�
� � � �i � �� � � � � n�

� �
����

��



where

M �

�
BBBBB


���zTz�
�

�Ep

��E

��

�
CCCCCA
�P � �
����

and

r �

�
BBBBB


	���zTz�
�

�Fp�z

�

�

�
CCCCCA
�

�
BBBBB


���zTz�
�

�Ep

��E

��In

�
CCCCCA
pn� �
����

We have again reduced the problem to a standard linear least squares problem

which can therefore be solved by a QR �or SVD� method� To reconstruct the

scaling we must calculate

vn �
PH ���y	T

kPH ���y	Tk�
� �
��
�

��� Algorithm

To clarify the procedure� we write the algorithm in list form� assuming that we

initially have a linearly independent set of vectors V �

STEP �

�� normalise columns of V so that kvik�� � � �i � �� � � � � n�

�� re�order V so that V � �V�� V�	�

�� choose weightings ��
�� �

�
� according to design objectives

STEP �

�� partition V � �V �vn	

�� perform QR on V to obtain Q�� q� R

V � �Q��q	

�
��
R

�T

�
�� �
����

��



�� calculate

zT � qTB

Dp � �Ip� �	R��QT
�B

Ep � �Ip� �	R��QT
�

Fp � G�d �Dp

�z � z

�zTz�

�
��
�


� calculate Householder transformation as in �
���� using the QR decompo�

sition�

q � Q

�
BBBBBBBB


r�

�
���

�

�
CCCCCCCCA
� Qr�

�
BBBBBBBB


�

�
���

�

�
CCCCCCCCA

	 � jr�j

PH �
r�Q

	

�
����

�� partition PH � �pn� �P 	


� formM� r as in �
���� and �
���� respectively� and solve for y the following

min
y
kMy� rk�� �
����

STEP �

�� rescale vn to give updated �vn

�vn �
PH ���y	T

kPH ���y	Tk�
�
����

�� re�order V� to give

�V� � ��vn�vp��� � � � �vn��	

�V � �V�� �V�	
�
����

�� calculate �W T � �V �� and form �G� � �W T
� B


� calculate value of objective function

J� � ��
�kG�d � �G�k

�
F � ��

�k�V
��k�F �
����

This algorithm is then repeated from Step � with V � �V until J� has decreased

to some required level� or until the decrease in J� is less than some tolerance�

��



����� Component dimensions

For completeness� a table of the dimensions of the components of the algorithm

is given�

component number of rows number of columns real�complex

V� n p C

V� n n� p C

V n n� � C

Q� n n� � C

q n � C

R n� � n� � C

zT � m C

Dp p m C

Ep p n C

Fp p m C

�z m � C

	 � � R

PH n n C

pn n � C

�P n n� � C

M �n� p � � n� � C

r �n� p � � � C

y n� � � C

����� Notes and summary

We have presented an algorithm that aims to minimise an objective function�

allowing the minimisation vectors to be chosen freely from the complex plane�

This method follows closely that in Chapter �� but di�ers in that it does not have

the left eigenspace error criterion�

It should be noted that we can also implement the optimal scaling on V� as in

Section ��� or the alternative scaling as in Section ����� but the theory is exactly

the same since it does not rely on null spaces corresponding to any eigenvalues�

��



The algorithm is complete except in the fact that we have not speci�ed how

to obtain the initial set of vectors� V � or how to reconstruct the feedback matrix�

The former is covered in the next section� the latter in the next chapter�

��� Selection of initial vector set for algorithm

We have explained that running the minimisation algorithm by letting the vectors

be chosen freely should decrease the value of the objective function at a faster

rate than for the restricted case� We have also given the theory for this in the

preceding sections� but started with the assumption that we have an initial set

of n linearly independent vectors� V � There are three ways of �nding this initial

set�

�� perform partial eigenstructure assignment as in Section 
��� using the closed

loop eigenvectors to run the minimisation�

�� �nd V� by the projection method corresponding to the desired eigenvalues�

��� take some initial set V��

�� perform an unrestricted projection to obtain V�� take some initial set V��

These methods are described in the following sections� After each section an

example is given to illustrate the theory� the minimisation routine is run for

di�erent parameter weightings� The example is the same for each section and is

the same as for Section ��� of the restricted minimisation chapter� The results

are then compared�

����� Results of partial eigenstructure assignment as a

starting point

In Chapter �� we used the results of partial eigenstructure assignment as the

starting point for the algorithm� We may also do the same here� We calculate

the eigenvectors of the closed loop matrix� A�BKC� and partition them so that

V � �V�� V�	� and the routine is run to �nd a new set �V� to minimise

J� �
h
��
�kG�d �G�ak

�
F � ��

� kV
��k�F

i
� �
����

��



However� in general� the closed loop eigenstructure may have �will probably have�

complex modes� If at least one pair of complex conjugate eigenvectors appears

in V� �which will remain una�ected by the algorithm�� then V � �V�� V�	 will be

complex throughout� This will make each updated vector of new V� complex�

Since each vector is updated individually� the result will be

V� self�conjugate

V� not self�conjugate

���
��� V � �V�� V�	 not self�conjugate�

Following the minimisation algorithm� the feedback needs to be constructed in

some way� as is detailed in Chapter �� Whatever method is used� constructing

a feedback from a set of vectors that is not self�conjugate results in a complex

feedback matrix� We must therefore transform our vectors into a real set so that

the minimisation algorithm generates real solution vectors�

Transforming complex vectors to real vectors

We assume� without loss of generality� that there is exactly one complex conjugate

pair of eigenvalues within the closed loop set� If the eigenvalues are permutated

so that this pair appears �rst� then the eigen�decomposition of the closed loop

system is

Vcc � �vre� � ivim� �vre� � ivim� �v�� � � � �vn	
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�
����������������

�re� � i�im�

�re� � i�im�
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� � �

� � �

�n

�
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�

�
����

where the �cc� subscript denotes that the decomposition is in its complex form�

and all o��diagonal elements are zero� The self�conjugate set of eigenvectors can

be transformed into a real set by post�multiplying it by the transformation matrix

P �

�
������

�
� ��

�i

�
�

�
�i

�

� I

�
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� �
��
�
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The real eigenvector set is thus

Vre � �v
re
� �v

im
� �v�� � � � �vn	� �
����

and the corresponding real representation of the eigenvalue matrix is

�re �

�
�������������

�re� �im�

��im� �re�

��
� � �

�n

�
�������������

� �
��
�

where the subscript �re� denotes the real form� If there are more complex modes�

P can be augmented with �
��

�
� ��

�i

�
�

�
�i

�
�� �
����

repeated along the block diagonal�

Following partial eigenstructure assignment� we can thus transform the com�

plex eigenvector matrix into its real representation� and run the minimisation al�

gorithm� This generates a real set of vectors that best satis�es the speci�ed

minimisation criteria�

����� Example �

After partial eigenstructure assignment� the design speci�cations of the eigenval�

ues and the mode output coupling vectors are achieved� The closed loop modal

eigenvector matrix is in the form

Vcc � �v
re
� � ivim� �vre� � ivim� �v�� � � � �v��v

re
	 � ivim	 �vre	 � ivim	 	 �
����

and is transformed it into its real representation�

Vre � �v
re
� �v

im
� �v�� � � � �v��v

re
	 �v

im
	 	� �
����

The mode input coupling vectors then have the residual error�

kG�d �G�ak
�
F � ������ � ��

�� �
�
��

�




The minimisation routine is run with various values for the parameters� The re�

sults are given in tabular form� where the objective function denotes the quantity

��
� kG�d �G�ak

�
F � ��

� kV
��k�F � �
�
��

In each table� the value of the Frobenius norm condition number of V is given� It

should be remembered that this is not the actual quantity being reduced� From

Section 
��

�F �V � � n
�

�kV ��kF �
�
��

so that kV ��k�F is actually being reduced in order to reduce �F �V �� Also in the

table� the number of sweeps is given� For this example� n � ��� p � 
� and

n� p � 
� and hence one sweep is equivalent to updating each of the six vectors

in V�� One iteration is de�ned as updating one vector� hence

� sweep � 
 iterations� �
�
��

Parameters� ���
�� �
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�� � ��� ��

We �rst test the algorithm with a zero weighting on the conditioning so that we

are only attempting to reduce the left vector matching� since this is our primary

aim�

sweeps objective function kG�d �G�ak�F �F �V �
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We can see from these results that allowing the updating vectors to be chosen

freely greatly improves the speed and accuracy of the algorithm� The error in

the left matching has been reduced to zero �to machine accuracy� which here is

O�����
��� but the conditioning of the eigenvectors is relatively high�

��



Convergence comparison

We now show graphs of the reduction of the error in the left vector matching

for both the restricted and the unrestricted minimisation algorithms� It should

be noted that the graphs show the reduction in the error against the number of

iterations� not the number of sweeps�
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Figure 
��� Comparison of convergence histories

From these we can see that both algorithms perform most of the reduction in

the error norm in the �rst few iterations� Both seem to reduce the error quite

considerably� but we need to look closer at where the error tends to zero to see

the real di�erence between the two�

�
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Figure 
��� Comparison of convergence histories �as error tends to zero�

We can clearly see that� for the restricted case� the error is reduced signi�cantly

in the �rst few iterations� and has in fact reduced it by O����� within one sweep�

However� a lot of extra work is needed to reduce the error further� For the

unrestricted case� although most of the error reduction occurs within the �rst

sweep� the algorithm further reduces the error within only a few more iterations�

These graphs show that both cases of the minimisation algorithm initially

reduce the error signi�cantly� but that the restricted minimisation struggles after

this due to the fact that the updating vectors must lie in speci�c subspaces�

the unrestricted minimisation further reduces the error because the vectors are

restricted only to lie in the complex plane�

Parameters� ���
�� �

�
�� � ��� ��

The previous example illustrates how the left vectors can be perfectly matched�

However� the conditioning of the vectors was relatively high� we thus put an equal

��



weighting on both criteria� to reduce both simultaneously�

sweeps objective function kG�d �G�ak
�
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We observe that the error in both the left vector matching and the conditioning

of the vectors is reduced� but that the matching error is considerably higher than

the virtual zero value attained before�

Parameters� ���
�� �

�
�� � ����� ��

The previous example illustrates the trade�o� between the two criteria considered�

However� the left vector matching is our main consideration and we just want to

ensure that the conditioning does not become very large� To this end� we place a

higher relative weighting on the left vector matching�

sweeps objective function kG�d �G�ak�F �F �V �
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As expected� the left matching is reduced considerably in comparison to the

previous example� and the conditioning has increased slightly� Note� however�

that a lot of computation is required to reduce the left vector matching from

O����� to O�������

��



����� Projection method

The second method for constructing an initial vector set for the minimisation al�

gorithm is just to perform the �rst part of the partial eigenstructure assign�

ment algorithm� namely the projection method to obtain V�� This is performed

as follows

� specify design requirements� �� � C
p�p� G�d�

� perform projection as in Section 
���� to obtain the best set of achievable

vectors� G�a� extract V� from this�

� specify an initial set V� � IR
n�n�p and form Vcc � �V�� V�	�

� transform Vcc into its real form � use this for the minimisation algorithm�

One question that arises from this is how to choose some initial� real set� V�� such

that

rank�V�� V�	 � n� �
�

�

Since the minimisation is unrestricted� V� can be any set of real vectors that we

decide to choose� but must not be such that the full vector set is badly conditioned�

There is no obvious solution� here we choose to make use of the identity matrix�

We let the �rst n � p rows �and all columns� of V� be the �n � p��dimensional

identity matrix� denoted In�p� Thus�

V� �

�
��
In�p

X�

�
�� � �
�
��

where X� � IR
p�n�p is the remaining section of V� to be �lled� If p � n � p� let

the �rst n� p rows of X� be In�p so that

V� �

�
������

In�p

In�p

X�

�
������
� �
�

�

where X� � IR
�p�n�n�p� This is repeated until step j� where the number of rows

in Xj is less than n�p� If there are r rows in Xj � then let Xj be the �rst r rows of

��



In�p� Hence� we are just repeating the �n� p��dimensional identity matrix until

V� is full� For example if n � �� p � �� then

V� �

�
�������������

� � �

� � �

� � �

� � �

� � �

�
�������������

�������
������
I�

���
���rst p rows of I�

� �
�
��

Note that this does not guarantee that V � �V�� V�	 will not have a high condition

number� or even that V is of full rank� but we will be very unlucky if generating

V� in this way causes V to be rank de�cient�

Another method� although more expensive than the one just described� is to

use the QR decomposition of V��

V� � �QV�� QV�	

�
��
RV

�

�
�� � �
�
��

From this

QT
V�
V� � �� �
�
��

so that QV� is an orthonormal basis for the complement of V�� Thus� if we let

V� � QV�� �
����

then the columns in V� are linearly independent to the columns in V�� and hence

rank �V�� V�	 � n� �
����

Computationally� it does not seem worth performing the extra work involved

in the partial eigenstructure assignment algorithm� The unassigned eigenstruc�

ture� �V������ may have complex conjugate modes that would have to be trans�

formed into reals� these would be overwritten with new real vectors not corre�

sponding to any eigenvalues � Thus it is not worth constructing K just to �nd

the extra V�� which is overwritten� and ��� which is not used� It is more sensible

to perform the projection method to �nd V� and choose an initial V��

���



����� Example �

Here� using the speci�ed eigenvalues� the projection method is used to obtain the

mode input coupling vectors� from these� the V� set is obtained� The V� set is

obtained by cycling the identity matrix� as just described� The residual error in

G� is

kG�d �G�ak
�
F � ������ � ��

�� �
����

As a comparison� we shall show the results for both methods of constructing a

set� V�� such that the full set of vectors is of full rank� The �rst table for each set

of parameters is for when V� is calculated by repeating the identity matrix� the

second table is when V� is calculated from the QR decomposition of V��
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Again� we start o� by considering the problem of just matching the left vectors�
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As in Example � in Section 
�
��� the left vector matching is reduced to zero �to

machine accuracy� in both tables� It is interesting to note that initially we have

very low condition numbers�

�F �V � 	 �
� �F �V � 	 �� �
����

for the two tables respectively� This conditioning has risen in both cases because

it is weighted zero�

Parameters� ���
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Here we include the conditioning in the routine� Both criteria are given equal

weighting�
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The left vector matching error is reduced for both constructions of V�� but the

conditioning has increased for the second construction�
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We impose a relative high weighting on the left vector matching as this is our

primary concern�
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These results are unsatisfactory in comparison to the weighting ���
�� �

�
�� � ��� ���

where the matching tends to zero and the conditioning is less than here�

Note also the extra work taken by the second method for the construction of

V�� namely the QR decomposition� However� in general� both methods for the

construction of V� are about the same� The main di�erences are that the �rst

method is much cheaper computationally� whereas the second method guarantees

���



that the vectors are of full rank� On these points� it is better to use the �rst

method� repeating the identity matrix� because it is unlikely that this will give a

rank de�cient set of vectors�

����� Generate initial right vector set �from scratch	

Using the projection method described in the previous section� we obtain the

best G� that corresponds to a set of p desired eigenvalues� However� it would be

a novel idea to be able to run the minimisation routine without specifying any

eigenvalues� but by just using G�d� We do this by performing an unconstrained

projection� where again the aim is to generate an initial set of linearly independent

vectors� V �

Following the theory in Section 
����� trivially express the achievable mode

output coupling vectors as

gai � Cvai � CSi�i� �
��
�

where in this case� Si � In� Permute each gdi so that the desired elements appear

�rst �and permute CSi accordingly��

gdi �

�
��
di

ui

�
�� � CSi �

�
��
Di

Ui

�
�� � �
����

Minimising the di�erence between the desired and best achievable mode output

coupling vectors gives

min
gai
kgdi � gaik

� � min
�
i

�������

�
��
di

ui

�
���

�
��
Di

Ui

�
���i

�������

�

�

� �
��
�

By minimising over the desired elements� the solution is

gai � CSiD
�
i di� �
����

but Si � In� so that ��	
�


gai � CD�
i di

vai � D�
i di

� �
����

However� a problem arises here� In minimising over the desired components�

min
�
i

kdi �Di�ik
�
�� �
����

��




we have that Di � C
k�n� di � IR

k� where k is the number of speci�ed elements

in the desired mode output coupling vector� Now k 
 n so that� unless equality

holds� the system being solved by �nding �i is underdetermined� In fact� if there

are any unspeci�ed elements in a gdi� then k 
 n� The unspeci�ed elements in gdi

are set to zero by the least squares routine� as this corresponds to the minimum

��norm solution� This may not appear to be a problem� but if we consider G�d

from the example in Section 
�
�

G�d �

�
���������

x x � �

� � x x

� � � �

� � � �

�
���������
� �
�
��

then the theory just outlined gives

G�a �

�
���������

� � � �

� � � �

� � � �

� � � �

�
���������
� V� �

�
����������������

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

�
����������������

� �
�
��

where the latter is obviously not of full column rank� There are two ways to

overcome this� The �rst is to solve the underdetermined system� but not by

�nding the minimum ��norm solution� so that the unspeci�ed elements are not

automatically set to zero� The other� which we implement� is to choose arbitrary

values for the unspeci�ed elements� so that we now have to solve

min
gai
kgdi � Cvaik

�
�� �
�
��

giving ��	
�

vai � C�gdi

gai � CC�gdi
� �
�
��

We remark that for the projection method in Sections 
���� and 
�
��� where

the vectors are restricted to lie in spaces corresponding to speci�ed eigenvalues�

Di � C
k�m� G�d is chosen so that k � m for each vector� and hence the system

���



is overdetermined� Finally� from �
�
��� we form

V� � �va�� � � � �vap	� �
�

�

and V� is chosen as in Section 
�
�� so as to ensure V � �V�� V�	 is of full rank�

The minimisation algorithm is then run using this matrix V �

One other problem is that in G�d� two columns may represent a complex

conjugate pair of eigenvectors� The constrained projection method in Section


���� forces the unspeci�ed elements in these two vectors to be complex conjugate�

then G�d is self�conjugate� However� here we specify no eigenvalues� thus the

unconstrained projection generates a rank de�cient G�d� To overcome this� we

re�express G�d in its real representation� so that for G�d given in �
�
��

G�d �

�
���������

x x � �

� � x x

� x � �

� � � x

�
���������
� �
�
��

so that again we can generate a full rank set of initial vectors�

����� Example �

Here� the speci�ed G�d is re�expressed in its real form� G�a is calculated using

the unrestricted projection method� From this we obtain the V� set� The V� set

is obtained by cycling the identity matrix� as before� The residual error in G� is

kG�d �G�ak
�
F � 
��
�� � ��


� �
�

�

��




Parameters� ���
�� �

�
�� � ��� ��

Weight just the left vector matching�

sweeps objective function kG�d �G�ak�F �F �V �

� 
��
��e � �� 
��
��e � �� ������e � ��

� ������e � �� ������e � �� ����
�e � ��


 ��

�
e � �� ��

�
e � �� ������e � ��

�� ��
���e � �� ��
���e � �� ������e � ��

�� ������e � �� ������e � �� ���
��e � ��


� 
�����e � �
 
�����e � �
 ��
�
�e � ��

�
 ������e � �� ������e � �� ��
���e � ��

�� ������e � �
 ������e � �
 ���
��e � ��

�� ��
���e � �� ��
���e � �� ��

��e � ��

When the minimisation algorithm was run with these parameter values� an error

was produced because of dividing by zero� This was a result of V being sparse�

then decompositions involving V �such as the QR� were sparse� Since B and C

are not full� this led to zT � qTB becoming zero� giving a problem since we must

divide by zT � The fact that ��
� � � also brought in more sparsity to the least

squares problem�

To overcome this� we generate a random set V� of full density� This is re�ected

in the speed of convergence� the algorithm here needing �
 sweeps to reduce the

matching error to zero� as opposed to �� sweeps and � sweeps for Examples � and

� in Sections 
�
�� and 
�
�
 respectively� with the same weightings�

���



Parameters� ���
�� �

�
�� � ��� ��

Weight both criteria equally�

sweeps objective function kG�d �G�ak�F �F �V �

� 
��
�
e � �� 
��
��e � �� 
�����e � ��

� ��

�
e � �� ��
���e � �� ����
�e � ��

� �����
e � �� ��



e � �� ���
��e � ��

� ����
�e � �� 
��
��e � �� ������e � ��

�� ��
���e � �� ����

e � �� ������e � ��

��� ��
�
�e � �� �����
e � �� ���

�e � ��

Again we have reduced both criteria� most of the work is done in the �rst two

sweeps� A lot of computation is required to reduce the matching by a further

order�

Parameters� ���
�� �

�
�� � ����� ��

Choose to impose a relative high weighting on the matching�

sweeps objective function kG�d �G�ak�F �F �V �

� 
��
��e � �� 
��
��e � �� 
�����e � ��

� 
��

�e � �� 
��


e � �� ������e � ��

� �����
e � �� ������e � �� ������e � ��

� ������e � �� 
�

��e � �� ������e � ��

� ������e � �� �����
e � �� ���
��e � ��

�� ����
�e � �� ������e � �� ������e � ��

�� ���
��e � �� ��


�e � �� 
�����e � ��

��� ������e � �� ����
�e � �
 
���
�e � ��

��� ������e � �� ������e � �
 
�����e � ��

The matching is reduced from O���
� to O������ within � sweeps� but takes

another ��� sweeps to reduce it by another order�

����
 Test results

These examples show the increased performance of the unrestricted algorithm

over the restricted one� When the left matching is the only consideration� the

���



error is reduced virtually to zero� in comparison to O����� for the restricted case�

However� care needs to be taken over choosing new vectors� as this could force

the condition number of the modal matrix� V � to rise dramatically� The inclusion

of the conditioning in the algorithm is successful� although it is at the expense of

increasing the matching error� To reduce this� a higher weighting is imposed on

the left vector matching relative to the conditioning� In all examples� it is seen

that the errors are reduced considerably within the �rst few iterations� but that

a lot of additional work is required to improve things further�

��� E	ciency comparison

We would like to solve our problem using existing methods to compare the nu�

merical e ciency of our minimisation techniques� To do this we consider the

objective function

J � ��
�kG�d �G�ak

�
F � ��

�kV
��k�F � �
�
��

and minimise J using the Matlab Optimisation Toolbox� If ��
� �� �� then we

enforce constraints on the new vectors such that kvik�� � � for vi � V�� so the

conditioning is being bounded as in �
����� We use two di�erent starting points

for the minimisation� one is the results of partial eigenstructure assignment �as

in Section 
�
���� the other is to use the restricted projection to obtain V� and to

form V� from a QR decomposition of V� �as in Section 
�
���� For both of these

we use three di�erent combinations of the weighting parameters and terminate

the algorithms when the value of the objective function has reached a certain

level� We give comparisons of the number of �oating point operations and cpu

���



time� The results are given in the table below�

starting parameters stopping �ops cpu time �secs��

point ��
� ��

� criterion Toolbox ours Toolbox ours

partial � � J 
 ���
 O����� O���
� ����� ���

eigenstructure � � J 
 �� O����� O���
� �����
 �����

assignment ��� � J 
 
� O����� O����� ������ ������

projection for � � J 
 ���
 O����� O���
� �
��� 
��


V�� QR � � J 
 
� O����� O���
� ���� 
����

for V� ��� � J 
 ���� O����� O���
� ������ ���
�

From these results we can conclude that we can make great savings� both in the

number of �ops and in cpu time� This is probably due to the fact that we reduce

the non�linear problem to a linear one via a choice of scaling� the Toolbox must

solve the non�linear problem� We also note that the introduction of the bound

on the conditioning of the problem is causing the extra work� since both methods

are very e cient when ��
� � �� This is a possible area for future investigation to

increase the e ciency of the minimisation routine by improving the manner in

which we control the conditioning of the system�

Also these results are obtained when the vectors are chosen freely� if they

were restricted to lie in subspaces corresponding to speci�ed eigenvalues then the

di�erences between the two methods would almost certainly be greater�

��
 Conclusions

We have� in this chapter� described an analogy to the restricted minimisation pre�

sented in Chapter �� The di�erence is in the fact that the minimisation vectors

are allowed to be chosen totally freely from within the complex plane� Following

this� we have given three methods for �nding an initial vector set with which

to run the algorithm� To illustrate the theory� we have given examples with

various parameter values� and have compared the results with those obtained in

the restricted case� The conclusions are that the results here are improved in

comparison to those in the previous chapter�

���



We have also shown that our methods are numerically e cient in comparison

to a modern optimisation package�

In Chapters � and 
 we have given theory for choosing a new set of vectors

that satisfy some criterion� Next we have to construct a feedback to achieve these

vectors� This work is carried out in the next chapter�

���



Chapter �

�Re�construction of feedback

In the previous two chapters we have described methods for selecting a set of

vectors that best satisfy a set of minimisation criteria� The objective function

decreases by di�ering amounts in relation to the weightings placed on the param�

eters� and depending on whether the new vectors chosen are restricted to be in

certain subspaces� Whatever form of the algorithm is used� the result is a new

set of vectors�

However� the whole point of output feedback and eigenstructure assignment is

to calculate a feedback matrix� K� such that the closed loop system has desired

eigenvalues and�or desired eigenvectors� Thus� our next step is to �nd such a

feedback that best assigns the vectors found from the minimisation algorithm�

In the following sections� we describe the motivation and methods for con�

structing the feedback� give results on how the feedbacks are related� and the

errors involved in using these constructions�

��� Methods for calculating an initial right vec�

tor set� V

In Chapters �� 	 and 
 we gave various methods for constructing an initial set

of vectors� V � to be used as the starting point for the restricted or unrestricted

minimisation algorithm� To distinguish between these methods� we present the

���



following table�

method V� V�

� restricted projection from closed loop system after K

generated from V� as in Section ��
��

� restricted projection as above� except some of �� changed�

vectors for changed eigenvalues

from their null spaces


 restricted projection from null spaces of chosen ��

� restricted projection� cycle In

transform to real vectors

	 restricted projection� QR decomposition on V�

transform to real vectors


 unrestricted projection cycle In

� unrestricted projection QR decomposition on V�

�

��� Construction of feedback for restricted min�

imisation

Following the completion of the restricted minimisation algorithm� the results are

�V � �V�� �V��� �� �

�
�� �� �

� ���

�
�� � �����

where the V� set has remained constant throughout the routine� and the �V� have

been chosen to minimise set criteria� The �� set is that used in the restricted

projection� the ��� set results from one of Methods ��
�

If one of Methods ��� is used as the starting point for the algorithm� then the

original feedback matrix is� �as in ���
����

K � B��V��� �AV���CV��
��� �����

From this it is evident that if we use ����� to reconstruct the feedback after

the minimisation� then we just obtain the original K� since V� is unchanged

throughout the minimisation� The reduction in the objective function is obtained

��




by choosing a new set �V�� hence �V� must be included in the construction of the

feedback�

If we use Method 
 to �nd the starting point for the algorithm� then we still

cannot form the feedback as in ������ This generates the same K as for Method

� or �� so the extra computation performed in using the minimisation is wasted�

We now give two constructions for the new feedback matrix� and give results

on their errors in assignment� as well as the relationship between the two�

����� First �re�construction� K�

The reason that we cannot use the feedback construction in ����� is that this is

the construction for partial eigenstructure assignment� The minimisation algo�

rithm generates a full set of vectors and hence we are attempting full eigenstruc�

ture assignment� In Section ���� we gave a feedback construction that achieves

full eigenstructure assignment under certain conditions� our �rst construction is

therefore

K� � B�� �V ���V �� �A�C�� ���
�

where �V � �V�� �V��� This construction generates the exact eigenstructure assign�

ment provided that the right and left eigenvectors are simultaneously in their

correct subspaces� There is an error involved� given by

E� � �W T �A�BK�C�� �� �W T � � �W TA� �� �W T ��I �C�C�� �����

where �W T � �V ��� Using the decomposition of C as in �������

wi � N �P T
� �A

T � �iI�� � P T
� �A

T � �iI�wi � �

� P�P
T
� �A

TW �W�� � �

� �W TA��W T �P�P T
� � ��

���	�

But from ������� P�P T
� � I � C�C� so that

wi � N �P T
� �A

T � �iI��� �W TA� �W T ��I � C�C� � �� ���
�

which indicates that kE�k can be reduced by minimising the distance of the left

eigenvectors from their correct subspaces� This is the third criterion within the

minimisation and can be reduced by putting a high weighting on ��
� relative to

��
� and �

�
��

���



����� Second �re�construction� K�

As an alternative to just using the �rst construction� we adapt the partial eigen�

structure assignment construction as in ������ to include the full set of vectors

�V � �V�� �V��� Now� C �V � Cp�n is not invertible unless p � n� hence our second

construction is

K� � B�� �V ���A�V ��C �V ��� �����

We again need to know the error involved in using this construction� This error

is given by

E� � �W T �A�BK�C�� �� �W T

� � �W TA� �� �W T � � �W TBB�� �V ���A�V ��C �V ��C�
�����

However� the vi are in their correct subspaces� so that BB�� �V ���A��� � ��V ���

A���� as in ������ Hence

E� � � �W TA� �� �W T � � ��� �W T � �W TA� �V �C �V ���C �V � �W T

� � �W TA� �� �W T ��I � �V �C �V ���C �V � �W T ��
�����

This error is similar to that given in ������ but a direct link is not obvious� We

want to know how minimising kE�k a�ects kE�k� and we explore this in the next

section�

����� Relationship between K� and K� and their respec	

tive assignment errors

To �nd the link between the errors in assignment between the two constructions

for the feedback� let ��	
�

M � � �W TA� �� �W T �

X � �V �C �V ���C �V � �W T
� ������

Then E�X �M�I � C�C�X �M�X � C�CX� �M�X � C�C� since

CX � �C �V ��C �V ���C �V � �W T � �C �V � �W T � C� ������

by the �rst Moore�Penrose condition for C �V given in De�nition ����� Now

E� � E�X � M�I �C�C��M�X �C�C�

� M�I �X� � E��
������

��	



giving

E��I � �V �C �V ���C �V � �W T � � E�� ����
�

This appears to tell us that� for a speci�ed eigenvalue� the correct left null space

for K� lies within the correct left null space for K� �denote these null spaces as

Ti and Ui respectively�� From Figure ��� we can see that

i

i

~wi
T

T

U

i

i

T

U

w~T
i

Figure ���� nullspaces

��	
�


�wT
i � Ti � �wT

i � Ui

�wT
i � Ui �� �wT

i � Ti
������

respectively to the two diagrams� That is� if �wT
i lies in Ti� then it also lies

in Ui� the converse does not hold in that �wT
i can lie in Ui without being in Ti�

Thus� although this does not guarantee that reducing kE�k automatically reduces

kE�k� it does show that they will simultaneously attain the same zero value when

considered in the limit� This shows that usingK�� in addition toK�� is worthwhile

since we expect both of the errors to be reduced by the minimisation routine�

We can show� under certain conditions� that K� and K� are equivalent in the

sense that they generate the same eigenstructure� but �rst need a theorem�

THEOREM ��� The pseudo�inverse of a product of matrices C � Cp�n� of full

rank� and V � Cn�n� unitary� is given by

�CV �� � V ��C�� ����	�

��




Proof

Since V is square� invertible and unitary

V � � V �� � V H � ����
�

where H denotes the complex conjugate transpose� Also� since C is of full rank�

C� satis�es the four Moore�Penrose conditions given in De�nition ����� i�e�

�i� CC�C � C� �iii� �CC��H � CC�

�ii� C�CC� � C�� �iv� �C�C�H � C�C�
������

We must show that V ��C� satis�es these four conditions� so

�i��CV ��CV ���CV � � CV V ��C�CV � CC�CV � CV�

�ii� �CV ���CV ��CV �� � V ��C�CV V ��C� � V ��C�CC�

� V ��C� � �CV ���

�iii� ��CV ��CV ���H � �CV V ��C��H � �CC��H � CC� � CV V ��C�

� �CV ��CV ���

�iv� ��CV ���CV ��H � �V ��C�CV �H � V H�C�C�H�V H��� � V HC�C�V H���

� V ��C�CV � �CV ���CV ��

if V is unitary� which gives the result�

LEMMA ��� The feedback constructions� K� and K�� given respectively in �����

and ������ are equivalent in the sense that they generate the same eigenstructure if

�i� �V is unitary�

or �ii� �wT
i � Ti ��i � �� � � � � n��

������

Proof

���



�i� K� � B�� �V ���A�V ��C �V ��

� B�� �V ���A�V � �V ��C� �from Theorem ����

� B�� �V ���V �� �A�C� � K��

�ii� from ���
��

������

�wT
i � Ti ��i � �� � � � � n�� kE�k

�
F � � � kE�k

�
F � �

so that both K� and K� generate the same closed loop eigenstructure� that is

they are equivalent�

����
 E�ect of scaling on reconstruction of feedback

In Sections 	�� and 	���� we gave two methods for scaling V�� If this scaling is

performed� we want to know the a�ect on the construction of the feedback� To

develop the scaling theory� the actual scaling was put on the left vectors and

inverted� giving

Vnew � V D��� ������

Thus� if we replace �V by �V D�� in the expressions for the feedback construction�

and add a subscript D to denote scaling� then

K�D � B�� �V D�� ��D �V �� �A�C�� ������

Here D and �� are diagonal so that D�� ��D � D��D�� � ��� giving

K�D � B�� �V ���V �� �A�C� � K�� ������

so that the �rst construction of the feedback is independent of the scaling imposed

on V�� For the second construction

K�D � B�� �V D�� �A�V D��C �V D��

� B�� �V D��D�� �A�V �D�C �V D���
����
�

Again D�� ��D � ��� if Theorem ��� holds then

�C �V D�� � D�� �V ��C� � D�C �V D�� � �C �V ��� ������

���



so that K� � K�D� However� this is only true if �V is unitary� which is extremely

unlikely� This indicates the worth in using K�� in addition to K�� since the bene�t

gained in scaling V� is lost for K��

����� Relationship between original feedback and K�

If one of Methods � and � has been used to calculate the vectors for the starting

point of the minimisation algorithm� then a K is generated� If we calculate the

closed loop eigenstructure �V��� then

�A�BKC�V � V �� ����	�

where

K � B��V��� �AV���CV��
��� ����
�

Now� for the second reconstruction

K� � B�

�
B��V�� �V��

�
�� �� �

� ���

�
���A�V�� �V��



CA �C�V�� �V����

� B���V��� �AV��� � �V���� �A�V�����CV�� C �V�����

������

Now by the theory of generalised inverses �see Ben�Israel and Grenville �	��

�A�B�� �

�
�� A�

B�

�
�� �AA� �BB���� ������

if R�A�
T
R�B� � f�g� Thus

K� � B���V��� �AV��� � �V���� �A�V���

�
�� �CV����

�C �V���

�
�� ��CV���CV���� � �C �V���C �V�����

� B���V��� �AV���CV���� � ��V���� �A�V���C �V�����I � �C �V���C �V�����

� �K �B�� �V���� �A�V���C �V�����I � �C �V���C �V������

������

provided R�CV��
T
R�C �V�� � f�g� Here we have expressed K� as the original

feedback plus expressions involving only the updated set � �V�� ���� and the constant

system matrices �A�B�C��

���



Now �C �V�� � Cp�n�p so that if rank �C �V�� � n � p then �C �V���C �V��� � I�

That is

p � n� p � �C �V���C �V��� � I� ���
��

giving

�p � n � �C �V���C �V��� � I� ���
��

This has the implication that

K� � ��K �B�� �V���� �A�V���C �V��
��� ���
��

From this section we can see that this construction for K� is� in essence� a per�

turbation to the feedback produced by Methods � and �� achieved by selecting a

new set� �V��

����
 Summary

When the minimisation algorithm is run with the new vectors restricted to be in

certain spaces� the result is a set of real vectors that best satisfy some criteria�

and the eigenvalues that they correspond to� A feedback must be �re�constructed�

we have given two methods to do this� We have shown the errors in assignment

for both and shown how we expect the minimisation algorithm to reduce both of

these errors�

We now give a method for constructing a feedback using the results of the

unrestricted minimisation�

��� Construction of feedback for unrestricted

minimisation

We have described two methods for �re�constructing the feedback after running

the restricted minimisation algorithm� The problem now is that the unrestricted

minimisation algorithm generates a set of real vectors� but these do not correspond

to any speci�ed eigenvalues� Thus� we cannot construct the feedback by either

of the methods in the previous section� since we do not have a �� We therefore

develop a method for constructing a feedback from the minimisation vectors only�

���



Note that as a comparison� this method can also be applied to the restricted

minimisation�

����� Diagonal solver

The objective here is to �nd a feedback matrix� K�� that best preserves the �V

generated by the unrestricted minimisation algorithm� Since we have no speci�ed

eigenvalues� we also want to calculate the set ��� The problem is de�ned as�

Problem � Given the quadruple �A�B�C� �V � where A� B C are real and �V is a

self�conjugate set� calculate a real K� and �� such that
������	
�����


�A�BK�C� �V � �V ��

subject to �� diagonal

Re���j� � ��

���

�

where the method developed is named the diagonal solver because of the attempt

to solve the system subject to �� diagonal� In its present matrix algebraic equation

form ���

� cannot be solved directly as it is an underdetermined system� To

manipulate it into a solvable form� re�write the top line of ���

� as

�V ���A�BK�C� �V � ��� ���
��

where �V is inverted using the QR decomposition so as to avoid any ill�conditioning

problems� Write ���
�� as

� �BK�
�C � �� � �A� ���
	�

where ������	
�����


�A � �V ��A�V

�B � �V ��B

�C � C �V

� ���

�

The aim is to express ���
	� by its individual equations� Denote the elements

of � �A� �B� �C�K�� ��� by �aij� bij� cij� kij � ��ij� �i� j � �� � � � � n�� respectively� then we

wish to solve�������	
������


�
mX
t��

pX
s��

bitktscsj � ��ij � aij

subject to

��	
�


��ij � � �i �� j�

Re���ij� � � �i � j�

�i� j � �� � � � � n�� ���
��

���



The idea is to augment the system into a linear least squares form to calculate

�K�� ���� This system is overdetermined� proven using the following small theorem�

THEOREM ��� If n�m� p � IN �the set of natural numbers� and n � m� p then

n� � mp� n� ���
��

Proof Since m� p are integers� both less than n� their maximum values are at�

tained at m � p � n� �� Then

max�mp� n� � �n� ���n� �� � n � n� � n� �� ���
��

Now� n � � �if n � �� then m � p � �� contradicting their inclusion in the set of

natural numbers� so that �� n � �� Hence

max�mp� n� � n� � ��� n� � n��� ������

Our system� ���
��� has n� equations �� number of elements in �A� and mp

unknowns from K� plus n unknowns from ��� Thus� we have a system with n�

equations and mp� n unknowns which� from Theorem ��
� is an overdetermined

system�

It is not known whether or not the diagonal elements of �� will be real or

complex� If complex� they may appear explicitly on the diagonal of ��� or as �	�

real blocks� The development of ���
�� into a linear least squares form is di�erent

for each case� and is covered in the next two sections�

����� Complex solver formulation

Following the unrestricted minimisation� we have a new set of self�conjugate vec�

tors� �V � From these we form the system� as in ���
��� In Section 
�
� we described

three methods for selecting an initial set of vectors to be used as a starting point

for the unrestricted algorithm� Two of these involved transforming complex vec�

tors to their corresponding real representation� So� although we have a set of

real vectors to use to �nd �K�� ���� we cannot expect diag���� to be real� Indeed�

some pairs of the real vectors may represent the eigenvectors of a complex con�

jugate pair of eigenvalues� The question here is how to allow for these complex

eigenvalues�

���



This form of the diagonal solver is called the complex solver because complex

eigenvalues are allowed to appear explicitly on the diagonal of �� in the form

��jj � �j � i	j� ������

where i � ����
�

� � The system given in ���
�� is written in the form

Mk � a� ������

where M � �M��M��� Here M� � Cn��mp contains the coe�cients bitcsj and

M� � Cn��n contains the coe�cients ��ij such that

M� �

�
��������������������

b��c�� � � � b��cp�� � � � � b�mc�� � � � b�mcp�
���

���
���

b��c�n � � � b��cpn� � � � � b�mc�n � � � b�mcpn
���

���
���

b��c�� � � � b��cp�� � � � � b�mc�� � � � b�mcp�
���

���
���

bn�c�n � � � bn�cpn� � � � � bnmc�n � � � bnmcpn

�
��������������������

� ����
�

M� �

�
���������������������������������������������

� � � � � � � � � � � �

� � � � � � � � � � � �
���

���
���

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �
���

���
���

� � � � � � � � � � � �
���

���
���

� � � � � � � � � � � �

� � � � � � � � � � � �
���

���
���

� � � � � � � � � � � �

� � � � � � � � � � � �

�
���������������������������������������������

�
�rst row of In�������

������
n rows of zeros

�
second rows of In�������

������
n rows of zeros

�
penultimate row of In�������

������
n rows of zeros

�
last row of In

� ������

��




which is just the n�dimensional identity matrix with n rows of zeros augmented

between each of its rows� The rows with a one in them represent the coe�cients

of the diagonal elements of ��� the n rows of zeros represent the n zeros that

appear on the o��diagonal of �� between each diagonal element�

The solution vector� k� is made up of the unknown elements of K� and ��� and

hence k � Cmp�n� The right hand side of ������ contains all of the elements of �A�

i�e� the coe�cients aij� thus a � Cn�� These two components appear in the form

k �

�
������������������������������������������

k��
���

k�m

k��
���

k�m
���

kp�
���

kpm

����
���

��nn

�
������������������������������������������

� a �

�
�������������������������������

a��
���

a�n

a��
���

a�n
���

an�
���

ann

�
�������������������������������

� ����	�

The system thus takes the general form

�
���������

coe�cients BC coe�cients of ��

of K

�
���������

�
���������

K�s components

in list form

���s components

in list form

�
���������
�

�
�� A in

list form

�
�� �

����
�

Here we have shown how to write ���

� into a linear least squares form� which

can be solved using a QR �or SVD� method� Since the system is overdetermined

in general� it is very unlikely that the system has an exact solution� Thus� we

will have errors between what we want and what we achieved� these are covered

in the error analysis section�

���



Note that throughout this section� we have de�ned components as being mem�

bers of the complex set� For the results of the unrestricted minimisation� all of

the components are actually real� This section was put in its most general form

because it may be applied to the vectors arising from the restricted minimisation�

which may be complex�

����� Real solver formulation

In this section� we assume that we have a real set of vectors� �V � We know

from Section 
�
 that� if we used either Method � or 	 to �nd the initial vector

set� then any complex conjugate vectors in V are transformed into their real

representation� At the end of the minimisation� we do not know whether the

real vectors in �V� should correspond to all real eigenvalues� or some complex

conjugate ones� But� we do know that any vectors in V� that corresponded to

complex eigenvalues are unchanged by the minimisation� Thus� when solving here

we must let the corresponding eigenvalues appear in their real representation of

complex conjugate eigenvalues�

The method here is called the real solver since complex eigenvalues appear as

real �	 � blocks on the diagonal of ��� If the jth complex conjugate pair is in the

form

��j � �j 
 i	j� ������

then it may appear on the diagonal of �� as

�
�� �j 	j

�	j �j

�
�� � ������

However� we are not sure where we should allow the �	� blocks corresponding

to the vectors in �V�� To develop the theory though� we consider the most general

case whereby the system is of an even order and all of the eigenvalues are in

complex conjugate pairs� We are still solving Problem 	� but here it is reduced

��	



to
������������������	
�����������������


�
mX
t��

pX
s��

bitktscsj � ��ij � aij

subject to ��ij � �

���������	
��������


j � i� �

j � i
�i odd�

j � i� �

j � i
�i even�

Re���ij� � � �i � j�

�i� j � �� � � � � n�� ������

The desired diagonal matrix of eigenvalues is then in the form

�� �

�
�������������������������������

�� 	�

�	� ��
� � �

� � �

�j 	j

�	j �j
� � �

� � �

�n

�

	n

�

�	n

�
�n

�

�
�������������������������������

� ���	��

where all of the block o��diagonal elements are zero�

Again we augment the system as in ������� where M� remains the same� But

��




M� changes because of the di�erent form that we are considering� We have

M� �

�
�������������������������������������������������

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
���

���
���

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

�
�������������������������������������������������

���
���rst � rows of I�n

���
��

n

�
rows of zeros

���
��next � rows of I�n

����������
���������
n rows of zeros

���
��

n

� rows of zeros

���
�� last � rows of I�n

� ���	��

For each complex conjugate pair� there are four ��ij �s� For �� � IRn�n there are

n

� complex conjugate pairs� hence there are n

� �� 	 �� blocks� Each block has

four elements� hence M� has ��
n
� � � �n columns� then M� � IRn���n� The form

of M� is two rows that represent ��i�j � ��i�j��� then
n

�
rows of zeros before two

rows that represent ��i����� ��i���j��� then n rows of zeros before the next � 	 �

block� Thus� M� is two consecutive rows of the �n�dimensional identity matrix�

spaced alternatively by rows of zeros of dimension n

�
	�n and n	�n� respectively�

���



Obviously a is the same as in ����	�� but k has extra ��ij �s�

k �

�
����������������������������������������������������������������

k��
���

k�m

k��
���

k�m
���

kp�
���

kpm

����

����

����

����
���

��n���n��

��n���n

��n�n��

��n�n

�
����������������������������������������������������������������

� ���	��

Again� we have reduced the system to a linear least squares form to be solved

by the QR �or similar� method� Note that if n is odd� then there will be at least

one real eigenvalue represented� or if we desire a mixture of real and complex

eigenvalues� then we just use the previous theory� but with fewer � 	 � blocks�

For example� if n � 	� our desired �� may be

�� �

�
�������������

��� � � � �

� ��� � � �

� � ���� ���� �

� � ���� ���� �

� � � � ���

�
�������������

� ���	
�

We have now given two methods for �nding a feedback and a new eigenvalue set�

we next summarise the algorithm in listed form�

���



����
 Algorithm for diagonal solver

The algorithm for �nding �K�� ��� from knowing only the system matrices and a

new set of minimisation vectors is the same for both the complex and real diagonal

solver� They only di�er in forming the componentsM� and k� Summarising� the

algorithm is thus

�� initialise ������	
�����


�A � �V ��A�V

�B � �V ��B

�C � C �V

���	��

�� form M� from �B and �C


� form M� from �� according to how we want the eigenvalues to appear on

the diagonal

�� form a from �A

	� to �nd k solve

minkMk� ak�� ���		�


� from k form K� and ��

�� calculate errors

kMk� ak��

k�A�BK�C� �V � �V ��k�F �
���	
�

It is obvious that� since the system is overdetermined� the solution vector� k� will

solve kMk� ak�� in the best least squares sense� Thus� we do not expect to have

solved Problem 	� as in ���

�� exactly� If this is the case� then �V ���A�BK�C� �V

has o��diagonal elements� Hence the ��ii found for the diagonal of �� will not be

the �nal� closed loop eigenvalues of A � BK�C� In fact� the desired � �V � ��� will

not be the actual eigenstructure of A�BK�C� but we have minimised the error

between the two in a certain sense� These errors are analysed in the next section�

���



����� Solver error analysis

As just mentioned� we are not able in general to solve Problem 	 exactly� more

explicitly� in using the diagonal solver� we are trying to solve

������	
�����


min
K���	

k�A�BK�C� �V � �V ��k�F

subject to �� �pseudo��diagonal

and K� real

� ���	��

where �� �pseudo��diagonal means that it may be block�diagonal� depending on

what form of the diagonal solver is used� However� ���	�� is only solved exactly if

K� can be found such that the given �V are eigenvectors of the closed loop system�

a situation that is unlikely to occur when using the unrestricted minimisation�

This means that the values that appear on the �block��diagonal of �� will not be

the actual eigenvalues of A�BK�C� but we can establish a relationship between

them� First� a theorem is needed�

THEOREM ��� �Bauer�Fike� If 
 is an eigenvalue of A � E � Cn�n and

V ��AV � D � diag���� � � � � �n�� then

min
���
A�

j�� 
j � �p�V �kEkp� ���	��

where k � kp denotes any of the Holder norms�

Proof �see Golub and Van Loan ������

To use this theorem� we need to manipulate our system slightly� If ���	�� is

not solved exactly� the error is given by

E � �A�BK�C�� �V ���V ��� ���	��

so that

�V ���Ac � E� �V � ��� ���
��

where Ac � A � BK�C is the closed loop matrix� Hence � �V � ��� is not the

eigenstructure for Ac� as desired� but is the eigenstructure for a perturbed system�

Ac � E�

�
�



LEMMA ��� Let �A � A�BK�C�E� then if � is an eigenvalue of �A�E �� Ac��

and �V �� �A�V � diag����� then

min
��
j�� � �j � �F � �V �kEkF � ���
��

Proof The proof follows directly from Theorem ����

However� in general� this is not a tight bound since it measures the distance

of each eigenvalue in relation to the conditioning of all of the eigenvectors� Thus�

a single ill�conditioned eigenvalue may make the whole system appear badly con�

ditioned�

We may tighten this bound by reducing the conditioning of the vectors found�

a criteria that is included in the unrestricted minimisation and can be a�ected

by increasing the relative weighting of ��
�� In doing this� we lose some of the

ability to reduce the left vector matching to a satisfactory level� This� again� is

the problem of selecting the parameters to obtain the desired trade�o� between

the set minimisation criteria�

We can see the performance of the solver in the examples that follow in Chap�

ter �� First we show how the solver can be adapted to allow for equality con�

straints�

����
 Constrained diagonal solver

So far in this section� we have given a method for constructing a feedback matrix

from the system matrices and a set of vectors� Two variations have been outlined

that illustrate how to deal with complex eigenvalues appearing explicitly or in

their real� block form� The problem was written in the form

Mk � a� ���
��

and solved in a least squares sense� In doing this we performed an unconstrained

linear least squares optimisation� This is �ne if the resulting eigenvalues of the

closed loop system are satisfactory�

However� as shown in Section ��
�	� we cannot expect to solve the problem

exactly� Thus� the values obtained for ��ij will not be the eigenvalues of A�BK�C�

but of a perturbation to this� The result is that we may obtain eigenvalues of

�
�



A�BK�C� namely �ij � that are unstable� Lemma ��	 shows how the ��ij and �ij

are related� hence we can put constraints on the ��ij to induce constraints on the

�ij � This means that we can now treat the last condition in Problem 	� that is

to obtain Re��j� � ��

We do this by implementing the NAG Fortran Library Routine E��NCF which

solves linearly constrained linear�least squares problems and convex quadratic

programming problems� To proceed� we form the system as in ���
��� In solving

this� we place constraints on the ��ij that are either real values� or that correspond

to the real part of a complex eigenvalue� The constraints we impose are such that

Re���jj� � � � � � Re��j� � � ��j�� ���

�

where � is the minimum distance of the most unstable eigenvalue in f��jjg to the

stable set f�jg� It is unclear how to choose � because� from Lemma ��	� we would

ideally set

� � �F � �V �kEkF � ���
��

but we do not have prior knowledge of E� since it is dependent on K�� This is

done by experimentation and is illustrated in the examples in Chapter �� We may

also make use of the NAG routine in another way� relating to the � 	 � blocks

that represent complex eigenvalues for the real solver� As explained in Section

��
�
� the jth complex conjugate pair is formulated to appear as

�
�� �j 	j

�	j �j

�
�� � ���
	�

Here the �j are constrained so that �j � �� as they represents the real part� The

unconstrained solver may generate a solution such that for

�
�� �j� 	j�

�	j� �j�

�
�� � ���

�

we obtain �j� �� �j�� 	j� �� �	j�� which is not as required� Thus� we use the NAG

routine to form a set of linear constraints such that

�j� � �j� � �

	j� � 	j� � �
� ���
��

�
�



Thus� assuming we have the system ���

� written in the form ���
��� our opti�

misation problem becomes

min
k

kMk� ak��

subject to

���������	
��������


ki � �

�
B� for the i � mp� �� � � � � n

that are the Re���ij�



CA

��	
�

ki � ki�� � �

ki�� � ki�� � �

�
B� for the i � mp� �� � � � � n

that represent a cc pair



CA

� ���
��

But� too many constraints will in�uence the overall accuracy of the �re�construction

and the bene�t gained from running the original minimisation algorithm� By how

much will be seen in the full examples in the next chapter�

��� Conclusions

In this chapter� we have given various methods for constructing a feedback that

best assigns the new vector set� �V � that results from either the restricted or

unrestricted minimisation algorithm�

For calculating the feedback following the restricted minimisation we gave two

constructions based on full and partial eigenstructure assignment� We analysed

the errors in each and gave conditions for the two feedback constructions to be

equivalent in the sense that they generate the same closed loop eigenstructure�

For the calculation of the feedback following the unrestricted minimisation we

devised a routine that found a set of eigenvalues in addition to the feedback� This

was formulated to allow complex conjugate eigenvalues to appear explicitly on

the diagonal of ��� or as real �	 � diagonal blocks� We derived an expression for

the error in using this construction� and showed how the solver could be modi�ed

to allow for equality constraints�

In the next chapter we test all of our minimisationmethods and these feedback

constructions on full aircraft examples�

�





Chapter �

Full examples

��� Introduction

In the previous two chapters we have devised two minimisation routines that re�

duce the level of input decoupling via the left eigenvectors by iterating through the

unassigned right eigenvectors� In these routines� we also included controls on the

conditioning of the system and the distance of the left vectors from their correct

subspaces� We have shown� through examples� how the minimisation algorithm

works� with various values of the weighting parameters tested� The vectors re�

sulting from either minimisation algorithm did not correspond to any closed loop

eigenstructure� in Chapter � we gave methods for reconstructing the feedback to

best obtain these vectors�

Here we give examples to demonstrate all of the theory� from the speci�cation

of the problem and the calculation of the initial vector set� through to the running

of the minimisation and �nally the reconstruction of the feedback�

��� Example �

The �rst example here is taken from Andry et al� �	
� and is a lateral axis model

of an L�	�		 aircraft at cruise condition� The model includes actuator dynamics

and a washout �lter on yaw rate� The state vector� input vector and output

	�




vector are given by

x �

�
��������������������

�r

�a

�

r

p

�

x�

�
��������������������

rudder de�ection

aileron de�ection

bank angle

yaw rate

roll rate

sideslip angle

washout �lter

� ���	�

u �

�
��
�rc

�ra

�
��

rudder command

aileron command
� y �

�
���������

rwo

p

�

�

�
���������

washed out yaw rate

roll rate

sideslip angle

bank angle

� �����

respectively� A word is needed here on the meaning of the washout �lter� x�� A

yaw damper is used to ensure that the dutch roll damping is of an acceptable level�

However� this does not completely remove the e�ect of the initial disturbance in

yaw rate as there are non�zero steady state values� Also� the system tends to

oppose any change in yaw rate� even if it has been commanded� Thus� the signal

proportional to yaw rate� being used as a feedback signal to the controller� is �rst

passed through a washout network to di�erentiate the signal from the yaw rate

gyroscope� We can see the �rst output �from y� is the washed�out yaw rate� and

is a combination of yaw rate and the washout �lter �as can be seen from the �rst

row of C��

The system matrices are given by

A �

�
��������������������

��� � � � � � �

� ��� � � � � �

� � � � 	 � �

����

 ������ � ���	�
 �����
� 	��
 �

����� �	�	� � ���
� �	 ���� �

���� � ������ ������ ������� ���		�� �

� � � ��� � � ����

�
��������������������

� �����

	��



B �

�
��������������������

�� �

� ��

� �

� �

� �

� �

� �

�
��������������������

� C �

�
���������

� � � 	 � � �	

� � � � 	 � �

� � � � � 	 �

� � 	 � � � �

�
���������
� ���
�

The open loop eigenvalues of the system are

open�loop eigenvalue mode frequency damping sensitivity

��� rudder �� 	 	��

��� aileron �� 	 	��

������� � 	�����i dutch roll 	��� ���� ���

�	����� roll subsidence 	��� 	 
��

������� spiral ����� 	 ���

���� washout �lter ��� 	 	�	

�

where the sensitivity of each eigenvalue� ci� is calculated using

ci �
kwT

i kkvik

jwT
i vij

� �����

The value of the conditioning of the right eigenvectors is

�F �V � � 	����� �����

We next perform partial eigenstructure assignment as in Section 
���� to see the

error in the matching of the unconsidered left eigenvectors�

��� Partial eigenstructure assignment

For this system� rank �C� � 
� so that� according to the theory of Davison �		
�

we can assign �almost exactly�� four closed loop eigenvalues� These are chosen as

�p �

��	
�

��� i dutch roll mode

�	� �i roll mode�
�����

	��



with the corresponding desired mode output coupling vectors

G�d �

�
���������

x x � �

� � x x

	 	 � �

� � 	 	

�
���������
� �����

These mode output coupling vectors are chosen so that the sideslip angle and

roll rate response are decoupled� this choice for G�d also decouples bank angle

and yaw rate� Thus� for each feedback constructed in this example� we give the

closed loop response to an initial sideslip angle of 	o �all other initial conditions

are zero� and the closed loop response to an initial bank angle of 	o �all other

initial conditions are zero��

The �rst two vectors in G�d are orthogonal to the last two vectors and a

decoupling of the roll mode from the dutch roll will be realised if G�d is achieved�

The corresponding desired mode input coupling vectors are

G�d �

�
���������

	 �

	 �

� 	

� 	

�
���������
� �����

This choice couples the �rst input �sideslip angle demand� to the washed out yaw

rate and decouples it from roll rate and bank angle� the second input �bank angle

demand� is coupled to the roll rate and is decoupled from the washed out yaw

rate and sideslip angle�

Thus� for each feedback construction� we also give the responses to a step

input on sideslip angle and bank angle� However� it should be noted that we

have not included a feedforward command tracker in these responses� A tracker

is needed for a comparison of the input responses between di�erent feedbacks�

but feedforward changes the obtained eigenvectors and would therefore a�ect the

results of our minimisation� Further work needs to be carried out to include the

use of a feedforward command tracker in our methods� We include the input

response diagrams without feedforward for completeness and to see which inputs

are coupled to which outputs� not to see the level of coupling� we obtain this

information by analysing the mode input coupling vectors�

	��



To �nd an initial closed loop system� we use Method 	� as in Section 
�����

the feedback gains are calculated as

K �

�
��
����	� ������� ����	��
 ������	

���
�� �����	 �	������ 
���
�

�
�� � ���	��

The closed loop eigenvalues for A�BKC are

closed�loop eigenvalue mode frequency damping sensitivity

�� � i dutch roll ������ �����
 ��	���

�	� �i roll �����	 ��

�� ���	

�������
 aileron ������
 	 	����

���	��� rudder ��	��� 	 ����
	

������� washout �lter ������ 	 ����

�

We can see that the damping of the roll mode is relatively low in comparison

to the dutch roll� The dutch roll eigenvalue has a very large condition number�

as does that of the rudder mode� the others are all quite well conditioned� The

condition number of the eigenvectors of the closed loop system is

�F �V � � ���� � 	��� ���		�

The normalised mode output coupling vectors corresponding to the four de�

sired eigenvalues are

G�a �

�
���������

	 ������� � �����
i

� 	

��	��� � ������i ������� � �����	i

� ������� � ��
���i

�
���������
� ���	��

We can see that the exact desired decoupling cannot be achieved in the roll

mode� although the level of coupling is small� The results given here are those

usually obtained by authors investigating eigenstructure assignment applications

to aircraft control� Here we are also concerned with the left eigenvectors via the

mode input coupling vectors� calculated here �in their normalised form� as

G�a �

�
���������

	 ������� � ����
	i

	 ������� � ����
	i

������� � ������i 	

������� � ������i 	

�
���������
� ���	��

	��



From the results we can see that the mode output coupling vectors� G�a have been

achieved to a satisfactory level� but the mode input coupling vectors� G�a have

not been achieved� The �rst input is exciting inappropriate modes� We require

that the real and imaginary parts of those elements in G�a that correspond to a

speci�ed zero in G�d to be O�	���� or less �i�e � ��	�� The errors in the matching

of the mode output and input coupling vectors are

kG�d �G�ak�F � 
����� � 	���

kG�d �G�ak�F � �������
� ���	
�

respectively� We see that there is a di�erence of O�	��� between the two errors�

the aim is to minimise the error� kG�d � G�ak�F � while retaining the accuracy in

the mode output coupling vectors�

The original closed loop output and input responses are given in Figures ��	

and ���� respectively�

	��
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Figure ��	� Original closed loop output responses
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Figure ���� Original closed loop input responses

From Figure ��	 we can see that sideslip angle is virtually decoupled from roll

rate and that bank angle is decoupled from the washed out yaw rate� In Figure

��� we see that bank angle demand is decoupled from yaw rate and sideslip angle�

as desired� but that sideslip angle demand is coupled to roll rate and bank angle�

This is the error that we aim to reduce in using our minimisation routine�

	
�



����� Apply restricted minimisation algorithm �for de�

coupling�

Here we demonstrate the use of the restricted minimisation algorithm� we use

Method 	 to �nd an initial set of vectors and choose to retain the unassigned

set of eigenvalues� ��� It is likely that� since ���� � �� � i and �� � ���	���

are poorly conditioned� they will move quite considerably unless we put a high

relative weighting on the left eigenspace error� However� we are attempting to

improve the level of input decoupling� hence we choose the weightings

�	�

�
� 	�

�
� 	�

�
� � �	 � 	��� 	� 	�� ���	��

so that� even though we are primarily trying to match the left eigenvectors� we

include weightings on the eigenvector conditioning and the left eigenspace error�

The results of the minimisation are

sweeps objective function kG�d �G�ak
�

F �F �V �
nX

i	�

kwT
i
�Tik

�

�

� ������e � �� �����
e � �	 �����	e � �
 	�	���e � ��

	 ����	�e � �� ������e � �	 
�		
�e � �
 ������e � �


� ��	
	�e � �
 ������e � �� ������e � �� ����	
e � ��

� ��		��e � �
 ������e � �� ����
�e � �� ���

�e � ��

�

From the new set of minimisation vectors� �V � �V�� �V�
� we have

G�a �

�
���������

	 ������� � ������i

	 ������� � ������i

����
�� � ������i 	

����
�� � ������i 	

�
���������

���	��

giving the desired level of input decoupling whilst retaining the right vector ma�

trix� However� although we have the desired input and output decoupling for a

set of vectors� these do not� as yet� represent a speci�c eigenstructure correspond�

ing to a feedback� K� We must now reconstruct the feedback to attempt to best

achieve �V as closed loop vectors� Using the �rst reconstruction from Chapter ��

we obtain

K� �

�
��

	������ ���
��� ������	� �	���
�

�	����	 ��
��� �	�
��
 	�
�	�

�
�� � ���	��

	
	



which has the new closed loop eigenvalues

closed�loop eigenvalue mode frequency damping sensitivity

������ ����i dutch roll 		����� ���	�� ����	

������� � 	��	

i roll 	����� ������ ��
�

��
����
 aileron �
����
 	 ����

������� rudder ������ 	 �
�
	

������� washout �lter ������ 	 ����

�

From these results we can clearly see that the dutch roll and rudder eigenval�

ues have moved by a lot� as expected� This is re�ected in the higher feedback

gains in K�� We have lost some of the damping in the dutch roll mode� but have

increased the damping on the rudder mode� A signi�cant improvement has also

been made in the conditioning of the individual eigenvalues� speci�cally the dutch

roll and rudder modes� The condition number of the eigenvectors of the closed

loop system is

�F �V � � �����
��� ���	��

which is a reduction of O�	����

The corresponding mode input coupling vectors are

G�a �

�
���������

	 ����	�� � ���	��i

	 ����	�� � ���	��i

�����	 � ���

�i 	

�����	 � ���

�i 	

�
���������
� ���	��

which� surprisingly� are slightly better than in ���	��� Thus� we have calculated

a feedback that gives the desired level of input decoupling� but have we retained

the initial output decoupling� The new closed loop mode output coupling vectors

are

G�a �

�
���������

	 � � ������i

������ � ��	��i 	

����� � ����
i ����� � �����i

����� � �����i ���
�� � �����i

�
���������
� ������

so that we have introduced a small level of coupling between sideslip angle and

roll rate�

	
�



The new closed loop output and input responses are given in Figures ��� and

��
� respectively� In Figure ��� we can see the increased output coupling between
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Figure ���� New closed loop output responses
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Figure ��
� New closed loop input responses

the sideslip angle and the roll rate as indicated by G�a� But G�a shows that we

have reduced the level of input coupling� We have also retained the desired levels

of input and output decoupling on bank angle� This has all been achieved in

	
�



addition to increasing the robustness of the system� This illustrates the trade�o�

between the levels of input and output coupling that needs to be considered�

����� Apply restricted minimisation algorithm �for con�

ditioning�

In Section ����	� we showed that the input decoupling could be reduced with

a high relative weighting on the left vector matching� The conditioning of the

problem was also reduced� here we attempt to reduce the conditioning further�

The starting point for the minimisation algorithm is again the results of Method

	� We select the weightings

�	�

�
� 	�

�
� 	�

�
� � ��� 	� ��� ����	�

The results of the minimisation are

sweeps objective function kG�d �G�ak�F �F �V �
nX

i	�

kwT
i
�Tik

�

�

� ���	��e � �� �����
e � �	 �����	e � �
 	�	���e � ��
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 	�����e � �� 	����	e � �
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��e � ��

� ������e � �� ������e � �� ������e � �� 	�����e � ��

� ���	��e � �� ����	�e � �� ��
���e � �� 	��
��e � ��


 ������e � �� �����
e � �� ��
��
e � �� 	���
�e � ��

� ������e � �� �����
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��
e � �� 	���
�e � ��

�

Again� the �rst reconstruction for the feedback is used�

K� �

�
��

����	� �����
� �
�����
 �	�����

����	�� ��

�� ����	� 	�
���

�
�� � ������

which has the new closed loop eigenvalues

closed�loop eigenvalue mode frequency damping sensitivity
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As required� we have reduced the sensitivity of the system further� speci�cally

the dutch roll and rudder modes� with slight increases in the other modes� The

condition number of the eigenvectors of the closed loop system is

�F �V � � �������
� ������

However� this has been achieved at the expense of the performance� The dutch

roll mode now has low damping and we need to look at the levels of input and

output decoupling� The closed loop mode input and output coupling vectors are

G�a �

�
���������

	 ������� � ���
��i

	 ������� � ���
��i

������ � ������i 	

������ � ������i 	

�
���������
� ����
�

G�a �

�
���������

	 ������ � ������i

������� � ���
	�i 	

������ � ��	���i ������ � ���	��i

������� � ��	�	�i ���
��
 � ������i

�
���������
� ������

respectively� The level of input decoupling is good for both inputs� but we have

introduced substantial coupling between the sideslip angle and roll rate outputs�

The new closed loop output and input responses are given in Figures ��� and ����

respectively�
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Figure ���� New closed loop output responses
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Figure ���� New closed loop input responses

In Figure ��� we can see the high level of coupling between sideslip angle and

roll rate� there is also slight coupling apparent between bank angle and washed

out yaw rate� There is only minor improvement in the level of input decoupling�

this is expected since we are only attempting to improve the robustness of the

system�

	
�



����� Apply unrestrictedminimisation algorithm �for de�

coupling�

In the previous two sections� we have successfully applied the restricted minimi�

sation algorithm to reduce the level of input decoupling and the sensitivity of the

system� Here we use the unrestricted minimisation algorithm on the problem�

As described in Section ����	� we require an initial set of real vectors for the

algorithm� Here we �nd the initial V using Method �� where the V� vector set is

found from a restricted projection on the vectors corresponding to a speci�ed set

of eigenvalues �i�e� those in ������� the V� vector set is found by performing a QR

decomposition on the V� set� The chosen weightings are

�	�

�
� 	�

�
� � �	��� 	�� ������

so that we are attempting to match the left eigenvectors� but are also keeping a

check on the conditioning� The minimisation algorithm generates the results

sweeps objective function kG�d �G�ak�F �F �V �

� ����
�e � �� ����
�e � �	 	��	��e � ��

	 	�
���e � �� 	����	e � �	 	�����e � ��

� ���	��e � �� ������e � �� ������e � ��

� ������e � �� 	��
��e � �� ������e � ��


 ��
��
e � �� ��
���e � �	 �����
e � ��

� ��	�
	e � �� ����	
e � �	 ������e � ��

�

We use the diagonal solver on the new vectors� allowing for two complex conju�

gate modes in ��� and none in ��� This gives the feedback

K� �

�
��
��	�	� �����	 �����	� ��	���

��	�	� 	����� ���	��� 
����	

�
�� � ������
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which has the new closed loop eigenvalues

closed�loop eigenvalue mode frequency damping sensitivity

������
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���


�

We can see that the eigenvalues are satisfactory� their sensitivities are particularly

good� The condition number of the eigenvectors of the closed loop system is

�F �V � � 	�������� ������

The corresponding mode input and output coupling vectors are

G�a �

�
���������

	 ���	�	� � ������i

	 ���	�	� � ������i

����	�� � ��	���i 	

����	�� � ��	���i 	

�
���������
� ������

G�a �

�
���������

	 ������� � ����
�i

��	��	 � �����
i 	�����

�����
 � �����
i ������� � ���	��i

���	��� � ������i ���	��� � ��
�	�i

�
���������
� ������

respectively� Compared to the results of the original output feedback in Section

��� there is a slight improvement in the level of decoupling on the sideslip angle

input� although a small level of coupling is introduced into the bank angle input�

There are also small levels of coupling apparent in the outputs corresponding to

the �rst mode� The new closed loop output and input responses are given in

Figures ��� and ���� respectively�
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Figure ���� New closed loop output responses
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Figure ���� New closed loop input responses

Compare to Figure ��	� we see in Figure ��� that we have actually retained

the levels of output decoupling on the sideslip angle and bank angle outputs� In

addition� we have slightly reduced the level of input decoupling and increased the

robustness of the system�
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����	 Results summary

For this example� using the speci�ed set of eigenvalues given in ������ we have

successfully applied the restricted and unrestricted minimisation algorithms to

reduce the level of input decoupling of the system� this has sometimes led to an

increase in the levels of output coupling� We have also reduced the sensitivity of

the system� These results demonstrate the trade�o� between the input coupling�

the output coupling and the robustness of the system�

For a di�erent set of desired eigenvalues we next demonstrate the possibility

of a system becoming unstable� thus justifying the need to control all of the

eigenvalues�

����
 Assign di�erent eigenvalue set

It is unlikely that our routines perform a global minimisation for this problem�

To illustrate this we select a new set of desired eigenvalues

�p �

��	
�

��� �i

�	�� 
i
� ����	�

We again perform partial eigenstructure assignment as in Section 
����� generating

the feedback

K �

�
��
��
	�� ��		
� �������� 
��	��

��
��� �����	 �	����	� ��
��		�

�
�� � ������

The closed loop eigenvalues are

closed�loop eigenvalue mode frequency damping sensitivity

��� �i dutch roll ������ ���	�� 	�	��
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i roll 	����
 ������ ���	�

������� aileron ������ 	 	�����

������� rudder ������ 	 ��
�


����� washout �lter 
����� �	 	����

�

The dutch roll and roll modes have an acceptable level of damping� but have

high frequencies� The main problem� however� is that this choice of eigenval�

ues results in high feedback gains and the washout �lter mode is highly unstable�

	��



This illustrates the problem in using partial eigenstructure assignment that the

uncontrolled modes may be unstable� Our method uses full eigenstructure as�

signment and we can therefore overcome this problem� The condition number of

the eigenvectors of the closed loop system is

�F �V � � ��
��� � 	��� ������

The corresponding closed loop mode output and input coupling vectors are

G�a �

�
���������
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	 �����
 � ���	��i

	 �����
 � ���	��i

���	
�� � ���
��i 	

���	
�� � ���
��i 	

�
���������
� ������

respectively� The errors in the matching of the mode output and input coupling

vectors are

kG�d �G�ak�F � ���
�� � 	���

kG�d �G�ak�F � �����

� ������

respectively� Again the output decoupling is attained to the desired level� but

there is some coupling apparent in the inputs� The original closed loop output

and input responses for the new assigned eigenvalue set are given in Figures ���

and ��	�� respectively�
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Figure ��	�� Original closed loop input responses for di�erent assigned eigenvalues

The aim of using our methods here is to stabilise the system� in addition to

reducing the level of input coupling and improving the robustness of the system�

	��



����� Apply restricted minimisation algorithm �for de�

coupling�

Since the closed loop system is unstable� we allow the eigenvalues to vary freely

by putting a zero weighting on the left eigenspace error� Our primary aim is

to reduce the level of input decoupling� our choice of weighting parameters is

therefore

�	�

�
� 	�

�
� 	�

�
� � �	 � 	��� 	� ��� ������

We run the restricted minimisation algorithm� implementing the alternative scal�

ing method as in Section ��	�� giving

sweeps objective function kG�d �G�ak�F �F �V �
nX

i	�

kwT
i
�Tik

�

�

� ������e � �� �����
e � �� ��
���e � �
 ��	�	�e � ��

	 ������e � �
 	�����e � �	 ���	�
e � �� ������e � ��

� �����	e � �
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���e � �� ������e � ��

� ��
���e � �
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�
e � �� ������e � �� ������e � ��


 ��
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� ��
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�e � �� ������e � �� ������e � ��
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�

As the scaling has no e�ect on the �rst reconstruction given in Chapter �� we use

the second reconstruction as in Section ���� This gives

K� �

�
��
��
�
� ������� ������	� �����	�

��
��� ������ �	����	� 	�����

�
�� � ������
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with the resulting closed loop eigenvalues

closed�loop eigenvalue mode frequency damping sensitivity

����	� 
���i dutch roll ������ ���	�� 	���	

�	���	 � ��	
i roll 	��	��� ����		 �����

������	 aileron �����	 	 	����

������� rudder ������ 	 
���

����		� washout �lter ���		� 	 ����

�

The washout �lter mode is now stable� There is not much movement in the other

eigenvalues except for that corresponding to the roll mode� The condition number

of the eigenvectors of the closed loop system is

�F �V � � ��������� ������

Here� the conditioning is slightly better� and we now have a stable system� but

we have not looked at the coupling vectors� The mode input and output coupling

vectors are

G�a �

�
���������

	 ������	 � ���
��i

	 ������	 � ���
��i

���	��
 � ����
	i 	

���	��
 � ����
	i 	

�
���������
� ���
��

G�a �

�
���������

	 ������ � ���
��i

������ � ������i 	

������ � ������i �����	 � ����	�i

������� � ����	
i ������� � ���	�	i

�
���������
� ���
	�

respectively� From these coupling vectors� we can see that the level of output

decoupling has been retained� but the input decoupling has been only slightly

improved� The new closed loop output and input responses are given in Figures

��		 and ��	�� respectively�
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Figure ��	�� New closed loop input responses

In Figure ��		 we see slight output coupling between sideslip angle and roll rate

and between bank angle and washed out yaw rate� However� we have stabilised

the system� reduced its sensitivity and slightly increased the input decoupling

levels�

	��



����
 Apply unrestrictedminimisation algorithm �for de�

coupling�

In Section ������ we stabilised the open loop system� but obtained only a slight

improvement in the level of input decoupling� Here we aim to improve on this

using the unrestricted minimisation algorithm� We use Method � to �nd an

initial� real vector set V � �V�� V�
 and choose the weightings

�	�

�
� 	�

�
� � �	��� 	�� ���
��

The results of the minimisation routine are

sweeps objective function kG�d �G�ak�F �F �V �

� 
��
��e � �� 
��	��e � �� 
�		��e � ��

	 ������e � �� ����	�e � �� 	�
���e � ��

� ������e � �� ������e � �� 	�����e � ��

� ������e � �� ��	�	�e � �� 	�����e � ��
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	e � �� 	��
��e � ��

� ������e � �� ��	���e � �� 	����	e � ��

�

To �nd a feedback that best assigns the minimisation vectors� we use the diagonal

solver� allowing two complex conjugate pairs of eigenvalues in �� and none in ���

giving

K� �

�
��
����	� ���	��� �������� ��	���

��	��� ������ �	
����� 	�����

�
�� � ���
��

The new closed loop eigenvalues are

closed�loop eigenvalue mode frequency damping sensitivity

���
	� 
���i dutch roll ���	�
 ������ 	����

�	���	 � ����i roll 	���
	� ������ 
��	�

�����	� aileron ����	� 	 	����

������� rudder ������ 	 ���


���	��� washout �lter ��	��� 	 	���

�

The system has been made stable� although there is not a great improvement in

the conditioning�

�F �V � � �����
��� ���

�

	��



However� the new mode input and output coupling vectors are

G�a �

�
���������

	 ������ � ������i

	 ������ � ������i

������� � ����
�i 	

������� � ����
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� ���
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�
���������

	 ����
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�i

������� � ������i 	

����	� � ����
�i ����	
 � ������i

������ � �����
i ������� � ���	��i

�
���������
� ���
��

respectively� We see that we have retained the desired level of output decou�

pling and have also reduced the level of input decoupling to a satisfactory level�

The closed loop output and input responses are given in Figures ��	� and ��	
�

respectively�
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Figure ��	
� New closed loop input responses

In Figure ��	� we can see that almost exact decoupling has been achieved for

initial conditions on both sideslip angle and bank angle� We have also obtained

the desired levels of input decoupling� In addition we have stabilised the system

and slightly improved its robustness�

	��



����� Apply unrestrictedminimisation algorithm �for con�

ditioning�

We have managed to obtain satisfactory performance in terms of input�output

decoupling� but have not signi�cantly reduced the sensitivity of the system� Here

we attempt to reduce the conditioning by weighting out the left vector matching

requirement from the algorithm� Again Method � is used to �nd an initial� real

vector set V � Thus� the minimisation is run with the weightings

�	�

�
� 	�

�
� � ��� 	�� ���
��

with the alternative scaling theory implemented� giving

sweeps objective function kG�d �G�ak�F �F �V �

� ������e � �� 
��	��e � �� 
�		��e � ��

	 
�����e � �� 	��	��e � �	 	����	e � ��

�

When the feedback is reconstructed� the new closed loop system is unstable for all

combinations of real and complex conjugate pairs of eigenvalues allowed to appear

in �� and ��� using the diagonal solver� The unstable eigenvalue is not as far from

the imaginary axis as in Section ������ but is still unacceptable� We therefore use

the constrained diagonal solver as in Section ����� and� after experiments� choose

to restrict

��� � ���� ���
��

We are not restricting the actual closed loop eigenvalue to lie to the left of the

Re���j� � ��� line �unless the problem is solved exactly�� but are moving ��� by

a large amount so that �� does not cross into the closed right hand plane� The

new closed loop feedback is

K� �

�
��
���
�� �����
	 	�		�� ������

������ 
����� ������� ������

�
�� � ���
��
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The new closed loop eigenvalues are

closed�loop eigenvalue frequency damping sensitivity

����� � ����i ����

 ��
��� �����

�	��	

� 	��	

� 	 	��	���

������� ������ 	 	
��		�

�	���
�� 	���
�� 	 ��
��	

������� ������ 	 �����

���			� ��			� 	 	�����

�

We can see that the system has now been stabilised and the individual eigen�

value sensitivities are very low� The condition number of the eigenvectors of the

closed loop system is

�F �V � � �������� ������

which has been reduced by a further order� The input and output coupling vectors

are not included here as they were not weighted in the algorithm� and have not

improved� The closed loop output and input responses are given in Figures ��	�

and ��	�� respectively�
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Figure ��	�� New closed loop input responses

From these response diagrams we can see that the reduction in the system

sensitivity is at the expense of introducing increased oscillatory motion� We also

see that we have increased the level of coupling between the bank angle and

sideslip angle in both the output and input responses�

	�	



����� Example � conclusions

Example 	 has been used to test our methods with two di�erent choices for the

sets of desired eigenvalues� For the �rst set� we decreased the level of input

coupling� but at the expense of increasing the level of output coupling� We also

obtained new closed loop systems with lower sensitivity measures� The second

desired eigenvalue set resulted in an unstable original closed loop system� which is

a problem when only assign a certain number of modes� We successfully applied

our algorithms to stabilise the system� reduce its sensitivity and obtain reduced

levels of input coupling�

The results for Example 	 illustrate that it is not generally possible to obtain

exactly all of the design speci�cations� but that there is a trade�o� necessary

between the individual requirements�

��� Example �

The second example is taken from Smith ���
 and is a generic model of a VSTOL

aircraft which uses vectored thrust from a single jet engine� For a �ight condition

of 	�� knots and 	�� feet the longitudinal state vector� input vector and output

vector are

x �

�
�������������������������������




q

u

w

�

�


j


fn


hn

qf

�
�������������������������������

pitch attitude

pitch rate

longitudinal body velocity

normal body velocity

tailplane angle

throttle position

nozzle angle

engine fan speed

engine compressor speed

engine fuel �ow

� ����	�

	��



u �

�
������


d

ud

�d

�
������

pitch attitude demand

airspeed demand

�ightpath angle

� y �

�
���������




U�

�

q

�
���������

pitch attitude

airspeed

�ightpath angle

pitch rate

� ������

respectively� The system matrices are given by

A�cols� 	 � �� �

�
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� 	 � � �
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The open loop eigenvalues of the system are

open�loop eigenvalue frequency damping sensitivity
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The condition number of the right eigenvectors is

�F �V � � 
�	������ ������

We now perform partial eigenstructure assignment to again see the error in the

matching of the left eigenvectors�
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��� Partial eigenstructure assignment

For this system� rank �C� � 
� so that we can assign �almost exactly�� four closed

loop eigenvalues� These are chosen to be

�p �

������	
�����


����� ���i pitching

���� speed mode

���� �ightpath mode

������

with the corresponding desired mode output and input coupling vectors

G�d �

�
���������

	 	 � �

� � 	 �

� � � 	

x x � �

�
���������
� G�d �

�
���������

	 � �

	 � �

� 	 �

� � 	

�
���������
� ������

respectively� These mode input and output coupling vectors are chosen so as to

decouple pitch attitude from airspeed and �ightpath angle� and to decouple both

airspeed and �ightpath angle from the other three modes� For each feedback

constructed in this example we present the closed loop output response to an

initial condition of ����o on pitch attitude �all other initial conditions are zero�

and the closed loop response to a step input on pitch attitude� airspeed and

�ightpath angle� Again� the is no feedforward command tracker implemented on

the input responses �see corresponding comment in Section �����

Using Method 	 to �nd an initial closed loop system the feedback gains are

calculated as

K �

�
������

����	
� ������ ���
�
 ��		��

������� ������� ����
� �������

�����
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�
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� ������
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The closed loop eigenvalues for A�BKC are

closed�loop eigenvalue frequency damping sensitivity
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�

The condition number of the eigenvectors of the closed loop system is

�F �V � � 	�		 � 	��� ������

which is quite large� as expected from the sensitivity of the �rst complex mode�

The mode output coupling vectors corresponding to the four desired eigenval�

ues are

G�a �

�
���������

	 � �

� 	 �

� � 	

����� ���i � �

�
���������
� ����	�

These have been normalised so that the greatest element in each column is a one�

and have been achieved exactly� The corresponding mode input coupling vectors

�when normalised so that the largest element �in modulus� in each row is one�

are

G�a �

�
���������

������
 � ���	��i 	 ����		� � ��	���i

������
 � ���	��i 	 ����		� � ��	���i

����	� 	 �������

���	
� ������	 	

�
���������
� ������

From the results we can plainly see that the mode output coupling vectors� G�a

have been achieved to a satisfactory level� the mode output coupling vectors� G�a

have not been� The problem is that the second input �airspeed� is coupled to

	��



pitch attitude� pitch rate and �ightpath angle and the third input ��ightpath

angle� is coupled to pitch attitude� pitch rate and airspeed�

The errors in the matching of the mode output and input coupling vectors are

kG�d �G�ak�F � ������ � 	����

kG�d �G�ak�F � ������ � 	��
� ������

respectively� The aim is to minimise the error� kG�d�G�ak�F � while retaining the

accuracy in the mode output coupling vectors� The original closed loop output

and input responses are given in Figure ��	��
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Figure ��	�� Original closed loop output and input responses

We can see from these diagrams that the pitch attitude demand response is

satisfactory as it is decoupled from both airspeed and �ightpath angle� How�

ever� both of the responses to airspeed demand and �ightpath angle demand are

inappropriately coupled to the other three modes�
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��
�� Apply restricted minimisation algorithm �for de�

coupling�

Our primary aim is to reduce the level of input decoupling apparent in the left

vectors� Thus� our choice of parameter weightings is

�	�

�
� 	�

�
� 	�

�
� � �	� �� ��� ����
�

so that we are allowing the eigenvalues to vary� Note that we have also placed a

zero weighting on the conditioning bound� The results of the minimisation algo�

rithm are

sweeps objective function kG�d �G�ak�F �F �V �
nX
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To �nd the new feedback matrix that best assigns the new set of vectors� �V �

�V�� �V�
� we use the second reconstruction from Section ������
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The closed loop eigenvalues of A�BKC are

closed�loop eigenvalue frequency damping sensitivity

�����	� � ��	���i ������ ������ ������

������� ������ 	 ������

������� ������ 	 ���	�

�	����	� 	����	� 	 ����

�
����� 
����� 	 �	��


�	����
 	����
 	 	�����

�	��		�� 	��		�� 	 	�
�

������� � ������i ��	��
 ����

 ���	�

�

From these results we see that� although the left eigenspace error was weighted

zero� the eigenvalues have not moved by much� However� we have increased the

individual sensitivities of the eigenvalues� The condition number of the eigenvec�

tors of the closed loop system is

�F �V � � 	����� � 	��� ������

This is not surprising� since the conditioning was not included in the minimisation�

The new mode input coupling vectors are
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���������
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so that� even though we have not achieved the perfect decoupling required� we

have improved the decoupling so that the largest element �in modulus� is in the

correct place in each row� The corresponding mode output coupling vectors are

G�a �
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This improvement in the input decoupling has been achieved at the expense cou�

pling the airspeed into the pitching mode� which shows that we cannot look at
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the output and input coupling vectors independently� but must look how each

input e�ects each output� The new minimised output and input responses are

presented in Figure ��	�� From these diagrams we can see the input and output
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Figure ��	�� New closed loop output and input responses

coupling introduced between pitch attitude and airspeed� However� our minimi�

sation on the left vectors has reduced the levels of input coupling between input

� �airspeed� and �ightpath angle and between input � ��ightpath angle� and

pitch attitude�pitch rate� The robustness of the system has increased slightly�

	�	



this again illustrates the balance to be obtained between levels of input�output

coupling� stability and robustness�

��
�� Apply restricted minimisation algorithm �for con�

ditioning�

In Section ����	 we reduced the level of input decoupling� but at the expense of

an increase in the sensitivity of the eigenvalues � This problem was run with the

weightings �	�

�
� 	�

�
� 	�

�
� � ��� 	� ��� but resulted in an unstable system� Therefore

we include a weighting on the left eigenspace error to restrict the eigenvalue move�

ment� Our chosen weightings are thus
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The results of the minimisation are

sweeps objective function kG�d �G�ak�F �F �V �
nX

i	�

kwT
i
�Tik

�

�

� 
�����e � �
 ������e � �� 	�		
	e � �� ��
	�
e � ��

	 ������e � �� ������e � �
 ��
���e � �� ������e � ��

�

Using the �rst reconstruction of the feedback as in Section ���� we obtain
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with the new closed loop eigenvalues

closed�loop eigenvalue frequency damping sensitivity
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From these results we can clearly see that we have reduced the individual eigen�

value sensitivities by a substantial amount� This is re�ected in the condition

number of the eigenvectors of the closed loop system�

�F �V � � ��������� ����	�

We also notice that we now have an extra complex mode� one of the pair being

one of the assigned modes� Since the left vector matching was not weighted� the

mode input coupling vectors have not improved and so are not given here� The

new minimised output and input responses are presented in Figure ��	��

	��



output response to       θ (0)=0.05 o

pitch attitude   

airspeed         

flight path angle

pitch rate       

0 2 4 6 8 10 12 14 16 18 20
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time (secs)

A
m

p
lit

u
d
e

0 2 4 6 8 10 12 14 16 18 20
−12

−10

−8

−6

−4

−2

0

2

Time (secs)

A
m

p
lit

u
d
e

pitch attitude demand

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

30

40

50

60

70

80

Time (secs)

A
m

p
lit

u
d
e

airspeed demand

0 2 4 6 8 10 12 14 16 18 20
−40

−30

−20

−10

0

10

20

30

Time (secs)

A
m

p
lit

u
d
e

flightpath angle demand

Figure ��	�� New closed loop output and input responses

We can see that we have retained the desired level of output decoupling due to

an initial condition on the pitch attitude� Also� while the airspeed has not been

coupled into pitch attitude as previously� �ightpath angle has been� An increase

in the coupling is expected due to the vast improvement in the robustness of the

system�
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��
�� Apply unrestrictedminimisation algorithm �for de�

coupling and conditioning�

We have successfully applied the restricted minimisation algorithm to reduce the

level of input coupling and improve the robustness of the system� Here we use the

unrestricted minimisation algorithm to obtain both of these system requirements

simultaneously� We �nd an initial� real vector set by implementing Method � and

choose the weightings

�	�

�
� 	�

�
� � �	� 	�� ������

We run the minimisation� using the alternative scaling method as in Section ��	��

giving the results
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We construct a new feedback using the diagonal solver� allowing one complex

mode in both the assigned and unassigned modes�
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The new closed loop eigenvalues are

closed�loop eigenvalue frequency damping sensitivity
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The individual eigenvalue sensitivities have reduced by a small amount� the con�

dition number of the eigenvectors of the closed loop system is
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The new mode input coupling vectors are
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so that� even though we have not achieved the perfect decoupling required� we

have improved the decoupling so that the largest element �in modulus� is in the

correct place in each row� The corresponding mode output coupling vectors are
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Only a small level of coupling has been introduced between the pitching mode

and airspeed� but there is substantial coupling between the fourth mode and

pitch attitude and airspeed� The new minimised output and input responses are

presented in Figure �����
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Figure ����� New closed loop output and input responses

The output response diagram clearly shows the increased level of output cou�

pling� So� although we have apparently reduced the levels of input coupling from

G�a� this improvement has been lost due to the coupling in the outputs� This

again shows the need to consider the links between the input and output coupling

vectors simultaneously� Despite these coupling increases� we have still reduced

the sensitivity of the system�
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��
�	 Example � conclusions

For this example we have applied both the restricted and unrestricted minimisa�

tion algorithms� We have obtained results such that the level of input coupling

has been reduced and the robustness of the system improved� We noted the need

to consider the mode output and input coupling vectors simultaneously since the

improvement in the input decoupling may be lost due to increased coupling in

the outputs�

Even though we improved the level of input decoupling� we did not manage to

obtain the speci�ed level� but we did in Example 	� This is probably due to the

fact that the system in Example � has three more state variables than in Example

	� but only one more control variable� Since the dimension of the subspace from

which the new minimisation vectors are chosen is equal to the number of control

variables� there is an even more limited choice for the vectors�

��� Conclusions

We have given new methods for performing eigenstructure assignment with spe�

ci�c consideration of the left eigenvectors to reduce the level of input coupling in

aircraft problems� Previous work concentrated on assigning a set of right eigen�

vectors to control the output coupling� Smith ���
 identi�ed the need to consider

the left eigenvectors in addition� However� no direct work was performed on the

left eigenvectors beyond solving the whole problem using an optimisation package

with a constraint on the left eigenvectors� We have extended this by producing

two minimisation routines that balance the levels of input and output decoupling�

The level of output decoupling remains constant throughout the algorithms� but

its exact attainment is relaxed by the feedback construction� Also� we have in�

cluded a measure on the robustness of the system� which is important in addition

to the decoupling requirements�

We have illustrated our extensions to the work by applying our techniques to

two aircraft examples� In Example 	� we obtained the desired levels of decoupling

for both the inputs and the outputs� For Example �� we improved the balance

of the decoupling by improving the input decoupling at the expense of the level

	��



of the output decoupling� For both examples we also reduced the conditioning

of the systems� so increasing their robustness� Our results demonstrate that

the trade�o� between aircraft �ight performance� stability and robustness can be

achieved�

The minimisation criteria have individual weightings� we thus have a �exible

design tool with parameters that can be altered in respect to the design speci�ca�

tions� We have demonstrated that� for our chosen formulation of the problem� our

methods are numerically e�cient in comparison to an optimisation package �as

in Section ����� The minimisation routines are clever in the way that a non�linear

problem is reduced to a simple linear least squares system by a choice of scaling�

Therefore� we have developed an e�cient� �exible design tool for aircraft �ight

control system design that simultaneously balances the levels of input and output

decoupling and the robustness of the system�

In the next chapter we summarise this thesis� We indicate areas of improve�

ment and possible extensions to our work�
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Chapter �

Conclusions and extensions

In this thesis� we have addressed the problem of satisfactory �ight control using

eigenstructure assignment techniques� Speci�cally� we have illustrated shortcom�

ings in previous work with respect to the consideration of both the left and right

eigenvector sets corresponding to a set of desired eigenvalues� Generally� this

problem is not exactly solvable� hence we presented two minimisation techniques

to best meet the design speci�cations�

In Chapter � we introduced general control systems� their governing equations

and their characteristics� We gave a general comment on feedback for the purpose

of eigenstructure assignment and outlined our interest in aircraft problems� We

then reviewed the literature on eigenstructure assignment and its application to

aircraft problems�

In Chapter 	 we gave an outline of the derivation of the aircraft equations

of motion� It was shown how a highly non�linear system could be reduced� via

linearisations and certain �ight state assumptions� into a state space matrix for�

mulation�

In Chapter 
 we gave the background theory to current eigenstructure assign�

ment techniques� including the theory for both full and partial system assignment�

We then related this theory to the speci�cations of aircraft problems and gave an

example to illustrate the importance of considering the left eigenvectors in addi�

tion to the right eigenvectors to control the levels of input and output coupling�

respectively� Smith ���
 identi�ed the worth in assigning desired left vectors� but

little was done beyond using an optimisation package on the whole problem�
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In Chapter � we extended this work to control the left vectors directly� We

obtained a set of right vectors that gave exactly the desired output decoupling

level� We then developed a minimisation technique that retained these vectors

and improved the matching of the left vectors by choosing iteratively a new set

of the unassigned right vectors� Consideration was also given to the conditioning

of the vectors� and to the error of the left vectors from their correct subspaces�

This was formulated as a multi�criteria minimisation method with weightings

chosen by the designer� The problem was non�linear� but was reduced into a

linear least squares form by a choice of right vector scaling� We gave results

of the routine with various weighting values� Good results were obtained but

the small dimension of the subspaces from which vectors were chosen had the

e�ect that the objective function value was reduced considerably in the �rst few

sweeps� but further reductions took a lot of work� With this in mind� we presented

two scalings on the retained set of right vectors to further reduce the left vector

matching error�

The results of Chapter � were constrained by the fact that the minimisa�

tion vectors were restricted to be in certain subspaces� in Chapter � we removed

this restriction� We speci�ed no eigenvalues for the new vectors to correspond

to� these vectors were allowed to be anywhere in complex space� The theory

was similar to that in Chapter �� except that there were only two criteria in the

minimisation because of the removal of the left eigenspace error� By letting the

vectors lie anywhere in complex space� we were obtaining a set of vectors that

were not self�conjugate� We thus gave three methods for calculating an initial set

of real vectors using the real and imaginary part formulation� these were used as

the starting point for the minimisation routine� The results showed that� when

the vector conditioning was weighted to zero� the left vector matching error could

be reduced to zero very quickly� This was not the case when the conditioning was

introduced� but good results were still obtained with a high relative weighting on

the left vector matching�

Both Chapters � and � gave a set of vectors that reduced an objective function�

but had no feedback matrix that assigned these vectors� The aim of Chapter �

was thus to �nd a feedback that best assigned the set of vectors obtained from
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the minimisation routine� Since we were trying to assign all of the vectors� our

aim was to perform full eigenstructure assignment� This has the advantage over

partial eigenstructure assignment where there is no control over the unassigned

modes� which can go unstable� Full eigenstructure assignment is not generally

possible� but we derived errors for two feedback constructions for the restricted

minimisation� proving that these errors were both related to the left eigenspace

error� These constructions relied upon knowing a full set of eigenvalues� not the

case for the unrestricted minimisation�

To �nd a feedback that best assigned the unrestricted minimisation vectors�

we developed a method �diagonal solver� that produced a feedback matrix while

attempting to �nd a set of eigenvalues� Unless the problem was solved exactly�

these values would di�er from the �nal closed loop eigenvalues� However� we

showed a bound on this error� one component of which was the condition number

of the vectors� We also included a constrained version of our method using a

NAG minimisation routine�

We thus had two core methods for obtaining a set of vectors to minimise

some objective function� and various methods for constructing a feedback to best

assign these vectors� In Chapter �� to illustrate all of this theory� we presented

two examples from the aircraft industry� These examples were used to test both

the restricted and unrestricted minimisation algorithms with various parameter

weightings to improve the matching of the left vectors and�or the sensitivity of

the system whilst retaining an assigned set of right vectors� The examples il�

lustrated that our methods achieved a balance between the levels of input and

output decoupling� Exact output decoupling could be achieved by standard par�

tial eigenstructure assignment� the minimisation algorithms and the construction

of the feedback relaxed the exact attainment of the right vectors to reduce the

error of the matching of the left vectors� We also signi�cantly reduced the value

of the conditioning of the systems considered� Thus� we demonstrated the achiev�

able trade�o� between the design speci�cations of performance� levels of coupling�

stability and robustness� However� the results would bene�t from a full non�linear

simulation and appraisal from experienced aerospace engineers�

There are some extensions to this work that could be explored� which would
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improve our results� If we wish the eigenvalues to move� then we have to put a

low relative weighting on the left eigenspace error� It would be an improvement

if it were possible to allow the eigenvalues to be constrained to certain regions

that would correspond to speci�ed areas of frequency and damping�

The main area where an improvement could be made is in the �re�construction

of the feedback� We managed to obtain vectors that give good decoupling� but

lose some of this accuracy in the feedback construction� It would certainly be

bene�cial if it were possible to choose the feedback at the same time as the

vectors are updated so that� at the end of the minimisation routine� we have a set

of vectors and a feedback matrix that assigns these vectors� We have looked at

an idea of using the Gershgorin circle theorem to give bounds on the elements of

the feedback to satisfy stability requirements for the positions of the closed loop

eigenvalues� The left vector matching error could then be minimised subject to

the inequality constraints placed on the elements of K� Initial studies suggest

that this may be too restrictive as there may not be a feasible region satisfying

the constraints�

It is also possible to solve the whole problem using an optimisation package�

The design speci�cations would be the levels of input and output coupling� areas

of frequency and damping for the eigenvalues� and robustness� The problem

could be optimised over the region of the possible eigenvalue positions to generate

a feedback matrix� Our experiments indicate that these programs can take a

number of hours to generate a solution that may only be a local optimum�

In conclusion� the problem of using eigenstructure assignment to obtain a

number of design speci�cations in the aircraft industry is not solvable exactly�

Previous work omitted the consideration of the left eigenvectors� we have devel�

oped e�cient methods to balance the levels of input and output decoupling and

to reduce the sensitivity of a system� We have highlighted the possible extensions

that could be investigated to improve this work�
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