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Abstract

A generalised prime system P is a sequence of positive reals p1, p2, p3, ... satisfying

1 < p1 ≤ p2 ≤ ... ≤ pn ≤ ... and for which pn −→ ∞ as n −→∞. The {pn}

called generalised primes (or Beurling primes) with the products pa1
1 .p

a2
2 ....p

ak
k

(where k ∈ N and a1, a1, ..., ak ∈ N ∪ {0}) forming the generalised integers (or

Beurling integers).

In this thesis we study the generalised (or Beurling) prime systems and we

examine the behaviour of the generalised prime and integer counting functions

πP(x) and NP(x) and their relation to each other, including the Beurling zeta

function ζP(s).

Specifically, we study a problem discussed by Diamond (see [7]) which is to

determine the best possible β in NP(x) = ρx + O(xe−c(log x)β), for some ρ > 0,

given that πP(x) = li(x) + O(xe−(log x)α), α ∈ (0, 1). We obtain the result that

β ≤ α.

We study the connection between the asymptotic behaviour (as x → ∞) of

the g-integer counting function NP(x) (or rather of NP(x)− ax ) and the size of

Beurling zeta function ζP(σ+ it) with σ near 1 (as t→∞). We show in the first

section how assumptions on the growth of ζP(s) imply estimates on the error term

of NP(x), while in the second half we find the region where ζP(σ + it) = O(tc),

for some c > 0, if we assume that we have a bound for the error term of NP(x).

Finally we apply these results to find O and Ω results for a specific example.
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Chapter 1

Introduction

In the late nineteenth century, Weber (see [30]) defined N(x) to be a number of

the integral ideals in a fixed algebraic number field F with the norm not exceeding

x and proved that N(x) = ax + O(xθ), as x → ∞ for some a > 0 and θ < 1.

Early in the twentieth century, Landau (see [22]) used Weber’s result and the

multiplicative structure to prove the Prime Ideal Theorem, which asserts that

the number of the distinct prime ideals of the ring of integers in an algebraic

number field F with the norm not exceeding x is asymptotic to x
log x

, as x tends

to infinity. His result showed that the only ‘additive’ result needed was Weber’s.

Developing Landau’s idea, Arne Beurling in 1930s introduced generalised (or

Beurling) primes. In his definition, from any sequence of reals P = {p1, p2, p3...}

satisfying

1 < p1 ≤ p2 ≤ ... ≤ pn ≤ ..., and pn →∞ as n→∞

called ‘generalised primes’, can be formed the sequence of generalised (or Beurl-

ing) integers N formed by the products of the form
∏k

i=1 p
ai
i , where k ∈ N and

ai ∈ N ∪ {0}.

In this sense, Beurling generalises the notion of prime numbers and the natural

numbers obtained from them. The generalised primes need not be actual primes,

nor even integers and the generalised integers need not to be a uniquely factoris-

able. Therefore, P and N are not sets in general, but multisets where elements

can occur with a certain multiplicity. Beurling defined πP(x) to be the counting
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function of g-primes less than or equal to x and NP(x) to be the counting func-

tion of g-integers less than or equal to x (counting multiplicities). Beurling was

interested to see under which conditions on N and the multiplicative structure,

a Prime Number Theorem holds.

In 1937, Beurling proved (see [6]) that if NP(x) = ax + O
(

x
(log x)γ

)
for some

a > 0 and γ strictly greater than 3
2
, then πP(x) ∼ x

log x
. This is called the Beurling

Prime Number Theorem.

Such systems along with the generalised zeta function ζP(s) =
∑

n∈NP n
−s

have been studied by numerous authors since then (see in particular the mono-

graph by Bateman and Diamond [5], and papers by Diamond [9], [7], [10], [8],

Hall [13], Malliavin [24] and Nyman [25] and more recently Kahane [20], La-

garias [21]). It continues to be an active subject to this day.

Much of the research on this subject has been about connecting the asymptotic

behaviour of the g-prime and g-integer counting functions,

πP(x) =
∑

p≤x,p∈P

1, NP(x) =
∑

n≤x,n∈N

1.

Although Beurling answered the question of when the Prime Number Theorem

holds, there are many more questions regarding these systems. For example, one

can look to the corresponding errors (πP(x) − li(x) and NP(x) − ax) and how

they relate to each other.

Outline of thesis

The main aim of this thesis is to advance some new techniques and to give suitable

examples to highlight interactions between πP and NP and ζP . Specifically, we

study a problem discussed by Diamond in Theorem 3.3b (see [7]). He proved that

πP(x)− li(x) = O(xe−(log x)α) for some α ∈ (0, 1), (1)

implies

NP(x) = ρx+O(xe−c(log x)β) for some ρ, β > 0. (2)
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The problem is to determine the best possible (i.e. largest possible) β, given α.

Furthermore, we investigate the connection between the size of the Beurling

zeta function ζP(σ + it) with σ near 1 (as t→∞) and the error term of NP(x).

As part of this investigation, if we assume that ζP(s) has polynomial growth in

a region near σ = 1, what can be said about the behavior of NP(x) (as x→∞)

and vice versa?

Now we give a brief outline of thesis structure.

In Chapter 2 we introduce in the first part relevant concepts and known

results which we require in Chapters 3-6 such as the Riemann-Stieltjes integral

and Riemann-Stieltjes convolution. In the second part we present known lower

and upper bounds for the Riemann-zeta function ζ(s) in the strip 0 ≤ <s ≤ 1.

Additionally, we mention upper bounds for ζ(s) which are conditional on the

truth of the unproved Riemann hypothesis.

In Chapter 3 we give background to Beurling (or generalised) prime systems

and the associated Beurling zeta function and put the theory in its historical

context. First, we introduce discrete g-prime systems with some examples, while

in the second section we will define the ‘continuous’ version of g-prime systems

with some examples. Here πP and NP are still increasing functions but need not

be step functions. Now ζP is defined as the Mellin transform of NP . That is,

ζP(s) =

∫ ∞
1−

x−sdNP(x).

In the last part, we list relevant known results which are necessary for our work.

In Chapter 4 we introduce Diamond’s problem (as mentioned above). Dia-

mond in 1970, proved that given (1), (2) holds with β = α
1+α

(see [8]). In 1998,

Balanzario [3] proved (by giving a concrete continuous example) that there exists

a continuous g-prime system for which (1) holds and

NP(x) = ρx+ Ω±(xe−c(log x)β), (3)

holds for some positive constants ρ and c with α = β = 1
2
. Thus optimal β lies

between 1
3

and 1
2

(in case α = 1
2
).

3



In the first section of this chapter, we generalise Balanzario’s result by adapt-

ing his method to show that for any 0 < α < 1 there is a continuous g-prime

system for which (1) and (3) hold with β = α. Thus we cannot (in general) make

β > α.

In the second half of this Chapter we use the method developed by Diamond,

Montgomery, Vorhauer [11] and Zhang [31] to prove by using (the theory of)

probability measures that there is a discrete system of Beurling primes satisfying

(1) and (3) which is similar for the continuous system as in first section.

Finding discrete examples is typically more challenging since one cannot con-

trol the various growth rates (of πP(x), NP(x) and ζP(s)) so easily.

In Chapter 5, we study the connection between the asymptotic behaviour (as

x→∞) of the g-integer counting function NP(x) (or rather of NP(x)− ax ) and

the size of Beurling zeta function ζP(σ + it) with σ near 1 (as t → ∞). Using

just analysis, we show in the first section how assumptions on the growth of ζP(s)

imply estimates on the error term of NP(x). In the second half we find the region

where ζP(σ + it) = O(tc), for some c > 0, if we assume that we have a bound for

the error term of NP(x). This implication is more challenging if NP(x) − ax is

Ω(x1−ε) ∀ε > 0, since we do not automatically have the analytic continuation of

ζP(s) for <s < 1, and perhaps constitutes the deepest result of this thesis.

In Chapter 6, we study a particular example to which the Theorems of Chapter

5 can be applied. The example gives very precise knowledge about the asymptotic

behaviour of Beurling counting function of primes, ψP(x). It was initially hoped

that this could provide a useful example for Diamond’s problem in the case α = 1.

In this example the Beurling zeta function ζP(s) is directly connected to the

Riemann zeta function. This gives improved lower and upper bounds to the error

term of NP(x) as well as conditional upper bound with the truth of the unproved

Riemann Hypothesis.

We finish this Chapter by showing that with this example we have a g-prime

system.
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Chapter 2

Preliminary concepts

In this chapter we will give details of some relevant concepts and known results

which we shall need in Chapters 3-6. In particular, for the definitions of gener-

alised prime systems (especially the continuous version) we need the Riemann-

Stieltjes integral and Riemann-Stieltjes convolution.

In the second half of this chapter we summarize some (relevant) results about

the Riemann-Zeta function. In particular, we will give a brief survey of some

of the known lower bounds for the Riemann-Zeta function in the critical strip

0 < σ < 1. We consider also the upper bounds for the Riemann-Zeta function

which are unconditional bounds in that strip and those which are conditional on

the unproved Riemann Hypothesis.

We begin with the Riemann-Stieltjes integral.

2.1 Riemann-Stieltjes integral

Let f and α be bounded (real or complex) functions on [a, b]. Let P = {x0, x1, x2, ··

·, xn} be a partition of [a, b] and let tk ∈ [xk−1, xk] for k = 1, 2, · · ·, n. We define

a Riemann-Stieltjes sum of f with respect to α as

S(P, f, α) =
n∑
k=1

f(tk)
(
α(xk)− α(xk−1)

)
.

Definition 1. A function f is Riemann Integrable with respect to α on [a, b], if

there exists r ∈ R having the following property: For every ε > 0, there exists a
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partition Pε of [a, b] such that for every partition P finer than Pε and for every

choice of the points tk in [xk−1, xk], we have |S(P, f, α)− r| < ε. As such, we say

the Riemann-Stieltjes integral
∫ b
a
f(x) dα(x) exists and equals r.

We need the following theorems in Chapter 3.

Theorem 2.1. If f ∈ R(α) on [a, b], that is, f is Riemann Integrable with respect

to α on [a, b], then α ∈ R(f) on [a, b] and we have∫ b

a

f(x) dα(x) = f(b)α(b)− f(a)α(a)−
∫ b

a

α(x) df(x).

Theorem 2.2. Assume f ∈ R(α) on [a, b] and assume that α has a continuous

derivative α
′

on [a, b]. Then the Riemann Integral
∫ b
a
f(x) α

′
(x) dx exists and we

have ∫ b

a

f(x) dα(x) =

∫ b

a

f(x) α
′
(x) dx.

Proof. See Theorem 7.6. and Theorem 7.8. in [1].

We shall need the notion of bounded variation.

Definition 2. The function α : [a, b] −→ C is said to be of bounded variation on

[a, b] if and only if there is a constant M > 0 such that

n∑
k=1

|α(xk)− α(xk−1)| ≤M,

for all partitions P = {x0, x1, x2, · · ·, xn} of [a, b]. As such the total variation of

α on [a, b] is defined to be

Vα(a, b) = sup
P

n∑
k=1

|α(xk)− α(xk−1)| ,

where the supremum runs over the set P of all partitions of [a, b].

The function α : [a,∞) −→ C is said to be locally of bounded variation if

the variation of α on each compact subinterval [b, c] ⊂ (a,∞) is finite.

Now, we are able to introduce the Riemann-Stieltjes convolution. Let S denote

the space of all functions f : R 7−→ C such that f is right-continuous and of local
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bounded variation with f(x) = 0, ∀x ∈ (−∞, 1). Let S+ ⊆ S such that for any

f ∈ S+, f is an increasing function. For a ∈ R, let Sa = {f ∈ S : f(1) = a} and

S+
a = Sa ∩ S+.

Definition 3. For any f, g ∈ S, we define the convolution (or Riemann-Stieltjes

convolution) by

(f ∗ g)(x) =

∫ x

1−
f

(
x

t

)
dg(t).

We note that (S, ∗) is a commutative semigroup and the identity (with respect

to ∗) is i(x) = 1 for x ≥ 1 and zero otherwise.

We require the following properties from the literature which are necessary

for this work:

1. If f or g is continuous on R, then f ∗ g is continuous.

2. For f ∈ S1, there exists g ∈ S0 such that f = exp∗ g. That is,

f =
∞∑
n=0

g∗n

n!
,

where g∗n = g ∗ g∗(n−1) and g∗0 = i. The above series converges in S (see

section 2.1. in [7]).

3. f = exp∗ g if and only if f ∗ gL = fL, where fL ∈ S defined for x ≥ 1 by

fL(x) =
∫ x

1
log t df(t).

4. For f, g ∈ S define the Mellin transform of f by

f̂(s) =

∫ ∞
1−

x−sdf(x).

We note that f̂ ∗ g = f̂ ĝ and êxp∗ f = exp f̂ whenever the transforms

converge absolutely.

Further details of the above properties are in [15].
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2.2 The Riemann zeta function

We will move our attention to the Riemann zeta function which we need for

later chapters. In particular, we shall give a brief survey of some of the known

results for the order of the Riemann Zeta function in the critical strip 0 < σ < 1.

We consider both unconditional results and those results conditional upon the

Riemann hypothesis.

Definition 4. The Riemann zeta function is defined for <s > 1

ζ(s) =
∞∑
n=1

1

ns
.

The above series converges absolutely and locally uniformly in the half-plane

<s > 1 and defines a holomorphic function here. Moreover, ζ(s) has an analytic

continuation to the whole complex plane except for a simple pole at 1 with residue

1 and is of finite order (i.e. ζ(σ + it) = O(tA), for some A > 0 dependent on

σ). The Riemann zeta function ζ(s) had been studied by Euler (1707-1783) as a

function of real variable s. The notion of ζ(s) as a function of complex variable

s = σ + it, (σ, t ∈ R) is due to B. Riemann (1826-1866). As is well known,

there is an intimate connection between the Riemann zeta function and prime

numbers. This connection comes from the Euler product representation for the

zeta function given as follows:

ζ(s) =
∏

p prime

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ · · ·

)
=

∏
p prime

(
1− 1

ps

)−1

.

This infinite product converges for σ > 1.

The term ‘critical strip’ refers to the region {s ∈ C : 0 < <s < 1}. The loca-

tion of the zeros of the Riemann zeta function inside the critical strip is a matter

of great significance and conjecture. Bernhard Riemann (1826 - 1866) observed

that the frequency of prime numbers is very closely related to the behavior of the

zeros of ζ(s). He conjectured that all non-trivial zeros of ζ(s) have real part 1
2
.

This is known as the Riemann Hypothesis.

We remark here that information about these zeros is crucial in analytic num-

ber theory and the distribution of primes. There are no zeros for <s > 1 (from
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the Euler product) nor for <s < 0 (by the Functional Equation) except for so

called ‘trivial zeros’ at −2n (n ∈ N). Furthermore, it is well known that no zeros

of ζ(s) lie on either of the lines <s = 1 and <s = 0 (see [29]). Note that ζ(s) is

the Mellin transform of [x] (see [2]).

Notation

We define the big oh notation O (or�), little oh notation o, asymptotic equality

of functions ∼ and Ω notation as follows:

Definition 5. If g(x) > 0 for all x ≥ a, we write

f(x) = O(g(x)) or f(x)� g(x),

to mean that the quotient
∣∣∣f(x)
g(x)

∣∣∣ is bounded for x ≥ a; that is there exists a constant

M > 0 such that

|f(x)| ≤Mg(x), for all x ≥ a.

An equation of the form f(x) = h(x)+O(g(x)) means that f(x)−h(x) = O(g(x)).

Definition 6. Let g(x) > 0 for all x ≥ a, then the notation

f(x) = o(g(x)) as x→∞,

means that

lim
x→∞

f(x)

g(x)
= 0.

An equation of the form f(x) = h(x)+o(g(x)) as x→∞ means that f(x)−h(x) =

o(g(x)) as x→∞.

Definition 7. Let g(x) > 0 for all x ≥ a. If

lim
x→∞

f(x)

g(x)
= 1,

we say that f(x) is asymptotic to g(x) as x → ∞, and write f(x) ∼ g(x) as

x→∞.

We define Ω notation as follows:

9



Definition 8. Let F,G be functions defined on some interval (a,∞) with G ≥ 0.

We write

F (t) = Ω(G(t)),

to mean the negation of the F (t) = o(G(t)). That is, there exist a constant c > 0

such that |F (t)| ≥ cG(t) for some arbitrarily large values of t.

Further, we write F (t) = Ω+(G(t)) and F (t) = Ω−(G(t)) if there exist a

constant c > 0 such that F (t) ≥ cG(t) and F (t) ≤ −cG(t) hold respectively for

some arbitrarily large values of t.

We write F (t) = Ω±(G(t)) if both F (t) = Ω+(G(t)) and F (t) = Ω−(G(t))

hold.

Lower bounds for ζ(s) in the critical strip

Now, we give some lower bounds for the Riemann-Zeta function in the strip

1
2
≤ σ ≤ 1. The following lower bounds are taken from the literature.

Theorem 2.3. For any fixed c > 1, logc T ≤ Y ≤ T, T ≥ T0

max
T≤t≤T+Y

∣∣∣∣ζ(
1

2
+ it)

∣∣∣∣ ≥ exp

{
A1

(
log Y

log log Y

) 1
2

}

max
T≤t≤T+Y

|ζ(σ + it)| ≥ exp

{
A2

(log Y )1−σ

log log Y

}
,

1

2
< σ < 1,

max
T≤t≤T+Y

|ζ(1 + it)| ≥ A3 log log Y,

where A1, A2, A3 are positive, absolute constants.

Proof. See Theorem 9.4. [19] page 241.

In his paper (1972), Levinson showed

max
1≤t≤T

|ζ(1 + it)| ≥ eγ log log T +O(1),

where γ is the Euler’s constant (see Theorem 1 in [23]).

Now, we need a lower bound for |ζ(σ + it)| with σ close to 1 which is stronger

than Theorem 2.3. The following result is essentially mentioned in [14] page 345.
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This will be used to facilitate the proof of a result in Chapter 6 as part of our

purpose in that chapter.

Proposition 2.4. For 3
4
≤ σ ≤ 1− log log logN

2 log logN
, we have

max
1<t<N

|ζ(σ + it)| ≥ exp

{
(1 + o(1))

(logN)1−σ

16(1− σ) log logN

}
,

for N ≥ N0 independent of σ.

Proof. Take 3
4
≤ σ ≤ 1 in [14, Corollary 3.4] we get

max
1<t<N

|ζ(σ + it)| ≥ βσ(N
1
8 )− 1.

Here

βσ(N) = sup
‖a‖2=1

√√√√ N∑
n=1

|bn|2,

where a = (an)n∈N ∈ l2 and bn = 1
nσ

∑
d|n d

σad. Here ‖a‖2 =

(∑∞
k=1 |ak|

2

) 1
2

. We

have a lower bound for βσ(N) (see [14, Page 354]) which tells us that

βσ(N
1
8 ) ≥ max

n≤N
1
8

√
ησ(n),

where ησ is the multiplicative function given by

ησ(n) =
1

d(n)

∑
d|n

σ−σ(d)2.

Now, for n is squarefree we have

ησ(n) =
∏
p|n

ησ(p) =
∏
p|n

1

2

(
1 + (1 +

1

pσ
)2

)
.

To set a large value of ησ(n), we take n to be a product of the primes up to

some P . That is, n = 2 · 3 · · · P , where P is chosen so that

2 · 3 · · · P ≤ N
1
8 < 2 · 3 · · · P · P ′ .

Here P
′

is the next prime after P. So, log n ∼ P ∼ 1
8

logN by Prime Number

Theorem. Therefore, we have

ησ,2(2 · 3 · · · P ) =
∏
p≤P

1

2

(
1 + (1 +

1

pσ
)2

)
≥
∏
p≤P

(1 +
1

pσ
).
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Thus,

log ησ,2(2 · 3 · · · P ) ≥
∑
p≤P

log(1 +
1

pσ
) ≥

∑
p≤P

1

pσ
− 1

2

∑
p≤P

1

p2σ
≥
∑
p≤P

1

pσ
− ν,

for some absolute constant ν > 0, since x ≥ log(1 + x) ≥ x− x2

2
, for 0 ≤ x ≤ 1.

We end the proof of the Proposition by showing that for every ε > 0, and

3
4
≤ σ ≤ 1− log log logN

2 log logN
, we have∑

p≤P

1

pσ
≥ (1− ε) (logN)1−σ

8(1− σ) log logN
, for N ≥ N0(ε).

Now, we have ∑
p≤P

1

pσ
=

∫ P

2−
t−σdπ(t) =

π(P )

P σ
+ σ

∫ P

2−

π(t)

tσ+1
dt.

By the Prime Number Theorem π(x) ≥ (1 − ε) x
log x

for x ≥ x0(ε). This tells us

that, ∑
p≤P

1

pσ
≥ (1− ε)P

1−σ

logP
+ σ(1− ε)

∫ P

2

t−σ

log t
dt− γ.

for some absolute constant γ > 0. Here

σ(1− ε)
∫ P

2

t−σ

log t
dt ≥ σ(1− ε)

logP

∫ P

2

t−σdt =
σ(1− ε)

(1− σ) logP

(
P 1−σ − 21−σ)

Thus, for any ε > 0, and P ≥ P0(ε), we have∑
p≤P

1

pσ
≥ (1− ε)P

1−σ − 2

logP
+ σ(1− ε) P 1−σ − 2

(1− σ) logP
− γ = (1− ε) P 1−σ − 2

(1− σ) logP
− γ.

Now, we have P ∼ 1
8

logN. So,

P 1−σ − 2

(1− σ) logP
∼ (logN)1−σ

8(1− σ) log logN
,

when 1− σ ≥ log log logN
2 log logN

(actually, for (1− σ) log logN ≥ 1). Therefore, from the

above for 1− σ ≥ log log logN
2 log logN

, we have

max
1<t<N

|ζ(σ + it)| ≥ βσ(N
1
8 )− 1 ≥ max

n≤N
1
8

√
ησ(n)− 1

≥ exp

{
1

2

∑
p≤P

1

pσ
− ν

}
− 1 ≥ exp

{
(1 + o(1))(logN)1−σ

16(1− σ) log logN

}
,

for N ≥ N0 independent of σ. The proof of Proposition 2.4 is completed.
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O−results for ζ(s) in the critical strip

We will give now some O−results for the Riemann Zeta function in the critical

strip 1
2
≤ σ ≤ 1. It is known that ζ(s) has finite order (see [29]). That is, there

exists a positive constant A such that

ζ(s)� tA, for any σ as t→∞.

The Lindelöf function is defined by

µ(σ) = inf{c > 0 : ζ(σ + it)� tc}.

In 1908, Lindelöf proved µ(σ) is continuous, non-increasing, and convex. Since

ζ(s) is bounded for σ ≥ 1 + ε (each ε > 0), it follows that µ(σ) = 0 for σ > 1 and

then from the functional equation that µ(σ) = 1
2
− σ for σ < 0. This equation

also holds by continuity for σ = 1 and σ = 0. Therefore, if we define y = 1
2
− σ

2
to

be the straight line joining the points (0, 1
2
) and (1, 0) on the curve µ(σ), then by

convexity property we see µ(σ) ≤ 1
2
− σ

2
for 0 < σ < 1. In particular, µ(1

2
) ≤ 1

4
.

That is,

ζ(
1

2
+ it)� t

1
4

+ε,

for every ε > 0.

The exact value of µ(σ) is not known for 0 < σ < 1. Lindelöf conjectured that

µ(1
2
) = 0. It is equivalent to ζ(1

2
+ it)� tε for any ε > 0.

Note that the Riemann Hypothesis, which asserts that all of the non-trivial

zeros of ζ(s) lie on the vertical line <(s) = 1
2
, implies the Lindelöf Hypothesis.

Much effort has gone into finding µ(σ) in the critical strip. We have ζ(1
2
+it)�

t
1
6 log t (see Theorem 5.12. in [29]). Small improvements on this result have been

obtained by various different methods. The most recent improvement on this

result is due to Huxley (2005), in which he showed ζ(1/2 + it)� t32/205 logc t for

some c (see [18]). Furthermore, for σ = 1, Richert in his paper (1963) proved

that ζ(1 + it)� (log t)
2
3 . Moreover, he proved for 1

2
≤ σ ≤ 1 that

|ζ(σ + it)| ≤ A(1 + tB(1−σ)
3
2 )(log t)

2
3 , (2.1)

13



with B = 100 (see [27] page 98). More research on this subject has been done to

improve (2.1). In 1975, Elson proved (2.1) with B = 86 and A = 2100, see [12].

Ching in his paper (1999) improved this obtaining (2.1) with B = 46 and A = 175.

Moreover, Heath Brown (in unpublished work (see page 135 in [29])) proved (2.1)

with B = 18.8 and some A > 0.

O−results for ζ(s) on the Riemann Hypothesis

If we assume the truth of the unproved Riemann Hypothesis the bounds can be

improved significantly. This will give us the strongest conditional upper bound

for the Riemann Zeta function available at present in the critical strip 1
2
≤ σ ≤ 1.

For the cases in which σ = 1
2
, and σ = 1, we have

|ζ(1 + it)| ≤ (2eγ + o(1)) log log t, (γ is Euler’s constant),

ζ(
1

2
+ it)� exp

{
A

log t

log log t

}
, for some A > 0.

See Theorem 14.9. and Theorem(A) 14.14. in [29]. For 1
2
< σ < 1, we have

log ζ(s)� (log t)2−2σ − 1

(1− σ) log log t
+ log log log t.

See Section 14.33 in [29].
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Chapter 3

Beurling prime systems

In this chapter we give the necessary background to Beurling (or generalised)

prime systems and the associated Beurling zeta function. It is beneficial to give

historical context to this subject.

In the late nineteenth century, Weber (see [30]) defined N(x) to be the number

of the integral ideals in a fixed algebraic number field F with the norm not

exceeding x and proved that N(x) = ax + O(xθ), as x → ∞ for some a > 0

and θ < 1. Early in the twentieth century, Landau (see [22]) used Weber’s result

and the multiplicative structure to prove the Prime Ideal Theorem, which asserts

that the number of the distinct prime ideals of the ring of integers in an algebraic

number field F with the norm not exceeding x is a asymptotic to x
log x

, as x tends

to infinity. His result showed that the only ‘additive’ result needed was Weber’s.

3.1 Discrete g-prime systems

In 1937, Beurling (see [6]) considered number systems with only multiplicative

structure, and was interested in finding conditions over the counting function of

integers N(x) which ensure the validity of the Prime Number Theorem. Beurling

introduced generalised prime systems as follows:

Definition 9. A generalised prime system P is a sequence of positive reals

p1, p2, p3, ... satisfying 1 < p1 ≤ p2 ≤ ... ≤ pn ≤ ... and for which pn −→ ∞

15



as n −→∞.

The numbers {pn}n≥1 are called generalised primes (or Beurling primes). The

associated system of generalised integers (or Beurling integers) N = {ni}i≥1 can

be formed from these. That is, the numbers of the form

pa1
1 .p

a2
2 ....p

ak
k (∗)

where k ∈ N and a1, a1, ..., ak ∈ N0 (= N ∪ {0}). We shall often refer to g-primes

and g-integers for short. We remark here that P and N =< P > are not sets, but

multisets where elements can occur with a certain multiplicity. Beurling prime

systems generalise the notion of prime numbers and the natural numbers obtained

from them.

The generalised counting functions of primes and of integers are defined in

the natural way as follows

πP(x) =
∑

p≤x,p∈P

1 and NP(x) =
∑

n≤x,n∈N

1. (3.1)

The generalisation of the classical Prime Number Theorem proved by Beurling is

as follows:

Theorem 3.1. [Beurling’s PNT] If NP(x) = Ax+O( x
logγ x

) for some A > 0 and

γ > 3
2
, then πP(x) ∼ x

log x
.

This is an analogue of the Prime Number Theorem. Beurling also showed

that the condition γ > 3
2

is necessary in the sense that there is a ‘continuous

analogue’ of a g-prime system with γ = 3
2

for which the Prime Number Theorem

does not hold. In his paper 1970, Diamond (see [9]) showed (for discrete sys-

tems) Beurling’s condition is sharp, namely, the Prime Number Theorem does

not necessarily hold if γ = 3
2
.

Many of the known results involve the associated zeta function often referred

to as a Beurling zeta function in the literature, which we define formally by the

Euler product

ζP(s) =
∏
p∈P

1

1− p−s
.
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This infinite product may be formally multiplied out to give the Dirichlet series

ζP(s) =
∑

n∈N
1
ns
. This is also the Mellin transform of NP .

The important question in this work is: how do the distributions of P and N

relate to each other?

Much of the research on this subject has been about connecting the asymptotic

behaviour of the g-prime and g-integer counting functions defined in (3.1) as

x −→ ∞. Specifically, given the asymptotic behaviour of πP(x), what can be

said about the behaviour of NP(x)? On the other hand, given the asymptotic

behaviour of NP(x), what can be said about the behaviour of πP(x)? Therefore,

this research concentrates on finding conditions for which results of the type

NP(x) = ax+ E1(x) =⇒ πP(x) = li(x) + E2(x),

or

πP(x) = li(x) + E2(x) =⇒ NP(x) = ax+ E1(x),

hold. Here li(x) =
∫ x

2
dt

log t
, and the error terms E1(x),E2(x) (of NP(x) and πP(x)

respectively) are of orders less than x and li(x).

This research has also concentrated on determining the connections between

the asymptotic behaviour (as x→∞) of g-integer counting function NP(x) and

the size of Beurling zeta function ζP(σ + it) with σ near 1 (as t → ∞). Also,

between πP(x) and the zeros of ζP(s).

Examples

1. Let P be the sequence of odd primes (i.e. P = {3, 5, 7, ...} = P\{2}). Then

the numbers (∗) forming N are all of the odd integers. That is, N = 2N−1.

This shows that πP(x) = π(x)− 1 and

NP(x) =
∑
n≤x,
n odd

1 =
∑
k≤x+1

2

1 =

[
x+ 1

2

]
.

The behaviour of these counting functions for large x is

NP(x) =
1

2
x+O(1),

while π(x) ∼ x
log x

, by the Prime Number Theorem.
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2. For P = {2, 2, 3, 3, 5, 5, 7, 7, ...} (each prime occurs twice), with (∗) forming

N to be the set of integers such that each integer occurs d(n) times, where

d(n) is the number of divisors of n. That is,

N = {1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, ...},

therefore πP(x) = 2π(x) = 2
∑

p≤x 1 and

NP(x) =
∑
n≤x,
n∈N

d(n).

Then the behaviour of these counting functions for large x is NP(x) ∼

x log x (see [2]) and πP(x) ∼ 2x
log x

,(by the Prime Number Theorem).

3.2 Continuous g-prime systems

The notion of g-primes as defined earlier can be generalised in such a way that

we consider πP(x) and NP(x) as general increasing functions not necessarily step

functions. Such an extension is often referred to loosely as a ‘continuous’ g-prime

system. Indeed Beurling’s Prime Number Theorem is actually proven in this

general setting. In the most general form, the ‘continuous’ g-prime systems are

based on the analogue of ΠP(x) (=
∑∞

k=1
1
k
πP(x1/k)) and are defined as follows:

Definition 10. Let ΠP ,NP be functions such that ΠP ∈ S+
0 and NP ∈ S+

1 with

NP = exp∗ΠP . Then (ΠP ,NP) is called an outer g-prime system.

Note that, if ΠP ∈ S+
0 , then automatically exp∗ΠP ∈ S+

1 . Hence any ΠP ∈ S+
0

defines an outer g-prime system. On the other hand, if NP ∈ S+
1 , then NP =

exp∗ΠP for some ΠP ∈ S0, but ΠP need not be increasing (see section 1.3 in [15]).

Here we do not (yet) have the analogue of g-primes (i.e. πP(x)). We introduce

πP(x) as follows:

Definition 11. A g-prime system is an outer g-prime system for which there

exist πP ∈ S+
0 such that

ΠP(x) =
∞∑
k=1

1

k
πP(x1/k).
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We say NP determines a g-prime system if there exists such an increasing

πP ∈ S0. As such by Möbius inversion, πP(x) is given by

πP(x) =
∞∑
k=1

µ(k)

k
ΠP(x1/k), (3.2)

provided this series converges absolutely. To show that this sum always converges

for ΠP ∈ S+, we let ak = µ(k)
k

and let bk = ΠP(x1/k). The partial sums of the

ak are bounded in magnitude by q (some q > 0) since
∑∞

k=1
µ(k)
k

= 0. The sum∑∞
k=1 |bk − bk+1| converges since bk decreases to zero. By Abel’s summation we

have
N∑
k=1

akbk =
N−1∑
k=1

Ak(bk − bk+1) + ANbN ,

where An =
∑n

k=1 ak. Therefore,∣∣∣∣∣
N∑

k=M

akbk

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
k=M

Ak(bk − bk+1) + ANbN

∣∣∣∣∣ ≤ q
N−1∑
k=M

|bk − bk+1|+ q |bN | .

This shows that (3.2) always converges whenever ΠP is increasing.

In general though, πP(x) (as given by (3.2)) need not be increasing (see ex-

ample 2 in this section). We make the following definitions (see [4] and [15]):

Definition 12. For an outer g-prime system (ΠP ,NP), let ψP = ΠPL. That is,

ψP(x) =

∫ x

1−
log t dΠP(t),

denote the generalized Chebyshev function.

We note that ψP ∈ S+
0 , and that

NP = exp∗ΠP is equivalent to ψP ∗ NP = NPL. (3.3)

Definition 13. A g-prime system is discrete if πP is a step function with integer

jumps. In this case the g-primes are the discontinuities of πP and the steps are

the multiplicities. Note that, in this case

ψP(x) =
∑

pk≤x,k∈N
p∈P

log p.
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We can write this as

ψP(x) =
∞∑
n=1

∑
p≤x

1
n

p∈P

log p =
∞∑
n=1

ϑP(x
1
n ),

where

ϑP(x) =
∑
p≤x
p∈P

log p.

Thus, the Beurling prime systems discussed in Section 3.1 are discrete systems.

In the general case, the Beurling zeta function is now defined to be the Mellin

transform of NP as follows:

Definition 14.

ζP(s) =

∫ ∞
1−

x−sdNP(x) = exp

{∫ ∞
1−

x−sdΠP(x)

}
.

The equality follows formally from NP = exp∗ΠP , (see definition 12).

Throughout this thesis we shall assume these integrals converge for <s > 1.

From definitions 11 and 14 we can relate the Beurling zeta function to πP(x) as

follows:

For s = σ + it with σ > 1,

ζP(s) = exp

{∫ ∞
1−

x−sdΠP(x)

}
= exp

{∫ ∞
1−

∞∑
k=1

x−s

k
dπP(x1/k)

}

= exp

{∫ ∞
1−

∞∑
k=1

ν−sk

k
dπP(ν)

}
= exp

{
−
∫ ∞

1−
log(1− ν−s) dπP(ν)

}
.

For a discrete systems this reduces to
∏

p∈P
1

1−p−s .

Examples

1. Let ΠP(x) =
∫ x

1
t−t−1

log t
dt, x ≥ 1. This means that clearly ΠP ∈ S+

0 and

ψP(x) =

∫ x

1

log t Π
′

P(t) dt =

∫ x

1

t− 1

t
dt =

1

2
(x2 − 1)− log x, x ≥ 1.
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By (3.2), we find

πP(x) =
∞∑
k=1

µ(k)

k
ΠP(x1/k) =

∞∑
k=1

µ(k)

k

∫ x
1
k

1

t− 1
t

log t
dt

=
∞∑
k=1

µ(k)

k

∫ x

1

u
1
k − u− 1

k

log u

(
u

1
k
−1
)
du =

∫ x

1

1

u log u

∞∑
k=1

µ(k)

k
(u

2
k − 1) du

=

∫ x

1

1

u log u

∞∑
m=1

2m(log u)m

m!

( ∞∑
k=1

µ(k)

k1+m

)
du

=

∫ x

1

1

u

∞∑
m=1

2m(log u)m−1

m! ζ(1 +m)
du, for x ≥ 1.

This shows that πP ∈ S+
0 and therefore we have a g-prime system. More-

over, in this case we have NP(x) = x2, since by (3.3) we have∫ x

1

log t dNP(t) =

∫ x

1

NP
(
x

t

)
dψP(t) =

∫ x

1

NP
(
x

t

)(
t− 1

t

)
dt

= x

∫ x

1

NP(u)

(
x

u
− u

x

)
du

u2
.

That is,

NP(x) log x−
∫ x

1

NP(t)

t
dt = x2

∫ x

1

NP(u)

u3
du−

∫ x

1

NP(u)

u
du.

By differentiating and simplifying, we get d
dx

(NP (x) log x
x2

)
= NP (x)

x3 . Therefore,

logNP(x) = 2 log x+ c, but NP(1) = 1, which means c = 0.

2. Let ΠP(x) =
∫ x

1
1−t−c
log t

dt, x ≥ 1, and c > 0. This means that ΠP and ψP

are increasing, where

ψP(x) =

∫ x

1

log t Π
′

P(t) dt =

∫ x

1

1− 1

tc
dt x ≥ 1.

For c ≤ 2 we have a g-prime system (i.e. πP(x) is increasing). For instance,

take c = 1. Then ΠP(x) =
∫ x

1
1−t−1

log t
dt, and ψP(x) = x− 1− log x, x ≥ 1,

and following the same arguments as in the first example, we have

πP(x) =

∫ x

1

1

u

∞∑
m=1

(log u)m−1

m! ζ(1 +m)
du x ≥ 1,

while NP(x) = x, x ≥ 1. For c sufficiently large, πP(x) need not be increas-

ing (see Theorem A1. in [15]).
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Working with ψP(x) is often more convenient than working with ΠP(x). One

reason is due to the following direct link between ζP and ψP

−ζ
′
P
ζP

(s) =

∫ ∞
1−

x−sdψP(x).

From Definition 12 above, the following statements

ΠP(x) = li(x) +O(xα+ε), ∀ε > 0 (3.4)

and

ψP(x) = x+O(xα+ε), ∀ε > 0, (3.5)

are equivalent for α ∈ [0, 1). Furthermore, we see that πP(x) ≤ ΠP(x) and

ΠP(x)− ΠP(
√
x) =

∞∑
k=1

πP(x
1
k )

k
− 2

∞∑
k=1

πP(x
1
2k )

2k

=
∑
k≥1

πP(x
1
k )

k
− 2

∑
k even

πP(x
1
k )

k

=
∑
k≥1

(−1)k−1πP(x
1
k )

k
≤ πP(x),

since πP is increasing. This tells us that

0 ≤ ΠP(x)− πP(x) ≤ ΠP(
√
x).

Thus, πP(x) = ΠP(x) +O(ΠP(
√
x)). Then the following statements

πP(x) = li(x) +O(xα+ε), ∀ε > 0 and ψP(x) = x+O(xα+ε), ∀ε > 0,

are equivalent for α ∈ [1
2
, 1).

3.3 Some known results and comments

We now list some relevant known results from the literature which are necessary

for this work. Initially the following known results were proved for discrete sys-

tems, but actually the proofs are only based on ψP(x) being increasing. So, they

are valid for outer g-prime systems. We begin with Beurling’s Prime Number

Theorem as mentioned in section 3.1.
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1. In 1937, Beurling (see [6]) proved that

NP(x) = ax+O

(
x

(log x)γ

)
for some γ >

3

2
⇒ πP(x) ∼ x

log x
,

(generalises Prime Number Theorem), and he showed by example that the

result can fail for γ = 3
2
.

2. In 1977, Diamond (see [10], Theorem 2) as a type of converse of Beurling’s

PNT, showed the following: suppose that
∫∞

2
t−2
∣∣∣ΠP(t)− t

log t

∣∣∣ dt < ∞.

Then there exists a positive constant c such that NP(x) ∼ cx as x → ∞.

Diamond in his work was seeking weakest possible conditions on πP(x)

which are sufficient to deduce that NP(x) ∼ cx as x→∞. So, for example

it follows from Diamond’s work that

ΠP(x) =
x

log x
+O

(
x

(log x)1+δ

)
for some δ > 0 ⇒ NP(x) ∼ cx.

3. In 1903, Landau (see [22]) proved that

NP(x) = ax+O(xθ), (θ < 1), (3.6)

implies πP(x) ∼ x
log x

. Furthermore, he proved that (3.6) implies

πP(x) = li(x) +O(xe−k
√

log x)

for some k > 0.

4. In 2006, Diamond, Montgomery and Vorhauer (see [11]) showed Landau’s

result is best possible.That is, they proved that there is a discrete g-prime

system for which (3.6) holds but

πP(x) = li(x) + Ω(xe−q
√

log x) for some q > 0.

5. In 1969, Malliavin (see [24]) showed that for α ∈ (0, 1) and a, c > 0

NP(x) = ax+O(xe−c(log x)β) =⇒ ΠP(x) = li(x) +O(xe−k(log x)α),

for some k > 0, where β = 10α.
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6. In his paper 1970, Diamond (see [7]) improved Malliavin’s result and con-

versely he showed that if

ΠP(x) = li(x) +O(xe−c(log x)α),

holds for α ∈ (0, 1) and some c > 0, then

NP(x) = ρx+O(xe−b(log x log log x)β), for some b > 0,

where β = α
1+α

.

7. Balanzario (1998, [3]) showed (by giving a concrete continuous example)

that there exists a continuous g-prime system for which

ΠP(x) = li(x) +O(xe−(log x)α), (3.7)

and

NP(x) = ρx+ Ω±(xe−c(log x)β), (3.8)

holds for some positive constants ρ and c with α = β = 1
2
.

8. In 2006, Hilberdink (see Theorem 2.2 in [17]) extended Diamond’s result in

6 (to α = 1 case) as follows: suppose ψP(x) = x+O(xα) for some α ∈ (0, 1).

Then there exist positive constants ρ and c such that

NP(x) = ρx+O(xe−c
√

log x log log x).

As we see from above, many authors have studied the error terms of the asymp-

totic behaviour of g-prime and g-integer counting functions and it seems three

types occur commonly; namely those of the form

(i) O

(
x

(log x)γ

)
, (ii) O(xe−c(log x)α) and (iii) O(xθ),

where γ > 1, c > 0 and α, θ ∈ (0, 1). In our work, we study the asymptotic

behaviours of Beurling counting functions of primes and integers with error terms

(ii) and (iii).

From the previous two known results (6 and 7), if we assume (3.7) and let β(α)

be the supremum of such β over all systems satisfying (3.7) for given α ∈ (0, 1).
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then by Diamond’s result we see β(α) ≥ α
1+α

. Further, from Balanzario’s result

we see that β(1
2
) ≤ 1

2
. Diamond and Bateman [5] raised the interesting problem

to determine β(α) for 0 < α < 1.

In our work we study Balanzario’s method in his paper and modify it to show

(by adapting the method) that there is a (continuous) g-prime system for which

(3.7) and (3.8) hold with β = α (any 0 < α < 1), this showing β(α) ≤ α. Further-

more, we prove that there is a discrete g-prime system with the same property

β(α) ≤ α. This is more challenging since we need πP(x) defined as a step function.

For this we use the method developed by Diamond, Montgomery, Vorhauer [11]

and Zhang [31] to prove by using (the theory of) probability measures that there

is a discrete system of Beurling primes satisfying this same property. We illustrate

this in Chapter 4.

From the known results (listed above), we see that for 0 ≤ α, β < 1 the

statement

ψP(x) = x+O(xα), (3.9)

does not necessarily imply

NP(x) = ρx+O(xβ), ρ > 0. (3.10)

Actually, the example given in chapter 6 shows that (3.9)=⇒(3.10) is false for

g-prime systems. For general g-prime systems that (3.10) does not imply (3.9) for

discrete g-prime systems follows from a result of Diamond, Montgomery, Vorhauer

paper [11] shows by using the probabilistic construction that there is a discrete

system for which (3.10) does not imply (3.9).

Discrete g-prime systems where the functions NP(x) and ψP(x) are simulta-

neously ‘well-behaved’, that is (3.9) and (3.10) hold have been investigated by

Hilberdink (see [17]). In particular, if (3.9) and (3.10) hold then one of α or β is

at least 1
2

(see Theorem 1. in [16]). We shall require the following two results in

our subsequent work.
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Lemma 3.2. Suppose that for some α ∈ [0, 1), we have (3.9) holds. Then ζP(s)

has analytic continuation to the half-plane Hα = {s ∈ C : <s > α} except for a

simple (non removable) pole at s = 1 and ζP(s) 6= 0 in this region.

Proof. See first part of Theorem 2.1 in [17].

Lemma 3.3. Suppose for 0 ≤ α, β < 1 both (3.9) and (3.10) hold. Then for

σ > Θ = max{α, β}, and uniformly for σ ≥ Θ + γ (any γ > 0), ζP(s) is of zero

order for σ > Θ. Furthermore,

−ζ
′
P
ζP

(s) = O
(
(log t)

1−σ
1−Θ

+ε
)
,

and

ζP(s) = O
(

exp{(log t)
1−σ
1−Θ

+ε}
)
,

for all ε > 0.

Proof. The proof of this lemma is given for discrete g-prime systems [17, Theorem

2.3], but holds more generally for outer g-prime systems as well (since no use is

made of πP(x)).

Assume that we have a discrete g-prime system such that (3.10) holds with

β < 1
2
. It was shown in [16] that this implies ζP(s) has non-zero order for β < σ <

1
2
. This shows that there is a link between the asymptotic behaviour (as x→∞)

of the g-integer counting function NP(x) and the size of Beurling zeta function

ζP(σ+ it) (as t→∞). We illustrate the connection between NP(x) and ζP(s) in

Chapters 5 and 6.
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Chapter 4

Examples of continuous and

discrete g-prime systems

In this chapter we introduce a problem discussed by Diamond [7](as mentioned

briefly in section 3.3), which is the following:

Assume ΠP(x)− li(x)� xe−(log x)α , for some α ∈ (0, 1), so that

NP(x) = ρx+O(xe−c(log x)β), (4.1)

for some ρ, c > 0 and β > 0. The problem is to determine the best possible β,

given α. So, let β(α) be the supremum of such β over all systems satisfying (3.7)

for given α ∈ (0, 1). It follows from Malliavin’s result that β(α) ≤ 10α. Diamond

in 1970 (see [8]) proved that β(α) ≥ α
1+α

. In 1998, Balanzario [3] proved (by giving

a concrete continuous example) that there exists a continuous g-prime system for

which β = α = 1
2

in (3.7) and (3.8). Thus, β(1
2
) ≤ 1

2
.

In the first section of this chapter, we generalise Balanzario’s result by adapt-

ing his method to show that for any 0 < α < 1 there is a continuous g-prime

system for which (3.7) and (3.8) hold with β = α. Thus, β(α) ≤ α.

In the second section we do more challenging work using the theory developed

by Diamond, Montgomery, Vorhauer [11] and Zhang [31] to prove by using (the

theory of) probability measures that there is a discrete g-prime system for which

(3.7) and (3.8) hold with β = α. Thus, β(α) ≤ α for discrete g-prime systems.

27



4.1 Continuous g-prime System

Theorem 4.1. Let 0 < α < 1. Then there exists an outer g-prime system P for

which

ΠP(x) = li(x) +O(xe−(log x)α), (4.2)

and

NP(x) = ρx+ Ω±(xe−c(log x)α), (4.3)

for some positive constants ρ and c. Thus, β(α) ≤ α.

We define ΠP(x) (of g-primes) as in Balanzario’s paper by

ΠP(x) =

∫ x

1

1− t−k

log t
γ(t)dt, (4.4)

where

γ(t) = 1−
∑
n>n0

µn
cos(bn log t)

tan
, t ≥ 1.

Here k and n0 are positive constants and µn, an and bn are sequences to be chosen.

In fact, we shall take k = 4, n0 = 3, µn = 2
n2 , but it is notationally more convenient

to use k, n0 and µn. The sequences bn and an are defined (in terms of another

sequence xn) as follows:

bn = exp{(log xn)α} and an =
1

(log xn)1−α

(
=

1

(log bn)θ
)
,

where θ = 1
α
− 1. Here xn = exp{eaωn}, for some a > 0 and ω > 1 which we

shall choose later. Note that, an → 0 while bn → ∞ as n → ∞. So, xn+1 =

exp{(log xn)ω}, with x1 = exp{eaω}. We choose ω so that αω ≥ 1.

The function ΠP(x) is increasing since for t ≥ 1,∣∣∣∣∣∑
n>n0

µn
cos(bn log t)

tan

∣∣∣∣∣ ≤ ∑
n>n0

2

n2
≤ 1.

First, we show that (4.2) holds.

Proposition 4.2. If ΠP(x) is given by (4.4), then

ΠP(x) = li(x) +O(xe−(log x)α).
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Proof. We have

ΠP(x) =

∫ e

1

1− t−k

log t
γ(t)dt+

∫ x

e

1− t−k

log t
γ(t)dt,

the first integral is just O(1), therefore we get

ΠP(x) =

∫ x

e

1− t−k

log t
dt−

∑
n>n0

µn

∫ x

e

1− t−k

log t
· cos(bn log t)

tan
dt+O(1)

=

∫ x

e

dt

log t
−
∑
n>n0

µn

∫ x

e

cos(bn log t)

tan log t
dt+O(1),

because k > 1. Now we show that the second term is O(xe−(log x)α). Notice that∣∣∣∣∫ x

e

cos(bn log t)

tan log t
dt

∣∣∣∣ =

∣∣∣∣∫ log x

1

cos(bnt)

t
et(1−an)dt

∣∣∣∣
=

∣∣∣∣∣
[

sin(bnt)

tbn
et(1−an)

]log x

1

− 1

bn

∫ log x

1

sin(bnt)

t
et(1−an)(1− an −

1

t
)dt

∣∣∣∣∣
≤ 2

x1−an

bn log x
+

1

bn

∫ log x

1

et(1−an)

t
dt ≤ 2

x1−an

bn log x
+

x1−an

bn(1− an)
≤ 3

x1−an

bn
.

By the definition of an and bn we have

x1−an

bn
= x exp

{
−
(

log x

(log xn)αθ
+ (log xn)α

)}
.

The minimum value of u+ log x
uθ

occurs when uθ+1 = θ log x, (since d
du

(u+ log x
uθ

) =

1 − θ log x
uθ+1 ). Therefore, u + log x

uθ
= u(1 + log x

uθ+1 ) ≥ (θ log x)
1

1+θ (1 + 1
θ
) = (log x)α

αα(1−α)1−α ,

and so
x1−an

bn
≤ x exp {−(log x)α} .

Hence, ∑
n>n0

µn

∣∣∣∣∫ x

1

cos(bn log t)

tan log t
dt

∣∣∣∣ ≤ ∑
n>n0

3µnxe
−(log x)α = O(xe−(log x)α).

This proves equation (4.2).

We estimateNP(x) through the associated zeta function ζP defined in Chapter

3 for s = σ + it with σ > 1. We have for x > 1

NP(x) =
1

2πi

∫ b+i∞

b−i∞
ζP(s)

xs

s
ds, b > 1,
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at all points of continuity of NP(x). The main difficulty will be to show (4.3),

that is to find the Ω−result for NP . The proof forms the rest of this section.

Now, let MP(x) =
∫ x

1
NP(t)dt. Then for x > 1

MP(x) =
1

2πi

∫ b+i∞

b−i∞
ζP(s)

xs+1

s(s+ 1)
ds, b > 1.

We already know that (4.1) holds for some β ≥ α
1+α

(see result 5 in 3.3). So,

to prove that equation (4.3) is true it suffices to show that for some positive

constants c, ρ

MP(x) =
ρ

2
x2 + Ω±

(
x2e−c(log x)α

)
. (4.5)

Actually, if (4.3) does not hold then

NP(x) = ρx+ o(xe−c(log x)α),

so that,

MP(x) =

∫ x

1

{ρt+ o(te−c(log t)α)}dt =
ρ

2
x2 + o

(
x2e−c(log x)α

)
,

which contradicts (4.5). So, (4.3) must hold if (4.5) holds. Our aim is therefore

to prove that (4.5) is true for some c, ρ > 0. For this purpose we estimate the

integral ofMP(x) and the simplest way to do so is by calculating the contribution

of the singularities of the integrand g(s) = ζP(s) xs+1

s(s+1)
. We rewrite ζP(s) as an

infinite product to enable us to read off the singularities of g(s). The sequences

{an} and {bn} are defined earlier will give us the position of the singularities of

ζP(s) in the complex plane, and from this we can deduce the statement (4.5).

Extend the sequences an, bn and µn by defining for n > n0, a−n = an, b−n = −bn
and µ−n = µn. Then we use the following proposition to rewrite the zeta function

as required.

Proposition 4.3. For <(s) > 1,

ζP(s) =
s+ k − 1

s− 1

∏
|n|>n0

(
1− k

s− 1 + an − ibn + k

)µn
2

. (4.6)
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Remark: Recall the definition of γ(t) and let

γN(t) = 1−
∑

n0<n≤N

µn
cos(bn log t)

tan
, t ≥ 1.

Then γN(t) converges uniformly to γ(t) for t ≥ 1 since |γ(t)− γN(t)| ≤
∑

n>N
2
n2 ≤

2
N

.

Proof of Proposition 4.3. We have

cos(b log t)

ta
· 1− t−k

log t
=

1

2
(t−a+ib + t−a−ib)

1− t−k

log t
.

So, for <(s) > 1, we have

− d

ds

∫ ∞
1

t−s
cos(b log t)

ta
· 1− t−k

log t
dt

=
1

2

∫ ∞
1

(t−s−a−ib + t−s−a+ib − t−s−a−ib−k − t−s−a+ib−k)dt

=
1

2

{
1

s− 1 + a+ ib
− 1

s− 1 + a+ ib+ k
+

1

s− 1 + a− ib
− 1

s− 1 + a− ib+ k

}
=

1

2

{
d

ds
log

(
s− 1 + a+ ib

s− 1 + a+ ib+ k

)
+

d

ds
log

(
s− 1 + a− ib

s− 1 + a− ib+ k

)}

=
d

ds
log

{(
1− k

s− 1 + a+ ib+ k

) 1
2
(

1− k

s− 1 + a− ib+ k

) 1
2

}
.

Hence, we have

−
∫ ∞

1

t−s
cos(b log t)

ta
· 1− t−k

log t
dt

= log

{(
1− k

s− 1 + a+ ib+ k

) 1
2
(

1− k

s− 1 + a− ib+ k

) 1
2

}
+ constant.

By taking the limit as <(s) tends to infinity we see that the constant of integration

is zero. Taking a = b = 0 gives∫ ∞
1

t−s
1− t−k

log t
dt = log

s+ k − 1

s− 1
.

Thus from the definition of γN(t), we get∫ ∞
1

t−s
1− t−k

log t
γN(t)dt = log

(
s+ k − 1

s− 1

)
+

∑
n0<|n|≤N

µn log

(
1− k

s− 1 + an − ibn + k

) 1
2
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= log

s+ k − 1

s− 1

∏
n0<|n|<N

(
1− k

s− 1 + an − ibn + k

)µn
2

 .

By taking the limit as N → ∞, we conclude the proof since γN(t) → γ(t) as

N →∞ and log ζP(s) =
∫∞

1
t−s dΠP(t).

The representation of ζP(s) given by (4.6) holds not only in the half plane

<(s) > 1, but also in a larger region. Let Dζ be the region defined by

Dζ = {s = σ+ it ∈ C : σ > −k+ 2, s 6= ξ(1−an + ibn) + (1− ξ)(1−an + ibn− k),

for any 0 ≤ ξ ≤ 1, |n| ≥ n0}.

By a theorem of Weierstrass on the uniform convergence of analytic functions,

the function

ϕ(s) =
∏
|n|>n0

(
1− k

s− 1 + an − ibn + k

)µn
2

,

is analytic in Dζ . The equation

ζP(s) =
s+ k − 1

s− 1
ϕ(s), σ > 1,

gives us an analytic continuation of ζP(s) to Dζ with s = 1 removed, where ζP(s)

has a simple pole. Notice that, since the zeros of ϕ(s) are of fractional order, we

avoid problems of multiple-valuedness by restricting the domain of definition of

ζP(s) to Dζ . We try to give a suitable upper bound for |ζP(s)| in the extended

domain of definition. For this purpose we need the following

Proposition 4.4. If s = σ + it is such that σ > −k + 2, µ =
∑

n>n0
µn, and

s ∈ Dζ , then

|ϕ(s)| ≤ (k + 1)eµ.

Proof. For s = σ+ it, we find an upper bound for ϕ(s) which holds for arbitrary

positive sequences {an} and {bn} such that {an} is decreasing to zero and {bn}

is increasing to ∞. We have

bn+1 − bn = exp{(log xn+1)α} − exp{(log xn)α}

= exp{(log xn)ωα} − exp{(log xn)α} ≥ δ, (some δ > 0),
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where δ depends on α and ω. So, we choose ω sufficiently large such that δ ≥ 2k.

Therefore the interval (t− 2k, t + 2k) contains at most one element of {bn}. We

call this element (if exists) by bn(t), so we can write

|ϕ(s)| =
∣∣∣∣1− k

s− 1 + an(t) − ibn(t) + k

∣∣∣∣
µn(t)

2 ∏
|n|>n0,n6=n(t)

∣∣∣∣1− k

s− 1 + an − ibn + k

∣∣∣∣µn2 .

Since an > 0, we have σ − 1 + k > 1 and hence∣∣∣∣1− k

s− 1 + an(t) − ibn(t) + k

∣∣∣∣
µn(t)

2

≤
∣∣∣∣1 +

k

σ − 1 + k

∣∣∣∣
µn(t)

2

≤ 1 + k.

Now, when n 6= n(t),∣∣∣∣1− k

s− 1 + an − ibn + k

∣∣∣∣µn2 = exp

{
µn
2

log

∣∣∣∣1− k

s− 1 + an − ibn + k

∣∣∣∣}

= exp

{
µn
2
< log

(
1− k

s− 1 + an − ibn + k

)}
= exp

{
µn
2
<
(
− z − z2

2
− z3

3
− · · · ·

)}
,

where

|z| =
∣∣∣∣ k

s− 1 + an − ibn + k

∣∣∣∣ ≤ k

|=(s)− bn|
=

k

|t− bn|
≤ k

δ
≤ k

2k
=

1

2
.

Therefore

|ϕ(s)| ≤ (k + 1)
∏

|n|>n0,n 6=n(t)

exp

{
µn
2

(
|z|+

∣∣∣∣z2

2

∣∣∣∣+

∣∣∣∣z3

3

∣∣∣∣+ · · · ·
)}

≤ (k + 1) exp

1

4

∑
|n|>n0

µn

(
1 +

1

2
+

1

4
+ · · · ·

) ≤ (k + 1)eµ,

as required.

For k = 4, n0 = 3 and µn = 2n−2 we have

|ϕ(s)| ≤ 5 exp

{∑
n>3

2

n2

}
< 9, if σ > −2.

Corollary 4.5. For s ∈ Dζ such that |s− 1| > 1 we have |ζP(s)| ≤ 45.

33



Proof.

|ζP(s)| =
∣∣∣∣s+ k − 1

s− 1
ϕ(s)

∣∣∣∣ ≤ 9

∣∣∣∣1 +
k

s− 1

∣∣∣∣ ≤ 9

(
1 +

4

|s− 1|

)
.

We need to find an Ω−result for MP(x). In order to do this we estimate

MP(x) at some particular sequence of x. We shall take x to be

x = xn

(
1 +

r

log xn

)
, where − 1 ≤ r ≤ 1. (4.7)

Note. Our choice of r (and hence x) is such that MP(x) equals the main term

ρ
2
x2 plus a large positive error term for some r > 0 and large negative error term

for some r < 0.

We deform the vertical path of integration in the inversion formula

MP(x) =
1

2πi

∫ b+i∞

b−i∞
ζP(s)

xs+1

s(s+ 1)
ds, b > 1,

from the path <(s) = b > 1 to the left (see Figure 4.1).

Let Tn = exp {(log xn)τ} , where 0 < α < τ < 1. We remark here that the

method works with any α < τ < 1, but for more convenience, we put τ = 2α
α+1

to

fit in with the discrete case which comes later. Here Γ1 joins b− i∞ to b− iTn.

The points b − iTn to −3
2
− iTn are joined by Γ2. The segments Γ5 and Γ4 are

symmetric to Γ1 and Γ2 with respect to the horizontal axis. We denote by Γ∗3

a comb formed by horizontal loops Cm, n0 < |m| ≤ n, each going around the

singular point 1 − am + bm. The collection of vertical line segments joining one

loop to the next one is denoted by Γ3. The points on Γ3 have real part equal to

−3
2
. Furthermore, each Cm is made up of two horizontal line segments joined at

the right hand side by small circle with centre at 1−am+ ibm. The two horizontal

line segments of Cm are extended to the left until they meet Γ3. It is worthwhile

pointing out that Tn lies between bn and bn+1 (that is, between Tn and Tn+1 there

is one singular point of our zeta function), since log Tn > (log xn)α = log bn, while,

log bn+1 = (log xn+1)α = (log xn)αω > (log xn)τ = log Tn.
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Figure 4.1:

Now we write

MP(x) = I1 + · · ·+ I5 +
∑

n0<|m|≤n

Jm + {kϕ(1)
x2

2
+ x(1− k)ϕ(0)},

where

Im =
1

2πi

∫
Γm

ζP(s)
xs+1

s(s+ 1)
ds, m = 1, 2, ..., 5,

Jm =
1

2πi

∫
Cm

ζP(s)
xs+1

s(s+ 1)
ds, n0 < |m| ≤ n.

Here, as above, Cm is the mth horizontal loop with imaginary part equal to bm.

Consider first the integral I3. In fact, we do not have one integral but many of

them. This is because the vertical segment Γ3 is broken at each horizontal loop

Cm. However, on each vertical component of Γ3 the integrand is bounded by the

same constant which is 45. Thus, since R(s) = −3
2

on Γ3, we have

|I3| ≤
1

2π

∫ ∞
−∞

45
x−

3
2

+1∣∣(3
2

+ it)(−1
2

+ it)
∣∣dt = O(

1√
x

). (4.8)
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Let b = 1 + 1
log xn

. Then |I2| and |I4| are both O
(
( x
Tn

)2
)
, since

|I2| , |I4| ≤
1

2π

∫ 1+(log xn)−1

− 3
2

45
x2+(log xn)−1

T 2
n

dσ ≤ 8

T 2
n

x2+(log xn)−1

= O(
x2

T 2
n

). (4.9)

Now we consider the integrals I1 and I5: Each of |I1| and |I5| is at most

1

2π

∫ ∞
Tn

45
x2+(log xn)−1

t2
dt ≤ 8x2 exp

{
1 +

(
1

log xn

)2
}

1

Tn
= O(

x2

Tn
). (4.10)

Therefore, we get

MP(x) =
ρx2

2
+

∑
n0<|m|≤n−1

Jm + {J−n + Jn}+O

(
x2

Tn

)
. (4.11)

We estimate each term in the right hand side of (4.11) separately. Since log x =

log xn + o(1) we get

x2

Tn
= x2 exp{(log xn)τ} = x2 exp{(log x)τ + o(1)}.

From this and from equation (4.11) we get

MP(x) =
ρx2

2
+

∑
n0<|m|≤n−1

Jm + {J−n + Jn}+O
(
x2e−(log x)τ

)
, (4.12)

Proposition 4.6. ∑
n0<|m|≤n−1

Jm = O

(
x2e−(log x)1− 1−α

ω

)
.

Proof. Let us consider the integral Jm and let γm be the circle centred at 1 −

am+ ibm with the radius δ1 parameterised by γm(ϑ) = 1−am+ ibm+ δ1e
iϑ, where

0 ≤ ϑ ≤ 2π. Therefore we have∣∣∣∣∫
γm

ζP(s)
xs+1

s(s+ 1)
ds

∣∣∣∣ ≤ 2πδ1 sup
s∈γm

∣∣∣∣ζP(s)
xs+1

s(s+ 1)

∣∣∣∣→ 0,

as δ1 → 0. Let δ1 → 0, so we can write

|Jm| =
∣∣∣∣ 1

2πi

∫
Cm

ζP(s)
xs+1

s(s+ 1)
ds

∣∣∣∣ ≤ 1

π

∫ 1−am

− 3
2

45
x2−am

b2
m

dσ ≤ 15x2

b2
m

e−am log x.

But if |m| ≤ n− 1 then

e−am log x ≤ e−an−1 log x = exp

{
− log x

(log xn−1)1−α

}
= exp

{
− log x

(log xn)
1−α
ω

}
.
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≤ 2 exp
{
−(log x)1− 1−α

ω

}
.

Hence, ∑
n0<|m|≤n−1

Jm ≤ 30 x2e−(log x)1− 1−α
ω

∑
|m|>n0

1

b2
m

= O

(
x2e−(log x)1− 1−α

ω

)
.

We see that 1− 1−α
ω
≥ 2α

α+1
= τ since ω is taken sufficiently large, so equation

(4.12) becomes

MP(x) =
ρx2

2
+ {J−n + Jn}+O

(
x2e−(log x)τ

)
, (4.13)

It remains to study the expression J−n + Jn. Denote by J
′
n and J

′′
n the integrals

along the line segments C
′
n C

′′
n lying respectively above and below the branch cut

Cn so that Jn = J
′
n + J

′′
n . Now, if we write

s = 1− an + ibn + teiθ, −π ≤ θ < π,

then the line segment C
′′
n is obtained by letting θ = −π and t run from 0 to

1− an + 3
2
. In this way we obtain C

′′
n with its direction reversed:

−C ′′n :



θ = −π,

s = 1− an + ibn − t,

ds = −dt,

0 ≤ t ≤ 1− an + 3
2
.

To estimate Jn, split up as

J
′′

n =
1

2πi

{∫ (log x)−ε

0

+

∫ 1−an+ 3
2

(log x)−ε

}
ζP(1− an + ibn − t)x2−an+ibn−t

(1− an + ibn − t)(2− an + ibn − t)
(dt),

(4.14)

where ε is arbitrary positive number. The second integral over ((log x)−ε, 1−an+

3
2
) is bounded in modulus by

45x2−an

2πb2
n

∫ 1−an+ 3
2

(log x)−ε
x−tdt ≤ 45x2−ane−(log x)1−ε

2πb2
n log x

= O
(
x2e−(log x)1−ε

)
.
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To deal with the integral over (0, (log x)−ε) rewrite the integrand as follows:

ζP(s)

s(s+ 1)
= (s− 1 + an − ibn)

µn
2 fn(s), say,

where

fn(s) =
(s+ 3)

s(s+ 1)(s− 1)(s+ an − ibn + 3)
µn
2

∏
|m|>n0,m 6=n

(
1− 4

s+ am − ibm + 3

)µm
2

.

(4.15)

Here fn(s) is analytic in a disc around the point zn = 1− an + ibn. Therefore we

can write

fn(s) =
∞∑
j=0

f
(j)
n (zn)

j!
(s− zn)j.

The series is convergent if |s− zn| < δ0 for some δ0 > 1. Let an,j = f
(j)
n (zn)
j!

. So,

the integrand in (4.14) becomes

x2−an+ibn−t(te−iπ)
µn
2 fn(1− an + ibn − t).

Thus, we have

J
′′

n =
1

2πi
x2−an+ibne

−iπµn
2

∫ (log x)−ε

0

x−tt
µn
2 fn (1− an + ibn − t) dt+O

(
x2e−(log x)1−ε

)

=
1

2πi
x2−an+ibn

e
−iπµn

2

(log x)
µn
2

+1

∫ (log x)1−ε

0

e−tt
µn
2 fn

(
1− an + ibn −

t

log x

)
dt

+O
(
x2e−(log x)1−ε

)

=
1

2πi
x2−an+ibn

e
−iπµn

2

(log x)
µn
2

+1
Sn +O

(
x2e−(log x)1−ε

)
, (4.16)

where

Sn =

∫ (log x)1−ε

0

e−tt
µn
2

∞∑
j=0

an,j

(
−1

log x

)j
dt.

Similarly, we can obtain

J
′

n = − 1

2πi
x2−an+ibn

e
iπµn

2

(log x)
µn
2

+1
Sn +O

(
x2e−(log x)1−ε

)
. (4.17)
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Since Jn = J
′
n + J

′′
n , becomes

Jn = −
sin πµn

2
x2−an+ibn

π(log x)
µn
2

+1
Sn +O

(
x2e−(log x)1−ε

)
. (4.18)

Since J−n = J̄n, we have

Jn + J−n = (Jn + J̄n =)2<(Jn).

Our next step is to estimate the integral Sn appearing in (4.18). For this we

obtain lower and upper bounds for fn(s) in D(zn, 1) (that is |s− zn| ≤ 1, s =

1− an + ibn − y). For the upper bound we notice that |s| ≥ bn. Thus∣∣∣∣ (s+ 3)

s(s+ 1)(s− 1)

∣∣∣∣ ≤ bn + 6

(bn − 2)3
≤ 2bn

(bn/2)3
=

16

b2
n

.

Also

|s+ an − ibn + 3|
µn
2 > (4− |s− 1 + an − ibn|)

µn
2 ≥ 3

µn
2 ≥ 1.

Now we want to estimate from above the product appearing in the definition of

fn in (4.15). As in the proof of Proposition 4.4 we have∣∣∣∣1− 4

s+ am − ibm + 3

∣∣∣∣ ≤ 1 +
4

|=(s)− bm|
≤ 1 +

k

δ
≤ 1 +

k

2k
=

3

2
, for m 6= n.

Thus the product in (4.15) is in modulus less than

∏
|m|>n0,m 6=n

(
3

2

)µm
2

≤
∏
|m|>n0

(
3

2

) 1
m2

≤
(

3

2

)2
∑∞
j=1

1
j2

< 4.

Thus we have proved

Proposition 4.7. For |s− (1− an + ibn)| ≤ 1, then |fn(s)| ≤ 64
b2n
.

This and Cauchy’s inequalities give the following

Corollary 4.8. For all j = 1, 2, 3, ... |an,j| ≤ 64
b2n
.

Now we estimate the lower bound for fn(s) in D(zn, 1):

|s| ≤ |s− 1 + an − ibn|+ |1− an + ibn| ≤ 1 + 1 + |an|+ |bn| ≤ 3 + bn.
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Thus∣∣∣∣ (s+ 3)

s(s+ 1)(s− 1)

∣∣∣∣ ≥ |s+ 3|
(bn + 4)3

≥ |s| − 3

(bn + 4)3
≥ bn − 1− 3

(bn + 4)3
≥

1
2
bn

(2bn)3
=

1

16b2
n

.

Each term in the infinite product in (4.15) is∣∣∣∣1− 4

s+ am − ibm + 3

∣∣∣∣ ≥ 1− 4

|s+ am − ibm + 3|
≥ 1− 4

|=(s)− bm|
≥ 1−k

δ
≥ 1− k

2k
=

1

2
.

Therefore ∏
|m|>n0,m 6=n

∣∣∣∣1− 4

s+ am − ibm + 3

∣∣∣∣µm2 ≥ ∏
|m|>n0

(
1

2

) 1
m2

>
1

10
.

Thus we have

Proposition 4.9. For |s− (1− an + ibn)| ≤ 1, we have

|fn(s)| ≥ 1

160b2
n

.

With all these inequalities we can estimate the integral Sn, the function oc-

curring in (4.18), as follows:

Sn =

∫ (log x)1−ε

0

e−tt
µn
2 fn

(
1− an+ ibn −

t

log x

)
dt

=

∫ (log x)1−ε

0

e−tt
µn
2

∞∑
j=0

an,j

(
−t

log x

)j
dt

= an,0

∫ (log x)1−ε

0

e−tt
µn
2 dt+

∞∑
j=1

an,j

∫ (log x)1−ε

0

e−tt
µn
2

(
−t

log x

)j
dt.

For the second term we get, by Corollary 4.8,∣∣∣∣∣
∞∑
j=1

an,j

∫ (log x)1−ε

0

e−tt
µn
2

(
−t

log x

)j
dt

∣∣∣∣∣ ≤
∞∑
j=1

64

b2
n

(
1

log x

)jε ∫ ∞
0

e−tt
µn
2 dt

≤
(

1

log x

)ε
64

b2
n

∞∑
j=0

(
10

98

)jε
≤ 148

(
1

log x

)ε
1

b2
n

.

Now since ∫ ∞
(log x)1−ε

e−tt
µn
2 dt ≤

∫ ∞
(log x)1−ε

e−ttdt ≤ 2 log xe−(log x)1−ε
,
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The integral Sn in (4.18) is

Sn = an,0

(
Γ(

1

2
µn + 1) +O

(
log xe−(log x)1−ε

))
+O

(
1

b2
n(log x)ε

)
. (4.19)

Since an,0 = fn(1 − an + ibn) and Γ(1
2
µn + 1) → 1 as n → ∞, from Proposition

4.9 we find

|Sn| ≥
d0

b2
n

(
1− 2 log xe−(log x)1−ε − d1

(log x)ε

)
≥ de−2(log x)α , d > 0

for some d0, d1 > 0 and for x sufficiently large, that is for n is sufficiently large

(since x is a sequence depending on n). We use this lower bound of the integral

Sn appearing in equation (4.18). Now consider the other factor in that equation,

sin πµn
2

π
x2−an

(
1

log x

)µn
2

+1

≥ µn
π
x2e−an log x · 1

2(log x)2

≥ ax2e
− log x

(log xn)1−α · 1

(log x)2(log log xn)2
, for some a > 0,

using µn = 1
n2 and n ≤ log log xn

ω−1
. From the above bound on Sn and (4.18), we get

|Jn| ≥ ax2 exp

{
−
(

c0 log x

(log xn)1−α + 2(log xn)α
)}
≥ ax2e−c(log x)α , 0 < α < 1,

(4.20)

for some constants a, c0, c > 0 and for sufficiently large n.

Our aim is to obtain large values for 2<(Jn) compared with the other error

term of (4.13). For this purpose we recall equation (4.18)

Jn = J
′

n + J
′′

n = −
sin πµn

2
x2−an+ibn

π(log x)
µn
2

+1
Sn +O

(
x2e−(log x)1−ε

)
,

We can rewrite the above equation as follows,

A =
Jn

x2−an
= Bxibn + C,

where B = − sin(πµn
2

)

π

(
1

log x

)µn
2

+1

Sn, and C = O
(
xane−(log x)1−ε

)
. We get

<
{
A− C
|B|

}
= < (exp{ibn log x+ i argB}) = cos(bn log x+ argB)

That is,

<
{
A− C
|B|

}
= cos

((
bn log xn + argB

)
+ bn log

(
1 +

r

log xn

))
. (4.21)
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From definition of B we have argB = argSn+π. The main term (involving the Γ

function) on the right hand side of equation (4.19) is independent of r. Now, as

r runs from −1 to +1, the argument of Sn (and therefore argB) does not exceed

2π, since the last two terms are much smaller than the first one. This tells us

that, as r runs from −1 to +1,(
bn log xn + argB

)
+ bn log

(
1 +

r

log xn

)
,

runs through an interval centred somewhere in(
bn log xn − 2π, bn log xn + 2π

)
.

The highest point is at least

bn log xn − 2π + bn log

(
1 +

1

log xn

)
,

whereas the lowest point is at most

bn log xn + 2π + bn log

(
1 +

−1

log xn

)
.

Therefore the length of (4.21) is

≥ bn log

(
1 +

1

log xn

)
− 4π ≥ bn

1 + log xn
− 4π −→∞, as n −→∞.

For large n we choose values (r+ and r−) of r appropriately such that

<
{
A− C
|B|

}
= +1 and <

{
A− C
|B|

}
= −1.

For the first case we have <( Jn
x2−an ) = <(A) = |B|+ <(C), that is,

<(Jn) = |B|x2−an + <(C)x2−an

≥ |Jn| − |C|x2−an + <(C)x2−an

= |Jn|+O(x2e−(log x)1−ε
)

≥ A0x
2e−c(log x)α .

Therefore, for sufficiently large n we have

<(Jn) ≥ A0x
2e−c(log x)α , for r = r+ and A0, c > 0. (4.22)
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Similarly we can get

<(Jn) ≤ −A0x
2e−c(log x)α , for r = r− and A0, c > 0. (4.23)

From the above inequalities and the following equation

MP(x) =
ρx2

2
+ 2<(Jn) +O

(
x2e−(log x)

2α
α+1

)
, (4.24)

we have

MP(x) =
ρx2

2
+ Ω±(x2e−c(log x)α), (4.25)

for some positive constant c. This proves (4.5) and hence (4.3). The proof of

Theorem 4.1 is completed.
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4.2 Discrete g-prime System

In the above section, we found a continuous g-prime system for which β = α.

Now we show that it may be adapted to give a discrete version. Finding discrete

system satisfying this same property is generally more challenging. The reason

for this is that if we have ΠP(x) defined as a step function, then seeing the

singularities of the Beurling zeta function is difficult.

We shall use the method developed by Diamond, Montgomery, Vorhauer [11]

and later Zhang [31] which uses (the theory of) probability measures to find

discrete systems of Beurling primes.

Theorem 4.10. Let 0 < α < 1. Then there is a discrete g-prime system P for

which

πdP(x) = li(x) +O(xe−(log x)α), (4.26)

and

N d
P(x) = ρx+ Ω±(xe−c(log x)α), (4.27)

for some positive constants ρ and c. Thus β(α) ≤ α for discrete systems.

To find the g-prime satisfying (4.26) we use the following lemmas from Zhang’s

paper [31].

Lemma 1. Let f(ν) be a nonnegative-valued Lebesgue measurable function on

(−∞,∞) with support [1,∞). Assume that there is increasing function F (x) on

(−∞,∞) with support [1,∞) satisfying∫ x

1

f(ν)dν � F (x),

∫ x+1

x

f(ν)dν �
√
F (x)(1 + log x),

log x = o(F (x)),∫ x

1

ν−1
√
F (ν)dν �

√
F (x),

and

F (x+ 1)� F (x).
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Let

1 ≤ ν0 < ν1 < ν2 < · · · < νk < νk+1 < · · ·

be a sequence such that νk →∞ as k →∞ and such that

pk =

∫ νk

νk−1

f(ν)dν,

satisfies 0 < pk < 1 for k > k0. Then there is a subsequence νkj , j = 1, 2, ... such

that ∑
νkj≤x

νitkj −
∑
νk≤x

νitk pk �
√
F (x)

(√
1 + log x+

√
log(t+ 1)

)
, (4.28)

for 1 ≤ x <∞ and t ≥ 0.

Lemma 3. If the sequence νk in Lemma 1 satisfies also∑
νk≤x

νitk pk −
∫ x

1

νitf(ν)dν �
√
F (x)

(√
1 + log x+

√
log(t+ 1)

)
, (4.29)

for F (x) ≥ c log(t+ 1) with a constant c > 0 then there is a subsequence νkj , j =

1, 2, ... such that∑
νkj≤x

νitkj −
∫ x

1

νitf(ν)dν �
√
F (x)

(√
1 + log x+

√
log(t+ 1)

)
, (4.30)

for 1 ≤ x <∞ and t ≥ 0.

Lemma 4. Let f(x) be a Lebesgue measurable function on (−∞,∞) with support

[1,∞) satisfying

0 ≤ f(x)� 1− x−1

log x
.

Then the function

F (x) =
x

1 + log x
,

satisfies the conditions of Lemma 1 and both the sequences

(1) νk =
√

log(k + k0), k = 0, 1, 2, ...

and

(2) νk = log(k + k0) log log(k + k0), k = 0, 1, 2, ...
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satisfy the conditions of Lemma 1 and Lemma 3. Therefore both (1) and (2)

have a subsequence νkj , j = 1, 2, ... satisfying

∑
νkj≤x

νitkj −
∫ x

1

νitf(ν)dν �
√
x

(
1 +

√
log(t+ 1)

1 + log x

)
, (4.31)

for 1 ≤ x <∞ and t ≥ 0.

Now, consider the continuous function

h(ν) =
1− ν−k

log ν
γ(ν), with γ(ν) = 1−

∑
n>n0

µn
cos(bn log ν)

νan
, ν ≥ 1.

That is, the function h = Π
′
P where ΠP from Theorem 4.1. Here k, n0, µn, bn and

an as in Theorem 4.1. The function h(ν) � 1−ν−1

log ν
. So, by Lemma 4 there is a

sequence 1 ≤ α0 ≤ α1 ≤ α2 · ·· ≤ αj ≤ αj+1 ≤ · · · such that αj → ∞ as j → ∞

for which ∑
αj≤x

α−itj −
∫ x

1

ν−ith(ν)dν �
√
x

(
1 +

√
log(t+ 1)

1 + log x

)
,

for 1 ≤ x <∞ and t ≥ 0. In particular, when t = 0 we have∑
αj≤x

1−
∫ x

1

h(ν)dν = O(
√
x). (4.32)

We shall take {αj}j≥0 as our g-primes. By Proposition 4.2 we get

πdP(x) :=
∑
αj≤x

1 = li(x) +O(xe−(log x)α) +O(
√
x) = li(x) +O(xe−(log x)α),

with α as in section 4.1. We let

Πd
P(x) =

∑
n≥1

πdP(x
1
n )

n
.

Then

Πd
P(x) = li(x) +O(xe−(log x)α), (4.33)

since Πd
P(x) = πdP(x) + O(

√
x). This proves (4.26). We estimate N d

P(x) through

its associated zeta function ζdP given by

ζdP(s) =

∫ ∞
1−

x−sdN d
P(x) = exp

{∫ ∞
1−

x−sdΠd
P(x)

}
= exp

{∫ ∞
1−
− log(1− x−s)dπdP(x)

}
.

(4.34)
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This can be written as

ζdP(s) = ζP(s) exp {F2(s)− F1(s)} , (4.35)

where ζP(s) as in Section 4.1 is analytic in Dζ and

F1(s) =

∫ ∞
1

{
ν−sdπdP(ν) + log(1− ν−s)dπdP(ν)

}
,

and

F2(s) =

∫ ∞
1

ν−s
{
dπdP(ν)− h(ν)dν

}
.

We see log(1 − ν−s) = ν−s + O(ν−2σ) for ν > 1, which tells us that integral

function F1(s) converges uniformly for σ ≥ 1
2

+ δ each δ > 0. Therefore, F1(s)

is analytic for σ > 1
2
. Similarly, so is F2(s) since Πd

P(x) − ΠP(x) = O(
√
x), and

hence −F1(s) + F2(s) is holomorphic in the half-plane H 1
2

= {s ∈ C : <s > 1
2
}.

Thus, ζdP(s) is analytic in Dζ ∩H 1
2
. Let

Md
P(x) =

∫ x

1

N d
P(t)dt.

Then

Md
P(x) =

1

2πi

∫ b+i∞

b−i∞
ζdP(s)

xs+1

s(s+ 1)
ds, b > 1.

To prove that equation (4.27) is true it suffices to show that for some positive

constant c,

Md
P(x) =

ρ

2
x2 + Ω±

(
x2e−c(log x)α

)
, (4.36)

for some ρ > 0 and α as in Section 4.1. Our aim is to prove that (4.36) is

true for some ρ, c > 0. For this purpose we estimate the integral of Md
P(x)

and the simplest way to do so by calculating the singularities of the integrand

f(s) = ζdP(s) xs+1

s(s+1)
= ζP(s) exp {F2(s)− F1(s)} xs+1

s(s+1)
. Since F1(s) and F2(s) are

holomorphic for σ > 1
2
, the singularities of f(s) are the same singularities of

ζP(s) xs+1

s(s+1)
.

By Proposition (4.4) and Corollary (4.5) we have |ζP(s)| ≤ 45. It remains to

estimate exp {F2(s)− F1(s)}. To do this we need the following modification of

Lemma 5 from Zhang’s paper.
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Lemma 4.11. Let a function F (x, t) defined for 1 ≤ x <∞ and t ≥ 0 be locally

of bounded variation in x and satisfy F (1, t) = 0 and

F (x, t)�
√
x

(
1 +

√
log(t+ 1)

1 + log x

)
.

Given x ≥ x0 > 1, let σ ≥ 1
2

+ δ, δ > 0. Then∫ ∞
1

ν−σ dF (ν, t)�
√

log(t+ 1).

Proof. Using integration by parts, the integral on the left hand side is

σ

∫ ∞
1

ν−σ−1F (ν, t) dν �
∫ ∞

1

ν−σ−
1
2

(
1 +

√
log(t+ 1)

1 + log ν

)
dν �

√
log(t+ 1),

since
∫∞

1
ν−σ−

1
2dν converges.

Let

g(x, t) =
∑
αj≤x

α−itj −
∫ x

1

ν−ith(ν)dν, x ≥ 1.

So, g(x, t) satisfies the conditions of Lemma 4.11. Thus, by Lemma 4.11, we have

F2(σ + it) =

∫ ∞
1

ν−σ (ν−it dg(ν, 0))�
√

log t, t ≥ 2, (4.37)

for σ ≥ 1
2

+ δ, δ > 0.

We shall need to use Tn = exp {(log xn)τ}, such that 0 < α < τ < 1. Therefore,

F2(σ + iTn) = O((log xn)
τ
2 ). (4.38)

Also,

F1(s) =

∫ ∞
1

{
ν−sdπdP(ν) + log(1− ν−s)dπdP(ν)

}
=

∫ ∞
1

ν−sdπdP(ν)−
∑
m≥1

1

m

∫ ∞
1

ν−msdπdP(ν)

= −
∑
m≥2

1

m

∫ ∞
1

ν−msdπdP(ν).

This shows that the integral for F1(s) converges unifomly for σ ≥ 1
2

+ δ with each

δ > 0. Therefore,

F1(s) = O(1), for σ ≥ 1

2
+ δ, δ > 0. (4.39)
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Hence, we see from equations (4.38) and (4.39) that for s = σ + iTn, we have

<{F2(s)− F1(s)} ≤ |F2(s)− F1(s)| ≤ b(log xn)
τ
2 , b > 0. (4.40)

This tells us that

<{F2(s)− F1(s)} ≥ −b(log xn)
τ
2 , for some b > 0. (4.41)

From (4.37) and (4.39) we have proved the following

Corollary 4.12. For σ + it ∈ Dζ ∩H 1
2
, we have

ζdP(σ + it) = O(eb
√

log t).

Our aim is to find an Ω-result for Md
P(x). In order to do this we estimate

Md
P(x) at some particular sequence of x. We shall take x to be as in (4.7).

Following the same method as in 4.1 we obtain

Md
P(x) = Id1 + · · ·+ Id5 +

∑
n0<|m|≤n

Jdm + {kϕ(1)
x2

2
+ x(1− k)ϕ(0)}, (4.42)

where {kϕ(1)x
2

2
+ x(1− k)ϕ(0)} means the residues at s = 0, 1 as in 4.1, so that

Idm =
1

2πi

∫
Γm

ζdP(s)
xs+1

s(s+ 1)
ds, m = 1, 2, ..., 5,

and

Jdm =
1

2πi

∫
Cm

ζdP(s)
xs+1

s(s+ 1)
ds, n0 < |m| ≤ n.

Where Cm is the mth horizontal loop with imaginary part equal to bm, (see Figure

4.1). By (4.8), (4.9) and (4.10) with ζdP instead of ζP we have

Id1 + · · ·+ Id5 = O

(
x2

Tn
e(log xn)

τ
2

)
= O

(
x2 exp

{
(log xn)

τ
2 − (log xn)τ

})
= O

(
x2e−c(log xn)τ

)
,

for some c > 0, since (log xn)
τ
2 = o ((log xn)τ ). We put τ = 2α

α+1
as in section 4.1

we get

Id1 + · · ·+ Id5 = O

(
x2e−c(log x)

2α
α+1

)
.
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From this we see equation (4.42) becomes

Md
P(x) =

ρx2

2
+

∑
n0<|m|≤n−1

Jdm+{Jd−n+Jdn}+O

(
x2e−c(log x)

2α
α+1

)
, ρ > 0. (4.43)

To estimate the second term in the right hand side of equation (4.43) we need to

prove again Proposition 4.6 with ζdP(s) instead of ζP(s) as follows

Proposition 4.13.∑
n0<|m|≤n−1

Jdm = O

(
x2e−q(log x)1− 1−α

ω

)
, for some q > 0.

Proof. Let us consider the integral Jm and let γm be the circle centred at 1 −

am+ ibm with the radius δ1 parameterised by γm(ϑ) = 1−am+ ibm+ δ1e
iϑ, where

0 ≤ ϑ ≤ 2π. Therefore we have∣∣∣∣∫
γm

ζdP(s)
xs+1

s(s+ 1)
ds

∣∣∣∣ ≤ 2πδ sup
s∈γm

∣∣∣∣ζdP(s)
xs+1

s(s+ 1)

∣∣∣∣→ 0,

as δ → 0. Let δ → 0, so we can write

∣∣Jdm∣∣ =

∣∣∣∣ 1

2πi

∫
Cm

ζdP(s)
xs+1

s(s+ 1)
ds

∣∣∣∣ ≤ b0e
(log xn)

τ
2

π

∫ 1−am

− 3
2

x2−am

b2
m

dσ

≤ b1x
2

b2
m

exp
{

(log xn)
τ
2 − am log x

}
,

for some b0, b1 > 0. But if |m| ≤ n− 1 then

exp
{

(log xn)
τ
2 − am log x

}
≤ exp

{
(log xn)

τ
2 − an−1 log x

}
= exp

{
(log xn)

τ
2 − log x

(log xn−1)1−α

}
= exp

{
(log xn)

τ
2 − log x

(log xn)
1−α
ω

}
.

Since log x = log xn + o(1), the last term is

≤ 2 exp
{

(log x)
τ
2 − (log x)1− 1−α

ω

}
≤ 2 exp

{
−q(log x)1− 1−α

ω

}
,

for some q > 0, since (log x)
τ
2 = o

(
(log x)1− 1−α

ω

)
for ω sufficiently large. Hence

∑
n0<|m|≤n−1

Jdm = O

x2e−q(log x)1− 1−α
ω

∑
|m|>n0

1

b2
m

 = O

(
x2e−q(log x)1− 1−α

ω

)
.
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We see that 1− 1−α
ω
≥ 2α

α+1
= τ since ω is taken sufficiently large, so equation

(4.43) becomes

Md
P(x) =

ρx2

2
+ {Jd−n + Jdn}+O

(
x2e−c(log x)

2α
α+1

)
, (4.44)

for some constants ρ, q, c > 0. It remains to study the expression Jd−n + Jdn.

Denote by Jd
′
n and Jd

′′
n the integrals along the line segments C

′
n C

′′
n (see Figure

4.1) lying respectively above and below the branch cut Cn so that Jdn = Jd
′
n +Jd

′′
n .

Now, if we write

s = 1− an + ibn + teiθ, −π ≤ θ < π,

then the line segment C
′′
n is obtained by letting θ = −π and t run from 0 to

1− an + 3
2
. In this way we obtain C

′′
n with its direction reversed:

−C ′′ :



θ = −π,

s = 1− an + ibn − t,

ds = −dt,

0 ≤ t ≤ 1− an + 3
2
.

To estimate Jdn, split it up into

Jd
′′

n =
1

2πi

{∫ (log x)−ε

0

+

∫ 1−an+ 3
2

(log x)−ε

}
ζdP(1− an + ibn − t)x2−an+ibn−t

(1− an + ibn − t)(2− an + ibn − t)
(dt),

(4.45)

where ε is arbitrary positive number. The second integral over ((log x)−ε, 1−an+

3
2
) is bounded in modulus by

b2x
2−ane(log xn)

τ
2

2πb2
n

∫ 1−an+ 3
2

(log x)−ε
x−tdt ≤

b2x
2−an exp

{
(log xn)

τ
2 − (log x)1−ε}

2πb2
n log x

,

for some b2 > 0. By taking ε to be as small as we please we find that the last

term of the above inequality is O
(
x2−ane−c(log x)1−ε

)
, for some c > 0.

To deal with the integral over (0, (log x)−ε) rewrite the integrand as follows:

ζdP(s)

s(s+ 1)
= (s− 1 + an − ibn)

µn
2 gn(s) say,
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where

gn(s) = eF2(s)−F1(s)fn(s).

Here gn(s) is analytic in a disc around the point zn = 1− an + ibn. Therefore By

Proposition 4.7 and equation (4.40) we obtain

|gn(s)| ≤ 64

b2
n

exp {< (F2(s)− F1(s))} ≤ q1

b2
n

e(log xn)
τ
2 , (4.46)

for some q1 > 0. While, by Proposition 4.9 and equation (4.41) we have

|gn(s)| ≥ 1

160b2
n

exp {< (F2(s)− F1(s))} ≥ q2

b2
n

e−(log xn)
τ
2 , (4.47)

for some q2 > 0. Therefore, by (4.18) with gn(s) instead of fn(s) and by (4.47)

we obtain ∣∣Sdn∣∣ ≥ b exp
{
−
(
(log xn)

τ
2 + 2(log xn)α

)}
, b > 0, (4.48)

for x is sufficiently large, that is for n is sufficiently large. We use this lower

bound of the integral Sdn. Now considering the other factor in (4.17) (with Sn is

replaced by Sdn), we have

sin πµn
2

π
x2−an+

(
1

log x

)µn
2

+1

≥ µn
π
x2e−anlogx · 1

2(log x)2

≥ q3x
2e
− log x

(log xn)1−α · 1

(log x)2 (log log xn)2 , q3 > 0.

where µn = 1
n2 and n ≤ log log xn

ω−1
. From the above and (4.48), we get

∣∣Jdn∣∣ ≥ q3x
2

(log x)2 (log log xn)2 exp

{
−
(

log x

(log xn)1−α + 2(log xn)α + (log xn)
τ
2

)}
,

for some q3 > 0 and large n. That is, for some q3, c0 > 0 and large n we have∣∣Jdn∣∣ ≥ q3x
2 exp

{
−
(
c0(log x)α + (log x)

τ
2

)}
. (4.49)

This gives ∣∣Jdn∣∣ ≥ q3x
2e−c(log x)α , 0 < α < 1,

for some positive constants q3, c and for sufficiently large n. Since ω is taken

sufficiently large, we see (4.44) becomes

Md
P(x) =

ρx2

2
+ {Jd−n + Jdn}+O

(
x2e−(log x)

2α
1+α

)
. (4.50)
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We next aim to obtain a large value for Jdn + Jd−n = 2<(Jdn) compared with the

other error term of (4.50). To achieve this we can use similar arguments as those

discussed in Section 4.1 to show that for sufficiently large n we have

<(Jdn) ≥ Ax2e−c(log x)α , for r = r+ and A, c > 0, (4.51)

and

<(Jdn) ≤ −Ax2e−c(log x)α , for r = r− and A, c > 0. (4.52)

Hence we get

Md
P(x) =

ρx2

2
+ Ω±(x2e−c(log x)α), (4.53)

for some positive constants ρ and c. This proves equation (4.36) and hence (4.27).

The proof of Theorem 4.10 is completed.
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Chapter 5

Connecting the error term of

NP(x) and the size of ζP(s)

When proving results linking the asymptotic behaviour of ΠP(x) and NP(x) one

often uses as a go-between the Beurling zeta function ζP(s). Thus an assumption

made on ΠP(x) is translated into a property of ζP(s) which is then shown to

imply a property of NP(x) and similarly vice versa. The property on ζP(s) is

often related to its size along the vertical line (or holomorphicity). For example,

if NP(x) = cx + O(xα), α < 1. Then ζP(s) is holomorphic in Hα\{1} and

ζP(σ + it) = O(t) for σ > α. That is, ζP has at most polynomial growth on

vertical lines to the left of 1. Furthermore, bounds on the vertical growth can be

shown via the inverse Mellin transform to imply NP(x) = cx + O(xα). Here we

investigate the connection when NP(x) = cx+Ω(x1−ε), and where ζP(σ+ it) may

have infinite order. Therefore, if we assume that ζP(s) has polynomial growth

along some curve for σ < 1, what can be said about the behaviour of NP(x) (as

x→∞) and vice versa?

We concentrate in this chapter on determining the connections between the

asymptotic behaviour of the g-integer counting function NP(x) and the size of

Beurling zeta function ζP(σ + it) with σ near 1 (as t→∞). We aim to find this

link and apply it in chapter 6.
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5.1 From ζP to NP

We start with showing how assumptions on growth of ζP(s) imply estimates on the

error term of NP(x). Note that in fact, the following theorem is purely analytical

as there is no use of g-prime systems (only the fact that NP ∈ S+
1 ).

Theorem 5.1. Suppose that for some α ∈ [0, 1), ζP(s) has an analytic continu-

ation to the half plane Hα except for a simple pole at s = 1 with residue ρ.

Further assume that for some c < 1,

ζP(σ + it) = O(tc), for σ ≥ 1− 1

f(log t)
,

where f is a positive, strictly increasing continuous function, tending to infinity.

Then for γ = 1− c,

NP(x) = ρx+O(xe−
γ
2
h−1(γ−1 log x)),

where h(u) = uf(u).

Proof. We use the bound ζP(s) = O(tc), for some c < 1 to find an approximate

formula for

MP(x) =

∫ x

0

NP(y)dy =
1

2πi

∫ b+i∞

b−i∞
ζP(s)

xs+1

s(s+ 1)
ds.

This holds for any b > 1. Pushing the contour to the left of the line <s = b past

the simple pole at 1, we get for any T > 0

MP(x) =
ρ

2
x2 +

1

2πi

∫
ηT

ζP(s)
xs+1

s(s+ 1)
ds+

1

2πi

∫ b+iT

1− 1
f(log T )

+iT

ζP(s)
xs+1

s(s+ 1)
ds

+
1

2πi

∫ 1− 1
f(log T )

−iT

b−iT
ζP(s)

xs+1

s(s+ 1)
ds+

1

2πi

(∫ b+i∞

b+iT

+

∫ b−iT

b−i∞

)
ζP(s)

xs+1

s(s+ 1)
ds.

Here ηT is the contour s = 1− 1
f(log t)

+ it for a < |t| ≤ T and s = 1− 1
f(log a)

+ it

for |t| ≤ a. The constant a is chosen such that a > e and 1 − 1
f(log a)

> α, (see

Figure 5.1).
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The modulus of the integral over the horizontal line [1− 1
f(log T )

+ iT, b + iT ]

is ∣∣∣∣∣
∫ b+iT

1− 1
f(log T )

+iT

ζP(s)
xs+1

s(s+ 1)
ds

∣∣∣∣∣ = O

(∫ b

1− 1
f(log T )

T cxu+1

T 2
du

)
= O(

xb+1

T 2−c log x
)→ 0 as T →∞.

Similarly for the integral over [b− iT, 1− 1
f(log T )

− iT ].

Figure 5.1: contour ηT

Now, letting T →∞ we get

MP(x) =
ρ

2
x2 +

1

2πi

∫
η

ζP(s)
xs+1

s(s+ 1)
ds,

where η is the contour s = 1− 1
f(log t)

+ it for |t| > a > e and s = 1− 1
f(log a)

+ it

for |t| ≤ a. Therefore,∣∣∣MP(x)− ρ

2
x2
∣∣∣ =

∣∣∣∣ 1

2πi

∫
η

ζP(s)
xs+1

s(s+ 1)
ds

∣∣∣∣ ,
= O

∫ ∞
a

∣∣∣ζP(1− 1
f(log t)

− it)
∣∣∣

t2
x2− 1

f(log t)dt

+O(x2− 1
f(log a) ),

56



= O

(
x2

∫ ∞
log a

exp

{
−(2u+

log x

f(u)
) + (c+ 1)u

}
du

)
+O(x2− 1

f(log a) ),

= O

(
x2

∫ ∞
log a

exp

{
−((1− c)u+

log x

f(u)
)

}
du

)
+O(x2− 1

f(log a) ).

To estimate the integral, we split it into∫ ∞
log a

exp

{
−(γu+

log x

f(u)
)

}
du =

(∫ A

log a

+

∫ ∞
A

)
exp

{
−(γu+

log x

f(u)
)

}
du,

for some A > log a and γ = 1− c.

The first integral over (log a,A) is ≤ e−
log x
f(A)

∫ A
log a

e−γudu = O(e−
log x
f(A) ), whilst

the second integral over (A,∞) is ≤
∫∞
A
e−γudu = O(e−γA).

Now, choose A optimally such that these O−terms are of the same order (i.e.

Af(A) = γ−1 log x), and h(A) = Af(A). Then A = h−1(γ−1 log x). Hence∫ ∞
log a

exp

{
−(γu+

log x

f(u)
)

}
du = O(exp(−γh−1(γ−1 log x)).

Therefore∣∣∣MP(x)− ρ

2
x2
∣∣∣ = O

(
x2 exp{−γh−1(γ−1 log x)}

)
, γ = 1− c. (5.1)

The function NP is increasing function, so for every 0 < y < x, we have∫ x

0

NP(u)du−
∫ x−y

0

NP(u)du =

∫ x

x−y
NP(u)du ≤ yNP(x).

On the other hand∫ x+y

0

NP(u)du−
∫ x

0

NP(u)du =

∫ x+y

x

NP(u)du ≥ yNP(x).

Therefore

MP(x)−MP(x− y)

y
≤ NP(x) ≤ MP(x+ y)−MP(x)

y
.

Using equation (5.1) the left hand side of the above inequality is

=
1

y

(
ρ

2

(
x2 − (x− y)2

)
+O

(
x2 exp{−γh−1(γ−1 log(x− y))}

))
.

That is, the left hand side is

=
1

y

(
ρxy − ρy2

2
+O

(
x2 exp{−γh−1(γ−1 log(x− y))}

))
. (5.2)
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Similarly, the right hand side of the same inequality is

=
1

y

(
ρxy +

ρy2

2
+O

(
x2 exp{−γh−1(γ−1 log x)}

))
,

hold for any 0 < y < x.

Now, for some ε > 0 and some d > 0 we have h(x)− h(x− d) = xf(x)− (x−

d)f(x−d) = x
(
f(x)−f(x−d)

)
+df(x−d) ≥ ε > 0. That is, h(x)− ε ≥ h(x−d).

Therefore, with y = o(x), we see

h−1(γ−1 log(x− y)) ≥ h−1(γ−1 log x− ε) ≥ h−1(γ−1 log x)− d,

for some ε > 0 and some d > 0. So in the O−term in (5.2) we can replace x− y

by x.

Now, setting y = x exp{−γ
2
h−1(γ−1 log x)} we get

NP(x) = ρx+O
(
x exp{−γ

2
h−1(γ−1 log x)}

)
.

It is useful to observe how the size of the error term of NP(x) depends on

where ζP(σ + it) = O(tc), for some c < 1 as σ → 1. Here are some examples

showing how different functions f lead to different error terms for NP(x).

Examples

1. For f(x) = x
log x

. We have h(x) = x2

log x
gives h−1(x) ∼

√
1
2
x log x and

h−1(log x) ≥ (1− ε)
√

1

2
log x log log x, ∀ε > 0, x ≥ x0(ε).

Thus Theorem 5.1 says,

ζP(σ + it) = O(tc), (c < 1) for σ ≥ 1− log log t
log t

implies

NP(x) = ρx+O
(
x exp{−a

√
log x log log x}

)
,

for some ρ > 0, and for every a <
√

1−c
8
.
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2. For f(x) = xθ for some θ > 0. We have h(x) = x1+θ and

h−1(log x) = (log x)
1

1+θ .

That is,

ζP(1− 1

(log t)θ
+ it) = O(tc), (c < 1) implies

NP(x) = ρx+O
(
x exp{−b(log x)

1
1+θ }

)
,

for some ρ > 0, where b = γ
θ

1+θ

2
and γ = 1− c.
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5.2 From NP to polynomial growth of ζP

Our purpose in this section is to obtain a kind of converse of Theorem 5.1. That

is, we find the region where ζP(σ+ it) = O(tc), for some c > 0, if we assume that

we have a bound for the error term of NP(x). In the other words, the reason

of the following theorem is to obtain polynomial growth for ζP(σ + it), σ < 1.

This depends on σ and the bound of the error term of NP(x). We shall need to

assume a priori that ζP is has an analytic continuation to the left of σ = 1 and

that ζP(σ + it) is bounded above by O(et) for 0 ≤ σ < 1.

Theorem 5.2. Suppose that for some α ∈ [0, 1), ζP(s) has an analytic continu-

ation to the half plane Hα except for a simple pole at s = 1 with residue ρ and

for σ > α, ζP(σ + it) = O(et), (t > 0, t→∞).

Further assume that

NP(x) = ρx+O(xe−k(x)),

for some positive, increasing function k tending to infinity such that k
′
(x) = o( 1

x
).

Then for some c > 0,

ζP(σ + it) = O(tc),

for 1− k( e
t

t
)

t
≤ σ < 1− log t

t
, where t is sufficiently large.

Proof. The usual Mellin transform

ζP(s) =

∫ ∞
1−

x−sdNP(x), σ > 1

cannot be used directly for σ < 1, since the error term is not small enough to

ensure analytic continuation to σ < 1. Instead we use a formula which is based

on: ∑
n≥1

an
ns
e−(λn)δ =

1

2πiδ

∫ c+i∞

c−i∞
Γ(
ω

δ
)g(s+ ω)λ−ωdω, (5.3)

where g(s) =
∑

n≥1
an
ns

, λ > 0, δ > 0, and c > 0, c > σ1 − σ, where σ1 is the

abscissa of absolute convergence of g(s). (See [28] page 301.)
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We generalize equation (5.3) (with δ = 1) in terms of the Beurling zeta func-

tion. The reason for doing this is to find an estimate for ζP(s) for σ < 1. That

is, we show ∫ ∞
1−

x−se−λxdNP(x) =
1

2πi

∫ c+i∞

c−i∞
Γ(ω)ζP(s+ ω)λ−ωdω, (5.4)

holds for λ > 0 and c > 0, c > 1− σ.

To see this, notice that the right hand side of equation (5.4) is equal

1

2πi

∫ c+i∞

c−i∞
Γ(ω)

(∫ ∞
1−

x−(s+ω)dNP(x)

)
λ−ωdω,

and observe that we can invert the order of integrations by ‘absolute convergence’

since gamma is exponentially small. It becomes∫ ∞
1−

x−s
(

1

2πi

∫ c+i∞

c−i∞
Γ(ω)(λx)−ωdω

)
dNP(x) =

∫ ∞
1−

x−se−λxdNP(x).

Note that both sides of (5.4) are entire functions.

Now we integrate by parts the left hand side of equation (5.4) and on the right

we push the contour to the left of the lines <ω = 0 and <ω = 1− σ. We get

λ

∫ ∞
1

e−λxx−sNP(x)dx+ s

∫ ∞
1

e−λxx−s−1NP(x)dx = ζP(s) + ρλs−1Γ(1− s)

+
1

2πi

(∫ c
′−i∞

c−i∞
+

∫ c
′
+i∞

c′−i∞
+

∫ c+i∞

c′+i∞

)
Γ(ω)ζP(s+ ω)λ−ωdω,

for some negative constant c
′
> −1 and c

′
+σ > α, since the integrand of the right

hand side of equation (5.4) has singularities at ω = 0 and ω = 1− s with residues

ζP(s) and ρλs−1Γ(1− s) respectively.
[
The contribution from the horizontal line

[c
′
+ iy, c+ iy] is∣∣∣∣∫ c+iy

c′+iy

Γ(ω)ζP(s+ ω)λ−ωdω

∣∣∣∣ =

∣∣∣∣∫ c

c′
Γ(x+ iy)ζP(σ + x+ i(y + t))λ−(x+iy)dx

∣∣∣∣
= O

(
y−

1
2 exp

{
|y + t| − π |y|

2

}∫ c

c′
yxλ−xdx

)
→ 0 as y →∞.

since |Γ(x+ iy)| � e−
π|y|

2 |y|x−
1
2
√

2π (See [28] page 151), and |ζP(σ + it)| � et.

Similarly for the integral over [c− iy, c′ − iy].
]

Therefore,

ζP(s) = λ

∫ ∞
1

e−λxx−sNP(x)dx+ s

∫ ∞
1

e−λxx−s−1NP(x)dx

− ρλs−1Γ(1− s)− 1

2πi

∫ c
′
+i∞

c′−i∞
Γ(ω)ζP(s+ ω)λ−ωdω.

(5.5)
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As we mentioned earlier, we are interested in finding an estimate for ζP(s) for

σ < 1. So, we take α < σ < 1, and try to estimate each term in the right hand

side of equation (5.5) separately. For the first integral we have

λ

∫ ∞
1

e−λxx−sNP(x)dx = λ

∫ ∞
1

e−λxx−s
(
ρx+O(xe−k(x))

)
dx

= λρ

∫ ∞
1

e−λxx−s+1dx+O

(
λ

∫ ∞
1

x−σ+1e−(λx+k(x))dx

)
.

= ρλs−1Γ(2− s)− ρλ
∫ 1

0

e−λxx−s+1dx+O

(
λ

∫ ∞
1

x−σ+1e−(λx+k(x))dx

)
,

since σ < 1. Hence

λ

∫ ∞
1

e−λxx−sNP(x)dx = ρλs−1Γ(2− s) +O

(
λ

∫ ∞
1

x−σ+1e−(λx+k(x))dx

)
+O(1),

(5.6)

since
∫ 1

0
e−λxx−s+1dx = O(1).

For the second integral of equation (5.5) we have

s

∫ ∞
1

e−λxx−s−1NP(x)d = s

∫ ∞
1

e−λxx−s−1
(
ρx+O(xe−k(x))

)
dx

= sρ

∫ ∞
1

e−λxx−sdx+O

(
t

∫ ∞
1

x−σe−(λx+k(x))dx,

)
= sρλs−1Γ(1− s)− sρ

∫ 1

0

e−λxx−sdx+O

(
t

∫ ∞
1

x−σe−(λx+k(x))dx,

)
since σ < 1. Hence

s

∫ ∞
1

e−λxx−s−1NP(x)dx = sρλs−1Γ(1−s)+O(
t

1− σ
)+O

(
t

∫ ∞
1

x−σe−(λx+k(x))dx

)
,

(5.7)

since
∣∣∣sρ ∫ 1

0
e−λxx−sdx

∣∣∣ = O(t
∫ 1

0
x−σdx) = O( t

1−σ ).

Finally, for the vertical line over [c
′ − i∞, c′ + i∞] we have∣∣∣∣∣

∫ c
′
+i∞

c′−i∞
Γ(ω)ζP(s+ ω)λ−ωdω

∣∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

Γ(c
′
+ iy)ζP(σ + c

′
+ i(y + t))λ−(c

′
+iy)dy

∣∣∣∣
= O

(
λ−c

′
∫ ∞
−∞

(|y|+ 1)c
′− 1

2 exp

{
|y + t| − π |y|

2

}
dy

)
= O

(
λ−c

′

et
)
.
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From the above, equation (5.5) becomes

ζP(s) = ρλs−1Γ(2− s) + sρλs−1Γ(1− s)− ρλs−1Γ(1− s) +O(
t

1− σ
) +O

(
λ−c

′

et
)

+O

(
λ

∫ ∞
1

x−σ+1e−(λx+k(x))dx

)
+O

(
t

∫ ∞
1

x−σe−(λx+k(x))dx

)
,

= O

(
λ

∫ ∞
1

x−σ+1e−(λx+k(x))dx

)
+O

(
t

∫ ∞
1

x−σe−(λx+k(x))dx

)
+O(

t

1− σ
) +O

(
λ−c

′

et
)
,

(5.8)

since for σ < 1, the gamma terms cancel each other.

Our aim is to find for which σ we have ζP(s) = O(tc) for some c > 0. So,

putting λ = e−t, we see that the last term of the right hand side of equation (5.8)

is O(1), since c
′
> −1. We see also with λ = e−t that the term

λ

∫ ∞
1

x−σ+1e−(λx+k(x))dx = O(t).

Indeed, we split the integral into the ranges (1, B) and (B,∞) for some B > 1.

For the first integral we have∫ B

1

x1−σe−(λx+k(x))dx ≤ B1−σ
∫ B

1

e−k(x)dx

≤ B1−σ
(
Be−k(B) +

∫ B

1

xk
′
(x)e−k(x)dx

)
� B2−σe−k(B),

since k
′
(x) = o( 1

x
). For the range (B,∞) the second integral is∫ ∞
B

x1−σe−(λx+k(x))dx ≤ e−k(B)

∫ ∞
B

x1−σe−λxdx

= λσ−2e−k(B)

∫ ∞
λB

y1−σe−ydy

≤ λσ−2e−k(B)Γ(2− σ).

Therefore,

λ

∫ ∞
1

x1−σe−(λx+k(x))dx� λB2−σe−k(B) + λσ−1e−k(B)Γ(2− σ).

Now, setting B =
√

1
λ
, we get

λ

∫ ∞
1

x1−σe−(λx+k(x))dx� λ
σ
2 e−k(

√
1
λ

) + λσ−1e−k(
√

1
λ

)Γ(2− σ).
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For 1− σ > log t
t

we see λσ−1 < λ−
log t
t = t. Therefore, the first term in the right

hand side of the above inequality → 0 as t→∞, whilst the second term is O(t).

Thus, equation (5.8) becomes

ζP(s) = O

(
t

∫ ∞
1

x−σe−(λx+k(x))dx

)
+O(

t

1− σ
). (5.9)

To estimate the first integral in the right hand side of equation (5.9) we split it

into the ranges (1, A) and (A,∞) for some A > 1.

The first integral is less than∫ A

1

e−k(x)

xσ
dx ≤ A1−σe−k(A)

1− σ
+

1

1− σ

∫ A

1

xk
′
(x)

xσ
e−k(x)dx� A1−σe−k(A)

1− σ
,

since k
′
(x) = o( 1

x
), whilst the second integral over (A,∞) is

≤ e−k(A)

Aσ

∫ ∞
A

e−λxdx ≤ e−k(A)

λAσ
.

So these tell us that∫ ∞
1

x−σe−(λx+k(x))dx� A1−σe−k(A)

1− σ
+
et−k(A)

Aσ
=
e−k(A)

Aσ

(
A

1− σ
+ et

)
.

Choose A = (1− σ)et, equation (5.9) becomes

ζP(s) = O

(
t

1− σ
(
(1− σ)et

)1−σ
e−k((1−σ)et)

)
+O(

t

1− σ
)

= O
(
t2 exp

{
t(1− σ)− k((1− σ)et)

})
+O(t2),

(5.10)

since 1
1−σ <

t
log t

, and (1− σ)1−σ → 1 as 1− σ → 0. Therefore

ζP(σ + it) = O(tc) for some c > 0, (5.11)

when

exp
{
t(1− σ)− k((1− σ)et)

}
≤ tc.

Certainly (5.11) holds when

k((1− σ)et) ≥ (1− σ)t. (5.12)

Now, we have

k((1− σ)et) > k(
et log t

t
) > k(

et

t
),
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since 1− σ > log t
t
> 1

t
. This shows that (5.11) holds when

1− σ ≤
k
(
et

t

)
t

.

Therefore, for

1−
k
(
et

t

)
t
≤ σ < 1− log t

t
,

we have ζP(s) = O(tc) for some c > 0.

We now illustrate Theorem 5.2 with some examples (of course, in each case

we assume that ζP has an analytic continuation to Hα).

Examples

1. For k(x) = (log x)α, for some α ∈ (0, 1). This means k
(
ex

x

)
= (x− log x)α ∼

xα, and

k
(ex
x

)
≤ (1 + ε)xα, ∀ε > 0, x ≥ x0(ε).

That is,

NP(x) = ρx+O (x exp{−(log x)α}) , ρ > 0 implies

ζP(σ + it) = O(tc), for σ ≥ 1− (1 + ε)

t1−α
and c > 0.

2. For k(x) = log x log log log x
log log x

. This means k
(
ex

x

)
∼ x log log x

log x
, and

k
(ex
x

)
≤ (1 + ε)

x log log x

log x
, ∀ε > 0, x ≥ x0(ε).

That is,

NP(x) = ρx+O

(
x exp

{
− log x log log log x

log log x

})
, ρ > 0 implies

ζP(σ + it) = O(tc), for σ ≥ 1− (1 + ε) log log t

log t
and c > 0.
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Chapter 6

Application to a particular

example.

In this chapter we investigate a particular example of a g-prime system P0. In this

example, ψP is given explicitly (see Definition 15) and hence gives very precise

knowledge about the asymptotic behaviour of ψP(x). We write N0,Π0 and π0

for the associated Beurling counting functions and ζ0 for the associated Beurling

zeta function.

Definition 15. Let

ψ0(x) = [x]− 1, x ≥ 1. (6.1)

Notice that (6.1) does not in itself give an outer g-prime system. For this we

need Π0 increasing. But

Π0(x) =

∫ x

1

d([t]− 1)

log t
=
∑

2≤n≤x

1

log n

is increasing. That is, Π0 (and ψ0) ∈ S+
0 which tells us that we have an outer

g-prime system. Furthermore, we show at the end of this chapter that (Π0,N0)

is a g-prime system by showing π0 ∈ S+
0 (i.e. π0 is increasing).

We want to investigate the behaviour of N0(x) as x → ∞. It is immediate

from Diamond’s work (see point 2 in Section 3.3) that N0(x) ∼ τx, for some

τ > 0, so we can write

N0(x) = τx+ E(x). (6.2)
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Here E(x) = o(x). We find O−results and Ω−results for E(x) as an application

of Theorem 5.1 and Theorem 5.2.

Now, equation (6.1) (which implies ψ0(x) = x + O(1)) tells us that ζ0(s) has

an analytic continuation to the half plane {s ∈ C : <s > 0} except for a simple

pole at s = 1 and ζ0(s) 6= 0 in this region (see Lemma 3.2). Moreover,

−ζ
′
0

ζ0

(s) =

∫ ∞
1−

x−sdψ0(x) = ζ(s)− 1. (6.3)

Here, the ζ appearing in the right hand side of the above equation is the Riemann-

zeta function. This tells us that
ζ′0
ζ0

(s) has an analytic continuation to C\{1}. Let

L(s) =
ζ′0
ζ0

(s) + 1
s−1

=
(s−1)ζ′0(s)+ζ0(s)

(s−1)ζ0(s)
. We see from (6.3) that L(s) is entire, which

means it has an entire primitive H(s). This implies ζ0(s) = c e
H(s)

s−1
(some c) and

so ζ0 has an analytic continuation to C\{1} (note that ζ0 6= 0). This also tells us

that log ζ0(s) is exists and analytic on C\(−∞, 1].

The constant τ

It is worthwhile to point out that the constant τ appearing in the right hand side

of equation (6.2) can be calculated numerically as follows:

We have

τ = e−γ lim
x→∞

exp

{∫ x

1

dΠ0(ν)

ν
− log log x

}
,

where γ is the Euler’s constant (see [26, Page 46]).

Now, dΠ0(ν) = dψ0(ν)
log ν

, therefore

τ = e−γ lim
x→∞

exp

{ ∑
2≤n≤x

1

n log n
− log log x

}
. (6.4)

Thus by calculating (6.4) numerically one can get τ ≈ 1.24.

6.1 O-Results for N0(x)− τx

We will now find some O−results for E(x). First, using result 7 in section 3.3

(with ψ0(x) = x+O(1)), we get

N0(x) = τx+O
(
x exp{−c

√
log x log log x}

)
, (6.5)
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for some c > 0.

We can improve on this by using Theorem 5.1. The real reason which allows

us to improve on (6.5) is that ζ0(s) is connected to the Riemann zeta function

and we can use all the available information on ζ(s).

Theorem 6.1. We have

N0(x) = τx+O
(
x exp{−b(log x)

3
5

(
log log x

) 2
5}
)
, (6.6)

for some b > 0. Furthermore, on the Riemann Hypothesis this can be improved

to

N0(x) = τx+O

(
x exp

{
− (1− ε) log x log log log x

4 log log x

})
, for every ε > 0. (6.7)

Proof. Firstly, we show that (6.6) holds. We have

ζ(s)� (1 + t100(1−σ)
3
2 )(log t)

2
3 ,

uniformly for 0 ≤ σ ≤ 2, t ≥ 2, (see (2.1) in Chapter 2 with B = 100). By (6.3)

we get

∣∣∣∣−ζ ′0ζ0

(s)

∣∣∣∣� (1 + t100(1−σ)
3
2 )(log t)

2
3 . (6.8)

Now, for σ ∈ (0, 1), we have

log ζ0(σ + it) = −
∫

[σ+it,2+it]

ζ ′0
ζ0

(s)ds+ log ζ0(2 + it)

= −
∫ 2

σ

ζ ′0
ζ0

(u+ it)du+O(1).

Therefore,

<
{

log ζ0(σ + it)
}

= log |ζ0(σ + it)| ≤
∫ 2

σ

∣∣∣∣ζ ′0ζ0

(u+ it)

∣∣∣∣ du+O(1). (6.9)

Using the bound (6.8) we obtain

|ζ0(σ + it)| � exp
{

(1 + t100(1−σ)
3
2 )(log t)

2
3

}
, (6.10)

uniformly for 0 < σ ≤ 2, t ≥ 2.
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Our aim here is to apply Theorem 5.1. For this purpose we have to show for

which region (σ near 1), ζ0(σ + it)� tc for some positive constant c < 1. So, in

order for |ζ0(σ + it)| � tc, to hold for some c < 1, we need

exp
{

(1 + t100(1−σ)
3
2 )(log t)

2
3

}
≤ tc.

That is, we need

1 + e100(1−σ)
3
2 log t ≤ c(log t)

1
3 .

This certainly holds for t sufficiently large if

100(1− σ)
3
2 log t ≤ 1

4
log log t.

Therefore, for

σ ≥ 1−
(

log log t

400 log t

) 2
3

,

we have

ζ0(σ + it) = O(tc), for some positive constant c < 1.

Thus, we can apply Theorem 5.1. We have f(x) = (400x
log x

)
2
3 , which tells us that

h(x) = x
5
3 ( 400

log x
)

2
3 and

h−1(log x) ∼ (log x)
3
5

(3 log log x

2000

) 2
5 .

Thus, for this example we have

N0(x) = τx+O
(
x exp{−b(log x)

3
5

(
log log x

) 2
5}
)
,

for some b > 0. This concludes the proof of (6.6).

Now we show (6.7). On the Riemann Hypothesis we have

log ζ(s)� (log t)2−2σ − 1

(1− σ) log log t
+ log log log t,

for σ0 ≤ σ ≤ 1, (see Chapter 2 on O−results). Using these bounds in (6.9) we

obtain

log |ζ0(σ + it)| ≤ A exp
{a(log t)2(1−σ) − 1

(1− σ) log log t
+ a log log log t

}
,
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for some A, a > 0.

However, eu−1
u
≤ eu for all u ≥ 0. Therefore, in order for log |ζ0(σ + it)| ≤

c log t, for some positive constant c < 1, it is sufficient to have

exp

{
a(log t)2(1−σ) + a log log log t

}
≤ A1 log t,

for some A1, a > 0. That is,

a(log t)2(1−σ) ≤ log log t+ logA1 − a log log log t.

So, for σ ≥ 1 − log log log t−k1

2 log log t
, the above holds for some suitable k1 > 0, if t is

sufficiently large. That is, in this region we have

ζ0(σ + it) = O(tc), for every c > 0.

Now, apply Theorem 5.1 with f(x) = 2 log x
log log x−k1

, which tells us that h(x) =

2x log x
log log x−k1

and

h−1(
log x

γ
) ∼ log x log log log x

2γ log log x
,

where γ = 1− c. Hence, on the Riemann Hypothesis we have

N0(x) = τx+O

(
x exp

{
− (1− ε) log x log log log x

4 log log x

})
,

for every ε > 0. This concludes the proof of (6.7).

6.2 Ω−Results for N0(x)− τx

Now we turn our attention to find lower bounds for E(x). First, we have a result

that follows from existing theory.

Theorem 6.2. We have

N0(x) = τx+ Ω(x1−δ), ∀δ > 0. (6.11)
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Proof. If (6.11) is not true thenN0(x) = τx+o(x1−δ), which implies thatN0(x) =

τx+O(x1−δ), for some δ > 0. Thus we have a ‘well-behaved’ system (see section

3).

ψ0(x) = x+O(1)

N0(x) = τx+O(x1−δ), δ > 0,

By Lemma 3.3 for 1− δ < σ < 1, we have

ζ(s)− 1 = −ζ
′
0

ζ0

(s) = O
(
(log t)

1−σ
δ

+ε
)
, ∀ε > 0.

This is a contradiction, since we know by Theorem 2.3 that

|ζ(σ + it)| = Ω(exp
{
c(log t)1−σ−ε}), for some c > 0 and any ε > 0.

In order to improve the above result, we will apply Theorem 5.2. Our strategy

here is to show that the conditions of Theorem 5.2 are satisfied (i.e. ζ0(σ + it)

has at most polynomial growth in a region just to the left of σ = 1). This will

force a contradiction with the knowledge of lower bounds of the Riemann zeta

function (since ζ0(s) is connected to the Riemann zeta function).

Theorem 6.3. We have

N0(x) = τx+ Ω(xe−ck(x)), for every c > 1, (6.12)

where k(x) = log x log log log log x
log log log x

.

Before we prove Theorem 6.3, we recall the following Proposition from Chapter

2.

Proposition 6.4. For 3
4
≤ σ ≤ 1− log log logN

2 log logN
, we have

max
1<t<N

|ζ(σ + it)| ≥ exp

{
(1 + o(1))

(logN)1−σ

16(1− σ) log logN

}
,

for N ≥ N0 independent of σ.
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Proof of Theorem 6.3. If (6.12) is not true then

N0(x) = τx+O(xe−ck(x)) for some c > 1.

We know that ζ0(s) has an analytic continuation to C\{1} with a simple pole at

s = 1 and ζ0(s) 6= 0 in this region. Moreover, by (6.10) we have ζ0(σ + it) �

eεt, ∀ε > 0 for λ ≤ σ < 1, (some fixed λ). Therefore, we can apply Theorem 5.2

as the conditions are satisfied. We obtain

ζ0(σ + it) = O(tb), for some b > 0,

for 1 − log t
t
≥ σ ≥ 1 − (1−ε)c log log log t

log log t
, (any ε > 0, and t > t0(ε) since

ck( e
t

t
)

t
∼

c log log log t
log log t

). Furthermore, (6.9) tells us that

log |ζ0(s)| ≤
∫ 2

σ

|ζ(u+ it)− 1| du+O(1)� log t,

since ζ(s) = O(log t) for 1− a
log t
≤ σ ≤ 2, (any a > 0), see Theorem 3.5. in [29].

Let B(t) = (1−ε)c log log log t
log log t

. Therefore, for 1−B(t) ≤ σ ≤ 2,

log |ζ0(σ + it)| ≤ A log t for some A > 0.

Consider concentric circles with centre ϑ + it (for some ϑ > 1) and radii R1 =

ϑ− 1 + B(t)− λ(t) and R2 = ϑ− 1 + B(t)− 2λ(t), (with λ(t) = 1
log log t

). Apply

the Borel-Carathéodory Theorem to log ζ0(z), (see 9.1 in [29]). Therefore, for

σ ≥ 1−B(t) + λ(t) and t ≥ t0, we obtain

|log ζ0(σ + it)| ≤ 2R2

R1 −R2

A log t+
R1 +R2

R1 −R2

|log ζ0(ϑ+ it)|

≤ A1

λ(t)
log t+

D

λ(t)
� log t log log t,

for some A1, D > 0.

Now, let C be the circle (see Figure 6.1) with centre 1− dB(t) + λ(t) + it, for

some d ∈ (1
2
, 1) and radius R = rB(t) for some positive constant r < 1 − d. By

Cauchy’s integral formula

−ζ
′
0

ζ0

(s) =
1

2πi

∫
C

log ζ0(z)

(z − s)2
dz for s ∈ C.
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Figure 6.1: circle C

Therefore, for s ∈ C, we have∣∣∣∣ζ ′0ζ0

(s)

∣∣∣∣ ≤ 1

R
max
z on C

|log ζ0(z)| � 1

B(t)
log t log log t = o(log2 t).

So, this tells us that for s ∈ C

ζ(s) = o(log2 t), for σ ≥ 1− (1− ε)c log log log t

log log t
(6.13)

However, by Proposition 6.4, for 1 − σ = (1−ε)c log log log T
log log T

, with (1 − ε)c > 1, we

have

max
1<t<T

|ζ(σ + it)| ≥ exp

{(
1 + o(1)

)
(log T )1−σ

16(1− σ) log log T

}
= exp

{(
1 + o(1)

) (log log T )(1−ε)c

16(1− ε)c log log log T

}
> e2 log log T = (log T )2.

This is a contradiction with (6.13).

In the previous sections we have been trying to obtain good lower and upper

bounds for N0(x)− τx. That is, upper bounds for N0(x)− τx which holds for all
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sufficiently large values of x and lower bound for N0(x) − τx which holds for a

sequence of x’s tending to infinity [and not necessarly for all (sufficiently large)

values of x]. For the upper bound ofN0(x)−τx we have shown some unconditional

O−results and one result was conditional with the unproved Riemann Hypothesis.

Set ∆(x) = N0(x)−τx. A comparison of the O−results and Ω−results (based

on Theorem 6.1 and Theorem 6.3) of this chapter, we have shown that

∆(x) = Ω

(
x exp

{
− c log x log log log log x

log log log x

})
for every c > 1,

while on the Riemann Hypothesis,

∆(x)� x exp

{
− (1− ε) log x log log log x

4 log log x

}
, for every ε > 0.

This shows that there is a small gap between these results which reflects the

great difficulty in determining the behaviours of ζ0(s) in the strip 1
2
< σ < 1. The

interesting question is: What is the true order of this error term?
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6.3 P0 is a g−prime system

We end this chapter by showing that the pair (Π0,N0) is a g-prime system. That

is, we show π0 ∈ S+
0 , (i.e. π0 is increasing).

Theorem 6.5. (Π0,N0) is a g-prime system.

We prove Theorem 6.5 by showing π0 ∈ S+
0 . Writing

ϑ0(x) =

∫ x

1

log y dπ0(y), (6.14)

which tells us that π0 ∈ S+
0 ⇔ ϑ0 ∈ S+

0 . Therefore, we will show that ϑ0 ∈ S+
0

and this will complete the proof of Theorem 6.5.

Now, we have

ψ0(x) =
∞∑
n=1

ϑ0(x
1
n ),

(see definition 13 in chapter 3) and by the Möbius Inversion Formula we get

ϑ0(x) =
∞∑
n=1

µ(n)ψ0(x
1
n ).

Therefore, with ψ0(x) = [x]− 1, x ≥ 1, we have

ϑ0(x) =
∞∑
n=1

µ(n)
(
[x

1
n ]− 1

)
.

[Note: The above series is finite since the terms are zero for n > log x
log 2

.] The

following Proposition will complete the proof.

Proposition 6.6. Let ϑ0(x) =
∑∞

n=1 µ(n)
(
[x

1
n ]− 1

)
, x ≥ 1. Then the following

hold:

(i) ϑ0(x) = ϑ0(k) for k ≤ x < k + 1, k ∈ N, (i.e. ϑ0(x) = ϑ0([x]).)

(ii) Define f(n, k) = [k
1
n ]− [(k − 1)

1
n ], n, k ∈ N. Then

f(n, k) =

 1 if k = qn, for some q ∈ N,

0 if k 6= qn, for any q ∈ N.
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(iii) We call k ∈ N a perfect power if there exist natural numbers

q > 1, and n > 1 such that k = qn. Then

ϑ0(k)− ϑ0(k − 1) =

 1 if k is not a perfect power , k ≥ 2

0 if k is a perfect power .

Proof. (i) For k ≤ x < k + 1, k ∈ N

ϑ0(x)− ϑ0(k) =
∞∑
n=1

µ(n)
(
[x

1
n ]− [k

1
n ]
)
.

Thus, by showing [k
1
n ] ≤ x

1
n < [k

1
n ] + 1, we will have completed the proof

of (i) since the above sum will equal zero.

We have k
1
n ≤ x

1
n < (k + 1)

1
n , so, it is clear that x

1
n ≥ [x

1
n ] ≥ [k

1
n ]. It

remains to show that x
1
n < [k

1
n ] + 1.

Assume that x
1
n ≥ [k

1
n ] + 1, for some n, k ∈ N. We have [k

1
n ] ∈ N ∪ {0}, so

we let q = [k
1
n ]. Clearly q ≤ k

1
n < q + 1. That is

qn ≤ k < (q + 1)n.

Thus,

k + 1 ≤ (q + 1)n ≤ x,

since x
1
n ≥ [k

1
n ] + 1 = q + 1. This is a contradiction (since k ≤ x < k + 1).

Hence ϑ0(x) = ϑ0(k) for k ≤ x < k + 1, k ∈ N.

(ii) First we prove that f(n, k) is either 1 or 0. We have [k
1
n ] ≥ [(k−1)

1
n ] ≥ 0,

so we need to show that

[k
1
n ]− [(k − 1)

1
n ] ≤ 1.

Suppose for a contradiction that [k
1
n ] > 1 + [(k − 1)

1
n ], for some n, k ∈ N.

Let q = [(k − 1)
1
n ]. Then the assumption implies k

1
n ≥ [k

1
n ] > q + 1. That

is,

k > (q + 1)n. (6.15)
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However, q ≤ (k − 1)
1
n < q + 1. That is, k < (q + 1)n + 1. Therefore, as

both sides are integers

k ≤ (q + 1)n.

This is in contradiction with (6.15). Hence

0 ≤ [k
1
n ]− [(k − 1)

1
n ] ≤ 1.

However [k
1
n ] and [(k − 1)

1
n ] are integers, therefore f(n, k) is either 1 or 0.

Now, for k = qn for some q ∈ N, then [k
1
n ] = q and

[(k − 1)
1
n ] = [(qn − 1)

1
n ] < q.

Therefore, f(n, k) = 1 if k = qn for some q ∈ N.

We end the proof of (ii) by showing that f(n, k) = 0 whenever k 6= qn,

q ∈ N.

Suppose that [k
1
n ]− [(k− 1)

1
n ] = 1 for some k such that k 6= qn, q ∈ N (i.e.

[k
1
n ] − 1 = [(k − 1)

1
n ]). We have [(k − 1)

1
n ] ≤ (k − 1)

1
n < [(k − 1)

1
n ] + 1.

That is,

[k
1
n ]− 1 ≤ (k − 1)

1
n < [k

1
n ].

Let q = [k
1
n ] we get k

1
n ≥ q. That is,

k ≥ qn. (6.16)

However, (k − 1)
1
n < q. That is, k < qn + 1. Therefore, as both sides are

integers

k ≤ qn. (6.17)

From (6.16) and (6.17) we get k = qn, q ∈ N. This is a contradiction.

Therefore,

f(n, k) = 0 if k 6= qn, for some q ∈ N.

Remark: For the particular case when k is a perfect power, we have that

f(n, qr) =

 1 if n | r,

0 if n - r.
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(iii) We have from (ii) that

f(n, k) =

 1 if k = qn, for some q ∈ N,

0 if k 6= qn, q ∈ N.

Therefore, for k is not a perfect power, we have

ϑ0(k)− ϑ0(k − 1) =
∞∑
n=1

µ(n)f(n, k) = 1 +
∞∑
n=2

µ(n)f(n, k) = 1.

Now, for k is a perfect power, let r be a maximal natural number greater

than or equal 2 such that k = qr, q > 1, q ∈ N. So, by the above Remark

we have

ϑ0(k)− ϑ0(k − 1) = ϑ0(qr)− ϑ0(qr − 1) =
∞∑
n=1

µ(n)f(n, qr) =
∑
n|r

µ(n).

By Theorem 2.1 of [2] we have the last sum is zero (since r > 1). The proof

of Proposition 6.6 is completed.

Theorem 6.5 follows as ϑ0(x) is increasing. Furthermore we have the following

Corollary:

Corollary 6.7. ϑ0(x) is increasing step function with jump 1. In fact, the jumps

appear only when x is not a perfect power.
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