
THE UNIVERSITY OF READING

Department of Mathematics and Statistics

Modelling time-dependent

partial differential equations

using a moving mesh approach

based on conservation

Tamsin E. Lee

November 2011

Thesis submitted for the degree of Doctor of Philosophy

Abstract

One of the advantages of moving mesh methods for the numerical solution of partial dif-

ferential equations is their ability to track moving boundaries. In this thesis we propose

a velocity-based moving mesh method in which we primarily focus on moving the nodes

so as to preserve local mass fractions. To recover the solutions from the mesh we use an

integral approach which avoids altering the structure of the original equations when incor-

porating the velocity. We apply our method to a range of moving boundary problems: the

porous medium equation; Richards’ equation; the Crank-Gupta problem; an avascular tu-

mour growth model. We compare the numerical results to exact solutions where possible,

or to results obtained from other methods, and find that our approach is accurate. We

apply three different strategies to the tumour growth model, using information from the

previous chapters, which enables us to make comparisons between the different approaches.

We conclude that our moving mesh method can offer equal accuracy and better resolution,

whilst offering greater flexibility than a standard fixed mesh approach.

Declaration

I confirm that this is my own work and the use of all material from other sources has been

properly and fully acknowledged.

Tamsin Lee

i

Acknowledgments

I would like to thank EPRSC for funding my studies. I extend that gratitude to Reading

University Maths Department who organised everything from the funding to endless moni-

toring meetings, especially Sue Davis, the heart of the department. I thank Peter Grindrod

and Paul Glaister for making my monitoring meetings a comfortable environment to discuss

my work and help see the direction of my thesis. An additional thanks to Peter Grindrod

for his contributions to my thesis. I am also grateful to Marcus Tindall for the aid of his

enthusiastic insight into tumour modelling that has been invaluable. In addition, I thank

Matthew Hubbard for suggesting the tumour growth problem.

The most important gratitude is for my supervisors, Mike Baines and Steve Lang-

don, for their continuing patience, and ensuring that studying a Ph.D. with them was an

enjoyable experience. However, a Ph.D. is not all about fun, so I am additionally grateful

that Mike and Steve have resulted in me continually achieving work I am proud of. I am

particularly grateful to Mike, but trying to express the enormity of my gratitude would be

like trying to divide by zero.

A big thanks to Bonhi for being a ‘writing-up-veteran’ that I could turn to frequently

for advice, and for injecting some enthusiasm and pride into my work when it was waning.

I also thank Sanita for the delight of sharing an office with her for so many years. The

Reading University Maths Department is crammed with exceptionally lovely staff and stu-

dents, and I feel fortunate to have been part of it. However, it is such a nice environment to

have a chat and a giggle that I’ve had to work from home more. This would not have been

possible without my mum kindly buying me a laptop. Working from home, though, has

led me to turn Mark’s living environment into the crime scene of a small forest. Not only

has he had to endure maths notes in every corner of his flat, but he’s patiently listened to

me give him regular updates about every twist and turn and computer bug. I am thankful

for his apparent interest in a topic he knows nothing about, and for his generous financial

support which has ensured that my hairband collection hasn’t had to suffer too much whist

studying. Finally, as with every achievement in my life, I must acknowledge the love and

support from my friends and family, in particular, the unwavering and comforting support

from Lauren.

ii

Table of Variables

Symbol Meaning

t Time variable

x Independent space variable

L Spatial differential operator that conserves mass

G Spatial differential operator that does not conserve mass

H Spatial differential operator that conserves mass

S(x, t) Source term

u(x, t) The solution to a patial differential operator

a(t),b(t) The boundary positions of the solution

xj , j = 0, 1, . . . , N The mesh with N nodes

∆t Time step

m Time level such that t = m∆t

x̃j(t) A time-dependent variable that coincides instantaneously with xj

dx̃j

dt
= v(x̃j(t), t) = ṽj(t) The velocity of the nodes

u(x̃j(t), t) = ũj(t) The solution at the nodes

cj The mass of the initial solution in the region x ∈ [a(t), x̃j(t)]

cj
−

The mass of the initial solution in the region x ∈ [x̃j−1(t), x̃j(t)]

cj+ The mass of the initial solution in the region x ∈ [x̃j(t), x̃j+1(t)]

θ(t) The total mass of the solutionat time t

Θj(t) The mass of the solution at time t between x̃j−1(t) and x̃j+1(t)

xm
j An approximation to x̃j(t

m)

vm
j An approximation to ṽj(t

m)

um
j An approximation to ũj(t

m)

θm An approximation to θ(tm)

Θm
j An approximation to Θj(t

m)

(·)m
j+ 1

2

1

2
[(·)j+1 + (·)j]

(·)m
j− 1

2

1

2
[(·)j + (·)j−1]

∆(·)m
j (·)m

j+ 1
2

− (·)m
j− 1

2

∆(·)j
−

(·)m
j − (·)m

j−1

∆(·)j+ (·)m
j+1 − (·)m

j

iii

Contents

1 Introduction 1

2 Background on Moving Mesh Methods 5

2.1 Location-based methods . 7

2.2 Velocity-based methods . 8

2.2.1 Fluid dynamics . 9

2.2.2 ALE (Arbitrary Lagrangian Eulerian) methods 10

2.2.3 Moving finite elements . 11

2.2.4 The Geometric Conservation Law (GCL) 12

2.2.5 The Conservation Method . 13

2.3 The Finite Element Conservation Method 14

2.3.1 Determining a weighted form of the general PDE 15

2.3.2 Determining the mesh velocity . 15

2.3.3 Recovering the solution . 16

3 A Finite Difference Velocity-Based Moving Mesh Method Based on Con-

servation 18

3.1 Mass conserving problems . 19

3.1.1 Determining the mesh velocity . 20

3.1.2 Advancing the mesh in time . 21

3.1.3 Recovering the solution . 21

3.2 A problem that does not conserve mass . 24

3.2.1 Determining the rate of change of total mass 25

iv

3.2.2 Determining the mesh velocity . 25

3.2.3 Advancing the total mass and mesh in time 26

3.2.4 Recovering the solution . 26

3.3 A method that preserves mass balance . 27

3.3.1 Determining the rate of change of partial masses 28

3.3.2 Determining the mesh velocity . 29

3.3.3 Advancing the partial masses and mesh in time 29

3.3.4 Recovering the solution . 30

3.4 Time-stepping schemes . 31

3.4.1 Explicit schemes . 31

3.4.2 A semi-implicit scheme . 32

4 The Porous Medium Equation 35

4.1 Introduction . 35

4.2 Deriving the PME from Darcy’s Law . 36

4.3 Properties of the PME in one dimension . 38

4.4 A self-similar solution . 40

4.4.1 Scale invariance . 40

4.4.2 Self-similarity . 42

4.4.3 A specific set of parameters . 45

4.5 Moving meshes . 46

4.5.1 Determining the mesh velocity . 46

4.5.2 Recovering the solution . 48

4.5.3 The full algorithm . 49

4.5.4 Waiting times . 49

4.5.5 Time-stepping schemes . 50

4.6 The radially symmetric case . 53

4.6.1 Determining the mesh velocity . 53

4.6.2 Recovering the solution . 54

v

4.6.3 The full algorithm . 56

4.7 Numerical results . 56

4.7.1 One-dimension . 57

4.7.2 Two-dimensional radially symmetric 67

4.8 Finite elements . 70

4.9 Summary for the PME . 72

5 Richards’ equation 76

5.1 Introduction . 76

5.2 Deriving Richards’ equation . 78

5.3 Properties of Richards’ equation . 79

5.4 A self-similar solution . 81

5.4.1 Scale invariance . 81

5.4.2 Self-similarity . 83

5.5 Moving meshes . 85

5.5.1 Determining the mesh velocity . 86

5.5.2 Recovering the solution . 87

5.5.3 The full algorithm . 87

5.5.4 Time-stepping schemes . 88

5.6 An alternative moving mesh method . 90

5.6.1 Determining the rate of change partial masses 90

5.6.2 Determining the mesh velocity . 91

5.6.3 Recovering the solution . 92

5.6.4 The full algorithm . 92

5.6.5 A semi-implicit time-stepping scheme 92

5.7 Numerical results . 94

5.8 Using finite elements . 97

5.8.1 Numerically solving Richards’ equation using finite elements 102

5.8.2 Numerical details . 104

vi

5.9 Summary for Richards’ equation . 106

6 The Crank-Gupta Problem 108

6.1 Introduction . 108

6.2 A self-similar solution . 109

6.2.1 Scale Invariance . 109

6.2.2 Self-Similar Solutions . 110

6.3 Moving mesh method . 115

6.3.1 Determining the rate of change of total mass 116

6.3.2 Determining the mesh velocity . 117

6.3.3 Recovering the solution . 118

6.3.4 The full algorithm . 118

6.3.5 Time-stepping schemes . 119

6.4 The two-dimensional radially symmetric case 119

6.4.1 Determining the rate of change of total mass 121

6.4.2 Determining the mesh velocity . 121

6.4.3 Recovering the solution . 123

6.4.4 The full algorithm . 123

6.5 Alternative boundary conditions . 124

6.5.1 Determining the rate of change of total mass 125

6.5.2 Determining the mesh velocity . 125

6.5.3 Recovering the solution . 126

6.5.4 The full algorithm . 126

6.6 A partial mass balance moving mesh method 127

6.6.1 Determining the rate of change of partial masses 127

6.6.2 Determining the mesh velocity . 128

6.6.3 Recovering the solution . 129

6.6.4 The full algorithm . 129

6.7 Numerical results . 129

vii

6.7.1 Preserving partial mass fractions . 130

6.7.2 The radially symmetric case . 134

6.7.3 Alternative boundary conditions . 134

6.7.4 A partial mass balance moving mesh method 139

6.8 Finite element method . 143

6.9 Summary for the Crank-Gupta problem . 143

7 A Tumour Growth Problem 147

7.1 A brief background on cancer growth . 147

7.2 Avascular research . 148

7.3 The role of mathematics in cancer research 149

7.4 A mathematical model of tumour growth 150

7.5 Rescaling to a fixed numerical mesh . 153

7.6 Moving mesh methods . 156

7.6.1 Method A . 158

7.6.2 Method B . 160

7.6.3 Method C . 160

7.7 Numerical Results . 162

7.8 Summary for the tumour growth problem 173

8 Summary 174

Bibliography 178

viii

List of Figures

3.1 A ‘tangled’ mesh compared to monotonic mesh. 32

4.1 Diagrammatic representation of the PME. 45

4.2 The three different types of boundary behaviour for the PME. 50

4.3 The PME with self-similar initial conditions, n = 1. 61

4.4 The PME with self-similar initial conditions, n = 2. 62

4.5 The PME with self-similar initial conditions, n = 3. 63

4.6 The PME without self-similar initial conditions, n = 2. 64

4.7 The PME without self-similar initial conditions, n = 3. 65

4.8 The difference of the PME and self-similar solution at the nodes. 66

4.9 The difference of the PME and self-similar solution at the inner boundary. . 66

4.10 The velocity of the nodes without self-similar initial conditions for n = 2. . 67

4.11 The PME using a semi-implicit time-stepping scheme. 68

4.12 The two-dimensional, radial PME with self-similar initial conditions. 71

4.13 The mesh for the two-dimensional, radial PME. 72

4.14 Finite element mesh for a radial 2D problem. 73

4.15 The two-dimensional PME. 74

4.16 The two-dimensional PME scaled. 75

5.1 A self-similar solution for Richards’ equation. 86

5.2 Richards’ equation with n = 3 using explicit time-stepping. 98

5.3 The mesh movement. 99

ix

5.4 Richards’ equation with n = 3 using semi-implicit time-stepping. 100

5.5 Richards’ equation using the alternative moving mesh method. 101

5.6 Richards’ equation solved with finite elememts. 106

6.1 Diagrammatic representation of the Crank-Gupta solution. 109

6.2 A self-similar solution for the Crank-Gupta problem, u = 1
2(1 − x)2. 115

6.3 The Crank-Gupta problem solved using relative partial mass conservation. . 132

6.4 The Crank-Gupta problem solved with a semi-implicit time-stepping scheme. 133

6.5 The radial Crank-Gupta problem using equation (6.43). 135

6.6 The radial Crank-Gupta problem using equation (6.44). 136

6.7 The radial Crank-Gupta problem using extrapolation. 137

6.8 The Crank-Gupta PDE with alternative boundary conditions. 140

6.9 The difference between the exact solution and numerical solution. 141

6.10 The Crank-Gupta problem solved using the mass balance method. 142

6.11 The one-dimensional Crank-Gupta PDE solved using finite elements. 144

6.12 The two-dimensional Crank-Gupta PDE solved using finite elements. 145

7.1 The growth of an avascular tumour. 148

7.2 An avascular tumour. 149

7.3 Fixed mesh method and parameter set (7.31)–(7.32). 164

7.4 Fixed mesh method and parameter set (7.31) and (7.33). 165

7.5 Method C and parameter set (7.31)–(7.32). 167

7.6 Method B and parameter set (7.31)–(7.32). 169

7.7 Method C and parameter set (7.31) and (7.33). 170

7.8 Method B and parameter set (7.31) and (7.33). 171

7.9 The position of nodes. 172

x

List of Tables

4.1 Relative errors when using the explicit Euler time-stepping scheme. 58

4.2 Relative errors when using the explicit Euler time-stepping scheme. 69

5.1 Relative errors for u with rates of convergence. 96

6.1 Relative errors when using the explicit Euler time-stepping scheme. 131

6.2 Comparing the Fourier Series approach with moving mesh results. 133

6.3 Relative errors when using the explicit Euler time-stepping scheme. 138

7.1 Relative errors when using the explicit Euler time-stepping scheme. 166

xi

1
Introduction

Partial differential equations (PDEs) are frequently used to describe physical laws governed

by the conservation of mass, energy or momentum. The analytic solution to these PDEs

is often difficult to derive, and furthermore, the solution may exhibit behaviour that is

challenging to capture numerically. Adaptive numerical schemes change the mesh during

the course of computation in response to changes in the dependent variable (or its approxi-

mation) to achieve greater accuracy and/or greater efficiency, and possibly also to improve

stability. Generally, for the adaptive numerical solution of PDEs either a static or a mov-

ing mesh method can be used. For each approach, a discrete solution is initially defined

on a given mesh. When using a static mesh, at each time step a new mesh (which may

have a different number of nodes to the previous mesh) is generated and the solution is

interpolated from the old mesh to the new. Static methods are generally robust, but the

computation can be slow.

Adaptive mesh techniques play an important role in improving methods for the nu-

merical solution of PDEs, by concentrating mesh points in areas of interest. An adaptive

mesh scheme becomes preferable to a fixed mesh scheme when these areas of interest repre-

sent only a fraction of the domain being investigated. Selectively increasing the resolution

in these regions is computationally less expensive than refinement of the mesh over the

entire grid. Over the past three decades, adaptive algorithms have been applied to phase

change problems [8, 14, 19, 70], blow-up problems [27], hyperbolic conservation laws [53],

1

Chapter One

and general classes of time-dependent problems [4, 48, 72].

There are three main types of grid adaptation, the most common type being h-

refinement, which uses a static mesh and adds or removes nodes to or from the existing

mesh, resulting in local refinement or coarsening of the mesh. Another is p-refinement,

where a finite element discretisation of the PDE is used with local polynomials, in which

the order of the polynomials is increased or decreased to adapt the method according to

the smoothness of the solutions, often as measured by error estimates. It is common to

combine these two methods to give hp-methods. However, hp-methods can be complex,

need not take advantage of any dynamic properties of the underlying solution, and the

error estimates rely heavily on certain assumptions on the solution that may be difficult to

verify for strongly nonlinear problems [28]. Our work focuses on the least common type of

grid adaptation: r-refinement, or moving mesh methods, which relocate a constant num-

ber of mesh points depending on a chosen mechanism. The mechanism can be chosen to

manipulate the nodes to give higher resolution in regions of interest, or to correspond to

global properties. Such moving meshes are attracting increasing interest, especially in the

numerical approximation of time-dependent problems, since the continuous movement of

the mesh allows easier inclusion of time integrators. It is apparent from the significant body

of research already accumulated that moving grids have much to offer in terms of improved

efficiency. The recent book by Huang and Russell [57] presents the theoretical and practi-

cal aspects of r-adaptivity, with particular emphasis on its application to time-dependent

PDEs.

In this thesis an adaptive finite volume method is presented for the solution of non-

linear time-dependent PDEs with moving boundaries, using a moving mesh. We apply this

method only to one-dimensional problems, and consequently refer to it as a finite difference

method throughout this thesis. The approach is prompted by recent interest in geometric

integration and scale invariance (see for example [23, 24]) which has rekindled interest in

the use of adaptive moving meshes. Scale invariance treats independent and dependent

variables alike, suggesting that both solution and mesh should be varied simultaneously

when designing numerical schemes so as to inherit this property.

When using a moving mesh, a mesh with a fixed number of nodes is sought which

moves smoothly with the solution itself. Often, a mesh equation and the differential equa-

tion are solved simultaneously to generate the new nodes and solution. With a moving

mesh, interpolation of dependent variables from the old mesh to the new mesh is unneces-

sary.

There are many different approaches to moving the mesh, i.e. to define a mesh equa-

tion. The approach taken in this thesis is a one-dimensional finite difference (finite volume)

version of the moving mesh finite element approach proposed by Baines, Hubbard and Ji-

mack [5]. As such, the moving mesh equations for mass conserving problems are based on

2

Chapter One

conservation, specifically upon conserving the local proportion of the total integral (mass)

of the dependent variable across the domain. We concentrate on one-dimensional finite dif-

ferences since they offer greater scope for understanding the mechanism involved, and for

analysis which may be extrapolated to more general situations. Although not considered

here, the integral may be generalised to conserve other quantities [16, 17], yielding an ap-

proach similar to that of using a monitor function to control the movement of the mesh; for

example, as in the Moving Mesh Partial Differential Equation (MMPDE) method [14, 55].

It is also strongly related to the Deformation method of Liao and co-workers [67, 68] and

to the Geometric Conservation Law (GCL) method of Cao, Huang and Russell [33, 94].

These alternative moving mesh methods are discussed in more detail in Chapter 2, with

particular focus given to the work of Baines, Hubbard and Jimack [5], since the method in

this thesis is more closely related to [5].

In Chapter 3 we develop the finite difference moving mesh method. This method is

then applied to a variety of problems where the solution has a moving boundary.

We begin with the porous medium equation (PME) in Chapter 4, since it is the

simplest nonlinear diffusion problem which appears in a physically natural way, describing

processes involving fluid flow, heat transfer or diffusion. It can also be applied to math-

ematical biology and other fields. All of these reasons support the interest in its study

both for the mathematician and the scientist [99]. There has been extensive research into

properties of the PME [11, 99]. We recall how a self-similar solution is derived, and use

this as a comparison for our numerical results, making it a suitable choice to demonstrate

our moving mesh method. The self-similar solution is geometrically symmetric so we model

half the problem which contains only one moving boundary.

In Chapter 5 we generalise the PME to a second problem, Richards’ equation, which

is used to describe the movement of a fluid through unsaturated soil [61]. Richards’ equa-

tion is similar to the PME in that it conserves mass; however, it is not symmetric so we

model two moving boundaries. We demonstrate that deriving a self-similar solution is more

complicated than with the PME. By demonstrating the difficulty of deriving an analytical

solution we provide motivation for a numerical approach. Both the PME and Richards’

equation conserve mass, making the next natural progression to be a problem that does

not conserve mass.

The Crank-Gupta problem is the next moving boundary problem, considered in Chap-

ter 6. This is the first example of a problem where the solution does not conserve mass,

since it contains a source term. It was derived to model the diffusion of oxygen through an

absorbing tissue [38], but also applies in the Black-Scholes framework of financial modelling,

since the valuation of an American option is a free boundary problem similar to the oxygen

consumption problem. In the original problem, boundary conditions are set such that there

is only one moving boundary. We derive a self-similar series solution, but find that it does

3

Chapter One

not satisfy the set boundary conditions. As with Richards’ equation, this demonstrates the

need for a numerical solution.

The Crank-Gupta problem has a negative source term, resulting in a solution that

decreases in mass. The final problem is covered in Chapter 7 where we consider a model

for avascular tumour growth which has an increasing mass. This is the most complicated

of the four problems. We begin this chapter with a brief introduction to tumours, and the

role that mathematics has played on tumour growth research. We note that the modelling

of tumour growth is an area of much interest to mathematical biology. We also find that

such models are often numerically solved in one-dimension using a fixed mesh approach.

We demonstrate that our moving mesh method can be applied to this problem and com-

pare it to the standard approach. In fact, we compare three moving mesh strategies for this

problem and show that our moving mesh method offers a numerical scheme that is accurate

and can track features of the tumour.

We end the thesis with a summary and some conclusions from the application of our

moving mesh method to these various problems. The original aspects of this work are as

follows:

• The Conservation Method using finite differences (finite volumes);

• Using a semi-implicit time-stepping scheme for our moving mesh method;

• Deriving a self-similar series solution for the Crank-Gupta problem;

• Comparisons of different numerical approaches to solve the avascular tumour growth

model;

• The Conservation Method with finite elements using a Delaunay triangulation to

re-mesh at each time-level.

We begin in Chapter 2 by considering the background of moving mesh methods.

4

2
Background on Moving Mesh

Methods

Moving mesh methods belong to the class of adaptive mesh methods. They are often

referred to as r-adaptivity (relocation) methods.

Such methods have a natural application to problems with close coupling between

spatial and temporal length scales, such as problems with symmetry, scaling invariance and

self-similar solutions [11, 25], where the mesh points become the natural coordinates for

an appropriately rescaled problem. However, moving meshes have yet to become part of

established numerical codes [28]. In particular, there remain unanswered questions with

regards to convergence, the nature of the meshes generated, and the error estimates that

can be obtained when using them to solve PDEs with rapidly evolving structures. As

recently noted by Budd, Huang, and Russell [28], much of the analysis of such methods has

been for one-dimensional problems, including the one-dimensional solvers which make use

of r-adaptive methods such as MOVCOL [56, 85] and the continuation code AUTO [41].

Moving mesh methods start with an initial mesh that may or may not be uniform,

and then move the nodes whilst the number of nodes (and usually the mesh topology in two-

dimensions), remain constant. The target criterion that is used to motivate the movement

of the nodes is such that the nodes naturally move to where the solution has ‘interesting

behaviour’, such as at a moving boundary or interface, or where ‘blow up’ occurs. The area

5

Chapter Two

of interest can often be identified by a rapid variation of either the solution, or one of its

derivatives. The error from an r-adaptive method will depend not only on the solution itself,

but also the number and position of the mesh nodes. Moving mesh methods often utilise two

domains: a computational space and the physical domain in which the underlying equation

is posed. The location, or the velocity, of the mesh points is often determined (although

not in this thesis) by solving a system of auxiliary PDEs, usually called the moving mesh

equations. The feature which is used to determine the mesh movement typically manifests

itself as a ‘monitor function’, which for example, is determined uniquely for each problem

to encourage the solution error over each mesh cell to be evenly distributed. The monitor

function is usually constructed in one of three ways:

(1) depending upon a priori solution estimates, such as arc length or mass;

(2) depending upon a posteriori error estimates or the solution residual, as used in mov-

ing Finite Element Methods (FEM) [4], or estimates of the derivative jump across

element boundaries [92]. An important motivation for the monitor function is the

equidistribution principle, first introduced by de Boor for solving boundary value

problems for ordinary differential equations (ODEs). The equidistribution principle

is a numerical principle which involves selecting mesh points such that some measure

of the solution error is equalised over each subinterval;

(3) depending upon on some underlying physics related to the solution, such as the po-

tential temperature or the vorticity in a meteorological problem [24]. In the case

of scale-invariant problems such physical estimates are often optimal since the mesh

points become the natural coordinates for an appropriately rescaled problem [28].

When using moving mesh methods, extra care is required to preventing mesh tangling and

to ensure mesh regularity and isotropy (where relevant).

It is also desirable that discretisations of the underlying PDEs on such meshes (in

either the computational or the physical domain) should retain important properties of the

underlying physical solution, such as conservation laws and scaling structures [92]. Provided

that these conditions are satisfied, r-adaptive methods can be used with considerable success

for many time-evolving systems.

Constructions of moving mesh methods vary considerably, and in their final forms

the moving mesh equations are very different. In the survey paper [34] moving mesh

methods are classed as either velocity-based or location-based. We examine these two

classes separately in §2.1 and §2.2, discussing key examples in each class. This thesis uses

a velocity-based approach so we shall consider the development of these methods in more

detail. In §2.3 we pay particular attention to the finite element Conservation Method of

6

Chapter Two 2.1. Location-based methods

Baines, Hubbard and Jimack [5, 9], since the methods we will use are essentially finite

difference variations on their work. However, we begin with location-based methods.

2.1 Location-based methods

Location-based moving mesh methods are based upon time-dependent mappings which

directly control the location of mesh points, or in the continuous sense the time-dependent

mapping of the computational coordinate ξ to the physical coordinate x.

As in [34], consider the one-dimensional case of an adaptive mapping x(ξ, t) from a

computational domain Ωc to a physical domain Ω. If the mesh on Ωc is uniform then ∂ξ
∂x

measures the density of the mesh on Ω. To control the mesh, the mesh density at any given

time t is taken to be proportional to a prescribed function m(x) > 0, i.e.

∂ξ

∂x
= cm(x), (2.1)

where c is a constant. This is equivalent to the equidistribution principle for the monitor

function m(x). Dividing (2.1) by m(x) and differentiating they obtain

∂

∂x

(

[

m(x)
]−1 ∂ξ

∂x

)

= 0 on Ω,

which, given m, can be solved for ξ in terms of x. It is also the Euler-Lagrange equation of

the quadratic functional

I[ξ] =

∫

Ω

[

m(x)
]−1

(

∂ξ

∂x

)2

dx,

which is useful for generalising to two dimensions [28].

The survey paper [34] gives a brief description of various ways to extend the equidis-

tribution principle (2.1) to higher dimensions. These include the work of Knupp [58, 59],

Winslow [105], Thompson et al. [95], Brackbill and Saltzman [20], Dvinsky [45] and Brack-

bill [21].

A typical location-based moving mesh method is a variational approach which defines

the mapping as the minimiser of a functional. According to [55], an early example of this

was given by Dorfi and Drury [42], where a separate equation for mesh speeds is developed

via a function chosen such that mesh resolution is controlled. A simple relation between

the speeds of the mesh points and the function is solved in conjunction with the underlying

PDE. Despite no formal mention of equidistribution ideas, Huang et al. [55] note that the

Dorfi and Drury method derives the moving mesh equation directly from an equidistribu-

7

Chapter Two 2.2. Velocity-based methods

tion principle.

Huang et al. [55] recommend that a moving mesh method should not only move nodes

to areas of interest, but require a simple algorithm that is easy to program, and be reason-

ably insensitive to the choice of user-defined parameters. In their work this is achieved by

constructing moving mesh equations directly from the numerical equidistribution principle.

Furthermore, they recommend that in order to allow ease of comparison and theoretical

analysis of this moving mesh method, the moving mesh equations should have a continu-

ous form, and in [55] these equations are devised and referred to as moving mesh partial

differential equations (MMPDEs). MMPDE-based methods are a major class of location-

based moving mesh methods, especially for one-dimensional problems [55, 70], and have

been incorporated into codes such as those mentioned in the Introduction, MOVCOL and

AUTO [28].

Further location-based moving mesh methods include optimal transport methods [26],

which are a natural generalisation of MMPDE methods in one dimension [28]. The key idea

behind an optimal mesh is that it should be one which is closest to a uniform mesh in a suit-

able norm, consistent with satisfying the equidistribution principle. Budd and co-workers

demonstrate that this can lead to a Monge-Ampere equation defining the mapping from

the computational to the physical domain [26, 28].

We now turn to velocity-based moving mesh methods, which is the approach used in

this thesis. In this approach the boundary velocity is generated automatically, making a

velocity-based approach particularly suited to the moving boundary problems we consider

in this thesis. In addition, a velocity-based approach does not require reference to a compu-

tational space and, compared to a location-based approach, the velocity is easier to insert

into the PDE in a moving frame.

2.2 Velocity-based methods

Velocity-based methods use a Lagrangian (moving) co-ordinate system to directly provide

a mesh velocity. The velocity of the nodes may be defined in a variety of ways, and many

constructions have appeared in the literature, some mathematically based and some based

on physical analogies. The mathematical approaches often target a mapping that equidis-

tributes a monitor function, and may use residual minimisation, error estimates, or geo-

metric considerations, whereas physical approaches usually rely on ideas from Lagrangian

fluid dynamics or mechanical analogies. Mesh movement may also be induced entirely by

the normal velocities of the boundaries in conjunction with averaging techniques. Solution

features are often assumed to be convected with the flow, and it is natural to evolve the

8

Chapter Two 2.2. Velocity-based methods

mesh points to follow the flow itself, [28]. This intuitive movement of mesh points makes

a velocity-based moving mesh approach particularly suited for fluid flow, but the approach

is more general.

In this section a number of velocity-based methods are described. We begin in §2.2.1

with schemes related to fluid dynamics which use a purely Lagrangian approach. This leads

on to methods which rely on the so-called ALE (Arbitrary Lagrangian-Eulerian) formula-

tion, which often uses velocities generated by mechanical analogies, see §2.2.2.

In §2.2.3 we turn to mathematically motivated constructions. We briefly describe

the Moving Finite Element method [72, 73], which was the first method to determine the

mesh and the solution simultaneously. Then, in §2.2.4 a derivation of the GCL method is

presented, as described in [33], which is based on conservation of a key variable. Finally

the Conservation Method [5, 9] is introduced. Since this is the approach we shall use in

the rest of this thesis (with finite differences instead of finite elements), we expand on this

method in detail in §2.3.

2.2.1 Fluid dynamics

In classical theoretical fluid dynamics the motion of fluids may be described by taking either

the Lagrangian or Eulerian point of view. In the Lagrangian description, each moving fluid

particle (with its attributes) is followed individually and is identified by its initial position,

whereas, in the Eulerian description variables such as density and velocity are evaluated at

fixed locations.

A link between the two is provided by the Reynolds Transport Theorem [104] in the

form

d

dt

∫

Ω(t)
u dx =

∫

Ω(t)

∂u

∂t
dx +

∮

∂Ω(t)
uv · n̂ dS, (2.2)

=

∫

Ω(t)

{

∂u

∂t
+ ∇ · (uv)

}

dx, (2.3)

(by the Divergence Theorem) for a general moving region Ω(t), where u is the fluid density,

v is the fluid velocity, and n̂ is the unit outward normal. Here dS is an element of the

boundary ∂Ω(t) of Ω(t). The theorem states that the rate of change of mass in a moving

frame comprises the rate of change in a fixed frame plus the flux of u across the boundary.

In the Lagrangian description, conservation of mass is expressed as

∫

Ω(t)
u dx = constant in time,

9

Chapter Two 2.2. Velocity-based methods

whilst in the Eulerian description the mass conservation equation is

∂u

∂t
+ ∇ · (uv) = 0. (2.4)

The equivalence of the two is inherent in (2.3), remembering that this equation holds for

all Ω(t).

In recent times, computational fluid dynamics (CFD) has sought to describe the

motion of fluids numerically by both approaches. By far, the most common approach has

been through discretisations of the Eulerian description, where the equations of motion are

discretised on a fixed mesh. The same can be said for the numerical solutions of PDEs in

general. However, Lagrangian moving mesh methods can play a substantial role in obtaining

high resolution solutions to problems with implicit moving boundaries or singularities, and

in mimicking invariance properties. Use of the Lagrangian description has been less common

and largely confined to problems where surfaces and interfaces are of primary importance,

e.g. [74, 82, 102]. The natural discretisation of the Lagrangian approach is to follow the

velocities of the fluid particles using a moving mesh, but compromises usually have to be

made, often with regards to the tendency of the mesh to tangle and lose its character. For

example, Harlen et al. [1, 52] apply a Lagrangian approach to the solution of convection

equations arising in the simulation of viscoelastic flows. Although the nodes of the finite

element mesh are transported with the fluid particles, the mesh itself has to be reconnected

after each time-step in order to maintain the Delaunay property [15]. These, and other

considerations have prompted the use of the so-called ALE methods (see §2.2.2), where local

modifications of the Lagrangian velocities are made as the computation develops [13, 35].

This framework can be used with any imposed velocity and is of particular relevance to

velocity-based approaches [7].

2.2.2 ALE (Arbitrary Lagrangian Eulerian) methods

Consider the generic PDE

∂u

∂t
= Lu, (2.5)

where L is a spatial partial differential operator. The Reynolds Transport Theorem in the

form (2.2) allows the solution u of (2.5) to be obtained in a frame moving with any given

velocity via the ALE equation

d

dt

∫

Ω(t)
u dx =

∫

Ω(t)
Lu dx +

∮

∂Ω(t)
uv · n̂ dS.

10

Chapter Two 2.2. Velocity-based methods

This equation is widely used in the numerical solution of fluid-structure interaction prob-

lems, for example in [54, 60, 71, 86]. The specific mechanism for constructing the mesh

velocities varies significantly, from treating the mesh as though it is a physical material

with its own constitutive law [60] through to defining the mesh motion purely with the goal

of optimizing geometric qualities of the mesh [86].

Other ALE forms, such as the differential form,

Du

Dt
=
∂u

∂t
+ v · ∇u, (2.6)

have also been used for free-surface problems, based upon maintaining mesh equality [78,

79], Laplacian smoothing [89] or pseudo-solid deformation [32, 101]. Other applications

which have benefited from successful ALE algorithms include phase-change problems [70,

93], and the interaction of free surfaces with solid boundaries [3, 91, 100]. However, not all

ALE methods need to be applied to, or driven by, fluid flow problems.

2.2.3 Moving finite elements

Where there is no specific physical motivation for assigning a velocity to each node of

the finite element mesh (unlike Lagrangian-based methods for equations of fluid flow, for

example), some other mechanism for determining an appropriate mesh velocity field is

required. A well-known approach is the moving finite element (MFE) method of Miller and

Miller [72] and Miller [73]. For the time-dependent PDE (2.5), the continuous version of the

MFE method determines the solution and mesh simultaneously by minimising a discrete

residual of the PDE, ut − Lu, in a moving frame, i.e. finding minv, Du
Dt
I where

I

[

v,
Du

Dt

]

≡
∫

Ω

(

Du

Dt
−∇u · v − Lu

)2

W dx, (2.7)

and Du
Dt is defined by (2.6). We observe that the term in the brackets on the right-hand

side is the square of a weighted residual of (2.6). The weight function, W = 1 was used in

the original version of MFE as described in [72, 73]. Later, a gradient weighted version of

MFE (GWMFE) [36, 37] was introduced, which uses

W ≡ 1

1 + ‖∇u‖2
.

Observe that the MFE method advects the mesh at the same time as the solution. In

practice, an extended Galerkin method is used, arising from a discretised form of (2.7).

This method is elegant, and when tuned correctly, works well [4, 36, 37]. However, in

practice, in order to minimise I one has to construct normal equations which can become

11

Chapter Two 2.2. Velocity-based methods

singular and significant regularisation is needed.

2.2.4 The Geometric Conservation Law (GCL)

The GCL is a tool which has been used for many years in the engineering community to de-

velop cell-volume-preserving finite-volume schemes. An early example, formulated in [97],

is the Space Conservation Law (SCL) which was approximated in the simulation of fluid

flow on moving meshes along with conservation of mass, momentum and energy. It was

later resurrected by Thomas and Lombard [94], who termed it the Geometric Conservation

Law (GCL), as a constraint such that any numerical scheme applied on a moving mesh

should reduce to the GCL when the solution is constant, i.e. the movement of the mesh

should not create nor destroy ‘space’. Writing the physical PDEs in conservative form,

Thomas and Lombard update the Jacobian at a new time based on the GCL, and accurate

results are obtained for implicit finite-difference and finite-volume solutions of unsteady and

steady supersonic flow equations. The desire to satisfy a GCL favours the finite volume

framework, which provides the most natural formulation of the GCL due to its inherent

integral conservation properties. A similar approach is used in this thesis. Classic examples

are [43, 44] where the GCL is incorporated into a finite-volume procedure, and is applied

to a number of fluid flow test cases, including the Navier-Stokes equations.

In studies by Cao, Huang and Russell [33] and Baines, Hubbard and Jimack [5, 9]

we see the GCL being used as an algorithmic device to obtain mesh velocities, rather than

guaranteeing mesh quality. In particular, the GCL can be used to eliminate the use of the

Jacobian that relates the computational domain Ωc to the physical domain Ω so as to relate

the mesh velocities directly to a monitor function.

Following [94], to obtain the integral form of the GCL let Ac be an arbitrary, fixed

cell in the computational domain Ωc enclosed by a smooth boundary ∂Ac, and let A(t) =

{x|x = x̃(ξ, t)∀ξ ∈ Ac} be the corresponding cell in the physical domain Ω under the

time-dependent coordinate transformation x = x̃(ξ, t). Then the change in volume of A(t)

equals the total flux through the surface ∂A(t), i.e.

d

dt

∫

A(t)
dx =

∫

∂A(t)
v · dS, (2.8)

where v is the mesh velocity. This is the integral form of the GCL [94], which is simply the

Reynolds Transport Theorem (2.2) with constant integrand. Using the change of variables

defined by the coordinate transformation x = x̃(ξ, t), the left-hand side of (2.8) can be

12

Chapter Two 2.2. Velocity-based methods

rewritten as

d

dt

∫

A(t)
dx =

d

dt

∫

Ac

J(ξ, t) dξ =

∫

Ac

D

Dt
J(ξ, t) dξ, (2.9)

where D
Dt is given by (2.6) and denotes the time derivative in the coordinate system (ξ, t).

In addition, using the Divergence Theorem, (2.8) can be written as

d

dt

∫

A(t)
dx =

∫

∂A(t)
v · dS =

∫

A(t)
∇ · v dx =

∫

Ac

(∇ · v)J(ξ, t) dξ. (2.10)

Noting that Ac is arbitrary, from (2.9) and (2.10), a differential form of the GCL

∇ · v =
1

J

DJ

Dt
,

is obtained, which is instrumental in deriving GCL moving mesh methods. It is stated

in [33] that a simple and straightforward way to use the Jacobian for mesh adaptation is

to use the equidistribution equation

J(ξ, t) =
c(ξ, t)

m(x(ξ, t), t)
, (2.11)

where m = m(x, t) > 0 is a user-defined monitor function, the size of which reflects the

local difficulty in approximating the solution of the underlying problem, and c = c(ξ, t) is

a time-dependent function determined by the initial coordinate transformation. In one di-

mension (2.11) is precisely the well-known equidistribution principle, when c is independent

of ξ [55], so it can be viewed as a generalisation of this principle. It is worth mentioning

that the Deformation method [67, 68, 88], which is a velocity-based method that takes a

strongly geometrical approach, is a special case of the GCL [33].

2.2.5 The Conservation Method

The Conservation Method of Baines, Hubbard and Jimack [5, 6, 7] is built on the same

foundations as the GCL method of Cao, Huang and Russell [33]. Instead of recasting the

GCL as a minimisation problem for the purpose of discretisation, this method uses the

conservative (integral) form to find the discrete velocities directly. The method can be

summarised as follows: The PDE is used in conjunction with the Eulerian conservation

equation (2.4) to generate a velocity, which is then used to move the mesh in a Lagrangian

manner. In simple cases the solution of the PDE can be recovered algebraically a posteriori

from the Lagrangian form of the same conservation law.

13

Chapter Two 2.3. The Finite Element Conservation Method

2.3 The Finite Element Conservation Method

Consider a general scalar initial boundary value problem (IBVP) for which the solution

u(x, t) conserves mass, where t > t0 and x ∈ Ω(t) ⊂ R
d (d being the number of dimensions)

represent the temporal and spatial variables respectively with t0 representing the initial

time. Let the solution u(x, t) be positive and satisfy the PDE

∂u

∂t
= Lu, in Ω(t), (2.12)

where L is a differential operator involving only space derivatives. Zero Dirichlet boundary

conditions

u(x, t) = 0 on ∂Ω(t),

are assumed, where ∂Ω(t) denotes the boundary of the time-dependent region Ω(t), and

initial conditions

u(x, t0) = u0(x), x ∈ Ω(0),

where Ω(0) is the initial domain. Subsequently, Ω(t) moves with a velocity v to be deter-

mined.

Since mass is conserved,

d

dt

∫

Ω(t)
u(x, t) dx = 0.

In [5] a weighted total mass is introduced such that

ci =

∫

Ω(t)
wi(x, t)u(x, t), dx i = 0, 1, . . . , N, (2.13)

is constant in time, where wi is a member of a set of weight functions (which form a partition

of unity i.e.
∑N

i=0wi = 1) moving with the velocity v of the points of the region Ω(t). The

Conservation Method uses (2.13) in conjunction with a weighted form of the PDE to enable

a finite element approach. We begin the description by determining this weighted form of

the general PDE, and then demonstrate how [5] derive weighted expressions for the mesh

velocity and the updated solution. At the end of this subsection we describe how a finite

element formulation can be used to give discrete versions of these expressions.

14

Chapter Two 2.3. The Finite Element Conservation Method

2.3.1 Determining a weighted form of the general PDE

Since the weight functions wi move with velocity v, they satisfy the advection equation

∂wi

∂t
+ v · ∇wi = 0, i = 0, 1, . . . , N. (2.14)

Differentiating the weighted mass (2.13) with respect to time, by applying Reynolds

Transport Theorem (2.2) to wiu, and using the Divergence Theorem, we have

d

dt

∫

Ω(t)
wiu dx =

∫

Ω(t)

(

∂

∂t

(

wiu
)

+ ∇ ·
(

wiuv
)

)

dx.

is obtained for i = 0, 1, . . . , N . Expanding each term on the right-hand side,

d

dt

∫

Ω(t)
wiu dx =

∫

Ω(t)

[

wi
∂u

∂t
+ u

∂wi

∂t
+ wi∇ · (uv) + uv · ∇wi

]

dx,

=

∫

Ω(t)

[

wi
∂u

∂t
+ wi∇ · (uv) + u

(

∂wi

∂t
+ v · ∇wi

)]

dx,

for i = 0, 1, . . . , N . The last term vanishes, from (2.14), and hence

d

dt

∫

Ω(t)
wiu dx −

∫

Ω(t)
wi∇ · (uv) dx =

∫

Ω(t)
wi
∂u

∂t
dx.

Substituting for ∂u
∂t on the right-hand side, and using a weighted form of the PDE (2.12),

a weak form of the PDE, in integral form, in the moving frame is found as

d

dt

∫

Ω(t)
wiu dx −

∫

Ω(t)
wi∇ · (uv) dx =

∫

Ω(t)
wiLu dx, (2.15)

for i = 0, 1, . . . , N . Equation (2.15) is used in conjunction with the distributed conservation

principle (2.13) to derive the mesh velocity v(x, t).

2.3.2 Determining the mesh velocity

To derive an expression for the mesh velocity, (2.13) is differentiated with respect to time,

giving

d

dt

∫

Ω(t)
wiu dx = 0, i = 0, 1, . . . , N. (2.16)

15

Chapter Two 2.3. The Finite Element Conservation Method

Substituting (2.16) into (2.15) gives

−
∫

Ω(t)
wi∇ · (uv) dx =

∫

Ω(t)
wiLu dx, i = 0, 1, . . . , N. (2.17)

To determine v(x, t) uniquely from (2.17), an additional condition is required on the mesh

velocity. As in [33], if the vorticity is specified, together with suitable boundary conditions,

then the velocity is uniquely determined by Helmholtz Theorem (noting that u > 0). For

simplicity, we suppose here that the vorticity is zero so that ∇× v = 0; then there exists

the velocity potential ψ, such that

v = ∇ψ. (2.18)

Substituting this into (2.17) gives

−
∫

Ω(t)
wi∇ · (u∇ψ) dx =

∫

Ω(t)
wiLu dx.

Applying Green’s Theorem to the integral on the left-hand side gives

−
∮

∂Ω(t)
wiu∇ψ · n̂ dS +

∫

Ω(t)
u∇ψ · ∇wi dx =

∫

Ω(t)
wiLu dx, (2.19)

where dS is an element of the boundary ∂Ω(t) of Ω(t). The first term vanishes due to the

boundary condition. Equation (2.19) can be used to obtain a unique velocity potential ψ

(to an added constant), when u(x, t) > 0 is known.

The velocity v(x, t) may be calculated from ψ using a weak form of (2.18),

∫

Ω(t)
wiv dx =

∫

Ω(t)
wi∇ψ dx, (2.20)

which may be necessary if v and ∇ψ belong to different (non-conforming) spaces.

2.3.3 Recovering the solution

Since ci remains constant, the expression (2.13) at time t equates to (2.13) at the initial

time t = t0, giving

∫

Ω(t)
wi(x, t)u(x, t) dx =

∫

Ω(t0)
wi(x, t

0)u(x, t0) dx, (2.21)

which is used to determine the solution u(x, t) at any given time, since the right-hand side

is known from the initial conditions.

16

Chapter Two 2.3. The Finite Element Conservation Method

The finite element formulation and the full algorithm

In [5], a finite element mesh is set up and the initial condition is projected on to the mesh.

Piecewise linear basis function are used, replacing wi with φi, where φi are linear finite

element basis functions on the mesh of nodes xi(t), i = 0, 1, . . . , N , within a polygonal

approximation Ω̄(t) of Ω(t).

The equations which determine ∇ψ, v(x, t) and u(x, t) (from equations (2.19), (2.20)

and (2.21) respectively), are used with x, φ, v, θ and u replaced with piecewise linear ap-

proximations. The algorithm is as follows:

Given the mesh and solution at a given time:

• Compute the mesh velocity from the finite element form of (2.19);

• Using a time-stepping scheme, compute the updated mesh;

• Compute the updated solution from the finite element form of (2.21).

In [5]–[9] the algorithm is extended to problems which do not conserve mass, and the use

of monitor functions. Results are presented for a number of moving boundary problems,

including phase change problems [8]

This thesis applies the above principles used by Baines, Hubbard and Jimack, but

whereas they use a finite element method, we investigate how these principles can be applied

with finite differences. Although using finite differences essentially limits the scope of the

PDEs to be solved to one dimension, nonetheless there are many one-dimensional PDEs

which can be accurately solved using a finite difference moving mesh. Furthermore, with

finite differences in one dimension, there is scope for making advances in the method and

novel analysis which may suggest new routes in two dimensions.

17

3
A Finite Difference Velocity-Based

Moving Mesh Method Based on
Conservation

In this chapter we describe a moving mesh approach for one-dimensional IBVPs with moving

boundaries, where we use finite differences throughout. In §3.1 we consider problems that

conserve mass and derive a mesh that preserves partial masses. In §3.2 we generalise this

method by preserving relative partial masses so that it can be applied to problems which

do not conserve mass. In §3.3, we consider a moving mesh approach which is relevant to

IBVPs that contain a source term since partial masses are balanced with the source term.

For each moving mesh approach we derive an expression for the mesh velocity (which is

used with a time-stepping scheme to determine an updated mesh), and a formula for the

solution on the updated mesh (which is purely algebraic in the first two cases). In §3.4

we investigate the explicit and semi-implicit time-stepping schemes that are applied in this

thesis. To ensure that mesh tangling does not occur, we take small time steps when using

an explicit time-stepping scheme. When using a semi-implicit scheme, which allows larger

time-steps, we prove that the mesh remains monotonic.

18

Chapter Three 3.1. Mass conserving problems

3.1 Mass conserving problems

We first describe a velocity-based moving mesh method to numerically solve an IBVP with

moving boundaries which conserves mass, with t > t0 and x ∈ [a(t), b(t)] representing the

temporal and spatial variables respectively, and t0 represents the initial time. The solution

u(x, t) of the IBVP satisfies the generic PDE

∂u

∂t
= Lu, (3.1)

where L is a purely spatial differential operator whose exact form will be defined in each

application, with zero Dirichlet boundary conditions,

u = 0 at x = a(t), b(t), t > t0. (3.2)

The problem has initial conditions

u(x, t0) = u0(x). (3.3)

As mass is conserved, we can calculate the constant total mass

c =

∫ b(t)

a(t)
u(x, t) dx, (3.4)

from the initial data.

Remark 3.1.1 We consider only IBVPs for which u(x, t) > 0, x ∈ (a(t), b(t)) holds for

all t ≥ 0. This is important for the definition of the algorithm.

For the problem (3.1)–(3.3), x is an independent variable. We consider a mesh given

by xj , j = 0, . . . , N , such that

a(t) ≈ x0(t) < x1(t) < . . . < xN−1(t) < xN (t) ≈ b(t). (3.5)

We later introduce the dependent variable x̃j(t) to represent the N + 1 nodes of the mesh,

which coincide instantaneously with xj and vary with t. We define the velocity of the j-th

node to be

v(x̃j(t), t) = ṽj(t) =
dx̃j

dt
.

19

Chapter Three 3.1. Mass conserving problems

Our moving mesh method moves the nodes such that the partial masses of the solution are

conserved, i.e. we determine x̃j(t) (j = 0, . . . , N) from

cj =

∫ x̃j(t)

a(t)
u(x, t) dx, (3.6)

where the cj (j = 0, . . . , N) remain constant in time. Equation (3.6) is consistent with

equation (3.4). The cj are positive since u > 0, and cN = c.

For a given mesh x̃j(t) and solution ũj(t) = u(x̃j(t), t), we now compute the mesh

velocity ṽj(t) = v(x̃j(t), t), and subsequently the updated mesh, to ultimately recover the

updated solution on the new mesh. Details are given in following subsections.

3.1.1 Determining the mesh velocity

We obtain an expression for the mesh velocity by differentiating (3.6) with respect to time,

giving

0 =
d

dt

∫ x̃j(t)

a(t)
u(x, t) dx. (3.7)

Applying the Leibnitz integral rule to the right-hand side of (3.7) gives

0 =

∫ x̃j(t)

a(t)

∂u

∂t
dx+ ũj(t)ṽj(t) − ũ0(t)ṽ0(t).

Substituting ∂u
∂t from the PDE (3.1), and using the boundary conditions (3.2),

∫ x̃j(t)

a(t)
Lu dx+ ũj(t)ṽj(t) = 0.

Thus, recalling Remark 3.1.1, since ũj(t) > 0 in the interior, the interior nodes move such

that

ṽj(t) = − 1

ũj(t)

∫ x̃j(t)

a(t)
Lu dx, (3.8)

which holds for j = 1, . . . , N − 1. The mesh velocities at the boundaries, ṽ0(t), ṽN (t), are

extrapolated from the internal mesh velocities.

For any given L, the integral in (3.8) may be approximated using quadrature, to give

a discrete form of (3.8) such that ṽj(t) is given in terms of x̃j(t) and ũj(t).

20

Chapter Three 3.1. Mass conserving problems

3.1.2 Advancing the mesh in time

We choose a time step ∆t > 0 and define time-levels tm = m∆t, m = 0, 1, . . ., denoting

x̃j(t
m) by xm

j . We also use the approximations um
j ≈ ũj(t

m) and vm
j ≈ ṽj(t

m). The updated

xm+1
j are calculated using the mesh velocity vm

j with a time-stepping scheme.

3.1.3 Recovering the solution

To recover the solution on the new mesh we use an incremental form of (3.6),

cj+1 − cj−1 =

∫ xm+1

j+1

xm+1

j−1

u(x, t) dx =

∫ xt0

j+1

xt0

j−1

u(x, t0) dx, j = 1, . . . , N − 1, (3.9)

(where each cj is a constant known from initial conditions). We approximate the integrals

of (3.9) using a simple quadrature rule, which allows us to recover um+1
j , j = 1, . . . , N − 1

on the new mesh. We examine two different quadrature rules, a mid-point approximation

and an interpolating approximation on a non-uniform mesh.

A simple mid-point approximation of (3.9) gives

(xm+1
j+1 − xm+1

j−1)um+1
j = (x0

j+1 − x0
j−1)u

0
j ,

which means that the updated solution can be recovered on the new mesh as

um+1
j =

x0
j+1 − x0

j−1

xm+1
j+1 − xm+1

j−1

u0
j , (3.10)

for j = 1, · · · , N − 1. The solution at the boundaries, um+1
0 , um+1

N , is determined by the

boundary conditions (3.2). Note that at any given time-level the discrete partial mass

(xm+1
j+1 − xm+1

j−1)um+1
j is preserved, and is equal to the corresponding initial partial mass

(x0
j+1 −x0

j−1)u
0
j . This approximation is second order accurate on a uniform mesh, but only

first order on a non-uniform mesh.

As the mesh is not necessarily uniform, it is more accurate to generalise equation

(3.10) so that it is fully second order, i.e. exact for a linear solution on a non-uniform

mesh. Now, if u(x, t) were linear in the interval (x̃j−1, x̃j+1), then it would hold that

u(x, t) = u(x̃j , t) + (x− x̃j)g(x̃j , t), x ∈ (x̃j−1, x̃j+1), (3.11)

where g(x̃j , t) is the slope of of u at xj .

We define the incremental differences between the constants (in time) cj , j = 1, . . . , N−

21

Chapter Three 3.1. Mass conserving problems

1 in the intervals adjacent to xj as

cj− = cj − cj−1,

cj+ = cj+1 − cj ,

where each of these are determined from the initial conditions. We note that cj+ + cj− =

cj , from (3.9). We then use (3.11) to derive two equations for the sum (cj+ + cj−) and

difference (cj+ − cj−). These equations are evaluated at t = tm+1, and the unknown slope

gm+1
j ≈ g(x̃j , t

m+1) is eliminated, so that we achieve an expression for um+1
j which is exact

for linear u. The sum is given by

cj+ + cj− =

∫ x̃j+1(t)

x̃j−1(t)
u(x, t) dx,

=

∫ x̃j+1(t)

x̃j−1(t)
{u(x̃j , t) + (x− x̃j)g(x̃j , t)} dx, (3.12)

and the difference by

cj+ − cj− =

∫ x̃j+1(t)

x̃j(t)
{u(x̃j , t) + (x− x̃j)g(x̃j , t)} dx−

∫ x̃j(t)

x̃j−1(t)
{u(x̃j , t) + (x− x̃j)g(x̃j , t)} dx.

(3.13)

Evaluating the integrals of (3.12) and (3.13) at t = tm+1 gives

cj+ + cj− = uj

[

xm+1
j+1 − xm+1

j−1

]

+
gj

2

(

(xm+1
j+1)2 − (xm+1

j−1)2
)

− gjxj(x
m+1
j+1 − xm+1

j−1),

= uj(x
m+1
j+1 − xm+1

j−1) +
gj

2

[

(

∆xm+1
j+

)2 −
(

∆xm+1
j−

)2
]

, (3.14)

and

cj+ − cj− = um+1
j ∆xm+1

j+
+
gm+1
j

2

[

(xm+1
j+1)2 − (xm+1

j)2
]

− gm+1
j xm+1

j ∆xm+1
j+

− um+1
j ∆xm+1

j−
−
gm+1
j

2

[

(xm+1
j)2 − (xm+1

j−1)2
]

+ gm+1
j xm+1

j ∆xm+1
j−

,

= um+1
j

[

∆xm+1
j+

− ∆xm+1
j−

]

+
gm+1
j

2

[

(

∆xm+1
j+

)2
+
(

∆xm+1
j−

)2
]

. (3.15)

where ∆xm+1
j−

= (xm+1
j − xm+1

j−1) and ∆xm+1
j+

= (xm+1
j+1 − xm+1

j). Thus, we achieve an

expression for um+1
j on the non-uniform mesh by eliminating gm+1

j from (3.14) and (3.15),

22

Chapter Three 3.1. Mass conserving problems

as

um+1
j =

(

cj+ + cj−
)

[

(

∆xm+1
j+

)2
+
(

∆xm+1
j−

)2
]

−
(

cj− − cj+
)

[

(

∆xm+1
j+

)2 −
(

∆xm+1
j−

)2
]

(

xm+1
j+1 − xm+1

j−1

)

[

(

∆xm+1
j+

)2
+
(

∆xm+1
j−

)2
]

−
[

∆xm+1
j+

− ∆xm+1
j−

] [

(

∆xm+1
j+

)2 −
(

∆xm+1
j−

)2
] ,

which is exact for linear uj . This reduces to

um+1
j =

(

∆xm+1
j+

)2
cj− +

(

∆xm+1
j−

)2
cj+

(

∆xm+1
j+

)2
∆xm+1

j−
+
(

∆xm+1
j−

)2
∆xm+1

j+

,

which can be written as

um+1
j =

cj−
/∆xm+1

j−

∆xm+1

j−

+
cj+

/∆xm+1

j+

∆xm+1

j+

1
∆xm+1

j−

+ 1
∆xm+1

j+

, (3.16)

an inversely weighted average of
cj−

∆xm+1

j−

and
cj+

∆xm+1

j+

, j = 1, . . . , N − 1, which has the status

of an interpolation formula. Furthermore, (3.16) simplifies to the mid-point rule (3.10) for

an equally spaced mesh.

The full algorithm is

Given a mesh xm
j and solution um

j , j = 0, . . . , N at time tm, m ≥ 0:

• Compute the mesh velocity vm
j from a discrete form of (3.8). Determine the velocity

at the boundaries from an appropriate extrapolation scheme;

• Compute the updated mesh xm+1
j by a time-stepping scheme;

• Compute the updated solution um+1
j from (3.10) or (3.16). The solution at the bound-

aries, um+1
0 , um+1

N , are given by the boundary conditions.

Examples are given later chapters.

We have shown how we can solve a problem that conserves mass using a moving

mesh approach that conserves partial mass fractions. We now generalise this approach to

solve problems that do not conserve mass.

23

Chapter Three 3.2. A problem that does not conserve mass

3.2 A problem that does not conserve mass

For problems that do not conserve mass, we can adapt the moving mesh approach described

in §3.1 so that we conserve normalised or partial mass fractions. For problems that conserve

mass, the method given in this section reduces to the method given in §3.1.

Consider an IBVP that does not conserve mass, where the solution u(x, t), x ∈
(a(t), b(t)), t > t0 is positive in the interior and t0 represents the initial time. The IBVP

satisfies the PDE

∂u

∂t
= Gu, (3.17)

where again G is a purely spatial operator, with zero Dirichlet boundary conditions,

u = 0 at x = a(t), b(t), t > t0, (3.18)

and initial condition

u(x, t0) = u0(x).

Remark 3.2.1 As in §3.1, we again consider only IBVPs for which u(x, t) > 0, x ∈
(a(t), b(t)) holds for all t ≥ t0.

The total mass of the solution at time t is

θ(t) =

∫ b(t)

a(t)
u(x, t) dx, (3.19)

where the initial total mass θ(t0) can be computed from the initial data.

We use the same mesh definition given in §3.1 where the time-dependent variable

x̃j(t), j = 0, . . . , N , represents the N + 1 nodes of the mesh.

To determine the mesh velocity we adapt the partial mass conserving result (3.6)

such that we conserve normalised partial masses,

cj =
1

θ(t)

∫ x̃j(t)

a(t)
u(x, t) dx, (3.20)

where cj remains constant in time and θ(t) is the total area. Note that cN = 1.

The procedure is as follows. Given a mesh x̃j(t) and solution ũj(t) = u(x̃j(t), t), we

evaluate the total mass θ(t) directly from (3.19). To evaluate an updated value of the total

24

Chapter Three 3.2. A problem that does not conserve mass

mass (which is required for determining the updated solution) we first compute θ̇(t). Then

the mesh velocity ṽj(t) is computed. The mesh and total mass are updated simultaneously

using a time-stepping scheme. This enables us to recover the updated solution on the new

mesh. Details are given in the following subsections.

3.2.1 Determining the rate of change of total mass

The total mass θ(t) can be obtained by differentiating (3.19) with respect to time using the

Leibnitz integral rule, giving

θ̇(t) =
d

dt

∫ b(t)

a(t)
u(x, t) dx =

∫ b(t)

a(t)

∂u

∂t
dx+ ũN (t)ṽN (t) − ũ0(t)ṽ0(t).

Substituting ∂u
∂t from (3.17), and using the boundary conditions (3.18),

θ̇(t) =

∫ b(t)

a(t)
Gu dx. (3.21)

For a specific G, the integral in (3.21) can be approximated using quadrature to give a

discrete form of (3.21).

3.2.2 Determining the mesh velocity

To find an expression for the mesh velocity ṽj(t), we differentiate (3.20) with respect to

time using the Leibnitz integral rule, giving

θ̇(t)cj =
d

dt

∫ x̃j(t)

a(t)
u(x, t) dx =

∫ x̃j(t)

a(t)

∂u

∂t
dx+ ũj(t)ṽj(t) − ũ0(t)ṽ0(t).

Substituting ∂u
∂t from the PDE (3.17), and using the boundary conditions (3.18),

θ̇(t)cj =

∫ x̃j(t)

a(t)
Gu dx+ ũj(t)ṽj(t). (3.22)

Thus, for ũj(t) 6= 0, the nodes move such that

ṽj(t) =
1

ũj(t)

(

θ̇(t)cj −
∫ x̃j(t)

a(t)
Gu dx

)

, (3.23)

where θ̇ is given by (3.21). Recalling Remark 3.2.1, equation (3.23) holds for interior nodes

j = 1, . . . , N − 1. Again, the mesh velocities at the boundaries, ṽ0(t), ṽN (t), can be ex-

25

Chapter Three 3.2. A problem that does not conserve mass

trapolated from the internal mesh velocities. We observe that for constant total mass,

equation (3.23) is equivalent to (3.8).

As in §3.2.1, for a specific G the integral in (3.23) may be approximated using quadra-

ture to give a discrete form of (3.23).

3.2.3 Advancing the total mass and mesh in time

We choose ∆t and tm = m∆t, ∆t > 0, m = 0, 1, . . . as before, and repeat the notation of

§3.1, with the additions θm ≈ θ(tm) and θ̇m ≈ θ̇(tm). For a given total mass θm, mesh xm
j ,

and solution um
j , j = 0, . . . , N , we compute the rate of change of total mass θ̇m and the

mesh velocity vm
j , and use a time-stepping scheme to update the total mass θm+1 and mesh

xm+1
j .

3.2.4 Recovering the solution

To approximate the updated solution um+1
j , we equate (3.20) between the points x̃j+1 and

x̃j−1, at time-levels t = tm+1 and t = t0, giving

cj+1 − cj−1 =
1

θ(tm+1)

∫ xm+1

j+1

xm+1

j−1

u(x, tm+1) dx =
1

θ(t0)

∫ x0
j+1

x0
j−1

u(x, t0) dx, (3.24)

for j = 1, · · · , N − 1. We note that for constant total mass equation (3.24) is equivalent

to (3.9). As in §3.1.3 we use two different quadrature rules to evaluate the integrals in (3.24)

so that we can recover um+1
j .

The first order mid-point approximation gives

1

θm+1

(

xm+1
j+1 − xm+1

j−1

)

um+1
j =

1

θ0

(

x0
j+1 − x0

j−1

)

u0
j .

Hence, the updated solution can be determined by

um+1
j =

θm+1

θ0

(

x0
j+1 − x0

j−1

)

(

xm+1
j+1 − xm+1

j−1

) u0
j , (3.25)

for j = 1, · · · , N−1. As in §3.1.3, the solution at the boundaries, um+1
0 , um+1

N , is determined

by the boundary conditions (3.18). Note that at any given time-level the discrete relative

partial mass 1
θm+1 (xm+1

j+1 −xm+1
j−1)um+1

j is preserved, and is equal to the corresponding initial

relative partial mass 1
θ0 (x0

j+1 − x0
j−1)u

0
j .

Equation (3.25) is the same as equation (3.10), with an additional ratio of the total

masses at time-levels t = t0 and t = tm+1. Therefore, a second order method to recover

26

Chapter Three 3.3. A method that preserves mass balance

um+1
j (which is exact for a linear solution on a non-uniform mesh) is the same as (3.16),

but with the addition of the ratio of total masses θm+1

θ0 , i.e.

um+1
j =

θm+1

θ0

cj−
/∆xm+1

j−

∆xm+1

j−

+
cj+

/∆xm+1

j+

∆xm+1

j+

1
∆xm+1

j−

+ 1
∆xm+1

j+

, (3.26)

for j = 1, . . . , N − 1.

The full algorithm

Given a mesh xm
j , solution um

j and total mass θm, j = 0, . . . , N ,at time tm, m ≥ 0:

• Compute θ̇m from a discrete form of (3.21);

• Compute the mesh velocity vm
j from a discrete form of (3.23). Determine the velocity

at the boundaries from an appropriate extrapolation scheme;

• Compute the updated total mass θm+1 and mesh xm+1
j by a time-stepping scheme;

• Compute the updated solution um+1
j from (3.25) or (3.26). The solution at the bound-

aries, um+1
0 , um+1

N , are given by the boundary conditions.

Examples are given in later chapters.

We have shown how we can solve a problem that does not conserves mass using

a moving mesh approach that conserves relative partial mass fractions. We note that for a

constant mass, the calculations given here reduce to the work presented in §3.1. We now

consider an approach where we balance the partial masses with the source term.

3.3 A method that preserves mass balance

Consider now an IVBP that does not conserve mass, of the particular form

∂u

∂t
= Hu+ S(x, t), (3.27)

where H is a spatial operator, and S is a source term, such that mass is conserved when

S = 0. We consider zero Dirichlet boundary conditions,

u = 0 at x = a(t), b(t), t > t0, (3.28)

27

Chapter Three 3.3. A method that preserves mass balance

and initial condition

u(x, t0) = u0(x),

where t0 represents the initial time.

Remark 3.3.1 As in §3.1, we again consider only IBVPs for which u(x, t) > 0, x ∈
(a(t), b(t)) holds for all t ≥ t0.

In §3.2 we developed a moving mesh method by conserving normalised partial masses,

which led to equation (3.20). In this section we develop a similar moving mesh method by

assuming the partial mass balance,

d

dt

∫ x̃j(t)

a(t)
u(x, t) dx =

∫ x̃j(t)

a(t)
S(x, t) dx. (3.29)

For this moving mesh scheme, we once more use the same notation given in §3.1

where the time dependent variables x̃j(t), j = 0, . . . , N , represent the N + 1 nodes of the

mesh, which coincide instantaneously with xj .

When using this method we define the partial masses Θj(t
m) at time t and interval

points x̃j(t), as

Θj(t) =

∫ x̃j(t)

a(t)
u(x, t) dx, (3.30)

where j = 0, . . . , N . For a problem that conserves mass, equation (3.30) is equivalent

to (3.6) where Θj(t) = cj . The values Θj(t
0) can be computed from the initial data at

t = t0. Note that (3.30) varies in time, whereas the corresponding equation (3.20) defined

cj which were constant in time.

The procedure is as follows. Given a mesh x̃j(t) and solution ũj(t) = u(x̃j(t), t), we

first evaluate the partial masses Θj(t) directly from (3.30). To evaluate updated values of

the partial masses (which are required for determining the updated solution) we compute

Θ̇j(t). The mesh velocity ṽj(t) is then computed, and the mesh and partial masses are

updated simultaneously by a time-stepping scheme. This enables us to recover the updated

solution on the new mesh. Details are given in the following subsections.

3.3.1 Determining the rate of change of partial masses

Given the solution ũj(t) at the initial time we evaluate the partial masses Θj(t) directly

from (3.30) using quadrature. To evaluate the updated partial masses we compute Θ̇j(t).

28

Chapter Three 3.3. A method that preserves mass balance

Substituting (3.30) into (3.29), we have

Θ̇j(t) =

∫ x̃j(t)

a(t)
S(x, t) dx. (3.31)

For a specific IBVP, the integral in (3.31) can then be approximated using quadrature to

determine a discrete form of (3.31).

3.3.2 Determining the mesh velocity

To obtain an expression for the mesh velocity ṽj(t) we differentiate (3.30) with respect to

time using the Leibnitz integral rule again, to give

Θ̇j(t) =
d

dt

∫ x̃j(t)

a(t)
u(x, t) dx =

∫ x̃j(t)

a(t)

∂u

∂t
dx+ ũj(t)ṽj(t) − ũ0(t)ṽ0(t).

Substituting ∂u
∂t from (3.27), and using the boundary conditions (3.28),

Θ̇j(t) =

∫ x̃j(t)

a(t)
{Hu+ S(x, t)} dx+ ũj(t)ṽj(t). (3.32)

Equating (3.32) and (3.31),

∫ x̃j(t)

a(t)
Hu dx+ ũj(t)ṽj(t) = 0.

Thus, for ũj(t) 6= 0, the nodes move such that

ṽj(t) = − 1

ũj(t)

∫ x̃j(t)

a(t)
Hu dx. (3.33)

Recalling Remark 3.3.1, equation (3.33) holds for interior points j = 1, . . . , N − 1. Again,

the mesh velocities at the boundaries, ṽ0(t), ṽN (t), can be extrapolated from the interior

mesh velocities. We observe that if there were no source term, equation (3.33) would be

equivalent to (3.8) for j = 1, 2, ..., N − 1.

Once more, as in §3.2.1, for a specific IBVP the integral in (3.33) is approximated

using quadrature to give a discrete form of (3.33).

3.3.3 Advancing the partial masses and mesh in time

We choose ∆t and tm = m∆t, ∆t > 0, m = 0, 1, . . . as before, and repeat the notation

of §3.1, with the additions Θm
j ≈ Θj(t

m) and Θ̇m
j ≈ Θ̇j(t

m). For given partial masses Θm
j ,

29

Chapter Three 3.3. A method that preserves mass balance

mesh xm
j , and solution um

j , j = 0, . . . , N , we compute the rate of change of partial masses

Θ̇m
j and the mesh velocity vm

j , and use a time-stepping scheme to update the partial masses

Θm+1
j and mesh xm+1

j .

3.3.4 Recovering the solution

Once approximations to the updated partial masses and the mesh velocity have been deter-

mined, the final step is to recover the solution. We first use the relation (3.30) to determine

the difference between Θj+1(t) and Θj−1(t),

Θj+1(t) − Θj−1(t) =

∫ x̃j+1(t)

x̃j−1(t)
u(x, t) dx.

Using a first order mid-point approximation to evaluate the integral at tm+1 gives

Θm+1
j+1 − Θm+1

j−1 = (xm+1
j+1 − xm+1

j−1)um+1
j .

Hence, the updated solution ũj(t
m+1) can be determined by

um+1
j =

Θm+1
j+1 − Θm+1

j−1

xm+1
j+1 − xm+1

j−1

, (3.34)

for j = 1, . . . , N − 1. The solution at the boundaries, um+1
0 , um+1

N , is determined by the

boundary conditions (3.2).

We can also derive an expression for recovering um+1
j , which is exact for linear uj on

an irregular mesh by applying the same principles used to derive (3.16). For this method

we replace cj+ by
(

Θm+1
j+1 −Θm+1

j

)

and cj− by
(

Θm+1
j −Θm+1

j−1

)

since um+1
j is recovered using

the updated partial masses, not the initial partial masses. This gives

um+1
j =

(

Θm+1

j −Θm+1

j−1

)

/∆xm+1

j−

∆xm+1

j−

+

(

Θm+1

j+1
−Θm+1

j

)

/∆xm+1

j+

∆xm+1

j+

1
∆xm+1

j−

+ 1
∆xm+1

j+

, (3.35)

for j = 1, . . . , N − 1. This expression is the same as (3.16) for constant partial masses.

The full algorithm

Given a mesh xm
j , solution um

j and partial masses Θm
j , j = 0, . . . , N , at time tm, m ≥ 0:

• Compute the partial masses Θ̇m
j from a discrete form of (3.31);

30

Chapter Three 3.4. Time-stepping schemes

• Compute the mesh velocity vm
j from a discrete form of (3.33). Determine the velocity

at the boundaries from an appropriate extrapolation scheme;

• Compute the updated partial masses Θm+1
j and mesh xm+1

j ;

• Compute the updated solution um+1
j from (3.34) or (3.35). The solution at the bound-

aries, um+1
0 , um+1

N , are given by the boundary conditions.

Examples are discuses in Chapters 6 and 7.

We have shown how we can solve a problem that does not conserves mass using

a moving mesh approach that balances the partial mass fractions with a source term. We

now look at some of the time-stepping schemes that we use with our moving mesh method.

3.4 Time-stepping schemes

When implementing the three moving mesh schemes given in §3.1–3.3 we use various time-

stepping schemes to update the mesh velocity x̃j(t), total mass θ(t), and partial masses

Θj(t).

3.4.1 Explicit schemes

The simplest time-stepping method we use is the first order explicit Euler time-stepping

scheme, giving

xm+1
j − xm

j

∆t
= vm

j and hence xm+1
j = xm

j + ∆t vm
j , (3.36)

θm+1 − θm

∆t
= θ̇m and hence θm+1 = θm + ∆t θ̇m, (3.37)

Θm+1
j − Θm

j

∆t
= Θ̇m

j and hence Θm+1
j = Θm

j + ∆t Θ̇m
j . (3.38)

The explicit Euler time-stepping scheme requires small ∆t so that x̃j remains monotonic

in j, i.e. the xm
j do not ‘tangle’ so (3.5) holds, see Figure 3.1.

We also considered Runge-Kutta explicit time-stepping schemes. Adaptive predictor-

correcter Runge-Kutta time-stepping allows greater accuracy and optimal time steps with-

out losing stability. The time step is chosen to be as large as possible whilst ensuring that

the difference between the solutions from two explicit Runge-Kutta formulas conforms to a

certain tolerance. We implemented both ODE23 and ODE45 in Matlab on our examples.

31

Chapter Three 3.4. Time-stepping schemes

Fig. 3.1: Diagrams to illustrate the relation between x̃j(t) and j for a mesh that

is tangled compared to one that is not tangled. The graph on the left shows a

mesh that is tangled (not monotonic) at time t1.

Both solvers invoke explicit Runge-Kutta methods to integrate the system of N − 1 ordi-

nary differential equations. The solver ODE23 uses second and third order Runge-Kutta

formulas, and ODE45 uses fourth and fifth order Runge-Kutta formulas, which are more

restricting on the size of the time-step, corresponding to a more accurate solution.

A third solver is ODE15s, which is designed to solve a stiff system using implicit

time-stepping. Implementing this solver on our examples produced results similar to re-

sults obtained with both ODE23 and ODE45 (which are not designed for stiff systems),

inferring that the method is not particularly stiff in these cases.

3.4.2 A semi-implicit scheme

When using the mass conserving approach in §3.1, we used a semi-implicit time-stepping

scheme to update the internal nodes of the mesh x̃j(t), j = 1, . . . , N − 1. A semi-implicit

scheme remains stable for large ∆t. To ensure mesh tangling does not occur we develop a

semi-implicit scheme that depends on the mesh velocity ṽj(t) determined for each problem.

The general structure of our semi-implicit approach is to first discretise the mesh velocity

such that

vm
j =

1

∆xm
j

(

φm
j+ − φm

j−

)

j = 1, . . . , N − 1,

where ∆xm
j = xm

j+ 1

2

− xm
j− 1

2

, and φm
j±

refers to left and right intervals of the mesh velocity

equation (3.8) integrated with respect to x, namely

φm
j+ =

∫ x̃
j+1

2

(t)

a(t)
ṽj(t) dx and φm

j− =

∫ x̃
j− 1

2

(t)

a(t)
ṽj(t) dx.

32

Chapter Three 3.4. Time-stepping schemes

Then, assuming that the mesh x̃j(t) changes smoothly in time, we alter the Euler scheme

(3.36) to be semi-implicit, in the manner

xm+1
j − xm

j

∆t
=

1

∆xm
j

(

φm
j+

∆xm+1
j±

∆xm
j±

− φm
j−

∆xm+1
j±

∆xm
j±

)

, j = 1, . . . , N − 1, (3.39)

where ∆xm
j+

= (xm
j+1−xm

j) and ∆xm
j−

= (xm
j −xm

j−1). We choose ∆xm+1
j±

to be either ∆xm+1
j+

or ∆xm+1
j−

, that is

xm+1
j − xm

j

∆t
=















































1
∆xm

j

(

φm
j+

∆xm+1

j+

∆xm
j+

− φm
j−

∆xm+1

j−

∆xm
j−

)

for φm
j+
, φm

j−
> 0;

1
∆xm

j

(

φm
j+

∆xm+1

j+

∆xm
j+

− φm
j−

∆xm+1

j+

∆xm
j+

)

for φm
j+
> 0, φm

j−
< 0;

1
∆xm

j

(

φm
j+

∆xm+1

j−

∆xm
j−

− φm
j−

∆xm+1

j−

∆xm
j−

)

for φm
j+
, φm

j−
< 0;

1
∆xm

j

(

φm
j+

∆xm+1

j−

∆xm
j−

− φm
j−

∆xm+1

j+

∆xm
j+

)

for φm
j+
< 0, φm

j−
> 0,

(3.40)

for reasons that will be explained below. The boundary values, x̃0(t), x̃N (t), are updated

explicitly by a first order scheme. These are calculated before the internal nodes so that

∆xm+1
1−

and ∆xm+1
N−1+

can be determined. The whole scheme is then first order in time.

Theorem 3.4.1 The semi-implicit scheme (3.39) ensures that the mesh does not tangle,

i.e.

xm
j−1 < xm

j < xm
j+1, (3.41)

for all j = 0, 1, . . . , N and all time tm, m = 1, 2, . . ., provided the ∆xm+1
j±

are chosen to be

either ∆xm+1
j+

or ∆xm+1
j−

according to the four parts of (3.40).

Proof Given that the mesh is not tangled at time-level tm we show that (3.41) holds for

all subsequent time-levels by proving that the maximum and minimum of the set {xm+1
j }

occur at the boundaries, for all j = 1, . . . , N − 1.

We first prove the maximum principle, by contradiction. Suppose that an isolated

maximum of x occurs at the interior point xm+1
j . We consider the sign of each term in

(3.39), and subsequently determine that the sign of right-hand side contradicts that of the

left-hand side. Since (3.41) holds at time-level tm we have that

∆xm
j ,∆x

m
j± > 0,

33

Chapter Three 3.4. Time-stepping schemes

Now, if the interior point xm+1
j is a maximum then

xm+1
j − xm

j > 0, (3.42)

∆xm+1
j−

= xm+1
j − xm+1

j−1 > 0, (3.43)

∆xm+1
j+

= xm+1
j+1 − xm+1

j < 0. (3.44)

The inequality (3.42) implies that the left-hand side of (3.39) is positive. To complete the

proof by contradiction, we note that ∆xm+1
j±

gives a negative right-hand side if ∆xm+1
j±

is

not carefully considered. For example, suppose φm
j+
, φm

j−
< 0 and the ∆xm+1

j±
of (3.39) are

determined such that

xm+1
j − xm

j

∆t
=

1

∆xm
j

(

φm
j+

∆xm+1
j−

∆xm
j−

− φm
j−

∆xm+1
j+

∆xm
j+

)

,

This gives a negative right-hand side, contradicting the left-hand side. We have therefore

shown that an isolated maximum cannot occur. Using the same reasoning given here, it can

be shown that a set of equal maximum values cannot occur. Hence the maximum occurs

at the boundary.

A minimum principle can be proved with the same reasoning to show that an isolated

minimum can not occur at any interior point when ∆xm+1
j±

is specified according to (3.40).

The proof shows that xm
j , j = 0, 1, ..., N , is bounded by its neighbours. It also extends to

non-isolated interior points and hence, equation (3.39) with appropriate ∆xm+1
j±

(determined

by (3.40)), ensures that the mesh is monotonic in space and is bounded by its endpoint

values, so that tangling cannot occur.

Examples are given in the Chapters which follow. �

We now turn to some specific problems to illustrate the working of the finite difference

moving mesh method. We begin with the PME.

34

4
The Porous Medium Equation

4.1 Introduction

The Porous Medium Equation (PME)

∂u

∂t
= ∇ (u(x, t)n∇u) , (4.1)

where n ≥ 1 is one of the simplest nonlinear evolution equations of parabolic type. It can

be used to describe physical situations such as fluid flow, heat transfer or diffusion. Most

notably, it is used to describe the flow of a perfect gas in a homogeneous porous medium.

The main aim of this chapter is to solve the PME numerically using the moving

mesh method described in §3.1.

We begin this chapter by deriving the PME from a general form of Darcy’s Law

in §4.2, as shown in [99]. Then, before solving the PME numerically, we discuss some of

the properties of the PME which our numerical scheme aims to preserve, in §4.3. One of

these properties is self-similarity, so in §4.4 we derive a self-similar solution, as originally

presented in [12]. This self-similar solution is used to provide the initial conditions when we

solve the PME numerically, and also to compare the numerical solution to an exact solution

in the results section, §4.7. Finally, in §4.8 we present results using the moving mesh finite

35

Chapter Four 4.2. Deriving the PME from Darcy’s Law

element method discussed in §2.3.

4.2 Deriving the PME from Darcy’s Law

We first derive the PME by considering three model equations which relate variables asso-

ciated with gas flow through a porous medium.

(i) Mass balance

We assume that the flow of gas obeys the equation of continuity

ǫ
∂ρ

∂t
+ ∇ · (ρV) = 0, (4.2)

where ǫ ∈ (0, 1) is the porosity of the medium, ρ is the density, and V is the velocity. Here

∇· represents the divergence operator.

(ii) Darcy’s Law

Darcy’s Law was formulated by the French engineer H. Darcy in 1856 [99]. It models the

flow of a fluid (or gas) through a porous medium. Maintaining the notation in (4.2),

µV = −κ∇p, (4.3)

where ∇p is the pressure gradient vector, κ is the permeability tensor (assumed to be a

strictly positive constant in most applications), and µ > 0 is the viscosity of the fluid (or

gas).

(iii) Equation of state

The equation of state for a perfect gas is

p = p0ρ
γ , (4.4)

where p is the pressure, p0 is the reference pressure and γ ≥ 1 is the ratio of specific heats

for the gas.

Substituting Darcy’s Law (4.3) and the equation of state (4.4) into the mass con-

36

Chapter Four 4.2. Deriving the PME from Darcy’s Law

servation equation (4.2) gives

∂ρ

∂t
=
κp0

ǫµ
∇.(ρ∇ργ). (4.5)

Now

ρ∇ργ = ργργ−1∇ρ = γργ∇ρ,

so we may write (4.5) as

∂ρ

∂t
=
γκp0

ǫµ
∇.(ργ∇ρ).

The constant γκp0

ǫµ can be scaled out (define for instance a new time, t′ = γκp0

ǫµ t), thus

leaving us with the PME. We adapt this result to meet standard notation by writing γ = n,

and ρ = u, giving

∂u

∂t
= ∇ · (un∇u),

where n ≥ 1. In one-dimension this equation is

∂u

∂t
=

∂

∂x

(

un∂u

∂x

)

. (4.6)

More generally, for the radially symmetric case,

∂u

∂t
=

1

rδ−1

∂

∂r

(

rδ−1un∂u

∂r

)

, (4.7)

where r is the radial coordinate and δ = 1, 2, 3 is the dimension. When δ = 1, we have the

one-dimensional case (which is denoted with Cartesian coordinates throughout this thesis),

while δ = 2 describes the radially symmetric two-dimensional case.

The PME is parabolic everywhere except where u = 0, where the spatial opera-

tor is degenerate. This prevents the derivation of a strong solution at these points, because

there may exist an interface or free boundary separating regions where u > 0 from regions

where u = 0. Therefore theoretical work focuses on weak solutions for the PME. The PME

has been well documented in [99], where several chapters are devoted to weak solutions

of the PME problem, with a further chapter devoted to self-similar solutions of the PME.

In this chapter we derive such a self-similar solution. However, firstly we discuss some

properties of the PME.

37

Chapter Four 4.3. Properties of the PME in one dimension

4.3 Properties of the PME in one dimension

We are interested in several properties of the PME for the one-dimensional Cartesian

case (4.6) with its boundary defined by the edge of the support, i.e.

u = 0 at x = a(t), b(t), t > 0. (4.8)

In [99] many properties of the PME are given, and proved. We prove two well-established

properties which our numerical approach relies upon: conservation of mass, and stationary

centre of mass.

Lemma 4.3.1 The one-dimensional PME conserves mass in time.

Proof To prove that the total mass does not change over time we show that the derivative

of the total mass (in time) is zero. Using the Leibnitz integral rule,

d

dt

∫ b(t)

a(t)
u(x, t) dx =

∫ b(t)

a(t)

∂u

∂t
dx+ u(b, t)

db

dt
− u(a, t)

da

dt
,

Substituting ∂u
∂t from (4.6), and setting the last two terms to zero due to the boundary

conditions (4.8),

d

dt

∫ b(t)

a(t)
u(x, t) dx =

∫ b(t)

a(t)

∂

∂x

(

u(x, t)n∂u

∂x

)

dx,

= u(b, t)n ∂b

∂x
− u(a, t)n ∂a

∂x
.

The right-hand side is zero, due to boundary conditions (4.8) again, hence

d

dt

∫ b(t)

a(t)
u(x, t) dx = 0,

as required. The result is easily extended to the radially symmetric case

d

dt

∫ R(t)

0
u(r, t)rδ−1 dr = 0,

where R(t) is the radius and δ = 2, 3 is the number of dimensions. �

Lemma 4.3.2 The one-dimensional PME has a stationary centre of mass.

38

Chapter Four 4.3. Properties of the PME in one dimension

Proof The centre of mass x̄(t) in one dimension is defined by the ratio

x̄(t) =

∫ b(t)
a(t) u(x, t)x dx
∫ b(t)
a(t) u(x, t) dx

. (4.9)

To demonstrate that the centre of mass x̄(t) does not move, it is sufficient to show that

d

dt

∫ b(t)

a(t)
u(x, t)x dx = 0,

since the denominator of (4.9) is constant in time. By the Leibnitz integral rule,

d

dt

∫ b(t)

a(t)
u(x, t)x dx =

∫ b(t)

a(t)
x
∂u

∂t
dx+ u(b, t)b(t)

db

dt
− u(a, t)a(t)

da

dt
.

Substituting ∂u
∂t from the PME (4.6), and eliminating the last two terms from the boundary

conditions (4.8), gives

d

dt

∫ b(t)

a(t)
u(x, t)x dx =

∫ b(t)

a(t)
x
∂

∂x

(

u(x, t)n∂u

∂x

)

dx.

Using integration by parts on the right-hand side,

d

dt

∫ b(t)

a(t)
u(x, t)x dx = b(t)u(b, t)n ∂b

∂x
− a(t)u(a, t)n ∂a

∂x
−
∫ b(t)

a(t)
u(x, t)n∂u

∂x
dx.

The first two terms on the right-hand side vanish again due to the boundary conditions

(4.8). The final term on the right-hand side is then rearranged to give

d

dt

∫ b(t)

a(t)
u(x, t)x dx = − 1

n+ 1

∫ b(t)

a(t)

∂

∂x

(

u(x, t)n+1
)

dx,

= − 1

n+ 1

(

u(b, t)n+1 − u(a, t)n+1
)

,

which again vanishes due to the boundary conditions (4.8). Hence, we achieve the required

result

d

dt

∫ b(t)

a(t)
u(x, t)x dx = 0. (4.10)

In the radially symmetric case the origin is fixed. �

By showing that the mass is conserved, we know that updating the total mass at each

time-level is not required when applying our moving mesh method. In addition, knowing

39

Chapter Four 4.4. A self-similar solution

that the centre of mass remains stationary allows us to set the mesh velocity to zero at that

point. Before numerically solving the PME, we recall the self-similar solution to the PME

in the next section.

4.4 A self-similar solution

In this section we recall a class of exact solutions to the radially symmetric PME (4.7) that

are invariant under a scaling group in the variables (t, r, u), and therefore take the so-called

self-similar form.

A time dependent phenomenon is called self-similar if the spatial distributions of its

variables at different times can be obtained from one another by a similarity transform [11],

which is a transformation that maintains certain features of a function or curve. A partic-

ular similarity transformation is a scale-invariant transformation, where the variables are

scaled by powers of a common factor λ.

A prerequisite to deriving a self-similar scaling solution is determining a scale-invariant

transformation of the PME [11].

4.4.1 Scale invariance

Scale invariance, defined as the invariance of the PDE under scaling, originated from the

analysis of the consequences of the change of units of measurement on the mathematical

form of the laws of physics [11]. Mathematically, it can be viewed as a particular aspect of

the study of the invariance of differential equations under general groups of transformations.

Consider the scaling transformation

t = λt̂, r = λβ r̂, u = λγ û, (4.11)

where λ is the scaling parameter and β and γ are constants. (The γ here is distinct from

the ratio of specific heats γ in §4.2.)

Transforming the derivatives in the PME into the variables t̂ , r̂ and û gives

∂u

∂t
= λγ−1∂û

∂t̂
, (4.12)

∂u

∂r
= λγ−β ∂û

∂r̂
. (4.13)

40

Chapter Four 4.4. A self-similar solution

The first of these (4.12) is the left-hand side of the PME. Using (4.13) we transform the

right-hand side to get

1

rδ−1

∂

∂r

(

rδ−1u(r, t)n∂u

∂r

)

=
λγ(n+1)−2β

r̂δ−1

∂

∂r̂

(

r̂δ−1û(r̂, t̂)n∂û

∂r̂

)

.

Hence our transformed general PME is

λγ−1∂û

∂t̂
=
λγ(n+1)−2β

rδ−1

∂

∂r̂

(

r̂δ−1û(r̂, t̂)n∂û

∂r̂

)

.

Therefore, for the PME (4.7) to be invariant under the transformation (4.11) we require

γ − 1 = γ(n+ 1) − 2β. (4.14)

To determine γ and β uniquely we need another relation. In §4.3 we demonstrated

that the PME conserves mass giving

∫ R(t)

0
rδ−1u(r, t) dr = k, (4.15)

where k is a constant, in the radially symmetric case. Transforming (4.15) to the variables

û , t̂ and r̂, by (4.11),

∫ R(t̂)

0
λγ+βδ r̂δ−1û(r̂, t̂) dr̂ = k.

Equating the λ terms on either side,

λγ+βδ = λ0.

Consequently, if

γ + βδ = 0. (4.16)

then (4.15) is invariant. Solving (4.14) and (4.16) simultaneously we find that

β =
1

nδ + 2
and γ = − δ

nδ + 2
, (4.17)

and the scale invariant transformation (4.11) becomes

t = λt̂, r = λ
1

nδ+2 r̂, u = λ
− δ

nδ+2 û. (4.18)

41

Chapter Four 4.4. A self-similar solution

To summarise, the variables u, r and t can be rescaled as in (4.18) whilst still satisfying

the PME (4.7) independently of the scaling parameter λ.

We now define scale-invariant similarity variables. From (4.11) we have

λ =
t

t̂
=
r

1

β

r̂
1

β

=
u

1

γ

û
1

γ

.

Bearing this rescaling in mind, we introduce the two new variables,

ζ =
u

tγ
=

û

t̂γ
, (4.19)

ξ =
r

tβ
=

r̂

t̂β
, (4.20)

which are independent of λ and hence scale invariant under the transformation (4.11). We

use (4.19) and (4.20) to find a self-similar solution for the PME (4.7) in the next section.

4.4.2 Self-similarity

Self-similarity occurs when the solution of the problem (as opposed to the PDE) is invariant

under the scaling transformation, and is a property of the PME which our moving mesh

method preserves [9]. We obtain a self-similar solution of the PME (4.7) by assuming

that there is a functional relationship ζ = ζ(ξ) between the similarity variables (4.19)

and (4.20), based on our rescaling (4.11). The self-similar solution is then dependent only

on the solution to an ordinary differential equation (ODE) that is obtained by transforming

the PME (4.7) into the variables ζ and ξ with β and γ defined by (4.17).

First, we transform the left-hand side of the PME,

∂u

∂t
=

∂

∂t
(ζ(ξ)tγ),

= tγ
∂ζ

∂t
+ ζ(ξ)γtγ−1,

= tγ
∂ξ

∂t

dζ

dξ
+ ζ(ξ)γtγ−1.

Substituting ∂ξ
∂t = ∂

∂t(rt
−β) = −βrt−(β+1), from (4.20), in the first term on the right-hand

side gives
∂u

∂t
= −βrtγ−(β+1) dζ

dξ
+ ζ(ξ)γtγ−1.

42

Chapter Four 4.4. A self-similar solution

A further substitution of rt−β = ξ, from (4.20), in the first term on the right-hand side

gives

∂u

∂t
= −βtγ−1ξ

dζ

dξ
+ ζ(ξ)γtγ−1. (4.21)

We have expressed the left-hand side of (4.7) in terms of ζ and ξ, and we wish to transform

the right-hand side in the same way. Thus

1

rδ−1

∂

∂r

(

rδ−1u(r, t)n∂u

∂r

)

= tβ(1−δ) 1

ξδ−1

∂ξ

∂r

d

dξ

(

ξδ−1tβ(δ−1)ζ(ξ)ntγn∂ξ

∂r

∂u

∂ζ

dζ

dξ

)

.

Substituting ∂ξ
∂r = t−β from (4.20), and ∂u

∂ζ = tγ from (4.19) into the right-hand side, gives

1

rδ−1

∂

∂r

(

rδ−1u(r, t)n∂u

∂r

)

=
1

ξδ−1
t−βδ d

dξ

(

ξδ−1tβ(δ−2)+γ(n+1)ζ(ξ)n dζ

dξ

)

,

= tγ(n+1)−2β 1

ξδ−1

d

dξ

(

ξδ−1ζ(ξ)n dζ

dξ

)

. (4.22)

Putting together (4.21) and (4.22) gives the PME (4.7) in terms of ζ and ξ,

−βt−1ξ
dζ

dξ
+ ζ(ξ)γt−1 = tnγ−2β 1

ξδ−1

d

dξ

(

ξδ−1ζ(ξ)n dζ

dξ

)

.

Note that t disappears from the equation since nγ− 2β+1 = 0 (from (4.14)). Substituting

for β and γ from (4.17), gives the ODE

− 1

nδ + 2
ξ
dζ

dξ
− ζ(ξ)

(

δ

nδ + 2

)

=
1

ξδ−1

d

dξ

(

ξδ−1ζ(ξ)n dζ

dξ

)

.

By moving all the terms to one side we have,

1

ξδ−1

d

dξ

(

ξδ−1ζ(ξ)n dζ

dξ

)

+
ξ

nδ + 2

dζ

dξ
+

ζ(ξ)δ

nδ + 2
= 0. (4.23)

From the zero Dirichlet boundary conditions imposed on the PME we have corresponding

zero Dirichlet boundary conditions on ζ in (4.23). The solution of the two point boundary

problem (4.23), along with the previous definitions u = ζtγ and r = ξtβ provides the self-

similar solution.

Using an integrating factor
{

exp
(

∫

δ
ξ dξ

)

= ξδ
}

enables us to group the last two

terms of (4.23), giving

1

ξδ−1

d

dξ

(

ξδ−1ζ(ξ)n dζ

dξ

)

+
1

(nδ + 2)ξδ−1

d

dξ

(

ξδζ(ξ)
)

= 0.

43

Chapter Four 4.4. A self-similar solution

We multiply through by ξδ−1 and integrate to get

ξδ−1ζ(ξ)n dζ

dξ
+

ξδζ(ξ)

(nδ + 2)
= C,

where C is an integration constant. Taking C = 0, which it is at the boundary where ζ = 0,

ξ−1ζ(ξ)n−1 dζ

dξ
+

1

nδ + 2
= 0.

Separating the variables,

∫

ζ(ξ)n−1 dζ = − 1

nδ + 2

∫

ξ dξ,

which gives
ζ(ξ)n

n
= − 1

nδ + 2

(

ξ2

2
− E

)

,

where E is a constant of integration. Bearing in mind that u = ζtγ (from (4.19)), we make ζ

the subject and, setting An = nE
nδ+2 ,

ζ(ξ) =

(

An − n

2(nδ + 2)
ξ2
) 1

n

.

Hence, there exists the following self-similar solution within a moving compact interval for

which u = 0 at the boundary,

ζ(ξ) =







(

An − n
2(nδ+2)ξ

2
) 1

n n
2(nδ+2)ξ

2 ≤ An,

0 n
2(nδ+2)ξ

2 > An.

Mapping this back to the original variables u, r and t using the definitions (4.19)–(4.20),

with β and γ given by (4.17), we achieve

u(r, t) =
1

t
δ

nδ+2

(

An − nr2

2(nδ + 2)t
2

nδ+2

) 1

n

+

, (4.24)

where the notation (·)
1

n
+ indicates that we take the positive solution of (·) 1

n . Equation (4.24)

is an exact self-similar source solution for the general PME (4.7) with zero boundary con-

ditions (due originally to [12] and [77]). A diagrammatic representation of u(r, t) in the

one-dimesional Cartesian case for n > 1 (where the gradient at the boundaries is infinite)

is shown in Figure 4.1.

When presenting our numerical results we will mainly use this self-similar solution

44

Chapter Four 4.4. A self-similar solution

as initial conditions. We also discuss the effect of not using a self-similar solution as the

initial conditions, where we find that the PME boundaries do not move until the solution

at the boundary resembles a self-similar solution. This behaviour is nicely captured by our

moving mesh scheme.

Fig. 4.1: Diagrammatic representation of the PME.

4.4.3 A specific set of parameters

For the purpose of numerical comparisons we consider (4.24) with An = 1. At the bound-

aries u = 0 therefore, the boundary R(t) is given by

R(t) =

√

2(nδ + 2)t
2

nδ+2

n
, (4.25)

where [0, R(t)] is the support of u. Substituting this definition back into (4.24) we have

u(r, t) =
1

t
δ

nδ+2

(

1 − r2

R(t)2

)
1

n

+

. (4.26)

At time t = 1 we have

u(r, 1) =

(

1 − r2

R(1)2

)
1

n

+

, (4.27)

where

R(1) =

√

2(nδ + 2)

n
. (4.28)

We use (4.27) and (4.28) as initial conditions for much of our numerical comparison work.

We have derived a self-similar solution for the PME. This provides us with an ini-

45

Chapter Four 4.5. Moving meshes

tial solution for our numerical work, as well as an exact solution to compare with our

numerical results. In the next section we apply our moving mesh method to the Cartesian

one-dimensional PME.

4.5 Moving meshes

The integral of a solution of the PME (the mass) is conserved in time, so we use the moving

mesh method described in §3.1, with the same notation, i.e. x̃j(t
m) ≈ xm

j denotes the jth

node of the mesh with N + 1 nodes, at time m∆t, m = 0, 1 . . ., and um
j ≈ ũj(t

m) and

vm
j ≈ ṽj(t

m) denote the solution and mesh velocity at these nodes.

We model the PDE (3.1) with

Lu ≡ ∂

∂x

(

u(x, t)n∂u

∂x

)

, (4.29)

from (4.6). The moving mesh method in §3.1 can be applied to any geometrically non-

symmetric problem. However, for convenience we assume that the one-dimensional solution

u(x, t) is symmetrical about its centre of mass (see §4.3). Then by symmetry we need only

model half the region x(t) ∈ [0, b(t)]. For the symmetrical problem, the boundary conditions

for u are

∂u

∂x
= 0 at x = x0 = 0, (4.30)

u = 0 at x = b(t), (4.31)

where x0 is fixed but b(t) moves with time.

Using this method we show that, given a mesh x̃j(t
m), with corresponding solution

ũj(t
m), we can calculate the updated mesh x̃j(t

m+1) and solution ũj(t
m+1) by computing

a mesh velocity ṽj(t
m).

4.5.1 Determining the mesh velocity

The mesh velocity is given by substituting (4.29) into (3.8) where a(t) = 0,

ṽj(t) = − 1

ũj(t)

∫ x̃j(t)

0

∂

∂x

(

u(x, t)n∂u

∂x

)

dx,

= − 1

ũj(t)

[

u(x, t)n∂u

∂x

]x̃j(t)

0

,

46

Chapter Four 4.5. Moving meshes

for interior points j = 1, . . . , N − 1. Since ∂u
∂x = 0 at x = 0, the interior points move in time

such that

ṽj(t) = −ũj(t)
n−1∂u

∂x

∣

∣

∣

∣

x̃j(t)

, (4.32)

which can also be written as

ṽj(t) = − 1

n

∂(un)

∂x

∣

∣

∣

∣

x̃j(t)

. (4.33)

Remark 4.5.1 We refer to §4.2 and observe that the mesh velocity (4.33) resembles the

velocity V obtained from substituting the equation of state (4.4) into Darcy’s Law (4.3),

V = −κp0

µ
∇ργ ,

where ρ = u and γ = n.

We use a discretised form of (4.33), at time t = tm

vm
j = − 1

n

(un)m
j+1 − (un)m

j−1

(xm
j+1 − xm

j−1)
, j = 1, 2, ..., N − 1, (4.34)

which is a second order discretisation on a uniform mesh, but only a first order discretisation

on a non-uniform mesh. By definition, at the inner boundary vm
0 = 0. The outer boundary

velocity vm
N is extrapolated by a polynomial approximation using (vm

N−3, v
m
N−2, v

m
N−1).

We note that when approximating (un)x

∣

∣

x̃j(t)
= ∂(un)

∂x

∣

∣

∣

∣

x̃j(t)

in (4.34), we do not use

the known value (un)m
j . We can improve upon (4.34) by developing a second order approx-

imation for (un)x

∣

∣

x̃j(t)
which uses the three values (un)m

j−1, (un)m
j and (un)m

j+1. This is a

general form of the approximation for ux given in [76].

We define ∆xm
j+

= xm
j+1 − xm

j and = ∆xm
j−

= xm
j − xm

j−1 and write u(x, t)n at the

nodes (j − 1) and (j + 1) at time tm as

(un)m
j+1 ≈ u(x̃j + ∆xm

j+ , t)
n,

(un)m
j−1 ≈ u(x̃j − ∆xm

j− , t)
n.

47

Chapter Four 4.5. Moving meshes

Expanding both of these using a Taylor series about x̃j(t) gives

(un)m
j+1 ≈ ũj(t)

n + ∆xm
j+

∂(un)

∂x

∣

∣

∣

∣

x̃j(t)

+
1

2
(∆xm

j+)2
∂2(un)

∂x2

∣

∣

∣

∣

x̃j(t)

+ O(∆xm
j+)3, (4.35)

(un)m
j−1 ≈ ũj(t)

n − ∆xm
j−

∂(un)

∂x

∣

∣

∣

∣

x̃j(t)

+
1

2
(∆xm

j−)2
∂2(un)

∂x2

∣

∣

∣

∣

x̃j(t)

+ O(∆xm
j−)3. (4.36)

We subtract (4.36) multiplied by (∆xm
j+

)2 from (4.35) multiplied by (∆xm
j−

)2 to give a higher

order approximation to (un)x

∣

∣

x̃j(t)
at time tm as,

(un)x

∣

∣

x̃j(t)
=
∂(un)

∂x

∣

∣

∣

∣

x̃j(t)

≈
(∆xm

j−
)2
[

(un)m
j+1 − (un)m

j

]

+ (∆xm
j+

)2
[

(un)m
j − (un)m

j−1

]

∆xm
j−

∆xm
j+

[

∆xm
j+

+ ∆xm
j−

] ,

=

1
∆xm

j+

(

∆(un)m
j+

∆xm
j+

)

+ 1
∆xm

j−

(

∆(un)m
j−

∆xm
j−

)

1
∆xm

j+

+ 1
∆xm

j−

, (4.37)

for j = 1, . . . , N − 1, where ∆(un)m
j+

= (un)m
j+1 − (un)m

j and ∆(un)m
j−

= (un)m
j − (un)m

j−1

(corresponding to our earlier definitions for ∆xm
j±

). The second order approximation (4.37)

is an inversely weighted sum, or interpolation, of slopes and is frequently used in numerical

work throughout this thesis.

Substituting (4.37) in (4.33) gives the second-order approximation to the mesh veloc-

ity,

vm
j = − 1

n

1
∆xm

j+

(

∆(un)m
j+

∆xm
j+

)

+ 1
∆xm

j−

(

∆(un)m
j−

∆xm
j−

)

1
∆xm

j+

+ 1
∆xm

j−

, (4.38)

for j = 1, . . . , N − 1 where the time-level m notation has been re-instated. As with (4.34),

the velocity at the inner boundary is given by vm
0 = 0, and at the outer boundary the

velocity vm
N is extrapolated by a polynomial approximation using (vm

N−3, v
m
N−2, v

m
N−1).

The new mesh xm+1
j is obtained from vm

j by a time-stepping scheme.

4.5.2 Recovering the solution

Once the updated mesh xm+1
j has been determined, the updated solution um+1

j , j =

1, . . . , N − 1, is given by either (3.10) or (3.16), the latter being exact for linear uj on

a non-uniform mesh. The solution at the inner boundary um+1
0 is calculated using

um+1
0 =

x0
1

xm+1
1

u0
0,

48

Chapter Four 4.5. Moving meshes

from (3.10) and the boundary condition (4.30). At the outer boundary, um+1
N+1 = 0 from (4.31).

4.5.3 The full algorithm

Given a mesh xm
j , solution um

j , j = 0, . . . , N , m ≥ 0:

• Compute the mesh velocity vm
j from (4.34) or (4.38);

• Using a time-stepping scheme, compute the updated mesh xm+1
j by a time-stepping

scheme;

• Compute the updated solution um+1
j from (3.10) or (3.16).

4.5.4 Waiting times

The velocity of the boundary is given by (4.32). The boundary behaviour of the PME has

been investigated in [62, 90]. We now present some of their findings.

At the boundary u = 0, which infers that the boundary velocity is zero unless ux is

infinite for n > 1. We examine the effect of the initial conditions on the boundary velocity

by considering initial conditions at t = 1, of the form given in [18, 62],

u(x, 1) =

[

1 −
(

x̃(1)

b(1)

)2
]α

=

(

1 − x̃(1)

b(1)

)α(

1 +
x̃(1)

b(1)

)α

, (4.39)

where α = 1
n (the self-similar initial condition). We use (4.39) to determine ux in (4.32),

to give

dx̃

dt
=

2αx

b(1)2

(

1 − x̃(1)

b(1)

)αn−1(

1 +
x̃(1)

b(1)

)αn−1

. (4.40)

We consider equation (4.40) as x̃(t) → b(t), and distinguish three cases:

1. If αn > 1, then db
dt = 0, indicating that the boundary does not move. The period of

time that boundary does not move is referred to as the ‘waiting time’;

2. If αn < 1, then db
dt → ∞+ indicating that b(1) initially moves with infinite velocity,

but the velocity quickly becomes finite;

3. If αn = 1 (i.e. the self-similar case), then the boundary has velocity

db

dt
=

2α

b(1)
.

49

Chapter Four 4.5. Moving meshes

The boundary behaviour for these three cases is shown in Figure 4.2.

Fig. 4.2: The three different types of boundary behaviour for the PME.

4.5.5 Time-stepping schemes

Explicit schemes

The simplest method to time-step the mesh is the first order explicit Euler time-stepping

scheme,

xm+1
j − xm

j

∆t
= vm

j , (4.41)

for j = 1, . . . , N − 1. We substitute for vm
j from (4.34) or (4.38). At the inner boundary

vm
0 = 0, and at the outer boundary we use a polynomial approximation to determine vm

N and

substitute it into (4.41) for j = N . Alternatively, we could use the one-sided approximation

of (4.34) to give

xm+1
N − xm

N

∆t
= − 1

n

(un)m
N − (un)m

N−1

xm
N − xm

N−1

, (4.42)

but this is of lower order accuracy.

The explicit Euler time-stepping scheme requires small ∆t so that the xm
j do not

tangle, i.e. (3.5) holds. We also implemented the adaptive Runge-Kutta methods in Matlab

with similar results. In addition, we used the solver ODE15s, which is designed to solve a

stiff system. Implementing this solver produced results similar to results from ODE23 and

ODE45 (which are not designed for stiff systems), inferring that the method does not lead

to stiff systems in this case.

50

Chapter Four 4.5. Moving meshes

A semi-implicit scheme

To determine a semi-implicit time-stepping scheme for solving the PME we consider the

general semi-implicit time-stepping scheme (3.39) (for the internal nodes, j = 1, 2, ..., N−1)

with

φm
j+ = − 1

n
(un)m

j+ 1

2

, φm
j− = − 1

n
(un)m

j− 1

2

,

from (4.33). To ensure that the mesh does not tangle using (3.40), we determine the ∆xm+1
j±

terms in (3.39) such that

xm+1
j − xm

j

∆t
= − 1

n∆xm
j

(

(un)m
j+ 1

2

∆xm+1
j−

∆xm
j−

− (un)m
j− 1

2

∆xm+1
j+

∆xm
j+

)

, (4.43)

where ∆xm
j = xm

j+ 1

2

− xm
j− 1

2

, ∆xm
j−

= xm
j − xm

j−1 and ∆xm
j+

= xm
j+1 − xm

j . Before calculating

the internal nodes semi-implicitly by (4.43), the boundary node xm+1
N is calculated by the

explicit scheme (4.42), enabling ∆xm+1
N−1+

= xm+1
N − xm+1

N−1 to be determined.

Rearranging (4.43) and expanding the ∆xm+1
j±

terms,

xm+1
j − xm

j

∆t
= −

(un)m
j+ 1

2

∆xm
j+

(xm+1
j − xm+1

j−1) − (un)m
j− 1

2

∆xm
j−

(xm+1
j+1 − xm+1

j)

n∆xm
j ∆xm

j+
∆xm

j−

. (4.44)

Our moving mesh method moves the nodes such that partial masses of the solution are

conserved, see equation (3.6) in §3.1. Bearing this in mind we define approximations to the

mass in the subintervals which remain unchanged in time, as

Cj+ = (un)0
j+ 1

2

∆x0
j+ = (un)m

j+ 1

2

∆xm
j+ ,

Cj− = (un)0
j− 1

2

∆x0
j− = (un)m

j− 1

2

∆xm
j− ,

thus simplifying equation (4.44) to

xm+1
j − xm

j

∆t
= −

Cj+(xm+1
j − xm+1

j−1) − Cj−(xm+1
j+1 − xm+1

j)

n∆xm
j ∆xm

j+
∆xm

j−

. (4.45)

To determine the new mesh by the semi-implicit scheme we solve the system

Axm+1 = xm, (4.46)

51

Chapter Four 4.5. Moving meshes

where xm+1 = (xm+1
1 , · · ·xm+1

N−1)
T , xm = (xm

1 , · · ·xm
N−1)

T , and A is a tridiagonal matrix with

lower, main and upper diagonals Alj , Adj and Auj given by

Alj = − Cj+∆t

n∆xm
j ∆xm

j+
∆xm

j−

,

Auj = − Cj−∆t

n∆xm
j ∆xm

j+
∆xm

j−

,

Adj = 1 −Alj −Auj .

Remark 4.5.2 The implicitness of the semi-implicit approach, together with the explicit

end point calculation, can be improved by using it in a predictor-corrector mode: solving

the matrix system (4.46) repeatedly within one time-level, whilst updating the explicit end

point value xm+1
N . The corrections affect entries of the matrix A and the vector xm+1, but

the right-hand side vector xm remain unchanged. We use the notation (·)p to denote the

iterations. After one iteration (p = 1) the x entries of A are at the new time-level (m+ 1),

giving (xm+1
j)1 terms, and the entries of xm+1 are (xm+1

j)2. This additional iteration process

at each time-level modifies (4.45) to become

(xm+1
j)p+1 − xm

j

∆t
= −

Cj+(xm+1
j − xm+1

j−1)p+1 − Cj−(xm+1
j+1 − xm+1

j)p+1

n(∆xm+1
j)p(∆xm+1

j+
)p(∆xm+1

j−
)p

, (4.47)

where p = 0, 1, 2, Note that the xm
j term on the left-hand side remains unchanged during

this additional iteration process. If (4.47) is convergent it leads to the fully implicit scheme

xm+1
j − xm

j

∆t
= − 1

n∆xm+1
j

(

Cj+

∆xm+1
j+

− Cj−

∆xm+1
j−

)

.

In view of the time we did not implement this scheme here. A different fully implicit scheme

has however been successfully programmed up by Scherer-Abreu [87].

We have given details of applying the moving mesh method of §3.1 to the one-dimensional

PME. We now demonstrate that the same method can be applied to the two-dimensional

radially symmetric PME.

52

Chapter Four 4.6. The radially symmetric case

4.6 The radially symmetric case

We use the moving mesh method described in §3.1 to approximate the radially symmetric

PME (4.7) in δ dimensions,

∂u

∂t
=

1

rδ−1

∂

∂r

(

rδ−1u(r, t)n∂u

∂r

)

. (4.48)

with boundary conditions

∂u

∂r
= 0 at r = r0 = 0, (4.49)

u = 0 at r = R(t), (4.50)

where R(t) moves with time.

We slightly vary the notation from §3.1 such that the space variable x is replaced by r

and v replaced by s. We use r̃j(t
m) ≈ rm

j , j = 0, 1, . . . , N +1, to denote the jth node along

the radius of the mesh, at time m∆t, m = 0, 1 The corresponding solution notation is

u(r̃j , t
m) = ũj(t

m) ≈ um
j , and the velocity of each node is

s(r̃j , t
m) = s̃j(t) =

dr̃j
dt
.

We use a similar procedure to the one given carried out in §3.1, to show that, given a mesh

along a radius r̃j(t
m), with corresponding solution ũj(t

m), the updated mesh along a radius

r̃j(t
m+1) and solution ũj(t

m+1) can be found by computing a mesh velocity s̃j(t
m).

4.6.1 Determining the mesh velocity

As with the one-dimensional case we seek a mesh velocity by differentiating the total mass

with respect to time, using the Leibnitz integral rule,

d

dt

∫ rj(t)

0
rδ−1u(r, t) dr =

∫ r̃j(t)

0
rδ−1∂u

∂t
dr +

[

rδ−1u(r, t)
dr

dt

]r̃j(t)

0

= 0.

Substituting for ∂u
∂t from (4.48), evaluating the integral, and cancelling terms due to the

boundary conditions (4.49) gives

r̃j(t)
δ−1ũj(t)

n ∂u

∂r

∣

∣

∣

∣

r̃j(t)

+ r̃j(t)
δ−1ũj(t)s̃j(t) = 0.

53

Chapter Four 4.6. The radially symmetric case

Hence, the mesh velocity is given by

s̃j(t) = −ũj(t)
n−1∂u

∂r

∣

∣

∣

∣

r̃j(t)

,

= − 1

n

∂(un)

∂r

∣

∣

∣

∣

r̃j(t)

. (4.51)

We note that the mesh velocity is independent of the number of dimensions δ.

To approximate (4.51) we use either the first order discrete form,

sm
j = −(un−1)m

j

um
j+1 − um

j−1

rm
j+1 − rm

j−1

, (4.52)

for j = 1, . . . , N − 1, or the second order discrete form from (4.37),

sm
j = −(un−1)m

j

1
∆rm

j+

(

∆(un)m
j+

∆rm
j+

)

+ 1
∆rm

j−

(

∆(un)m
j−

∆rm
j−

)

1
∆rm

j+

+ 1
∆rm

j−

, (4.53)

for j = 1, . . . , N − 1, where ∆(·)m
j+

= (·)m
j+1 − (·)m

j and ∆(·)m
j−

= (·)m
j − (·)m

j−1. At the inner

boundary sm
0 = 0 by definition, and the outer boundary velocity sm

N is extrapolated by a

polynomial approximation using (sm
N−3, s

m
N−2, s

m
N−1).

As with the one-dimensional case, the mesh velocity is used with a time-stepping

scheme to update the mesh at each time-level.

4.6.2 Recovering the solution

When recovering the solution ũj(t) on the new mesh we use the conservation of mass

principle in the form

∫ rm+1

j+1

rm+1

j−1

rδ−1u(r, tm+1) dr =

∫ r0
j+1

r0
j−1

rδ−1u(r, t0) dr, j = 1, . . . , N − 1, (4.54)

where t0 is the initial time, which is a generalised form of (3.9). The right-hand side of (4.54)

is known from the initial data. We approximate the integrals of (4.54) using a quadrature.

Evaluating the first integral at t = tm+1 allows us to recover um+1
j , j = 0, . . . , N . As in §3.1,

we examine two different quadrature rules, a mid-point approximation and an interpolation

approximation on a non-uniform mesh.

A simple mid-point approximation of (4.54) gives

[

rm+1
j+1 − rm+1

j−1

]

(rδ−1)m+1
j um+1

j =
[

r0j+1 − r0j−1

]

(rδ−1)0ju
0
j ,

54

Chapter Four 4.6. The radially symmetric case

and hence means that the updated solution is recovered on the new mesh by

um+1
j =

(rδ−1)0j

(rδ−1)m+1
j

(

r0j+1 − r0j−1

rm+1
j+1 − rm+1

j−1

u0
j

)

(4.55)

for j = 1, · · · , N − 1.

However, as the mesh is not necessarily uniform, it is more accurate to use a quadra-

ture rule for a non-uniform mesh. We note that the term in the brackets on the right-hand

side of (4.55) is the same as the right-hand side of (3.10), where x = r. Subsequently,

we can replace this term in (4.55) with the right-hand side of (3.16) (substituting x = r),

which simplifies to (4.55) for a uniform mesh. Hence, a better approximation to update the

solution is

um+1
j =

(rδ−1)0j

(rδ−1)m+1
j









cj−
/∆rm+1

j−

∆rm+1

j−

+
cj+

/∆rm+1

j+

∆rm+1

j+

1
∆rm+1

j−

+ 1
∆rm+1

j+









, (4.56)

for j = 1, . . . , N − 1, where

cj− =

∫ r̃j(t
0)

r̃j−1(t0)
u(r, t0)rδ−1 dr =

∫ r̃j(t)

r̃j−1(t)
u(r, t)rδ−1 dr,

cj+ =

∫ r̃j+1(t0)

r̃j(t0)
u(r, t0)rδ−1 dr =

∫ r̃j+1(t)

r̃j(t)
u(r, t)rδ−1 dr,

are calculated from the initial data.

For j = 0, (4.55) and (4.56) break down since rm
0 = 0. However, at the inner boundary

u is locally quadratic since ∂u
∂r = 0, hence we use the approximation

u(r, t) ≈ ũ0(t) + r2k,

for r ≈ 0, where k is a (small) constant denoting the curvature. Substituting this approxi-

mation into (4.54) for j = 0 gives

∫ r̃1(t)

r̃−1(t)
rδ−1

(

ũ0(t) + r2k
)

dr =

∫ r̃1(0)

r̃−1(0)
rδ−1

(

ũ0(0) + r2k
)

dr,

where r̃−1(t) is defined as r̃1(t) reflected about r̃0(t). Evaluating these integrals gives

[

rδ

δ
ũ0(t) +

rδ+2

δ + 2
k

]r̃1(t)

r̃−1(t)

=

[

rδ

δ
ũ0(0) +

rδ + 2

δ + 2
k

]r̃1(0)

r̃−1(0)

.

55

Chapter Four 4.7. Numerical results

Since r̃−1(t) = −r̃1(t) by symmetry,

r̃1(t)
δ

δ
ũ0(t) +

r̃1(t)
δ+2

δ + 2
k =

r̃1(0)δ

δ
ũ0(0) +

r̃1(0)δ+2

δ + 2
k.

We assume that r̃1(t)k << 1. Then

ũ0(t) ≈ r̃1(0)δ

r̃1(t)δ
ũ0(0),

which gives

um+1
0 =

(rδ)01
(rδ)m+1

1

u0
0.

The solution at the boundary, um+1
N , is determined by the boundary conditions (4.50).

4.6.3 The full algorithm

Given a mesh along a radius rm
j , solution um

j , j = 0, . . . , N , m ≥ 0:

• Compute the mesh velocity sm
j from (4.52) or (4.53);

• Compute the updated mesh rm+1
j by a time-stepping scheme;

• Compute the updated solution um+1
j from (4.55) or (4.56).

In the last two sections we have given the details of applying the moving mesh method to

the PME. In the next section we present the numerical results.

4.7 Numerical results

In this section we present results from applying the moving mesh method of §3.1 to the one-

dimensional Cartesian case §4.5, and the two-dimensional radial case §4.6 with δ = 2. We

use the self-similar initial conditions from §4.4 to show that the numerical solution converges

to the exact solution as the number of nodes increases in both the one-dimensional case (with

explicit and semi-implicit time-stepping schemes), and the radial case. We also examine

the effect of changing n, and using initial conditions that are not self-similar solutions of

the PME.

All numerical results presented here start with a equispaced mesh and use a second

order approximation (equation (4.38) in the one-dimensional case and equation (4.53) in

the two-dimensional case) to calculate the mesh velocity since they use more information

56

Chapter Four 4.7. Numerical results

to obtain the derivative at a node. However, we also examined the numerical solution

using (4.34) in the one-dimensional case and it was noted that in the tests they gave the

same results as using (4.38) to at least O(10−12). Similarly, we used (3.16) to recover the

solution, since it is more accurate for a non-uniform mesh. All the same, we examined the

numerical solution using (3.10) and found that in the tests, the numerical solutions were

the same to O(10−11). The minimal difference between these approaches suggests that the

mesh remains fairly uniform when used to numerically solve the PME. Despite this, we use

the approximations for a non-uniform mesh since in general, moving mesh methods often

exhibit irregularity.

4.7.1 One-dimension

We begin by examining the convergence of the finite difference moving mesh method as the

number of nodesN increases and as ∆t decreases. We solve for t ∈ [1, 5] and compute results

for N = 10 × 2N̂−1, N̂ = 1, . . . , 6. In order to compare results for different values of N̂ , we

denote the points of the mesh for a particular value of N̂ by xj,N̂ , j = 0, . . . , (10 × 2N̂−1).

We then compute both x
2N̂−1i,N̂

and u
2N̂−1i,N̂

≈ u(x
2N̂−1i,N̂

, 5) for each i = 0, . . . , 10 as

N̂ increases. This new notation gives an approximation to the value of x̃j(5) and ũj(5) at

ten different points for various N determined by j = 2N̂−1i. We compare the numerical

outcomes with the exact solution and boundary position from the one-dimensional Cartesian

form of (4.26) and (4.25), with n = 1 and t = 5. To do this we introduce

ū
2N̂−1i,N̂

=
1

51/3

(

1 −
(x

2N̂−1i,N̂
)2

54/36

)

,

x̄N,N̂ = 52/6
√

6,

where ū
2N̂−1i,N̂

is the exact solution at the calculated mesh points, and x̄N is the exact

boundary position, at t = 5. We use the corresponding initial conditions (4.27) and (4.28)

such that

n = 1 : ũj(1) = 1 − x̃j(1)2

6
, x̃N (1) =

√
6. (4.57)

To balance the spatial and temporal errors, and recalling that we have mainly used explicit

Euler time-stepping, we use ∆t = O
(

1
N2

)

, precisely ∆t = 4

10(4N̂)
. We anticipate that the

pointwise errors |ū
2N̂−1i,N̂

− u
2N̂−1i,N̂

| and |x̄N,N̂ − xN,N̂ | will decrease as N̂ increases, for

each i = 0, . . . , 10.

As a measure of the errors, we calculate ℓ2 norms of uj and the maximum normal of

57

Chapter Four 4.7. Numerical results

xN ,

EN (u) =

√

√

√

√

∑10
i=0(ū2N̂−1i,N̂

− u
2N̂−1i,N̂

)2

∑10
i=0(ū2N̂−1i,N̂

)2
, EN (xN) =

(x̄N,N̂ − xN,N̂)

(x̄N,N̂)
, (4.58)

for N̂ = 1, . . . , 6 (i.e. N = 10, 20, 40, 80, 160, 320). We investigate the hypothesis that

EN (u) ∼ 1

Np
and EN (xN) ∼ 1

N q
, (4.59)

for large N , where p and q are the estimated orders of convergence. If (4.59) holds then we

would expect that p2N and q2N defined by

p2N = − log2

(

E2N (u)

EN (u)

)

, q2N = − log2

(

E2N (xN)

EN (x)

)

,

would approach the constant values p and q as N → ∞. Since each step of our scheme is

second order in space and first order in time, and recalling that ∆t = O
(

1
N2

)

, we might

expect to see p, q ≈ 2.

N EN (u) pN EN (xN) qN
10 7.715 × 10−3 - 1.451 × 10−3 -
20 1.941 × 10−3 2.0 3.066 × 10−4 2.2
40 4.976 × 10−4 2.0 7.138 × 10−5 2.1
80 1.259 × 10−4 2.0 1.730 × 10−5 2.0
160 3.166 × 10−5 2.0 4.262 × 10−6 2.0
320 7.937 × 10−6 2.0 1.058 × 10−6 2.0

Table 4.1: Relative errors for u and xN with rates of convergence using the

explicit Euler time-stepping scheme, for n = 1.

Convergence results are shown in Table 4.1. We see that EN (u) and EN (xN) decrease

as N increases for each of the moving mesh methods. This suggests that as the number of

nodes increases, both the solution ũj(t) and the boundary position x̃N (t) are converging.

The p and q-values presented strongly indicate second-order convergence of both the nu-

merical solution and numerical boundary position.

Having shown apparent convergence of our moving mesh schemes, we examine the

numerical results with N = 20. We consider n = 1, 2, 3 with self-similar initial conditions

given by the one-dimensional Cartesian case of (4.27) and (4.28). The n = 1 case has initial

58

Chapter Four 4.7. Numerical results

conditions given by (4.57) and the n = 2, 3 cases are given by

n = 2 : ũj(1) =

(

1 − x̃j(1)2

4

)
1

2

, x̃20(1) = 2, (4.60)

n = 3 : ũj(1) =

(

1 − 3x̃j(1)2

10

)
1

3

, x̃20(1) =

√

10

3
. (4.61)

The results from self-similar initial conditions are given in Figures 4.3–4.5. We have also

applied (symmetric) initial conditions that are not self-similar for n = 2, 3,

n = 2 : ũj(1) = 1 − x̃j(1)2

4
, x̃20(1) = 2, (4.62)

n = 3 : ũj(1) = 1 − 3x̃j(1)2

10
, x̃20(1) =

√

10

3
, (4.63)

from removing the square roots in (4.60) and (4.61). The results from these initial conditions

are given in Figures 4.6 and 4.7. Due to symmetry, the moving mesh method was applied to

half the region x ∈ [0, b(t)]. The computed outcome (using the explicit Euler time-stepping

scheme) is used to provide a complete numerical solution over the region [−x̃20(t), x̃20(t)] ≈
[a(t), b(t)], as shown in the first part of Figures 4.3–4.7.

When a self-similar solution is used for the initial conditions (4.57), (4.60) and (4.61),

we have an exact solution to compare with our numerical outcomes. We define the exact

boundary position by the one-dimensional Cartesian case of (4.25),

x̄n,N (t) =

√

2(n+ 2)t
2

n+2

n
,

and the exact solution at the position of the nodes by the one-dimensional Cartesian case

of (4.26)

ūn,j(t) =
1

t
1

2+n

(

1 − x̃j(t)
2

x̃N (0)2

)
1

n

. (4.64)

Figure 4.8 shows the difference

dn,j(t) = ūn,j(t) − ũj(t),

at each node, j = 0, 1, . . . , 20, between the exact and numerical solution for n = 1, 2, 3 at

t = 5. The difference appears to increase near the boundary (but the difference dn,20(t)=0

is zero due to known boundary conditions). The cause of the greater difference near the

outer boundary may be that the boundary mesh velocity is determined by an extrapolation

of the internal nodes. Moreover, from (4.64) we note that the exact solution for n = 2, 3

59

Chapter Four 4.7. Numerical results

has an infinite gradient at the boundaries. This is portrayed in Figures 4.4(a) and 4.5(a)

which show the gradient of the solution near the moving boundary is very large for n = 2, 3,

resulting in a less accurate approximation near the moving boundary than for the n = 1

case, shown in Figure 4.3. Hence, from Figure 4.8, it is reasonable to deduce that a good

graphical indication of the accuracy of our method is to compare the exact and numerical

outer boundary movement, as shown in the second plot of Figures 4.3–4.5. These plots show

that the exact boundary position is slightly larger than the numerical boundary position,

with the difference between the two increasing as n increases. Returning to Figure 4.8 we

observe that for n = 1 the largest positive error is near the inner boundary. Subsequently,

we present the difference between the exact and numerical solution at the inner boundary

dn,0(t), see Figure 4.9. This shows that for short times t < 2, the difference dn,0(t) is larger

for smaller n. However, as t increases, d1,0(t) decreases, whereas d2,0(t), d3,0(t) increase,

with d3,0(t) increasing at a faster rate than d2,0(t). The varying behaviour for different n is

because the solution decreases in the centre (the inner boundary) at a faster rate for smaller

n. The relative error at the inner boundary would present less variation for different n.

The boundary movement for non-self-similar initial conditions is also presented, Fig-

ures 4.6(b) and 4.7(b), but we do not have exact solutions to enable a comparison. These

plots are included to demonstrate ‘waiting times’ as discussed in §4.5.4. For the initial con-

ditions (4.62) and (4.63) we observe that α = 1 in both cases, giving αn > 1 for n = 2, 3.

A waiting time is nicely demonstrated in the n = 2 case, Figure 4.6. In addition, the

velocity of the nodes is shown in Figure 4.10, where we observe that the boundary velocity

is initially zero. A waiting time is also visible in the n = 3 case. However, the boundary

moves in slightly before moving out, as shown in Figure 4.7. This inward movement may

be due to numerical errors caused by extrapolating the boundary mesh velocity vm
N .

The third plot from Figures 4.3–4.7 shows exactly how the mesh moves. We notice

a smooth even spread of the nodes, without any tangling in all five cases. The two cases

where the initial conditions are not self-similar, (4.62) and (4.63), are more challenging for

our moving mesh method since there is a ‘waiting time’; however, our method produces a

mesh that is finer near the boundary, which is where the gradient of the solution is at its

highest.

Using a semi-implicit time-stepping scheme allows a larger ∆t compared to the ex-

plicit Euler time-stepping scheme, see Figure 4.11. Although the semi-implicit scheme can

take very large time steps, such as ∆t = 20, without mesh tangling, it does not ensure

accuracy since both plots of Figure 4.11 show the solution at t = 20 but the solutions vary

considerably.

60

Chapter Four 4.7. Numerical results

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 3
t = 5
t = 7
t = 9
t = 11
t = 13
t = 15
t = 17
t = 19
t = 21

ũ
j
(t

)

x̃j(t)

(a) The approximate solution.

1 1.5 2 2.5 3 3.5 4 4.5 5

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Exact
Numerical

x̃
N

(t
)

t

(b) The boundary position.

0 1 2 3 4 5 6 7
0

5

10

15

20

25

x̃j(t)

t

(c) The mesh trajectory.

Fig. 4.3: The PME with self-similar initial conditions for n = 1 (4.57), N = 20,

∆t = 0.04.

61

Chapter Four 4.7. Numerical results

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 1.4
t = 1.8
t = 2.2
t = 2.6
t = 3
t = 3.4
t = 3.8
t = 4.2
t = 4.6
t = 5

ũ
j
(t

)

x̃j(t)

(a) The approximate solution.

1 1.5 2 2.5 3 3.5 4 4.5 5
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Exact
Numerical

x̃
N

(t
)

t

(b) The boundary position.

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5

5

x̃j(t)

t

(c) The mesh trajectory.

Fig. 4.4: The PME with self-similar initial conditions for n = 2 (4.60), N = 20,

∆t = 0.04.

62

Chapter Four 4.7. Numerical results

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 1.4
t = 1.8
t = 2.2
t = 2.6
t = 3
t = 3.4
t = 3.8
t = 4.2
t = 4.6
t = 5

ũ
j
(t

)

x̃j(t)

(a) The approximate solution.

1 1.5 2 2.5 3 3.5 4 4.5 5
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Exact
Numerical

x̃
N

(t
)

t

(b) The boundary position.

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5

5

x̃j(t)

t

(c) The mesh trajectory.

Fig. 4.5: The PME with self-similar initial conditions for n = 3 (4.61), N = 20,

∆t = 0.04.

63

Chapter Four 4.7. Numerical results

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 1.4
t = 1.8
t = 2.2
t = 2.6
t = 3
t = 3.4
t = 3.8
t = 4.2
t = 4.6
t = 5ũ

j
(t

)

x̃j(t)

(a) The approximate solution.

1 1.5 2 2.5 3 3.5 4 4.5 5
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

x̃
N

(t
)

t

(b) The boundary position.

0 0.5 1 1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5

5

x̃j(t)

t

(c) The mesh trajectory.

Fig. 4.6: The PME without self-similar initial conditions for n = 2 (4.62),

N = 20, ∆t = 0.01.

64

Chapter Four 4.7. Numerical results

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 1.4
t = 1.8
t = 2.2
t = 2.6
t = 3
t = 3.4
t = 3.8
t = 4.2
t = 4.6
t = 5ũ

j
(t

)

x̃j(t)

(a) The approximate solution.

1 1.5 2 2.5 3 3.5 4 4.5 5
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

x̃
N

(t
)

t

(b) The boundary position.

0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

4.5

5

x̃j(t)

t

(c) The mesh trajectory.

Fig. 4.7: The PME without self-similar initial conditions for n = 3 (4.62),

N = 20, ∆t = 0.01.

65

Chapter Four 4.7. Numerical results

0 0.5 1 1.5 2 2.5 3
−6

−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−4

n = 1
n = 2
n = 3

d
n

,j
(5

)

x̃j(5)

Fig. 4.8: The difference of the PME with n = 1, 2, 3 and corresponding self-

similar solution (4.57)–(4.61) at each node, N = 20, t = 5, ∆t = 0.01.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5
x 10

−3

n=1
n=2
n=3

d
n

,0
(5

)

t

Fig. 4.9: The difference of the PME with corresponding self-similar solution

(4.57)–(4.61) at the inner boundary x̃0(t), N = 20, ∆t = 0.01.

66

Chapter Four 4.7. Numerical results

0 0.5 1 1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t = 1.04
t = 1.08
t = 1.12
t = 1.16
t = 1.2
t = 1.24
t = 1.28
t = 1.32
t = 1.36
t = 1.4ṽ

j
(t

)

x̃j(t)

Fig. 4.10: The velocity of the nodes without self-similar initial conditions for

n = 2 (4.62), N = 40, ∆t = 0.01.

4.7.2 Two-dimensional radially symmetric

As with the one-dimensional case, we begin by examining the convergence as the number

of nodes N increases and as ∆t decreases. The moving mesh method for the symmetrical

radial case solves the PME along a line 0 ≤ r ≤ rN , and then uses radial symmetry to give

the solution over a complete circle, see Figure 4.12. To examine convergence of this method

we take the solution along the line 0 ≤ r ≤ rN , and compare this to the exact solution.

We use the initial conditions given by (4.27) and (4.28) with δ = 2 and t = 1,

n = 1 : ũj(1) = 1 − r̃j(1)2

8
, r̃N (1) =

√
8. (4.65)

We use the same parameters as in the one-dimensional case, and so we solve for t ∈ [1, 5]

and compute results for N = 10 × 2N̂−1, N̂ = 1, . . . , 6. In order to compare results

for different values of N̂ , we denote the mesh points along the line 0 ≤ r ≤ rN , for a

particular value of N̂ , by rj,N̂ , j = 0, . . . , (10 × 2N̂−1). We then compute both r
2N̂−1i,N̂

and u
2N̂−1i,N̂

≈ u(r
2N̂−1i,N̂

, 5) for each i = 0, . . . , 10 as N̂ increases. This notation gives

an approximation to the value of r̃j(5) and ũj(5) at ten different points for various N

determined by j = 2N̂−1i. We compare the numerical outcomes with the exact solution

and boundary position from (4.26) and (4.25) where δ = 2, n = 1 and t = 5,

ū
2N̂−1i,N̂

=
1

51/4

(

1 −
(r

2N̂−1i,N̂
)2

40

)

,

r̄N = 51/4
√

8,

67

Chapter Four 4.7. Numerical results

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ũ
j
(t

)

x̃j(t)

(a) Taking ∆t = 0.2 (solid red). For comparison, the explicit Euler time-stepping
scheme with ∆t = 0.4 (as in Figure 4.3(a)) is also plotted (dashed black).

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 1
t = 21
Exact solution

ũ
j
(t

)

x̃j(t)

(b) Taking ∆t = 20.

Fig. 4.11: The PME with self-similar initial conditions for n = 1 (4.57), using

a semi-implicit time-stepping scheme, N = 20.

68

Chapter Four 4.7. Numerical results

where ū
2N̂−1i,N̂

is the exact solution at the calculated mesh points, and r̄N is the radius,

at t = 5. As before, to balance the spatial and temporal errors, and recalling that we

have used explicit Euler time-stepping, we use ∆t = O
(

1
N2

)

, precisely ∆t = 4

10(4N̂)
. We

anticipate that the pointwise errors |ū
2N̂−1i,N̂

− u
2N̂−1i,N̂

| and |r̄N,N̂ − rN,N̂ | will decrease

as N̂ increases, for each i = 0, . . . , 10.

As a measure of the errors, we calculate the first part of (4.58) and

EN (rN) =
(r̄N,N̂ − rN,N̂)

(r̄N,N̂)
,

for N̂ = 1, . . . , 6 (i.e. N = 10, 20, 40, 80, 160, 320). We investigate the same hypothesis as

with the one-dimensional case: that

EN (u) ∼ 1

Np
and EN (rN) ∼ 1

N q
, (4.66)

for large N , where p and q are the estimated orders of convergence. If (4.66) holds then we

would expect that p2N and q2N defined by

p2N = − log2

(

E2N (u)

EN (u)

)

, q2N = − log2

(

E2N (rN)

EN (r)

)

,

would approach the constant values p and q as N → ∞. Since each step of our scheme is

second order in space and first order in time, and recalling that ∆t = O
(

1
N2

)

, we might

expect to see p, q ≈ 2. Convergence results are shown in Table 4.2, where we observe very

N EN (u) pN EN (rN) qN
10 5.519 × 10−3 - 3.072 × 10−3 -
20 1.364 × 10−3 2.0 7.577 × 10−4 2.0
40 3.401 × 10−4 2.0 1.888 × 10−4 2.0
80 8.497 × 10−5 2.0 4.716 × 10−5 2.0
160 2.124 × 10−5 2.0 1.179 × 10−6 2.0
320 5.309 × 10−6 2.0 2.947 × 10−6 2.0

Table 4.2: Relative errors for u and rN with rates of convergence using the

explicit Euler time-stepping scheme.

similar results to the one-dimensional case in Table 4.1. We find that the ũj(t) and the

boundary position r̃N (t) appear to have second-order convergence.

Having shown apparent convergence of the radial moving mesh method we present

numerical results, with N = 20. We consider n = 1, 2, 3 with self-similar initial conditions

given by (4.26) with δ = 2 and t = 1, i.e. the n = 1 case is given by (4.65) and the n = 2, 3

69

Chapter Four 4.8. Finite elements

cases are given by

n = 2 : ũj(1) =

(

1 − r̃j(1)2

6

)
1

2

, x̃20(1) =
√

6, (4.67)

n = 3 : ũj(1) =

(

1 − 3r̃j(1)2

16

)
1

3

, x̃20(1) =
4√
3
. (4.68)

The Figure 4.12 confirm the findings from the one-dimensional case, that as n increases,

the boundary slope is closer to infinity. Note that for n = 3 a smaller ∆t was required.

Although it appears that the mesh is coarser in the radial direction at the boundary, we

observe from Figure 4.13 that this is not actually the case.

We have completed our application of our finite difference moving mesh method

applied to the PME. In the next section we present our results from applying the finite

element moving mesh method of Baines, Hubbard and Jimack [5] to the PME.

4.8 Finite elements

As mentioned in §2.3, the moving mesh method we use is a one-dimensional finite difference

version of the multi-dimensional Conservation Method given in [5], which uses linear finite

elements. For completeness we also solved the PME on a circle using the Conservation

Method with linear finite elements, although with a slight alteration in the code. The nu-

merical procedure is as given in §2.3.

Unlike [5], the mesh here is reconstructed at each time step by constructing a Delau-

nay triangulation from a set of N points. Newer versions of Matlab have a in-built Matlab

function (‘DelaunayTri’) that computes the Delaunay triangulation for a set of given points,

see Figure 4.14. For N points we have L triangles.

We consider the n = 1 case with a self-similar initial condition, and use the explicit

Euler time-stepping scheme. The numerical solution is shown in Figure 4.15. We observe

from Figure 4.15(b) that the mesh is finer at the centre. This has partly been overcome

by spreading the nodes along a radius non-uniformly so that they are spread further apart

at the centre. Generally, a mesh that is equally spaced is preferable, although this mesh is

suitable for radial movement.

An advantage of using finite elements for the general two-dimensional case (instead of

the radial case) is that the method can be applied to more general domains, such as an el-

lipse, as seen in Figure 4.16. For a general two-dimensional problem, an equally distributed

mesh of equilateral triangles would be more suitable than our present choice of mesh.

70

Chapter Four 4.8. Finite elements

−5

0

5

−5

0

5
0

0.2

0.4

0.6

0.8

1
ũ

j
(t

)

r̃j(t) r̃j(t)

(a) n = 1, ∆t = 0.025.

−4 −3 −2 −1 0 1 2 3 4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

ũ
j
(t

)

r̃j(t) r̃j(t)

(b) n = 2, ∆t = 0.025.

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
0

0.2

0.4

0.6

0.8

ũ
j
(t

)

r̃j(t) r̃j(t)

(c) n = 3, ∆t = 0.0125.

Fig. 4.12: The two-dimensional, radial PME with self-similar initial conditions

for n = 1 (4.57), n = 2 (4.67) and n = 3 (4.68), at t = 5, using the explicit Euler

time-stepping scheme, N = 20.

71

Chapter Four 4.9. Summary for the PME

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

r

r

Fig. 4.13: The mesh for the two-dimensional, radial PME with self-similar

initial conditions for n = 3 (4.68), N = 20, at t = 5, ∆t = 0.0125

In the next section we summarise our work on the PME.

4.9 Summary for the PME

The PME is the first PDE we solved numerically with our moving mesh method since it

is the simplest nonlinear diffusion equation that is of interest to both the pure mathemati-

cian and the applied scientist [99]. There are a number of physical applications where this

simple model appears in a natural way, mainly to describe processes involving fluid flow,

heat transfer or diffusion. We began this chapter with a derivation of the PME.

Budd, Huang and Russell [28] note that Lagrangian moving mesh methods, like our

method, are very natural in fluid mechanics calculations (as in the PME) since solution

features are often convected with the flow. Furthermore, it is natural to evolve the mesh

points to follow the flow itself [28], which is what happens here since mass is conserved. We

have discussed some of the properties, paying particular attention to the scaling properties

which enabled us to derive a self-similar solution as originally shown in [11]. We used the

72

Chapter Four 4.9. Summary for the PME

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11P12P13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23 P24 P25

T1

T2

T3

T4

T5

T6

T7

T8
T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T21 T22

T23

T24

T25

T26

T27

T28

T29

T30

T31

T32

T33

T34

T35

T36

T37

T38

T39 T40

x

y

Fig. 4.14: Finite element mesh for a radial 2D problem, (N = 25, 40 triangles).

73

Chapter Four 4.9. Summary for the PME

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
0

0.2

0.4

0.6

0.8

1

ũ
j
(t

)

xy

(a) The solution.

−4 −3 −2 −1 0 1 2 3 4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(b) The mesh.

Fig. 4.15: The numerical solution of the two-dimensional PME with initial

conditions (4.65), N = 20, at t = 2, ∆t = 0.001 using a finite element moving

mesh.

self-similar solution as an initial condition so that we could compare our numerical results

to the exact solution. We found that our moving mesh method is accurate, and the numer-

ical solution and mesh appear to have second-order convergence when n = 1..

We also demonstrated that our moving mesh method can easily be extended to the

radially symmetric two-dimensional case, without compromising accuracy, nor the rate of

convergence. However, when using finite differences the two-dimensional case must be radi-

ally symmetric, which is not a limitation when using the Conservation Method with finite

elements. We demonstrated this when using the Conservation Method of Baines, Hubbard

74

Chapter Four 4.9. Summary for the PME

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
0

0.2

0.4

0.6

0.8

u

xy

Fig. 4.16: The numerical solution of the two-dimensional PME with initial

conditions (4.65), scaled such that x → 1.2x and y → 0.8y, N = 20, at t = 2,

∆t = 0.02 using a finite element moving mesh.

and Jimack [5].

We now consider Richards’ equation, which is another fluid flow problem that con-

serves mass. However, unlike the PME, it does not remain symmetrical.

75

5
Richards’ Equation

5.1 Introduction

Richards’ equation is a non-linear PDE which models the movement of moisture in an

unsaturated porous medium. It was formulated in 1931 by Richards’ [83] in the form

∇ · (K · ∇ψ) + g
∂K

∂z
= ρ

dθ

dψ

∂ψ

∂t
, (5.1)

where θ is the moisture content, ψ is the liquid pressure, which is non-negative and un-

bounded as θ → 0, p is the mass per unit volume of the liquid, ρ is the weight of the dry

medium in unit volume, g is a gravity constant, z is the vertical direction, K(ψ) is the

hydraulic conductivity and t is time.

For the case of one-dimensional infiltration of water in the vertical direction of un-

saturated soil, Richards’ equation is,

∂θ

∂t
=

∂

∂z

[

K(θ)

(

∂ψ

∂z
+ 1

)]

,

76

Richards’ equation 5.1. Introduction

as given in [10]. This is the mixed form of Richards’ equation. In our work we focus on the

θ-based form

∂θ

∂t
=

∂

∂z

[

D(θ)
∂θ

∂z

]

+
∂K

∂z
,

where the diffusion coefficient

D(θ) = −K(θ)
dψ

dθ
and ψ ∝ 1

θ
.

This is the form of Richards’ equation presented in [50], where the author goes on to assume

that

K(θ) ∝ θn,

for some integer n > 2. Rescaling z and t then gives the non-dimensional equation

∂θ

∂t
=

∂

∂z

[

θn−2 ∂θ

∂z
+ θn

]

. (5.2)

This is a specific case of the θ-based form of Richards’ equation, as given in [10, 61],

which is defined only for unsaturated flow. Hence, the solution to (5.2) represents liquid

flowing downwards through an unsaturated porous medium, making it applicable to track

contaminated liquid seeping downwards through soil.

We alter the notation of (5.2) to be consistent with our description of the moving mesh

method, and the notation in the rest of this thesis, such that the orientation is transformed

from the z to the x-axis, and the moisture content is u(x, t) instead of θ(x, t), giving

∂u

∂t
=

∂

∂x

(

u(x, t)n−2∂u

∂x
+ u(x, t)n

)

, x ∈ [a(t), b(t)], (5.3)

where n > 2. We consider zero Dirichlet boundary conditions since the region we are

modelling is defined by presence of the liquid,

u = 0 at x = a(t), b(t). (5.4)

We use an initial condition

u = u0(x) at t = 0,

which will be defined later. As with the PME, Richards’ equation is parabolic everywhere

except where u = 0, where it degenerates. In addition, like the PME, the boundaries have

a finite propagation velocity. Richards’ equation is closely related to the PME with some

77

Richards’ equation 5.2. Deriving Richards’ equation

similar properties.

In the next section we show how Richards’ [83] originally derived (5.1) from Darcy’s

Law to model the capillary conduction of liquids in a porous medium. We specialise the

derivation presented in [83] to the one-dimensional case since we focus our work on the case

where fluid is flowing in one direction only.

The second half of this chapter applies a moving mesh method. In §5.5 we use

the mass conservation finite difference method, and update the mesh using both an explicit

and semi-implicit time-stepping scheme. However, for Richards’ equation, the mesh velocity

from our mass conservation method cannot be arranged so that (3.39) holds, so the proof of

monotonicity under semi-implicit time-stepping does not hold in this case. An alternative

approach to define the mesh velocity (similar to that in §3.3) is explored so that (3.39)

does hold. Numerical results from the finite difference methods are given in §5.7. In §5.8

the finite element method is applied to the one-dimensional case, corresponding to that

presented in [90]. We give the results from the one-dimensional finite element method

in §5.8.

5.2 Deriving Richards’ equation

We describe the one-dimensional derivation of Richards’ equation, derived from [83], where

the equation of continuity and Darcy’s Law are applied to the flow of liquid through a

porous medium.

(i) Equation of continuity

The equation of continuity for fluid flow through a porous medium may be written as

∂q

∂z
= −ρ∂θ

∂t
, (5.5)

where q is the flow vector and θ is the moisture content. Since θ is a single-valued continuous

function of the moisture tension (or pressure head) ψ, equation (5.5) becomes

∂q

∂z
= −ρ dθ

dψ

∂ψ

∂t
. (5.6)

78

Richards’ equation 5.3. Properties of Richards’ equation

(ii) Darcy’s Law

Darcy’s Law may be expressed by

q = −K ∂

∂z
(φ+ ψ),

where q is the volume of liquid crossing a unit area perpendicular to the flow, in unit time,

and in this case φ is the potential φ = gz. If the z-axis is chosen to be the positive upward

vertical then ∂φ
∂z = g, so that

q = −K
(

g +
∂ψ

∂z

)

. (5.7)

Substituting q from the Darcy’s Law result (5.7) into the equation of continuity (5.6)

gives

∂K

∂z

(

g +
∂ψ

∂z

)

+K

(

∂g

∂z
+
∂2ψ

∂z2

)

= ρ
dθ

dψ

∂ψ

∂t
.

Dropping the ∂g
∂z term because g is presumed constant, and rearranging gives a differential

equation for the general case of liquid pressure ψ,

g
∂K

∂z
+
∂K

∂z

∂ψ

∂z
+K

∂2ψ

∂z2
= ρ

dθ

dψ

∂ψ

∂t
.

This is equivalent to

∂

∂z

(

K
∂ψ

∂z

)

+ g
∂K

∂z
= ρ

dθ

dψ

∂ψ

∂t
,

which is Richards’ equation as originally presented by Richards’ in [83], in the negative z

direction. We use it in the form (5.3).

5.3 Properties of Richards’ equation

We consider Richards’ equation for the case of one-dimensional unsaturated flow (5.3)–

(5.4) and demonstrate that the solution conserves mass (which is relevant when applying

our moving mesh scheme), and has centre of mass which moves in one direction. These

properties are proved in the same manner as in §4.3.

79

Richards’ equation 5.3. Properties of Richards’ equation

Lemma 5.3.1 Richards’ equation (5.3) conserves mass in time.

Proof To prove that the total mass does not change over time we show that the derivative

of the total mass (in time) is zero. Using the Leibnitz integral rule,

d

dt

∫ b(t)

a(t)
u(x, t) dx =

∫ b(t)

a(t)

∂u

∂t
dx+ u(b, t)

db

dt
− u(a, t)

da

dt
.

Substituting ∂u
∂t from (5.3), and noting that the last two terms vanish due to zero boundary

conditions (5.4),

d

dt

∫ b(t)

a(t)
u(x, t) dx = u(b, t)n−2 ∂b

∂x
+ u(b, t)n − u(a, t)n−2 ∂a

∂x
+ u(a, t)n.

The right-hand side is zero, again due to the boundary conditions (5.4), hence

d

dt

∫ b(t)

a(t)
u(x, t) dx = 0,

as required. �

Lemma 5.3.2 For Richards’ equation (5.3) the centre of mass always moves in one direc-

tion.

Proof The centre of mass x̄(t) is given by the ratio (4.9), as in §4.3. Since mass is conserved,

we consider the numerator of (4.9) only. Differentiating the numerator with respect to time,

using the Leibnitz integral rule, gives

d

dt

∫ b(t)

a(t)
xu(x, t) dx =

∫ b(t)

a(t)
x
∂u

∂t
dx+ b(t)u(b, t)

∂b

∂x
− a(t)u(a, t)

∂a

∂x
.

Substituting ∂u
∂t from (5.3), and noting that the last two terms vanish due to zero boundary

conditions (5.4),

d

dt

∫ b(t)

a(t)
xu(x, t) dx =

∫ b(t)

a(t)

{

x
∂

∂x

(

u(x, t)n−2∂u

∂x
+ u(x, t)n

)}

dx.

Using integration by parts on the right-hand side gives

d

dt

∫ b(t)

a(t)
xu(x, t) dx = b(t)

(

u(b, t)n−2 ∂b

∂x
+ u(b, t)n

)

− a(t)

(

u(a, t)n−2 ∂a

∂x
+ u(a, t)n

)

−
∫ b(t)

a(t)

{

u(x, t)n−2∂u

∂x
+ u(x, t)n

}

dx.

80

Richards’ equation 5.4. A self-similar solution

The u(a, t) and u(b, t) terms vanish due to the boundary conditions (5.4). This leaves only

the integral on the right-hand side, which can be rearranged such that

d

dt

∫ b(t)

a(t)
xu(x, t) dx = − 1

n− 1

∫ b(t)

a(t)

∂

∂x
u(x, t)n−1 dx−

∫ b(t)

a(t)
u(x, t)n dx,

= − 1

n− 1

[

u(b, t)n−1 − u(a, t)n−1
]

−
∫ b(t)

a(t)
u(x, t)n dx.

Once more, the u(a, t) and u(b, t) terms vanish due to the boundary conditions (5.4), leaving

d

dt

∫ b(t)

a(t)
xu(x, t) dx = −

∫ b(t)

a(t)
u(x, t)n dx < 0,

which is strictly negative for u > 0, indicating that the centre of mass moves in the direction

of the negative x-axis. �

By showing that the mass is conserved, we know that updating the total mass at each time-

level is not required when applying our moving mesh method. In addition, knowing that

the centre of mass moves in one direction allows us to check that our numerical solution

is exhibiting expected behaviour. Before numerically solving Richards’ equation, we seek a

self-similar solution to Richards’ equation in the next section.

5.4 A self-similar solution

In this section we describe a class of exact solutions to Richards’ equation (5.3) that are

invariant under a scaling group in the variables (t, x, u), and therefore take the so-called

self-similar form. A definition of self-similarity, from [11], is given in §4.4 where we derived a

self-similar solution for the PME. We use the same procedure from §4.4, therefore we begin

by determining a scale-invariant transformation of Richards’ equation (5.3). Although the

same notation is used in this section as for the PME, the variables are in fact different.

5.4.1 Scale invariance

Consider the scaling transformation

t = λt̂, x = λβx̂, u = λγ û, (5.8)

where λ is the scaling parameter and β and γ are constants.

81

Richards’ equation 5.4. A self-similar solution

Transforming the derivatives in the PDE into variables t̂ , x̂ and û gives

∂u

∂t
= λγ−1∂û

∂t̂
, (5.9)

∂u

∂x
= λγ−β ∂û

∂x̂
, (5.10)

as with the PME. For Richards’ equation we also have the terms

u(x, t)n−2 = λγ(n−2)û(x̂, t̂)n−2, (5.11)

u(x, t)n = λnγ û(x̂, t̂)n. (5.12)

The transformed left-hand side of (5.3) is (5.9). Using (5.10)–(5.12) we transform the

right-hand side to obtain

∂

∂x

(

u(x, t)n−2∂u

∂x

)

+
∂

∂x
(u(x, t)n) = λγ(n−1)−2β ∂

∂x̂

(

û(x̂, t̂)n−2∂û

∂x̂

)

+ λγn−β ∂

∂x̂
(û(x̂, t̂)n).

Hence, Richards’ equation (5.3) transformed by (5.8) is

λγ−1∂û

∂t̂
= λγ(n−1)−2β ∂

∂x̂

(

û(x̂, t̂)n−2∂û

∂x̂

)

+ λγn−β ∂

∂x̂
(û(x̂, t̂)n).

Therefore, for the PDE (5.3) to be invariant under the transform (5.8) we require

γ − 1 = γ(n− 1) − 2β = nγ − β. (5.13)

We consider (5.13) as two equalities in order to determine β and γ,

γ − 1 = γ(n− 1) − 2β and γ(n− 1) − 2β = nγ − β.

Thus

γ = −β = − 1

n
. (5.14)

Note that γ + β = 0, which is consistent with the total mass being scale invariant.

From (5.14), the scale invariant transformation (5.8) becomes

t = λt̂, x = λ
1

n x̂, u = λ−
1

n û. (5.15)

To summarise, the variables u, x and t can be rescaled as in (5.15) whilst still satisfying

the PDE (5.3).

82

Richards’ equation 5.4. A self-similar solution

We now define scale-invariant similarity variables. From (5.8) we have

λ =
t

t̂
=
x

1

β

x̂
1

β

=
u

1

γ

û
1

γ

.

Bearing this scaling in mind, we introduce the two new variables with β and γ as in (5.14)

ζ =
u

tγ
=

û

t̂γ
, (5.16)

ξ =
x

tβ
=

x̂

t̂β
, (5.17)

which are independent of λ and hence scale invariant under the transformation (5.8). We

use (5.16) and (5.17) to find a self-similar solution for Richards’ equation (5.3) in the next

section.

5.4.2 Self-similarity

We obtain a self-similar solution of Richards’ equation in the same manner as for the

PME in §4.4.2, by assuming that there is a functional relationship ζ = ζ(ξ) between the

similarity variables (5.16) and (5.17), based on our rescaling (5.8). The self-similar solution

is dependent only on the solution to an ODE that is obtained by transforming Richards’

equation (5.3) into the variables ζ and ξ.

The transformed left-hand side of Richards’ equation (5.3) is given by (4.19)

∂u

∂t
= −βtγ−1ξ

dζ

dξ
+ ζ(ξ)γtγ−1. (5.18)

We transform the right-hand side of Richards’ equation in the same way that (4.19) was

derived, so we first substitute in (5.16),

∂

∂x

(

u(x, t)n−2∂u

∂x

)

+
∂

∂x
u(x, t)n =

∂ξ

∂x

d

dξ

(

ζ(ξ)n−2tγ(n−2) ∂ξ

∂x

d

dξ
(ζ(ξ)tγ)

)

+
∂ξ

∂x

d

dξ
(ζ(ξ)ntnγ).

Substituting (5.17) into the above equation gives

∂

∂x

(

u(x, t)n−2∂u

∂x

)

+
∂

∂x
u(x, t)n = t−β d

dξ

(

ζ(ξ)n−2tγ(n−2)tγ−β dζ

dξ

)

+ t−β d

dξ
(ζ(ξ)ntnγ) ,

= tγ(n−1)−2β d

dξ

(

ζ(ξ)n−2 dζ

dξ

)

+ tnγ−β d

dξ
(ζ(ξ)n). (5.19)

83

Richards’ equation 5.4. A self-similar solution

Putting together (5.18) and (5.19) gives an equation for ζ in terms of ξ,

−βtγ−1ξ
dζ

dξ
+ ζ(ξ)γtγ−1 = t(n−1)γ−2β d

dξ

(

ζ(ξ)n−2 dζ

dξ

)

+ tnγ−β d

dξ
(ζ(ξ)n).

Note that t disappears from this equation since 2γ(n − 1) − 3β + 1 = 0 from (5.13).

Substituting for γ and β from (5.14), gives the ODE

− 1

n

(

ζ(ξ) + ξ
dζ

dξ

)

=
d

dξ

(

ζ(ξ)n−2 dζ

dξ
+ ζ(ξ)n

)

. (5.20)

By moving all the terms to one side we have

d

dξ

(

ζ(ξ)n−2 dζ

dξ
+ ζ(ξ)n

)

+
1

n

d

dξ
(ξζ(ξ)) = 0.

Integrating with respect to ξ gives

ζ(ξ)n−2 dζ

dξ
+
ξ

n
ζ(ξ) + ζ(ξ)n = 0. (5.21)

where we have set the integration constant to zero since Richards’ equation has zero bound-

ary conditions, indicating that the transformed equation (5.20) has zero boundary condi-

tions.

For the specific cases n = 2, 3 the ODE (5.21) is a Ricatti equation [50]. We now

present a solution to the Ricatti equation for n = 3.

The specific case n = 3

For n = 3, equation (5.21) gives the Ricatti equation [50],

0 = ζ(ξ)
dζ

dξ
+
ξ

3
ζ(ξ) + ζ(ξ)3.

To solve this equation we consider the transformation

ζ(ξ) ≡ wξ

w
, (5.22)

which leads to the second order linear homogeneous equation

0 =
∂2w

∂ξ2
+

1

3
ξw.

84

Richards’ equation 5.5. Moving meshes

Solutions to equations of this form are known to contain Bessel functions. The specific

solution for positive ξ is

w(ξ) =
1

3

√

ξ

[

AJ− 1

3

(

2

3
√

3
ξ

3

2

)

+BJ 1

3

(

2

3
√

3
ξ

3

2

)]

, (5.23)

where J(·) denotes a Bessel function of the first kind. We write (5.22) as

ζ(ξ) =
d

dξ
(lnw),

and substitute in (5.23) to give the solution ζ as

ζ =
d

dξ
ln

{

1

3

√

ξ

[

AJ− 1

3

(

2

3
√

3
ξ

3

2

)

+BJ 1

3

(

2

3
√

3
ξ

3

2

)]}

. (5.24)

The final stage to find the self-similar solution for Richards’ equation with n = 3 is to

transform (5.24) using the results (5.16), (5.17), giving

u(x, t) =
d

dx
ln

{

1

3
x

1

2 t−
1

6

[

AJ− 1

3

(

2

3
√

3
x

3

2 t−
1

2

)

+BJ 1

3

(

2

3
√

3
x

3

2 t−
1

2

)]}

(5.25)

for positive x. Evaluating the differential and substituting t = 1 gives

u(x, 1) =

√
3
[

AJ− 1

3

(µ) +BJ 1

3

(µ)
]

+ 2x
3

2

{

A
[

−J 2

3

(µ) −
√

3

2x
3
2

J− 1

3

(µ)
]

+B
[

−J 4

3

(µ) +
√

3

2x
3
2

J 1

3

(µ)
]}

2
√

3x
[

AJ− 1

3

(µ) +BJ 1

3

(µ)
]

(5.26)

where µ =
(

2
3
√

3
x

3

2

)

for convenience, and x > 0. A plot of (5.26) is given in Figure 5.1

for A = 1 and B = 0.3621. It is unclear that we are able to satisfy the zero boundary

conditions at a(t) = b(t) = 0, so we do not pursue the self-similar solution any further.

Therefore we compare our numerical results instead with those from a fixed mesh finite

difference scheme on a very fine mesh.

In the next section we apply our moving mesh method to Richards’ equation.

5.5 Moving meshes

Since mass is conserved in time we can use the moving mesh method described in §3.1, with

the same notation, i.e. x̃j(t
m) ≈ xm

j denotes the jth node of the mesh with N +1 nodes, at

time m∆t, m = 0, 1 . . ., and um
j ≈ ũj(t

m) and vm
j ≈ ṽj(t

m) denote the solution and mesh

85

Richards’ equation 5.5. Moving meshes

Fig. 5.1: A self-similar solution for Richards’ equation.

velocity at these nodes.

We model the PDE (3.1) with

Lu ≡ ∂

∂x

(

u(x, t)n−2∂u

∂x

)

+
∂

∂x
u(x, t)n, (5.27)

imposing zero Dirichlet boundary conditions over the region x(t) ∈ [a(t), b(t)].

We show that, given a mesh x̃j(t
m), with corresponding solution ũj(t

m), we may

calculate the updated mesh x̃j(t
m+1) and solution ũj(t

m+1) by computing a mesh velocity

ṽj(t
m).

5.5.1 Determining the mesh velocity

The mesh velocity is given by substituting (5.27) into (3.8),

ṽj(t) = − 1

ũj(t)

∫ x̃(t)

a(t)

{

∂

∂x

(

u(x, t)n−2∂u

∂x

)

+
∂

∂x
u(x, t)n

}

dx.

Hence, recalling the boundary condition u(a, t) = 0, the points move in time such that

ṽj(t) = −ũj(t)
n−3∂u

∂x

∣

∣

∣

∣

x̃j(t)

− ũj(t)
n−1,

where j = 1, 2, . . . , N − 1. This can also be written as

ṽj(t) = − 1

n− 2

∂(un−2)

∂x

∣

∣

∣

∣

x̃j(t)

− ũj(t)
n−1. (5.28)

86

Richards’ equation 5.5. Moving meshes

When discretising (5.28) we consider two ways to approximate the derivative. The first

gives

vm
j = − 1

n− 2

(

(un−2)m
j+1 − (un−2)m

j−1

xm
j+1 − xm

j−1

)

− (un−1)m
j , j = 1, 2, ..., N − 1, (5.29)

which is a second order discretisation on a uniform mesh, but only a first order discretisation

of (5.28) on an irregular mesh. The second approximation uses (4.37) to give a second order

discretisation, such that

vm
j = − 1

n− 2









1
∆xm

j+

(

∆(un−2)m
j+

∆xm
j+

)

+ 1
∆xm

j−

(

∆(un−2)m
j−

∆xm
j−

)

1
∆xm

j+

+ 1
∆xm

j−









− (un−1)m
j , (5.30)

for j = 1, . . . , N − 1, where ∆(·)j+ = (·)m
j+1 − (·)m

j and ∆(·)j− = (·)m
j − (·)m

j−1. The

outer boundary velocities vm
0 , v

m
N are extrapolated by a polynomial approximation us-

ing (vm
1 , v

m
2 , v

m
3) and (vm

N−3, v
m
N−2, v

m
N−1), or given by one-sided approximations of (5.29)

or (5.30).

The new mesh xm+1
j is obtained from vm

j by a time-stepping scheme.

5.5.2 Recovering the solution

Once the updated mesh xm+1
j has been determined, the updated solution um+1

j , j =

1, . . . , N − 1, is given by either (3.10) or (3.16), the latter being more accurate for a non-

uniform mesh. At the boundaries um+1
0 = um+1

N+1 = 0 from (5.4).

5.5.3 The full algorithm

Given a mesh xm
j , solution um

j , j = 0, . . . , N , at t = tm, m ≥ 0:

• Compute the mesh velocity vm
j from (5.29) or (5.30);

• Compute the updated mesh xm+1
j by a time-stepping scheme;

• Compute the updated solution um+1
j from (3.10) or (3.16).

87

Richards’ equation 5.5. Moving meshes

5.5.4 Time-stepping schemes

Explicit schemes

The simplest method to time-step the mesh is the first order explicit Euler time-stepping

scheme,

xm+1
j − xm

j

∆t
= vm

j .

We substitute for vm
j from (5.29) or (5.30). The explicit Euler time-stepping scheme requires

small ∆t so that the xm
j remain stable, and to avoid mesh tangling. We also implemented

the adaptive predictor-correcter Runge-Kutta methods in Matlab, and again found that

the method does not lead to a stiff system.

A semi-implicit scheme

To determine a semi-implicit time-stepping scheme for solving Richards’ equation we first

consider the explicit time-stepping scheme using vm
j from (5.29) with the spatial discreti-

sation halved,

xm+1
j − xm

j

∆t
= − 1

n− 2

(un−2)m
j+ 1

2

− (un−2)m
j− 1

2

xm
j+ 1

2

− xm
j− 1

2

− (un−1)m
j ,

for j = 1, 2, ..., N − 1. Assuming that the mesh x̃j(t) changes smoothly in time, we alter

the Euler scheme to be semi-implicit in the manner

xm+1
j − xm

j

∆t
= − 1

(n− 2)∆xm
j

(

(un−2)m
j+ 1

2

∆xm+1
j−

∆xm
j−

− (un−2)m
j− 1

2

∆xm+1
j+

∆xm
j+

)

− (un−1)m
j , (5.31)

where ∆xm
j = (xm

j+ 1

2

− xm
j− 1

2

), ∆xm
j−

= (xm
j − xm

j−1) and ∆xm
j+

= (xm
j+1 − xm

j). This semi-

implicit scheme (5.31) is first order in time. Before calculating the internal nodes semi-

implicitly by (5.31), the boundary nodes xm+1
0 , xm+1

N are calculated by an explicit scheme

enabling ∆xm+1
1−

= (xm+1
1 − xm+1

0) and ∆xm+1
N−1+

= (xm+1
N − xm+1

N−1) to be determined.

Rearranging (5.31), and expanding the ∆xm+1
j±

terms gives

xm+1
j − xm

j

∆t
= − 1

(n− 2)∆xm
j ∆xm

j+
∆xm

j−

[

(un−2)m
j+ 1

2

∆xm
j+(xm+1

j − xm+1
j−1)

− (un−2)m
j− 1

2

∆xm
j−(xm+1

j+1 − xm+1
j)

]

− (un−1)m
j . (5.32)

88

Richards’ equation 5.5. Moving meshes

Our moving mesh method moves the nodes such that partial masses of the solution are

conserved, see equation (3.6) in §3.1. Bearing this in mind we define initial masses, which

remain unchanged in time, as

Dj+ = (un−2)0
j+ 1

2

∆x0
j+ = (un−2)m

j+ 1

2

∆xm
j+ , (5.33)

Dj− = (un−2)0
j− 1

2

∆x0
j− = (un−2)m

j− 1

2

∆xm
j− , (5.34)

thus simplifying equation (5.32) to

xm+1
j − xm

j

∆t
= −

Dj+(xm+1
j − xm+1

j−1) −Dj−(xm+1
j+1 − xm+1

j)

(n− 2)∆xm
j ∆xm

j+
∆xm

j−

− (un−1)m
j .

To determine the new mesh by the semi-implicit scheme we solve

Axm+1 = bm,

where

xm+1 =
[

xm+1
1 , · · · , xm+1

N−1

]T
,

bm =
[

xm
1 , · · · , xm

N−1

]T − ∆t
[

(un−1)m
1 , · · · , (un−1)m

N−1

]T
,

and A is a tridiagonal matrix with lower, main and upper diagonals Alj , Adj and Auj ,

Alj = − cj+∆t

(n− 2)∆xm
j ∆xm

j+
∆xm

j−

, (5.35)

Auj = − cj−∆t

(n− 2)∆xm
j ∆xm

j+
∆xm

j−

, (5.36)

Adj = 1 −Alj −Auj . (5.37)

The right-hand side of the semi-implicit scheme (5.31) has the additional term (un−1)m
j ,

so it is not in the form (3.39). Thus Theorem 3.4.1 does not hold, and therefore we have

not ensured that mesh tangling will not occur. Hence, we consider an alternative moving

mesh method such that the semi-implicit scheme is of the form (3.39), thus Theorem 3.4.1

will hold. We consider this alternative approach in the next section.

89

Richards’ equation 5.6. An alternative moving mesh method

5.6 An alternative moving mesh method

The moving mesh method described in §3.1 utilises

d

dt

∫ x̃j(t)

a(t)
u(x, t) dx = 0,

a relation arising from the conservation of mass property. When applied to Richards’

equation, this gives a mesh velocity (5.28). An alternative approach is to balance the rate

of increase of mass in a subregion by the flux term. This is equivalent to balancing the

right-hand side of (3.7) with the flux term, giving

d

dt

∫ x̃j(t)

a(t)
u(x, t) dx =

∫ x̃j(t)

a(t)

∂

∂x
u(x, t)n dx = ũj(t)

n, (5.38)

since u = 0 at a(t). To determine a mesh velocity from (5.38) we define the partial masses

at time t and interval points j. This is a similar approach to that in §3.3 where the rate of

increase of mass is balanced by the source term. Subsequently, the procedure is similar so

we first define the partial masses to be

Θj(t) =

∫ x̃j(t)

a(t)
u(x, t) dx, j = 0, . . . , N. (5.39)

Given a mesh x̃j(t) and solution ũj(t), we can evaluate the partial masses Θj(t) directly

from (5.39). To evaluate updated values of the partial mass (which are required for deter-

mining the updated solution) we compute Θ̇j(t), and then approximate the updated total

mass using a semi-implicit time-stepping scheme. Simultaneously, the mesh velocity ṽj(t)

is computed, such that the mesh and partial masses are updated together. This ultimately

enables us to recover the updated solution on the new mesh. Details are given in the

following subsections.

5.6.1 Determining the rate of change partial masses

To evaluate the updated partial masses (which are required for determining the updated

solution) we compute Θ̇j(t) from (5.38) as

Θ̇j(t) = ũj(t)
n. (5.40)

The discrete form of (5.40) is simply

Θ̇m
j = (un)m

j . (5.41)

90

Richards’ equation 5.6. An alternative moving mesh method

From (5.41) we can determine Θj(t
m+1) by, say, the explicit Euler scheme

Θm+1
j = Θm

j + ∆tΘ̇m
j .

Note that Θ0
N = Θm

N is known for all m = 0, 1, 2, . . . because the total mass remains

constant.

5.6.2 Determining the mesh velocity

We now calculate the new mesh velocity ṽj(t) by differentiating (5.39) with respect to time

using the Leibnitz integral rule to give

Θ̇j(t) =
d

dt

∫ x̃j(t)

a(t)
u(x, t) dx =

∫ x̃j(t)

a(t)

∂u

∂t
dx+ ũj(t)ṽj(t) − u(a, t)v(a, t).

Substituting ∂u
∂t from (5.3), evaluating the integral, and using the boundary condition

u(a, t) = 0 from (5.4),

Θ̇j(t) = ũj(t)
n−2∂u

∂x

∣

∣

∣

∣

x̃j(t)

+ ũj(t)
n + ũj(t)ṽj(t). (5.42)

Substituting (5.42) for the left-hand side of (5.40) (which is from the relation (5.38)),

ũj(t)
n−2∂u

∂x

∣

∣

∣

∣

x̃j(t)

+ ũj(t)
n + ũj(t)ṽj(t) = ũj(t)

n.

Thus, an alternative mesh velocity for Richards’ equation is

ṽj(t) = −ũj(t)
n−3∂u

∂x

∣

∣

∣

∣

∣

x̃j(t)

,

= − 1

n− 2

∂(un−2)

∂x

∣

∣

∣

∣

∣

x̃j(t)

, (5.43)

which is the mesh velocity equation (5.28) without the last term. To approximate (5.43)

we could use a central difference approximation

vm
j = − 1

n− 2

(

(un−2)m
j+1 − (un−2)m

j−1

xm
j+1 − xm

j−1

)

, (5.44)

which is a second order discretisation on a uniform mesh, but only a first order discretisation

of (5.43) on an irregular mesh. An alternative approximation uses (4.37) to give a second

91

Richards’ equation 5.6. An alternative moving mesh method

order discretisation, such that

vm
j = − 1

n− 2









1
∆xm

j+

(

∆(un−2)m
j+

∆xm
j+

)

+ 1
∆xm

j−

(

∆(un−2)m
j−

∆xm
j−

)

1
∆xm

j+

+ 1
∆xm

j−









, (5.45)

for j = 1, . . . , N − 1, where ∆(·)j+ = (·)m
j+1 − (·)m

j and ∆(·)j− = (·)m
j − (·)m

j−1. The

outer boundary velocities vm
0 , v

m
N are extrapolated by a polynomial approximation us-

ing (vm
1 , v

m
2 , v

m
3) and (vm

N−3, v
m
N−2, v

m
N−1), or given by one-sided approximations of (5.29)

or (5.30).

The new mesh xm+1
j is obtained from vm

j by a time-stepping scheme.

5.6.3 Recovering the solution

The approximations to the partial masses Θm+1
j and the mesh xm+1

j are updated from Θ̇m
j

and vm
j , respectively, using a semi-implicit time-stepping scheme. Then the solution is

updated using the approach of §3.3, namely, by either (3.34) or (3.35), the latter being

more accurate for a non-uniform mesh. At the outer boundary, um+1
N+1 = 0 from (4.31).

5.6.4 The full algorithm

Given a mesh xm
j , solution um

j , j = 0, . . . , N , at t = tm, m ≥ 0:

• Compute the mesh velocity vm
j from (5.44) or (5.45);

• Compute the updated mesh xm+1
j by a semi-implicit time-stepping scheme;

• Compute the updated solution um+1
j from (3.34) or (3.35).

5.6.5 A semi-implicit time-stepping scheme

A semi-implicit approach to update the mesh velocity for the alternative approach, assuming

that the mesh moves smoothly with time, is

vm
j = − 1

(n− 2)∆xm
j

(

(un−2)m
j+ 1

2

∆xm+1
j−

∆xm
j−

− (un−2)m
j− 1

2

∆xm+1
j+

∆xm
j+

)

, (5.46)

where ∆xm
j = (xm

j+ 1

2

− xm
j− 1

2

), ∆xm
j−

= (xm
j − xm

j−1) and ∆xm
j+

= (xm
j+1 − xm

j) as before.

This semi-implicit scheme (5.46) is first order in time. Before calculating the internal nodes

semi-implicitly by (5.46), the boundary nodes xm+1
0 , xm+1

N are calculated by an explicit

92

Richards’ equation 5.6. An alternative moving mesh method

scheme enabling ∆xm+1
1−

= xm+1
1 − xm+1

0 and ∆xm+1
N−1+

= xm+1
N − xm+1

N−1 to be determined.

Rearranging (5.46), and expanding the ∆xm+1
j±

terms gives

xm+1
j − xm

j

∆t
= − 1

(n− 2)(∆x)m
j ∆xm

j+
∆xm

j−

(

(un−2)m
j+ 1

2

∆xm
j+(xm+1

j − xm+1
j−1)

− (un−2)m
j− 1

2

∆xm
j−(xm+1

j+1 − xm+1
j)

)

. (5.47)

Equation (5.47) is nearly identical to our earlier semi-implicit scheme for Richards’ equa-

tion (5.32), the difference being that (5.47) does not have the last term present in (5.32).

Subsequently, the updated mesh xm+1
j is derived by solving the matrix system

Axm+1 = xm,

where xm+1 = (xm+1
1 , · · ·xm+1

N−1)
T , xm = (xm

1 , · · ·xm
N−1)

T , and A is a tridiagonal matrix

defined as before (with diagonals given by (5.35)–(5.37)).

Remark 5.6.1 As in Remark 4.5.2, the implicitness of the semi-implicit approach, together

with the explicit end point calculation, can be improved by using it in a predictor-corrector

mode: solving the matrix system repeatedly within one time-level, whilst updating the explicit

end point value xm+1
N . The iterations affect the entries in the matrix A and vector xm+1,

but the vector xm remain unchanged at each time-level. We use the notation (·)p to denote

the iterations at each time-level. After one iteration (p = 1) the entries of A are at the

new time-level (m + 1), giving (xm+1
j)1 terms, and the entries of xm+1 are (xm+1

j)2. This

iteration process at each time-level modifies (5.47) to become

(xm+1
j)p+1 − xm

j

∆t
= −

Dj+(xm+1
j − xm+1

j−1)p+1 −Dj−(xm+1
j+1 − xm+1

j)p+1

(n− 2)(∆xm+1
j)p(∆xm+1

j+
)p(∆xm+1

j−
)p

, (5.48)

where p = 0, 1, 2, . . . and Dj± are given by (5.33) and (5.34). If (5.48) is convergent it leads

to the fully implicit scheme

xm+1
j − xm

j

∆t
= − 1

(n− 2)∆xm+1
j

(

Dj+

∆xm+1
j+

− Dj−

∆xm+1
j−

)

.

The semi-implicit scheme is now of the form described in §3.4.2 (but unlike the semi-implicit

scheme (5.32)), we can show that the mesh does not tangle when using (5.47) by proving a

maximum principle.

Ensuring monotonicity The maximum principle states that the maximum of x occurs

at the boundary. To prove that this is the case for the semi-implicit scheme (5.46), we use

93

Richards’ equation 5.7. Numerical results

exactly the same approach used in §3.4.2, with the same outcome: for each j = 1, 2, ..., N−1,

xm
j is bounded by its neighbours. Hence, the mesh is monotonic in space and is bounded

by its endpoint values, so that overlapping cannot occur.

In the last two sections we have given the details for applying the moving mesh

method to Richards’ equation. In the next section we present the numerical results.

5.7 Numerical results

In this section we present results from applying the moving mesh method of §3.1 to Richards’

equation as described in §5.5, and the alternative method described in §5.6. To test that

the numerical solution from the moving mesh method converges (with the explicit Euler

and semi-implicit time-stepping schemes), we compare the solution with that from a very

fine fixed mesh. We also show convergence of the method in §5.6 using the semi-implicit

time-stepping scheme.

All numerical results presented here take n = 3 and start with a equispaced mesh

and use a second order approximation (equation (5.30) for the method in §5.5 and equa-

tion (5.45) for the method in §5.6) to calculate the mesh velocity vm
j since they use more

information to obtain the derivative at a node. However, for the method in §5.5 we also ex-

amined the numerical solution using (5.29) and it was noted that in the tests they gave the

same results to at least O(10−3) compared with using (5.30). Similarly, we used (3.16) to

recover the solution for the method in §5.5, since it is more accurate for a non-uniform mesh.

All the same, we examined the numerical solution using the first order approximation (3.10)

and found that in the tests, the numerical solutions were the same to at least O(10−2). The

relatively small differences in the numerical solutions from using these different approaches

suggests that the mesh remains fairly uniform when used to numerically solve Richards’

equation. However, the same comparisons from the PME results gave much smaller differ-

ences, O(10−11) and O(10−12). Hence, we conclude that the mesh for the PME is more

uniformly spread than for Richards’ equation. This is probably since the PME has a sym-

metrical solution, whilst Richards’ equation has a non-symmetrical solution. Physically, the

skewness which is apparent in the solution to Richards’ equation relates to the gravitational

pull on the liquid in the downward direction (which is shown here as being along the x axis).

We look at the convergence of:

• the moving mesh method given in §5.5 with explicit Euler time-stepping;

• the moving mesh method given in §5.5 with semi-implicit time-stepping;

94

Richards’ equation 5.7. Numerical results

• the moving mesh method given in §5.6 with semi-implicit time-stepping;

as the number of nodes N increases and ∆t decreases. We solve for t ∈ [0, 0.5] and compute

results for N = 10 × 2N̂−1, N̂ = 1, . . . , 5. We use the same notation given in §4.7 for the

PME to compute both x
2N̂−1i,N̂

and u
2N̂−1i,N̂

≈ u(x
2N̂−1i,N̂

, 0.5) for each i = 0, . . . , 10 as

N̂ increases. We compare these numerical solutions with the numerical solution calculated

by solving Richards’ equation on the fixed mesh x̄j̄ ∈ [−4, 4], j̄ = 0, 1, . . . , 10000, which is

given by

ūm+1
j̄+ 1

2

− ūm
j̄+ 1

2

∆t
= (ūn−2)m

j̄+ 1

2

ūm
j̄+1

− ūm
j

h
+ (ūn)m

j̄+ 1

2

− (ūn−2)m
j̄− 1

2

ūm
j̄
− ūm

j̄−1

h
− (ūn)m

j̄− 1

2

,

where h = 8×10−4 is the uniform spacing between two mesh points, (ūn)m
j̄+ 1

2

≈ 1
2

(

(ūn)m
j̄+1

+

(ūn)m
j̄

)

and (ūn)m
j̄− 1

2

≈ 1
2

(

(ūn)m
j̄

+ (ūn)m
j̄−1

)

. We consider the n = 3 case and use the initial

conditions

u(x, 0) = 1 − x2, x ∈ [−1, 1],

with zero boundary conditions (5.3). To balance the spatial and temporal errors, we use

∆t = O(1
N2), precisely ∆t = 2

5(4N̂)
(as with the PME). We use x

2N̂−1i,N̂
and find the closest

match along the fixed mesh x̄j̄ (where the fixed mesh points are different to 4 decimal

places), then the corresponding solution on the fixed mesh ūm
j̄

is compared to u
2N̂−1i,N̂

.

As a measure of the errors, we calculate

EN (u) =

√

√

√

√

∑10
i=0(ūj̄ − u

2N̂−1i,N̂
)2

∑10
i=0(ūj̄)

,

for N̂ = 1, . . . , 5 (i.e. N = 10, 20, 40, 80, 160). We investigate the same hypothesis from our

work on the numerical solution of the PME: that

EN (u) ∼ 1

Np
, (5.49)

holds for large N , where p is the estimated order of convergence. If (5.49) holds then we

would expect that p2N defined by

p2N = − log2

(

E2N (u)

EN (u)

)

,

would approach the constant values p as N → ∞. Since each step of our scheme is second

order in space and first order in time, and recalling that ∆t = O
(

1
N2

)

, we might expect to

see p ≈ 2.

95

Richards’ equation 5.7. Numerical results

§5.5, explicit §5.5, semi-implicit §5.6, semi-implicit

N EN (u) pN EN (u) pN EN (u) pN

10 4.47 × 10−2 - 9.78 × 10−2 - 8.70 × 10−2 -
20 7.97 × 10−3 2.5 1.54 × 10−2 2.7 4.33 × 10−2 1.0
40 1.90 × 10−3 2.1 3.69 × 10−3 2.1 2.21 × 10−2 1.0
80 4.75 × 10−4 2.0 9.25 × 10−4 2.0 1.14 × 10−2 1.0
160 3.45 × 10−4 0.5 3.63 × 10−4 1.4 5.60 × 10−2 1.0

Table 5.1: Relative errors for u with rates of convergence.

Convergence results are shown in Table 5.1. We discovered that the moving mesh

value x
2N̂−1i,N̂

rarely corresponded to the closest fixed mesh value x̄j̄ by more than 3 dec-

imal places. As a result, investigating larger N caused difficulty since x23i,4 and x24i,5 are

frequently the same to 3 decimal places. This problem may account for the anomalies for

p160. All the same, we see that generally EN (u) decreases as N increases for each of the

moving mesh methods. This strongly suggests that as the number of nodes increases, the

solution ũj(t) is converging in all three cases. The p-values presented imply second-order

convergence of the solution ũj(t) for the method in §5.5 and first-order convergence for the

alternative method in §5.6.

Having established convergence of our moving mesh schemes we examine the nu-

merical results. We observe from Figure 5.2 that the moving mesh method, used with an

explicit Euler time-stepping scheme, successfully solves Richards’ equation numerically. We

also note from Figure 5.2(b) that the mesh moves smoothly and does not tangle.

Using a semi-implicit time-stepping scheme gives very similar results when compared

to the results obtained when using the explicit Euler time-stepping scheme. However, we

can take larger time-steps when using the semi-implicit scheme. Figure 5.3(a) shows that

the nodes move in a very similar manner for the explicit Euler time-stepping scheme, with

∆t = 0.01, and the semi-implicit time-stepping scheme, with ∆t = 0.02. However, from

Figure 5.3(b) we observe that the difference between the two approaches increases when the

semi-implicit scheme takes a larger time-step of ∆t = 0.1, which has resulted in a greater

discrepancy of the boundary position. This indicates that although we can take larger

time-steps with the semi-implicit scheme and it appears that the mesh does not tangle,

we must still take modest time-steps to ensure accuracy. This is demonstrated further in

Figure 5.4 which shows the solution from taking two very large time-steps of ∆t = 1. We

notice that the mesh does not tangle, but the solution at t = 2 is not very similar to the

solution at t = 2 in Figure 5.2(a).

The semi-implicit time-stepping approach (4.45) is not in the form of (3.39), so The-

orem 3.4.1 does not hold, as mentioned at the end of §5.5. Nonetheless, we observe from

96

Richards’ equation 5.8. Using finite elements

Figures 5.3(a) and 5.3(b) that the mesh does not tangle for large time-steps. Using the

alternative moving mesh method in §5.6 we ensured monotocity with a semi-implicit time-

stepping scheme. We observe that this method also successfully solves Richards’ equation

numerically, see Figure 5.5(a). However, we notice from Figure 5.5(b) that the left bound-

ary moves out more slowly, suggesting that the solution from the mass conserving method

and the alternative method differ slightly. Since we have established a reasonable level of

accuracy using the mass conserving method (see Table 5.1), we conclude that the difference

between the two methods implies that the alternative method is less accurate. Inaccuracies

may have occurred since the partial masses Θj(t) and mesh x̃j(t) are not updated simultane-

ously; the partial masses are updated explicitly, whilst the mesh is updated semi-implicitly.

We also note from Figure 5.5(b) that the nodes seem drawn to the right, which is different

from the use of the moving mesh scheme in §5.5, where the nodes are fairly evenly spread.

The comparison is clearer in Figure 5.5(c), where we observe that the nodes are not spread

as uniformly compared with the alternative method.

We have completed our application of our finite difference moving mesh method

applied to Richards’ equation. In the next section we apply the finite element moving mesh

method of Baines, Hubbard and Jimack [5] to Richards’ equation.

5.8 Using finite elements

We use the finite element moving mesh method in §2.3 to solve Richards’ equation (5.3)

with zero Dirichlet boundary conditions (5.4). Since Baines, Hubbard and Jimack [5] do

not numerically solve Richards’ equation, we provide details about the application of the

finite element approach.

Referring to the algorithm given in §2.3.3 we note that we need an expression for the

mesh velocity v(x, t) and the solution u(x, t). We do not require an expression for the rate

of change of total mass since the mass remains constant (as with the PME). To determine

the mesh velocity, we first determine an expression for the velocity potential of the mesh

ψ. The velocity potential ψ is given by substituting (5.27) into the one-dimensional form

of (2.19),

−
[

wiu
∂ψ

∂x

]b(t)

a(t)

+

∫ b(t)

a(t)
u
∂ψ

∂x

∂wi

∂x
dx =

∫ b(t)

a(t)
wi

[

∂

∂x

(

un−2∂u

∂x
+ un

)]

dx.

97

Richards’ equation 5.8. Using finite elements

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0
t = 0.2
t = 0.4
t = 0.6
t = 0.8
t = 1
t = 1.2
t = 1.4
t = 1.6
t = 1.8
t = 2

ũ
j
(t

)

x̃j(t)

(a) The approximate solution.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x̃j(t)

t

(b) The mesh trajectory.

Fig. 5.2: Richards’ equation with n = 3, N = 40, ∆t = 0.01 and explicit

time-stepping.

98

Richards’ equation 5.8. Using finite elements

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

t

x̃j(t)

(a) Using ∆t = 0.02 for the semi-implicit case.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

x̃j(t)

t

(b) Using ∆t = 0.1 for the semi-implicit case.

Fig. 5.3: The mesh movement using the explicit Euler time-stepping scheme

with ∆t = 0.01 (dashed black) and the semi-implicit time-stepping with ∆t

specified for each plot (solid red), n = 3, N = 20.

99

Richards’ equation 5.8. Using finite elements

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0
t = 1
t = 2

ũ
j
(t

)

x̃j(t)

Fig. 5.4: Richards’ equation with n = 3, N = 20, ∆t = 1 and semi-implicit

time-stepping.

We apply integration by parts to the right-hand side, and eliminate the first term of the

left-hand side since we have zero boundary conditions, which gives

∫ b(t)

a(t)
u
∂ψ

∂x

∂wi

∂x
dx =

[

wi

(

un−2∂u

∂x
+ un

)]b(t)

a(t)

−
∫ b(t)

a(t)

∂wi

∂x

[

un−2∂u

∂x
+ un

]

dx.

The right-hand side simplifies, due to the zero boundary conditions, giving

∫ b(t)

a(t)
u
∂ψ

∂x

∂wi

∂x
dx = −

∫ b(t)

a(t)

∂wi

∂x

[

un−2∂u

∂x
+ un

]

dx, (5.50)

which, for known u, can be used to obtain the velocity potential ψ.

Next, the velocity v(x, t) is calculated from a one-dimensional form of (2.20),

∫ b(t)

a(t)
wiv dx = −

∫ b(t)

a(t)
wi
∂ψi

∂x
dx. (5.51)

The velocity is used with a time-stepping scheme to update the mesh x.

To find the solution u(x, t) we take the one-dimensional form of (2.21),

∫ b(0)

a(0)
wi(x, 0)u(x, 0) dx =

∫ b(t)

a(t)
wi(x, t)u(x, t) dx. (5.52)

100

Richards’ equation 5.8. Using finite elements

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 0
t = 0.2
t = 0.4
t = 0.6
t = 0.8
t = 1
t = 1.2
t = 1.4
t = 1.6
t = 1.8
t = 2

ũ
j
(t

)

x̃j(t)

(a) Using ∆t = 0.01.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

t

x̃j(t)

(b) The mesh movement (solid red) compared with mesh movement using the
method of §5.5 (dashed black) with ∆t = 0.01.

0 5 10 15 20 25
−3

−2

−1

0

1

2

3

Mass conserving method
Alternative method

j

x̃
j
(t

)

(c) The position of the nodes at t = 2.

Fig. 5.5: Richards’ equation using the alternative moving mesh method given

in §5.6, with ∆t = 0.02, n = 3, N = 20.

101

Richards’ equation 5.8. Using finite elements

5.8.1 Numerically solving Richards’ equation using finite elements

We solve the equations for the finite element velocity potential (5.50), the finite element

velocity (5.51), and the finite element solution (5.52) as systems of equations using piecewise

linear expansions, Ψ =
∑

Ψjφj , U =
∑

Ujφj , V =
∑

Vjφj , which we substitute into each

equation in turn, with wi = φi.

The equation for the finite element velocity potential (5.50) becomes

∫ b(t)

a(t)
U





N
∑

j=0

Ψj
∂φj

∂x





∂φi

∂x
dx = −

∫ b(t)

a(t)

∂φi

∂x



Un−2
N
∑

j=0

Uj
∂φj

∂x
+ Un



dx, (5.53)

where U , Ψ and φ are piecewise linear forms of u, ψ and w respectively. In (5.53) it is

convenient to substitute the summation for Ux, but not U . Interchanging the summation

and integral gives

N
∑

j=0

Ψj

[

∫ b(t)

a(t)

∂φj

∂x

∂φi

∂x
U dx

]

= −
N
∑

j=0

Uj

[

∫ b(t)

a(t)

∂φj

∂x

∂φi

∂x
Un−2 dx

]

−
∫ b(t)

a(t)

∂φi

∂x
Un dx, (5.54)

for i = 0, 1, . . . , N . In [5]

Kij(U) =

∫ b(t)

a(t)
U
∂φi

∂x

∂φj

∂x
dx, Si(U) =

∫ b(t)

a(t)

∂φi

∂x
Un dx,

are defined. Using these definitions (5.54) can be written

N
∑

j=0

Kij(U)Ψj = −
N
∑

j=0

Kij(U
n−2)Uj − Si(U). (5.55)

Hence, to determine the mesh velocity potential at time t = tm we solve the matrix system

K(U)Ψ = −K(Un−2)U − S(U), (5.56)

where K(Un) = K(Un)m is the stiffness matrix defined by (5.55), S(U) = S(U)m is the

vector of Si(U) values, Ψ = Ψm is the vector (Ψm
1 , . . . ,Ψ

m
N))T , and U = Um is the vector

(Um
1 , . . . , U

m
N))T . We solve (5.56) to find the velocity potential vector Ψ.

By the same process, and from the equation for the finite element velocity (5.51),

they determine that the mesh velocity at t = tm is given by

MV = −HΨ, (5.57)

102

Richards’ equation 5.8. Using finite elements

where M = Mm is the mass matrix defined by

Mij =

∫ b(t)

a(t)
φiφj dx, (5.58)

H = Hm is defined by

Hij =

∫ b(t)

a(t)
φi
∂φj

∂x
dx,

and V = Vm is the vector (V m
1 , . . . , V m

N))T . We solve (5.57) to find the velocity vector V.

The updated mesh xm+1
j is determined by using V m

j at t = tm with the explicit Euler

time-stepping scheme

xm+1
j = xm

j + ∆tV m
j , j = 1, . . . , N − 1. (5.59)

Similarly, by substituting the expansions into the equation for the solution (5.52) we

find the solution at t = tm+1 by solving

Mm+1Um+1 = g, (5.60)

where the vector

g = M0U0, (5.61)

is determined from initial conditions, and the updated mass matrix Mm+1 is calculated

from the new mesh. Note that the distributed integrals
∫

φiU dx are preserved in time.

In summary, the general algorithm for finite element moving mesh approach for

Richards’ equation is

Preliminary : Determine g from the initial conditions using (5.61).

Step 1 : Calculate the velocity potential Ψm by solving (5.56);

Step 2 : Calculate the mesh velocity Vm by solving (5.57);

Step 3 : Use an explicit time-stepping scheme, such as (5.59), to update the mesh;

Step 4 : Use the new mesh to calculate the new mass matrix Mm+1 from (5.58);

Step 5 : Find the updated solution by solving (5.60).

We now take a closer look at the implementation of this algorithm.

103

Richards’ equation 5.8. Using finite elements

5.8.2 Numerical details

We provide specifics to the general algorithm given in the the last section to solve Richards’

equation. We use nodes xm
j , j = 0, 1, . . . , N , and time-step ∆t.

Preliminaries

To begin we determine the constant vector g from (5.60) using the initial mesh and initial

conditions. Using an initial equispaced mesh we calculate the initial mass matrix M0 which

is a tridiagonal matrix with lower, main and upper diagonals, M lm, Mdm and Mum given

by

M lm =

[

· · · · · ·
{

1

6
∆xm

j−

}

· · · · · ·
{

1

6

(

xm
N − xm

N−1

)

}]

, (5.62)

Mdm =

[{

1

3
(xm

1 − xm
0)

}

· · ·
{

1

3
(∆xm

j− + ∆xm
j+)

}

· · ·
{

1

3
(xm

N − xm
N−1)

}]

, (5.63)

Mum =

[{

1

6
(xm

1 − xm
0)

}

· · · · · ·
{

1

6
∆xm

j+

}

· · · · · ·
]

, (5.64)

for m = 0, where j = 0, 1, . . . , N , ∆xm
j−

= (xm
j −xm

j−1) and ∆xm
j+

= (xm
j+1−xm

j). The initial

U0 is given by sampling the initial solution at the nodes. Once g is determined we begin

the time-stepping process.

Moving the mesh

To solve (5.56) for the velocity potential ψ at each time-level, we require the stiffness

matrices K(U)m and K(Un−2)m which are tridiagonal matrices with lower, main and upper

diagonals Klm, Kdm and Kum given by

Klm =

[

· · · · · ·
{

−
(un)m

j− 1

2

∆xm
j−

}

· · · · · ·
{

−
(un)m

N−1

xm
N − xm

N−1

}

]

,

Kdm =

[

{

(un)m
0

xm
1 − xm

0

}

· · ·
{

(un)m
j− 1

2

∆xm
j−

+
(un)m

j+ 1

2

∆xm
j+

}

· · ·
{

(un)m
N−1

xm
N − xm

N−1

}

]

,

Kum =

[

{

− (un)m
0

xm
1 − xm

0

}

· · · · · ·
{

−
(un)m

j+ 1

2

∆xm
j+

}

· · · · · ·
]

,

where j = 0, 1, . . . , N , ∆xm
j+

= (xm
j+1−xm

j) and ∆xm
j−

= (xm
j −xm

j−1). The stiffness matrices

K(U)m and K(Un−2)m are substituted into (5.56) to determine the velocity potential Ψ.

104

Richards’ equation 5.8. Using finite elements

The velocity potential Ψm is substituted into (5.57) to give the mesh velocity Vm

Vm = (Mm)−1HmΨm, (5.65)

where the vector HmΨm is evaluated as

Ψm =

(

1

2
(Ψm

1 − Ψm
0) , . . . ,

1

2

(

Ψm
j+1 − Ψm

j−1

)

, . . . ,
1

2

(

Ψm
N − Ψm

N−1

)

,

)T

.

where j = 0, 1, . . . , N . The mesh velocity Vm = (V m
0 , V m

1 , . . . , V m
N)T is used in the explicit

Euler time-stepping scheme to determine the new mesh points

xm+1
j = xm

j + ∆tV m
j .

Recovery of the solution

To recover the solution Um+1 we solve

Mm+1Um+1 = gΨm, (5.66)

from (5.60), where the tridiagonal matrix Mm+1 is defined by the vectors (5.62)–(5.64)

using the new mesh values xm+1
j .

A summary

A summary of the procedure to solve Richards’ equation is:

Preliminary : Determine the initial mass matrix M0 defined by the vectors (5.62)–(5.64). Using the

initial M0 and initial U0, calculate g from (5.61);

Step 1(a): Form the two N ×N stiffness matrices, K(Un)) and K(U);

Step 1(b): Calculate the velocity potential ψ from (5.55);

Step 2 : Calculate the mesh velocity V m = (V m
1 , V m

2 , . . . , V m
N)T from (5.65);

Step 3 : Find the updated mesh from (5.59);

Step 4 : Determine the new N ×N mass matrix, Mm+1 from (5.62)–(5.64);

Step 5 : Find the updated solution from (5.66).

Figure 5.6(a) shows that the finite element method and finite difference method produce

very similar results. Since the finite element approach and finite difference approach use

105

Richards’ equation 5.9. Summary for Richards’ equation

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ũ
j
(t

)

x̃j(t)

(a) The solution.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

t

x̃j(t)

(b) The movement of the nodes in time.

Fig. 5.6: Richards’ equation solved with finite elements (red) and finite differ-

ences (black), N = 20, ∆t = 0.01.

the same motivation to define the mesh velocity, it is expected that the mesh nodes move

similarly, see Figure 5.6(b).

In the next section we summarise our work on Richards’ equation.

5.9 Summary for Richards’ equation

In this chapter we solved Richards’ equation numerically. Richards’ equation is a fluid flow

problem, so as with the PME, using a velocity-based moving mesh method is an elegant

approach to model the solution since the nodes follow the flow itself (because the solution

106

Richards’ equation 5.9. Summary for Richards’ equation

conserves mass). Although, this is not the case when the mesh is moved by balancing the

partial masses with the flux term.

We showed that the mass of the solution remains constant, and that the centre of

mass moves in one direction. Knowing that the centre of mass moves in one direction allows

us to check that our numerical solution is exhibiting the expected behaviour.

We observed that deriving a self-similar solution for Richards’ equation which sat-

isfies the boundary conditions is not straightforward. This provides motivation for a nu-

merical approach. We used conservation of partial masses with explicit and semi-implicit

time-stepping. However, the semi-implicit scheme did not satisfy Theorem 3.4.1. As an al-

ternative we used a method that balanced the partial masses with the flux term, leading to

a semi-implicit time-stepping method such that Theorem 3.4.1 was satisfied. To investigate

the accuracy we compared our numerical results from both approaches with results from a

very fine, fixed mesh. We found that our conservation of mass approach was more accurate

than the alternative approach, with a higher rate of convergence.

We also used the Conservation Method of Baines, Hubbard and Jimack [5] to solve

Richards’ equation. Since [5] does not include numerically solving Richards’ equation, we

have provided details about the numerical procedure and calculations. We found our finite

difference approach where we conserve mass fractions, and the original finite element ap-

proach achieved very similar results.

Having considered two problems which conserve mass, we now consider a more general

problem, the Crank-Gupta problem which does not conserve mass.

107

6
The Crank-Gupta Problem

6.1 Introduction

In [38] Crank and Gupta introduced the so-called oxygen-consumption problem for the

evolution of oxygen concentration in a tissue, in which oxygen is absorbed at a prescribed

constant rate. Oxygen is allowed to diffuse into a medium, and some of the oxygen is

absorbed by the medium, thereby being removed from the diffusion process. The resulting

diffusion-with-absorption process is represented by the non-dimensionalised PDE

∂u

∂t
=
∂2u

∂x2
− 1, (6.1)

where u(x, t) denotes the concentration of the oxygen free to diffuse at a distance x from

the outer surface of the medium at time t [38]. By considering the steady state Crank and

Gupta [38] found that the outer boundary satisfies

u =
∂u

∂x
= 0 at x = b(t). (6.2)

108

The Crank-Gupta Problem 6.2. A self-similar solution

-

6

x

1
2

u(x, t)

0 b = 1

u
ux = 0
u = 0

u

�

ux = 0

t = 0

t > 0

Fig. 6.1: Diagrammatic representation of the Crank-Gupta solution.

Oxygen in the region 0 ≤ x ≤ b(t) is consumed, causing the boundary b(t) to recede toward

x = 0. Crank and Gupta [38] showed that this leads to the additional boundary condition

∂u

∂x
= 0 at x = 0. (6.3)

This model has a decreasing mass (due to the negative source term), as shown in Figure 6.1.

In this chapter we first seek a self-similar solution for the Crank-Gupta equation.

However, we find that our series solution does not satisfy the outer boundary condition so

we cannot compare our numerical solution to it: this nicely demonstrates the need for a

numerical method. We go on to apply our moving mesh method so as to conserve relative

mass fractions, as described in §3.2. We also apply the moving mesh method to a two-

dimensional radially symmetric version of the Crank-Gupta problem, in §6.4. We compare

our numerical results to results achieved using a Fourier Series approach [39] to give an

indication of the accuracy of our moving mesh method when applied to problems that do

not conserve mass. To allow a direct comparison to an exact solution we apply the moving

mesh method to the Crank-Gupta PDE with a different inner boundary condition, provided

by [5], which has an exact solution.

6.2 A self-similar solution

6.2.1 Scale Invariance

We consider the scaling transformation

t = λt̂, x = λβx̂, u = λγ û, (6.4)

109

The Crank-Gupta Problem 6.2. A self-similar solution

where λ is the scaling parameter and β and γ are constants.

Transforming the derivatives of (6.1) into the variables t̂ , x̂ and û gives

∂u

∂t
= λγ−1∂û

∂t̂
,

∂2u

∂x2
= λγ−2β ∂

2û

∂x̂2
.

Hence, our transformed PDE (6.1) is

λγ−1∂û

∂t̂
= λγ−2β ∂

2û

∂x̂2
− λ0.

Therefore, for equation (6.1) to be invariant under the transformation (6.4) we require

γ − 1 = γ − 2β = 0, hence

β =
1

2
and γ = 1, (6.5)

so the scale invariant transformation (6.4) becomes

t = λt̂, x = λ
1

2 x̂, u = λû. (6.6)

To summarise, the variables u, x and t can be rescaled as in (6.6) for any value of λ, whilst

still satisfying the Crank-Gupta problem (6.1).

We now define scale-invariant similarity variables. From (6.6) we have

λ =
t

t̂
=
x

1

β

x̂
1

β

=
u

1

γ

û
1

γ

.

Bearing this rescaling in mind, we introduce the two new variables

ζ =
u

tγ
=

û

t̂γ
, (6.7)

ξ =
x

tβ
=

x̂

t̂β
, (6.8)

which are independent of λ and are scale invariant under the transformation (6.4). We use

(6.7) and (6.8) to seek a self-similar solution for the Crank-Gupta problem (6.1) in the next

subsection.

6.2.2 Self-Similar Solutions

We derive a series self-similar solution for the Crank-Gupta PDE. We are not aware of any

literature which already presents this. Suppose that ζ is a function of ξ and transform the

110

The Crank-Gupta Problem 6.2. A self-similar solution

PDE (6.1) into the variables ζ and ξ to obtain an ODE. The left-hand side of (6.1) is the

same as the PME and Richards’ equation, thus the transformed left-hand side is (4.21)

(given in §4.4),

∂u

∂t
= −βtγ−1ξ

dζ

dξ
+ ζ(ξ)γtγ−1. (6.9)

Transforming the right-hand side of (6.1) in a similar manner gives

∂2u

∂x2
− 1 =

∂

∂x

(

∂u

∂x

)

− 1,

=
∂ξ

∂x

d

dξ

(

∂ξ

∂x

∂u

∂ζ

dζ

dξ

)

− 1.

Substituting ∂ξ
∂x = t−β and ∂u

∂ζ = tγ from (6.7)–(6.8), in the first term on the right-hand

side,

∂2u

∂x2
− 1 = t−β d

dξ

(

tγ−β dζ

dξ

)

− 1,

= tγ−2β d

dξ

(

dζ

dξ

)

− 1. (6.10)

Putting together (6.9) and (6.10) gives the Crank-Gupta PDE (6.1) in terms of ζ and ξ for

general β and γ,

−βtγ−1ξ
dζ

dξ
+ ζ(ξ)γtγ−1 = tγ−2β d

dξ

(

dζ

dξ

)

− 1.

Note that t disappears from the equation since γ−1 = γ−2β = 0 (from (6.5)). Substituting

β and γ from (6.5), gives the ODE

d2ζ

dξ2
+
ξ

2

dζ

dξ
− ζ(ξ) = 1. (6.11)

The solution of this ODE, along with the previous definitions u = ζtγ and x = ξtβ provides

the self-similar solution.

To solve (6.11) we make the substitution

ζ = s− 1, (6.12)

resulting in the homogeneous ODE

d2s

dξ2
+
ξ

2

ds

dξ
− s(ξ) = 0, (6.13)

111

The Crank-Gupta Problem 6.2. A self-similar solution

where ξ ∈ [0, 1].

To find a solution to (6.13) we consider a series solution of the form

s =
∞
∑

k=0

ckξ
k, (6.14)

where ck are constants to be determined. By substituting (6.14), and its derivatives,

into (6.13) we achieve the equation

2c2 − c0 +
∞
∑

k=1

[

(k + 2)(k + 1)ck+2 +
k

2
ck − ck

]

ξk = 0. (6.15)

For (6.15) to hold, each coefficient of ξk, k = 0, 1, . . . must be zero, hence

for k = 0, 2c2 − c0 = 0,

for k = 1, 2, 3 . . . , (k + 2)(k + 1)ck+2 + ck

(

k

2
− 1

)

= 0.

Thus,

c2 =
c0

2
, (6.16)

ck+2 =
ck
(

1 − k
2

)

(k + 2)(k + 1)
. (6.17)

Substituting k = 2 into (6.17) gives

c4 =
c2
(

1 − 2
2

)

3 · 4 = 0.

Thus, by induction, ck = 0 for even k ≥ 4. Substituting for odd values of k gives

k = 1 : c3 =
c1

2 · 2 · 3 =
c1

2 · 3!
,

k = 3 : c5 =
c3
(

1 − 3
2

)

4 · 5 = − c3

2 · 4 · 5 = − c1

22 · 5!
,

k = 5 : c7 =
c5
(

1 − 5
2

)

6 · 7 = − 3 · c5
2 · 6 · 7 =

3 · c1
23 · 7!

,

k = 7 : c9 =
c7
(

1 − 7
2

)

8 · 9 = − 5 · c7
2 · 8 · 9 = −3 · 5 · c1

24 · 9!
,

k = 9 : c11 =
c9
(

1 − 9
2

)

10 · 11
= − 7 · c9

2 · 10 · 11
=

3 · 5 · 7 · c1
25 · 11!

,

k = 11 : c13 =
c11
(

1 − 11
2

)

12 · 13
= − 9 · c11

2 · 10 · 11
= −3 · 5 · 7 · 9 · c1

26 · 13!
.

112

The Crank-Gupta Problem 6.2. A self-similar solution

Let k = 2m+ 1, m = 1, 2, 3, . . ., such that for m = 1, 3, 4, 5, 6 (k = 3, 5, 7, 9, 11) we observe

that

c2m+1 =
(−1)m+1

22m−1
· (2m− 2)!

(2m+ 1)!(m− 1)!
· c1, (6.18)

and we write (6.17) as

c2m+3 =
(1 − 2m)

2(2m+ 3)(2m+ 2)
c2m+1. (6.19)

To prove that (6.18) holds for general m we substitute it into (6.19),

c2m+3 =
(−1)m+1

22m−1
· (1 − 2m)

2(2m+ 3)(2m+ 2)
· (2m− 2)!

(2m+ 1)!(m− 1)!
· c1,

=
(−1)m+2(2m− 1)

22m(2m+ 3)(2m+ 2)
· 1

(2m+ 1)(2m)(2m− 1)(m− 1)!
· c1,

=
(−1)m+2

22m+1(2m+ 3)(2m+ 2)(2m+ 1)m!
· c1,

=
(−1)m+2(2m)!

22m+1(2m+ 3)!m!
· c1,

which corresponds to (6.18) for index (2m + 3), hence (6.18) holds for all m = 1, 2, 3, . . .,

by induction. Therefore, a solution to (6.13) is

s = c0 + c1ξ +
c0

2
ξ2 + c1

∞
∑

m=1

(−1)m+1

22m−1
· (2m− 2)!

(2m+ 1)!(m− 1)!
ξ2m+1. (6.20)

To ensure that (6.20) is a valid series solution to (6.13), we investigate whether the series

converges by using the alternating series test to determine whether

am = (−1)m+1 · (2m− 2)!

22m−1(2m+ 1)!(m− 1)!
=: (−1)m+1bm, m = 2, 3, 4 . . . ,

converges. Ergo, if both

(1) limm=∞ bm = 0;

(2) bm is a decreasing sequence;

113

The Crank-Gupta Problem 6.2. A self-similar solution

then am converges.

To prove (1) we take bm,

bm =
(2m− 2)!

22m−1(2m+ 1)!(m− 1)!
,

=
1

22m−1(2m+ 1)(2m)(2m− 1)(m− 1)!
.

We immediately observe that as m→ ∞, bm → 0.

To prove (2) we note that

bm+1

bm
=

22m−1(2m+ 1)!(2m)!(m− 1)!

22m+1(2m+ 3)!(2m− 2)!m!
=

2m(2m− 1)

4m(2m+ 3)(2m+ 2)
.

Since 4m(2m+ 3)(2m+ 2) > 2m(2m− 1),

bm+1

bm
< 1,

hence bm is a decreasing sequence.

We have confirmed that (6.20) is a converging series solution to (6.13), so we use the

definition (6.12) to give a series solution of the ODE (6.11)

ζ(ξ) = −1 + c0 + c1ξ +
c0

2
ξ2 + c1

∞
∑

m=1

(−1)m+1

22m−1
· (2m− 2)!

(2m+ 1)!(m− 1)!
ξ2m+1. (6.21)

From (6.3), ζξ = 0 at ξ = 0 giving c1 = 0,. Hence

ζ(ξ) = −1 + c0 +
c0

2
ξ2.

Finally, to achieve the self-similar solution in terms of u and x we substitute for ζ and ξ

using the definitions (6.7)–(6.8) for β and γ defined by (6.5),

u(x, t) = −t+ c0t+
c0

2
x2, (6.22)

which is easily verified to satisfy (6.1). At ξ = 1, the outer boundary, ζ = ζξ = 0 from (6.2),

so we cannot satisfy the other two boundary conditions using (6.21). However, if we shift

x to (1 − x) the solution (6.22) becomes

u(x, t) = −t+ c0t+
c0

2
(1 − x)2,

which is also a solution of (6.1) that satifies (6.2), if c0 = 1. This is plotted in Figure 6.2

but (6.3) cannot be satisfied, and regardless, this solution does not depend on t.

114

The Crank-Gupta Problem 6.3. Moving mesh method

Since we were unable to satisfy all the boundary conditions with a realistic series

solution we compared our numerical results with those from a similar problem that has a

different boundary condition which does have an analytical solution. Further details are

given in §6.5.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.1

0.2

0.3

0.4

0.5

u

x

Fig. 6.2: A self-similar solution for the Crank-Gupta problem, u = 1
2(1 − x)2.

We have seen that deriving an analytical solution for the Crank-Gupta problem is

not straightforward, which provides motivation to seek a numerical solution. In the next

section we apply our moving mesh method to the Crank-Gupta problem.

6.3 Moving mesh method

Since the mass in the Crank-Gupta problem is not conserved in time we use the moving

mesh method described in §3.2, with the same notation, i.e. x̃j(t
m) ≈ xm

j denotes the jth

node of the mesh with N + 1 nodes, at time m∆t, m = 0, 1 . . ., and um
j ≈ ũj(t

m) and

vm
j ≈ ṽj(t

m) denote the solution and mesh velocity at these nodes. The total mass of the

solution at m∆t is θm ≈ θ(tm).

We model the Crank-Gupta problem by (3.17) with

Gu ≡ ∂2u

∂x2
− 1, (6.23)

where u satisfies the boundary conditions (6.2)–(6.3), which we repeat here,

∂u

∂x
= 0 at x = a(t) = 0, (6.24)

u =
∂u

∂x
= 0 at x = b(t), (6.25)

115

The Crank-Gupta Problem 6.3. Moving mesh method

where b(t) is a moving boundary.

We show that given a mesh x̃j(t
m), with corresponding solution ũj(t

m) and total

mass θ(tm), we can calculate the updated total mass θ(tm+1), mesh x̃j(t
m+1) and solution

ũj(t
m+1) by computing the rate of change of total mass θ̇(tm) and mesh velocity ṽj(t

m).

We use the initial condition

u(x, 0) =
1

2
(1 − x)2, (6.26)

for x ∈ [0, 1] as in the original paper [38]. Substituting the initial conditions (6.26) into

equation (3.19), the initial total mass θ(0) is

θ(0) =
1

2

∫ 1

0
(1 − x)2 dx =

1

6
. (6.27)

To determine the normalised partial integrals cj we substitute (6.26) and (6.27) into (3.20),

giving

cj = 6

∫ x̃j(0)

0

1

2
(1 − x)2 dx = x̃j(0)3 − 3x̃j(0)2 + 3x̃j(0),

which remain constant in time.

6.3.1 Determining the rate of change of total mass

The total mass θ(t) is updated using an explicit time-stepping scheme, where θ̇ is given by

substituting the PDE (6.23) and the boundary conditions (6.24)–(6.25) into (3.21), giving

θ̇(tm) =

∫ b(t)

0

{

∂2u

∂x2
− 1

}

dx =

[

∂u

∂x
− x

]b(t)

0

= −b(t). (6.28)

The discrete form is simply

θ̇m = −xm
N , (6.29)

where θ̇m ≈ θ̇(tm).

The new total mass θm+1 is obtained from θ̇m by a time-stepping scheme.

116

The Crank-Gupta Problem 6.3. Moving mesh method

6.3.2 Determining the mesh velocity

The total mass θ is updated with the mesh, where the mesh velocity is given by substitut-

ing (6.23)–(6.25) into (3.23), and evaluating the integral, so that

ṽj(t) =
1

ũj(t)

(

θ̇(t)cj −
∫ x̃j(t)

0

{

∂2u

∂x2
− 1

}

dx

)

,

for interior points j = 1, . . . , N − 1. Substituting for θ̇(t) from (6.28) gives

ṽj(t) = − 1

ũj(t)

(

cjb(t) +
∂u

∂x

∣

∣

∣

∣

x̃j(t)

− x̃j(t)

)

. (6.30)

We use a discretised form of (6.30),

vm
j = − 1

um
j

[

cjx
m
N +

(

um
j+1 − um

j−1

xm
j+1 − xm

j−1

)

− xm
j

]

, j = 1, 2, ..., N − 1. (6.31)

We note that the term in the curved brackets can be replaced by (4.37) (where n = 1), to

give a discretisation of (6.30) which is more accurate on a non-uniform mesh, namely

vm
j = − 1

um
j









cjx
m
N +









1
∆xm

j+

(

∆um
j+

∆xm
j+

)

+ 1
∆xm

j−

(

∆um
j−

∆xm
j−

)

1
∆xm

j+

+ 1
∆xm

j−









− xm
j









, (6.32)

for interior nodes j = 1, 2, . . . , N−1, where ∆(·)m
j−

= (·)m
j −(·)m

j−1 and ∆(·)m
j+

= (·)m
j+1−(·)m

j .

The new mesh xm+1
j , j = 1, . . . , N − 1, is obtained from vm

j by a time-stepping scheme.

At the outer boundary u(b, t) = 0 from (6.25), so we seek an alternative method

to determine xm
N . One approach is to extrapolate the boundary velocity vm

N from the

internal velocities, and then update the position of the outer node along with the internal

nodes. However, extrapolation sometimes produces a numerical solution with a boundary

that moves out (the boundary should move in [38]). As an alternative, we consider the

asymptotic behaviour of the solution near the outer boundary. At the outer boundary

u = 0 so ut = 0, reducing (6.1) to

∂2u

∂x2

∣

∣

∣

∣

x=b

= 1.

The Taylor expansion for u(x) about x = b is

u(x) = u(b) + (b− x)
∂u

∂x

∣

∣

∣

∣

x=b

+
(b− x)2

2

∂2u

∂x2

∣

∣

∣

∣

x=b

+ . . . ,

117

The Crank-Gupta Problem 6.3. Moving mesh method

hence,

u(x, t) ≈ 1

2
(x̃j − b(t))2, (6.33)

close to b(t). Therefore, for the discrete case where j = N − 1 and t = tm+1, we make the

approximation

um+1
N−1 ≈ 1

2
(xm+1

N−1 − xm+1
N)2,

which gives the following formula for the outer node,

xm+1
N = xm+1

N−1 +
√

2um+1
N−1, (6.34)

taking the positive square root.

6.3.3 Recovering the solution

Once the updated mesh xm+1
j has been determined, the updated solution um+1

j , j =

1, . . . , N − 1, is given by either (3.25) for a uniform mesh, or (3.26) for a non-uniform

mesh. The solution at the inner boundary um+1
0 is calculated using

um+1
0 =

θm+1

θ0

x0
1u

0
0

xm+1
1

,

from (3.25) and the boundary condition (6.24). At the outer boundary, um+1
N+1 = 0 from (6.25).

6.3.4 The full algorithm

Given a total mass θm, mesh xm
j , solution um

j , j = 0, . . . , N , at tm, m ≥ 0:

• Compute the rate of change of mass θ̇m from (6.29);

• Compute the mesh velocity vm
j from (6.31) or (6.32);

• Compute the updated mesh xm+1
j by a time-stepping scheme;

• Compute the updated solution um+1
j from (3.25) or (3.26).

118

The Crank-Gupta Problem 6.4. The two-dimensional radially symmetric case

6.3.5 Time-stepping schemes

Explicit schemes

The simplest method to time-step the mesh is the first order explicit Euler time-stepping

scheme,

xm+1
j − xm

j

∆t
= vm

j ,

for j = 1, . . . , N − 1. We substitute for vm
j from (6.31) or (6.32). At the inner boundary

vm
0 = 0, and at the outer boundary we use (6.34). The explicit Euler time-stepping scheme

requires small ∆t so that the xm
j remain stable, and to avoid mesh tangling. We also

implemented the adaptive predictor-correcter Runge-Kutta methods in Matlab. We used

the solver, ODE15s, which is designed to solve a stiff system. Implementing this solver

produced results similar to results from ODE23 and ODE45 (which are not designed for

stiff systems), inferring that the method does not lead to a stiff system.

A semi-implicit scheme

The semi-implicit scheme described in §3.4.2 updates the mesh xm
j only. Thus, for a method

that requires the total mass θ to be updated as well, we cannot use it in the same way, since

θ would have to be updated separately (for example, using the explicit Euler time-stepping

scheme). By not updating the mesh and mass simultaneously, the maximum principle for

monotonicity is lost. Consequently, when implementing our moving mesh method we use

only explicit time-stepping schemes.

We have given details of applying the moving mesh method to the one-dimensional

Crank-Gupta problem. We now demonstrate that the same method can be applied to the

two-dimensional radially symmetric Crank-Gupta problem.

6.4 The two-dimensional radially symmetric case

Our moving mesh method described in §3.2 is easily generalised to numerically solve the two-

dimensional radially symmetric Crank-Gupta problem, which is determined by converting

the general form of (6.1)

∂u

∂t
= ∇2u− 1,

119

The Crank-Gupta Problem 6.4. The two-dimensional radially symmetric case

to polar coordinates using r2 = x2 + y2 giving

∂u

∂t
=

1

r

∂

∂r

(

r
∂u

∂r

)

− 1, (6.35)

with boundary conditions

∂u

∂r
= 0 at r = 0, t > 0, (6.36)

u = 0,
∂u

∂r
= 0 at R(t), t > 0, (6.37)

and initial conditions

u =
1

2
(1 − r)2, r ∈ [0, 1], t = 0. (6.38)

As with the one-dimensional case, we introduce the dependent variable r̃j(t), j = 0, ..., N ,

to represent the N+1 nodes on the radius of the mesh, which are dependent on t. The mesh

is initially equally-spaced. We define the velocity of the j-th node s(r̃j , t) on the radius to

be

s(r̃j , t) = s̃j(t) =
dr̃

dt
.

We assume conservation of relative mass (as with the one-dimensional case) such that

dj =
1

ψ(t)

∫ r̃j(t)

0
u(r, t)r dr, (6.39)

where dj is a constant in time, ψ(t) is the total mass

ψ(t) =

∫ R(t)

0
u(r, t)r dr, (6.40)

and R(t) is the outer boundary. Specifically, for initial conditions (6.38),

ψ(0) =

∫ 1

0
(1 − r)2r dr =

7

12
,

and

dj =
12

7

∫ r̃j(0)

0
(1 − r)2r dr =

12

7
rj(0)2 − 8

7
rj(0)3 +

3

7
rj(0)4.

Given a mesh x̃j(t) and solution ũj(t) = u(x̃j(t), t), we can evaluate the total mass

ψ(t) directly from (6.40). To evaluate an updated value of the total mass (which is required

for determining the updated solution) we compute ψ̇(t), and then approximate the total

120

The Crank-Gupta Problem 6.4. The two-dimensional radially symmetric case

mass using a time-stepping scheme. Simultaneously, the mesh velocity s̃j(t) is computed,

and the mesh and total mass are updated together. This ultimately enables us to recover

the updated solution on the new mesh. Details are given in the following subsections.

6.4.1 Determining the rate of change of total mass

To determine an expression for the total mass ψ(t), we first calculate the rate of change of

the total mass ψ̇(t) by applying the Leibnitz integral rule to the right-hand side of (6.40),

ψ̇(t) =

∫ R(t)

0

∂u

∂t
r dr + u(R, t)R(t)

∂R

∂t
.

Substituting in ∂u
∂t from (6.35), and eliminating the last term due to the boundary condi-

tion (6.37),

ψ̇(t) =

∫ R(t)

0

{

∂

∂r

(

r
∂u

∂r

)

− r

}

dr.

Hence, using the boundary conditions (6.36)–(6.37),

ψ̇(t) = −
∫ R(t)

0
r dr = −R(t)2

2
.

We use the discrete form,

ψ̇m = −(r2)m
N

2
, (6.41)

where ψ̇m ≈ ψ̇(tm).

The total mass is determined at each time-level, together with the updated mesh,

using a time-stepping scheme.

6.4.2 Determining the mesh velocity

To find an expression for the mesh velocity, we differentiate (6.39) with respect to time

using the Leibnitz integral rule, giving

ψ̇(t)dj =
d

dt

∫ r̃j(t)

0
u(r, t)r dr =

∫ r̃j(t)

0

∂u

∂t
r dr + ũj(t)r̃j(t)s̃j(t) − ũj(0)r̃j(0)s̃j(0).

121

The Crank-Gupta Problem 6.4. The two-dimensional radially symmetric case

Substituting for ∂u
∂t from (6.35), and cancelling the last term due to the boundary condi-

tion (6.36),

ψ̇(t)dj =

∫ r̃j(t)

0

{

∂

∂r

(

r
∂u

∂t

)

− r

}

dr + ũj(t)r̃j(t)s̃j(t).

Evaluating the integral and using the boundary condition (6.36),

ψ̇(t)dj = r̃j(t)
∂u

∂r

∣

∣

∣

∣

r̃j(t)

− r̃j(t)
2

2
+ ũj(t)r̃j(t)s̃j(t).

Hence, the radially symmetric Crank-Gupta mesh velocity is given by

s(r̃j , t) =
1

ũj(t)r̃j(t)

(

ψ̇(t)dj − r̃j(t)
∂u

∂r

∣

∣

∣

∣

r̃j(t)

+
r̃j(t)

2

2

)

, (6.42)

for ũj(t) 6= 0 and r̃j(t) 6= 0. In practice we have used a one-sided average for ũj(t)r̃j(t), and

a one-sided approximation to discretise ∂u
∂r

∣

∣

r̃j(t)
, so (6.42) becomes

sm
j =

4

(um
j + um

j−1)(r
m
j + rm

j−1)















ψ̇mdj − rm
j

(

um
j − um

j−1

rm
j − rm

j−1

)

+
(r2)m

j

2















, (6.43)

which holds for j = N and hence for j = 1, . . . , N . By definition, sm
0 = 0. The new mesh

rm+1
j is obtained from sm

j by a time-stepping scheme.

Unfortunately, the averaged approximation for ũj(t)r̃j(t) results in the behaviour of

the solution at the outer boundary being poorly represented in the numerical solution.

Hence we seek an alternative method to determine rm
N . A polynomial extrapolation for sm

N

from the internal velocities sometimes produces a numerical solution with a boundary that

moves out, as with the one-dimensional case. In §6.3.2 we derived the approximation (6.34)

by considering the asymptotic behaviour of u near the boundary (where ut is small). A

similar approach in the radial case gives

1 =
1

r

∂

∂r

(

r
∂u

∂r

)

=
∂2u

∂r2

since ∂u
∂t = ∂u

∂r = 0 at r = R. At x = b this leads to

u(r, t) ≈ 1

2
(r̃j −R(t))2,

122

The Crank-Gupta Problem 6.4. The two-dimensional radially symmetric case

via the Taylor series. This is the same as the Cartesian case (6.33), therefore we can define

the outer node by

rm+1
N = rm+1

N−1 +
√

2um+1
N−1, (6.44)

taking the positive square root.

6.4.3 Recovering the solution

To approximate the updated solution um+1
j , we equate (6.39) at times t = tm+1 and t = 0

between the points r̃j+1 and r̃j−1,

1

ψ(tm+1)

∫ rm+1

j+1

rm+1

j−1

u(r, tm+1)r dr =
1

ψ(0)

∫ r0
j+1

r0
j−1

u(r, 0)r dr.

Approximating the integrals by the mid-point rule,

um+1
j =

ψm+1

ψ0

(

r0j+1 − r0j−1

)

r0j
(

rm+1
j+1 − rm+1

j−1

)

rm+1
j

u0
j , (6.45)

for j = 1, . . . , N − 1, where um+1
N + 0 from (6.37). For j = 0

um+1
0 =

ψm+1

ψ0

r01
rm
1

u0
j , (6.46)

where we have applied the boundary condition (6.36).

6.4.4 The full algorithm

Given a total mass θm, mesh rm
j , and solution um

j , j = 0, . . . , N , at tm, m ≥ 0:

• Compute the rate of change of mass θ̇m from (6.41);

• Compute the mesh velocity sm
j from (6.43);

• Compute the updated mesh xm+1
j by a time-stepping scheme;

• Compute the updated solution um+1
j from (6.45).

We have given details of applying our moving mesh method to the original Crank-Gupta

problem for the one-dimensional case and the two-dimensional, radially symmetric case.

There is no known analytical solution for the Crank-Gupta problem. In order to compare

123

The Crank-Gupta Problem 6.5. Alternative boundary conditions

our results to an exact solution we now consider the Crank-Gupta PDE with a different

boundary condition such that there is a known exact solution which we can use for com-

parison.

6.5 Alternative boundary conditions

There is no analytic solution to the Crank-Gupta problem. However, the one-dimensional

Cartesian Crank-Gupta problem without the inner boundary conditions (6.3) imposed has

an exact solution

u =

{

ex+t−1 − x− t x ≤ 1 − t,

0 x > 1 − t,
(6.47)

as given in [5], corresponding to a new inner boundary condition,

∂u

∂x
= et−1 − 1 at x = 0, (6.48)

replacing (6.3). The initial conditions are given by the exact solution (6.47) at t = 0,

u = ex−1 − x at t = 0, (6.49)

for x ∈ [0, 1]. By applying our moving mesh method to this modified Crank-Gupta model,

we can investigate the accuracy of the method for this problem.

Substituting the initial conditions (6.49) into equation (3.19) gives the initial total

mass θ(0),

θ(0) =

∫ 1

0
ex−1 − x dx =

1

2
− e−1. (6.50)

To determine the normalised partial integrals cj we substitute (6.49) and (6.50) into (3.20),

cj =
1

1
2 − e−1

∫ x̃j(0)

0

(

ex−1 − x
)

dx,

=
e−1(ex̃j(0) − 1) − x̃2

j (0)

2
1
2 − e−1

,

=
2e−1(ex̃j(0) − 1) − x̃2

j (0)

1 − 2e−1
.

We use the same notation given in §6.3 and follow the same process to find an updated

solution on the new mesh. We use the explicit Euler time-stepping scheme for this problem.

124

The Crank-Gupta Problem 6.5. Alternative boundary conditions

6.5.1 Determining the rate of change of total mass

The total mass θ is updated using an explicit time-stepping scheme, where θ̇ is given

by (6.1), (6.3) and (6.48) substituted into (3.21),

θ̇(t) =

∫ b(t)

0

{

∂2u

∂x2
− 1

}

dx = 1 − et−1 − b(t).

Comparing this to (6.28) from the original problem, we observe that 1 − et−1 is the result

of implementing the alternative boundary condition. The discrete form of this is simply

θ̇m = 1 − et
m−1 − xm

N , (6.51)

where θ̇m ≈ θ̇(tm).

The total mass is determined at each time-level, together with the updated mesh,

using a time-stepping scheme.

6.5.2 Determining the mesh velocity

The total mass θ is updated with the mesh, where the mesh velocity is given by (6.1), (6.3)

and (6.48) substituted into (3.23), such that

ṽj(t) =
1

ũj(t)

(

θ̇(t)cj −
∫ x̃j(t)

0

{

∂2u

∂x2
− 1

}

dx

)

,

=
1

u(xj , t)

(

cj θ̇(t) −
∂u

∂x

∣

∣

∣

∣

x̃j(t)

+ x̃j(t) + et−1 − 1

)

, (6.52)

for the interior points j = 0, 1, . . . , N − 1. Comparing to the mesh velocity from the

original problem (6.30), we observe that the additional (et−1 − 1) terms are the result of

implementing the alternative boundary condition. When discretising ux in (6.52) we can

use a mid-point approximation, which is first order accurate on a non-uniform mesh,

vm
j =

1

um
j

(

cj θ̇
m −

(

(un)m
j+1 − (un)m

j−1

(xm
j+1 − xm

j−1)

)

+ xm
j + et

m−1 − 1

)

. (6.53)

Alternatively, for a second order approximation on a non-uniform mesh we refer to the

approximation given by equation (4.37), with n = 1, such that we use the discrete form

125

The Crank-Gupta Problem 6.5. Alternative boundary conditions

of (6.52)

vm
j =

1

um
j









cj θ̇
m −









1
∆xm

j+

(

∆um
j+

∆xm
j+

)

+ 1
∆xm

j−

(

∆um
j−

∆xm
j−

)

1
∆xm

j+

+ 1
∆xm

j−









+ xm
j + et

m−1 − 1









, (6.54)

where ∆(·)m
j−

= (·)m
j − (·)m

j−1 and ∆(·)m
j+

= (·)m
j+1− (·)m

j , and vm
0 = 0 at the inner boundary.

At the right boundary, u(b, t) = 0, as for the original Crank-Gupta problem, so we seek an

alternative method to determine xm
N . Again, either vm

N is extrapolated from the internal

velocities using a polynomial, or equation (6.34) is employed since the outer boundary is

the same as with the original problem.

The new mesh xm+1
j is obtained from vm

j by a time-stepping scheme.

6.5.3 Recovering the solution

The solution is recovered in the same manner as with the original Crank-Gupta problem in

Chapter 6.3, i.e. by either (3.25), for a uniform mesh, or (3.26), for a non-uniform mesh.

The solution at the inner boundary um+1
0 is calculated using a one-sided approximation

of (3.25)

um+1
0 =

θm+1

θ0

(x0
1 − x0

0)u
0
0

xm+1
1 − xm+1

0

.

At the outer boundary, um+1
N+1 = 0 from the zero boundary condition (6.25).

6.5.4 The full algorithm

Given a total mass θm, mesh rm
j , and solution um

j , j = 0, . . . , N , at tm, m ≥ 0:

• Compute the rate of change of mass θ̇m from (6.51);

• Compute the mesh velocity vm
j from (6.53) or(6.54);

• Compute the updated mesh xm+1
j by a time-stepping scheme;

• Compute the updated solution um+1
j from (3.25) or (3.26).

The last case we consider is the original Crank-Gupta problem where we move the nodes

to preserve partial mass balances, as in §3.3.

126

The Crank-Gupta Problem 6.6. A partial mass balance moving mesh method

6.6 A partial mass balance moving mesh method

The Crank-Gupta PDE has a source term so we can use the moving mesh method described

in §3.3, with the same notation, i.e. x̃j(t
m) ≈ xm

j denotes the jth node of the mesh with

N + 1 nodes, at time m∆t, m = 0, 1 . . ., and um
j ≈ ũj(t

m) and vm
j ≈ ṽj(t

m) denote the

solution and mesh velocity at these nodes. The partial masses of the solution at m∆t are

Θm
j ≈ Θj(t

m).

We model the Crank-Gupta problem by the PDE (3.27) with

Hu ≡ ∂2u

∂x2
and S(x, t) ≡ −1, a(t) = 0 ≤ x ≤ b(t), (6.55)

from (6.1). Hence, the mass balance relation (3.29) is

d

dt

∫ x̃j(t)

0
u(x, t) dx = −

∫ x̃j(t)

0
1 dx.

This relation implies that given a mesh x̃j(t
m), with corresponding solution ũj(t

m) and par-

tial masses Θj(t
m), we can calculate the updated partial masses Θj(t

m+1), mesh x̃j(t
m+1)

and solution ũj(t
m+1) by computing the rate of change of partial masses Θ̇j(t

m) and mesh

velocity ṽj(t
m).

We use the same initial solution from [38], namely

u(x, 0) =
1

2
(1 − x)2, (6.56)

for x ∈ [0, 1]. Substituting the initial conditions (6.56) into equation (3.30) gives the initial

partial masses Θj(0),

Θj(0) =
1

2

∫ x̃j(0)

0
(1 − x)2 dx =

x̃j(0)3

6
− x̃j(0)2

2
+
x̃j(0)

2
.

.

6.6.1 Determining the rate of change of partial masses

The partial masses Θj(t) are updated using an explicit time-stepping scheme, where Θ̇j(t)

is given by S(x, t) from (6.55) substituted into (3.31),

Θ̇j(t) = −
∫ x̃j(t)

0
dx = −x̃j(t). (6.57)

127

The Crank-Gupta Problem 6.6. A partial mass balance moving mesh method

The discrete approximation to (6.57) is simply

Θ̇m
j = −xm

j , (6.58)

where Θ̇m
j ≈ Θ̇j(t

m).

The partial masses are determined at each time-level, together with the updated

mesh, using a time-stepping scheme.

6.6.2 Determining the mesh velocity

The partial masses Θj(t) are updated with the mesh, where the mesh velocity is given by

(6.55) and (6.3) substituted into (3.33), so that the mesh velocity is

ṽj(t) = − 1

ũj(t)

∫ x̃j(t)

0

∂2u

∂x2
dx = − 1

ũj(t)

∂u

∂x

∣

∣

∣

∣

∣

x̃j(t)

, (6.59)

for the internal nodes, j = 1, . . . , N − 1. Comparing to (6.30), from the method that

conserves relative partial masses in §6.3, we note that the mesh velocity does not explicitly

depend upon the boundary position b(t) nor initial data (in the form of the partial masses

cj).

We use a discretised form of (6.59), which is first order accurate on a non-uniform

mesh,

vm
j = − 1

um
j

(

um
j+1 − um

j−1

xm
j+1 − xm

j−1

)

, j = 1, 2, ..., N − 1. (6.60)

We note that the term in the curved brackets can be replaced by (4.37) (where n = 1), to

give a discretisation of (6.59) which is more accurate on a non-uniform mesh, namely

vm
j = − 1

um
j









1
∆xm

j+

(

∆um
j+

∆xm
j+

)

+ 1
∆xm

j−

(

∆um
j−

∆xm
j−

)

1
∆xm

j+

+ 1
∆xm

j−









, (6.61)

for j = 1, 2, ..., N − 1, where ∆(·)m
j−

= (·)m
j − (·)m

j−1 and ∆(·)m
j+

= (·)m
j+1 − (·)m

j . At the

inner boundary vm
0 = 0. At the right boundary u(b, t) = 0, as with the original Crank-

Gupta problem, so we seek an alternative method to determine xm
N . Again, either vm

N is

extrapolated from a polynomial using the internal velocities or equation (6.34) is employed.

The new mesh xm+1
j is obtained from vm

j by a time-stepping scheme.

128

The Crank-Gupta Problem 6.7. Numerical results

6.6.3 Recovering the solution

The solution is updated using the approach given in §3.3, namely, by either (3.34) or (3.35),

the latter being more accurate for a non-uniform mesh. At the outer boundary, um+1
N+1 = 0

from (6.2). At the inner boundary we use the trapezoidal approximation

Θm+1
0 =

1

2
(um+1

1 + um+1
0)xm+1

1 ,

thus

um+1
0 =

2Θm+1
0

xm+1
1

− um+1
1 .

6.6.4 The full algorithm

Given the partial masses Θm, mesh xm
j , and solution um

j , j = 0, . . . , N , at tm, m ≥ 0:

• Compute the rate of change of partial masses Θ̇m
j from (6.58);

• Compute the mesh velocity vm
j from (6.60) or (6.61);

• Compute the updated mesh xm+1
j by a time-stepping scheme;

• Compute the updated solution um+1
j from (3.34) or (3.35).

In the last four sections we have given the details for applying the moving mesh method to

the Crank-Gupta problem. In the next section we present the numerical results.

6.7 Numerical results

We have looked at solving the Crank-Gupta problem

• in the one-dimensional case, using the moving mesh method which preserves partial

mass fractions (see §6.3);

• in the radially symmetric case, using the moving mesh method which preserves partial

mass fractions (see §6.4);

• in the one-dimensional case, using alternative boundary conditions and the moving

mesh method which preserves partial mass fractions (see §6.5);

• in the one-dimensional case, using the moving mesh method which preserves partial

mass balance (see §6.6).

129

The Crank-Gupta Problem 6.7. Numerical results

We now present results for each of these numerical simulations described earlier in this

chapter, where we start with a equispaced mesh and use the explicit Euler time-stepping

scheme in all cases.

6.7.1 Preserving partial mass fractions

We used the second order approximations (6.32) to compute the mesh velocity, and (3.26)

to compute the updated solution. The boundary position was calculated using (6.34) (from

considering the asymptotic behaviour of the solution near the outer boundary).

Figure 6.3(a) shows the numerical solution at various times for t ∈ [0, 0.19]. We note

that the solution is behaving as expected, the outer boundary is moving in, whilst the inner

boundary is levelling out to satisfy the boundary condition.

There is no known analytical solution to the Crank-Gupta problem. As a comparison

we use the work of Dahmardah and Mayers [39] who derive a Fourier Series solution.

By comparing their results to earlier work [51], they conclude that their method is very

accurate. To check whether the method converges as N increases and ∆t decreases, we

compare ũ0(0.1) and x̃N (0.1) to the results from [39] at t = 0.1 which are

ū = u(0, 0.1) = 0.143177, (6.62)

x̄ = b(0.1) = 0.935018. (6.63)

We solve for t ∈ [0, 0.1] and compute results for N = 20 × 2N̂−1, N̂ = 0, . . . , 5. We denote

the solution ũ0(0.1) and boundary position x̃N (0.1) for a particular value of N by uN

and xN respectively. To balance the spatial and temporal errors, and recalling that we

have used explicit Euler time-stepping, we use ∆t = O
(

1
N2

)

, precisely ∆t = 1

1600(4N̂)
. We

anticipate that the pointwise errors |ū− uN | and |x̄− xN | will decrease as N̂ increases, for

each i = 0, . . . , 10.

As a measure of the errors, we calculate

EN (u) =

√

(ū− uN)2

(ū)2
, EN (xN) =

x̄N − xN

x̄N
,

for N̂ = 0, . . . , 5 (i.e. N = 20, 40, 80, 160, 320, 640). We investigate the hypothesis that

EN (u) ∼ 1

Np
and EN (xN) ∼ 1

N q
, (6.64)

130

The Crank-Gupta Problem 6.7. Numerical results

for large N , where p and q are the estimated orders of convergence. If (6.64) holds then we

would expect that p2N and q2N defined by

p2N = − log2

(

E2N (u)

EN (u)

)

, q2N = − log2

(

E2N (xN)

EN (x)

)

.

would approach the constant values p and q as N → ∞. Since each step of our scheme is

second order in space and first order in time, and recalling that ∆t = O
(

1
N2

)

, we might

expect to see p, q ≈ 2.

N uN EN (u) pN xN EN (xN) qN
20 0.142721 3.185 × 10−3 - 0.935385 3.925 × 10−4 -
40 0.143040 9.569 × 10−4 1.7 0.935120 1.091 × 10−4 1.8
80 0.143141 2.514 × 10−4 1.9 0.935043 2.674 × 10−5 2.0
160 0.143168 6.286 × 10−5 2.0 0.935024 6.417 × 10−6 2.0
320 0.143175 1.397 × 10−5 2.2 0.935019 1.069 × 10−6 2.6
640 0.143176 6.984 × 10−6 1.0 0.935018 0 -

Table 6.1: Relative errors for u with rates of convergence using the explicit

Euler time-stepping scheme.

There are some irregularities in Table 6.1, but it would be reasonable to suggest that

the relative mass conserving moving mesh method, with explicit Euler time-stepping has

second-order convergence. The irregular entries for the p values for N = 640 are most likely

because we are comparing our results with a single value to the order of 10−6. To this level

of accuracy, our numerical results for N = 640 are very nearly identical to the Fourier Series

results of [39], given by (6.62)–(6.63).

Further comparisons with the Fourier Series approach are given in Table 6.2, where

we note that the results are very similar. The table also highlights that the moving mesh

method gives a numerical boundary that moves out very slightly, before exhibiting the cor-

rect behaviour of moving in. The boundary behaviour movement for t ∈ [0, 0.19] is shown

in Figure 6.3(b).

Figure 6.3(c) shows the exact movement of 20 nodes over time. We observe that

despite the inner boundary moving in, the nodes still cluster toward the outer boundary,

where higher resolution allows greater accuracy to track the boundary movement.

In §6.3 we mentioned that updating the mesh velocities semi-implicitly, whilst up-

dating the total mass θ explicitly, can lead to inaccuracies. This is shown in Figure 6.4

where the Crank-Gupta problem was solved with a semi-implicit scheme that satisfied The-

orem 3.4.1. We note that the inner boundary condition ux = 0 is not satisfied.

131

The Crank-Gupta Problem 6.7. Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = 0
t = 0.019
t = 0.038
t = 0.057
t = 0.76
t = 0.095
t = 0.114
t = 0.133
t = 0.152
t = 0.171
t = 0.19ũ

j
(t

)

x̃j(t)

(a) The approximate solution.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x̃
j
(t

)

t

(b) The boundary position.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x̃j(t)

t

(c) The mesh trajectory.

Fig. 6.3: The Crank-Gupta problem solved using relative partial mass conser-

vation, N = 20, ∆t = 2 × 10−4.

132

The Crank-Gupta Problem 6.7. Numerical results

Solution u(0, t) Boundary b(t)

t Fourier Series Moving mesh Fourier Series Moving mesh

0.01 0.387162 0.3943210 1.000000 1.0000011
0.02 0.340423 0.3446501 0.999999 0.9999885
0.03 0.304559 0.3074492 0.999911 0.9998163
0.04 0.274324 0.2763743 0.999180 0.9989005
0.05 0.247687 0.2491283 0.996793 0.9963278
0.10 0.143177 0.1428852 0.935018 0.9350185
0.12 0.109129 0.1084201 0.879171 0.8798560
0.14 0.077850 0.0768102 0.798944 0.8004555
0.16 0.048823 0.0475175 0.683449 0.6857932
0.18 0.021781 0.0202182 0.501329 0.5038886
0.19 0.009021 0.0071793 0.346000 0.3471498

Table 6.2: Comparing the Fourier Series approach with moving mesh results,

N = 20, ∆t = 2 × 10−4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = 0
t = 0.017
t = 0.034
t = 0.051
t = 0.068
t = 0.085
t = 0.102
t = 0.119
t = 0.136
t = 0.153
t = 0.17ũ

j
(t

)

x̃j(t)

Fig. 6.4: The Crank-Gupta problem solved using relative partial mass conser-

vation, with a semi-implicit time-stepping scheme, N = 20, ∆t = 4.25 × 10−4.

133

The Crank-Gupta Problem 6.7. Numerical results

6.7.2 The radially symmetric case

The radially symmetric case was solved using the moving method method which preserves

partial mass fractions. We used (6.43) to compute the mesh velocity, and (6.45) and (6.46)

to compute the updated solution. Despite using Laplacian smoothing on uj we find that

the solution is unsmooth at the inner boundary, for example see Figure 6.5(b).

Recall in §6.4.2 that we use an averaged approximation for ũj(t)r̃j(t) in (6.43) since (6.42)

breaks down for ũN (t) = 0. This approach results in poor accuracy at the outer boundary,

see Figures 6.5(b)–6.5(a). Furthermore, the boundary moves out considerably, not in, as

required. The inaccuracy of boundary position is particularly noticeable in Figure 6.5(c)

where it would be reasonable to suggest that the final node x̃20(t) should be mimicking the

behaviour of x̃19(t).

We considered the asymptotic behaviour of u near the boundary (where ut is small).

Although this approach proved to be successful in the one-dimensional case, we observe

from Figure 6.6 that approximating x̃N (t) using (6.44) gives poor boundary accuracy. We

observe from Figure 6.6(c) that using (6.44) causes x̃19(t) to follow the inaccurate behaviour

of x̃20(t), in addition x̃20(t) moves out more compared to Figure 6.5(c).

An alternative approach was to extrapolate the boundary velocity s̃N (t) from the

nearby boundary velocities. Comparing this approach to the one-sided approximation ap-

proach we see that extrapolation gives a smoother solution at the boundary, see Figure 6.7.

Figure 6.7(c) shows that the mesh nodes remain fairly equally spaced across most of the

region, and the outer boundary moves out slightly less than Figure 6.5(c). However, the

nodes at the inner boundary are closer than with Figures 6.5(c)–6.6(c), although the mesh

remains monotonic.

We have incurred difficulties in achieving an accurate numerical solution at the bound-

aries. At the inner boundary, the nodes appears to gather slightly. As described, several

different approaches have been used to improve on our numerical solution at the outer

boundary, but unfortunately, we have not resolved this issue.

6.7.3 Alternative boundary conditions

The Crank-Gupta problem with alternative boundary conditions was solved using the mov-

ing method method which preserves partial mass fractions. We used the second order

approximations (6.54) to compute the mesh velocity, and (3.26) to compute the updated

solution.

As mentioned before, we were unable to compare the original Crank-Gupta problem

to an analytical solution. However, by imposing an alternative boundary condition (6.48)

we can examine convergence as N increases and ∆t decreases over the whole region. We

134

The Crank-Gupta Problem 6.7. Numerical results

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5
−1

−0.5
0

0.5
1

1.5
0

0.05

0.1

0.15

0.2

0.25

ũ
j
(t

)

r̃j(t) r̃j(t)

(a) The approximate solution.

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = 0
t = 0.01
t = 0.02
t = 0.03
t = 0.04
t = 0.05
t = 0.06
t = 0.07
t = 0.08
t = 0.09
t = 0.1

ũ
j
(t

)

r̃j(t)

(b) The solution along a radius.

0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

r̃j(t)

t

(c) The mesh trajectory where r̃19(t) is red, and r̃20(t) is blue.

Fig. 6.5: The radial Crank-Gupta problem using equation (6.43) to approximate

s̃N (t), N = 20, ∆t = 1 × 10−4.

135

The Crank-Gupta Problem 6.7. Numerical results

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2
0

0.05

0.1

0.15

0.2

0.25

ũ
j
(t

)

r̃j(t) r̃j(t)

(a) The approximate solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = 0
t = 0.01
t = 0.02
t = 0.03
t = 0.04
t = 0.05
t = 0.06
t = 0.07
t = 0.08
t = 0.09
t = 0.1ũ

j
(t

)

r̃j(t)

(b) The solution along a radius.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

r̃j(t)

t

(c) The mesh trajectory where r̃19(t) is red, and r̃20(t) is blue.

Fig. 6.6: The radial Crank-Gupta problem using equation (6.44) to calculate

the boundary position, N = 20, ∆t = 1 × 10−4.

136

The Crank-Gupta Problem 6.7. Numerical results

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5
−1

−0.5
0

0.5
1

1.5
0

0.05

0.1

0.15

0.2

0.25

ũ
j
(t

)

r̃j(t) r̃j(t)

(a) The approximate solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = 0
t = 0.01
t = 0.02
t = 0.03
t = 0.04
t = 0.05
t = 0.06
t = 0.07
t = 0.08
t = 0.09
t = 0.1ũ

j
(t

)

r̃j(t)

(b) The solution along a radius.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

r̃j(t)

t

(c) The mesh trajectory.

Fig. 6.7: The radial Crank-Gupta problem using extrapolation for s̃N (t), N =

20, ∆t = 1.25 × 10−4.

137

The Crank-Gupta Problem 6.7. Numerical results

solve for t ∈ [0, 0.1] and compute results for N = 10 × 2N̂−1, N̂ = 0, . . . , 5. In order to

compare results for different values of N̂ , we denote the points of the mesh for a partic-

ular value of N̂ by xj,N̂ , j = 0, . . . , (10 × 2N̂−1). We then compute both x
2N̂−1i,N̂

and

u
2N̂−1i,N̂

≈ u(x
2N̂−1i,N̂

, 5) for each i = 0, . . . , 10 as N̂ increases. We compare the numerical

outcomes with the exact solution from (6.47), at t = 0.1,

ū
2N̂−1i,N̂

= e
x
2N̂−1i,N̂

−0.9 − x
2N̂−1i,N̂

− 0.1,

where ū
2N̂−1i,N̂

is the exact solution at the calculated mesh points.

To balance the spatial and temporal errors, and recalling that we have used explicit

Euler time-stepping, we use ∆t = O
(

1
N2

)

, precisely ∆t = 1

200(4N̂)
. We anticipate that the

pointwise errors |ū
2N̂−1i,N̂

− u
2N̂−1i,N̂

| will decrease as N̂ increases, for each i = 0, . . . , 10.

As a measure of the errors, we calculate

EN (u) =

√

√

√

√

∑10
i=0(ū2N̂−1i,N̂

− u
2N̂−1i,N̂

)2

∑10
i=0(ū2N̂−1i,N̂

)2
,

for N̂ = 0, . . . , 5 (i.e. N = 10, 20, 40, 80, 160, 320). We investigate the hypothesis that

EN (u) ∼ 1

Np
, (6.65)

for large N , where p is the estimated order of convergence. If (6.65) holds then we would

expect that p2N defined by

p2N = − log2

(

E2N (u)

EN (u)

)

,

would approach the constant values p and q as N → ∞. Since each step of our scheme is

second order in space and first order in time, and recalling that ∆t = O
(

1
N2

)

, we might

expect to see p ≈ 2. Convergence results are shown in Table 6.3. We see that EN (u)

N EN (u) p2N

10 7.581 × 10−3 -
20 2.502 × 10−3 1.6
40 6.796 × 10−4 1.9
80 1.825 × 10−4 1.9
160 4.879 × 10−5 1.9
320 1.235 × 10−5 2.0

Table 6.3: Relative errors for u with rates of convergence using the explicit

Euler time-stepping scheme.

138

The Crank-Gupta Problem 6.7. Numerical results

decreases as N increases for each of the moving mesh methods. This strongly suggests

that as the number of nodes increases, the solution ũj(t) converges. The p-values presented

strongly imply second-order convergence of the solution ũj(t). These results, together with

the comparisons with the Fourier Series approach, suggest that our moving mesh method

is accurate, and has second order convergence.

Figures 6.8(a)–6.8(c) show the results from imposing the alternative boundary con-

dition. The solution to the original problem is very small for t = 0.19, see Figure 6.3(a),

whereas the modified problem takes much longer to decrease. This is partly because the

outer boundary moves in at a slower rate for the modified problem, which can be seen by

comparing Figures 6.3(b) and 6.8(b) (where we observe that the boundary moves in lin-

early). Lastly, from Figure 6.8(c) we note that the nodes move in a fairly uniform manner,

remaining reasonably equidistant.

Figures 6.9(a) and 6.9(b) compare the numerical solution with the exact solution.

Figure 6.9(a) shows the differences between the exact solution and numerical solution over

the region at t = 0.5. We note that the difference is of order 10−5, with the largest difference

at the inner boundary. Bearing this in mind, Figure 6.9(b) shows the difference between

the exact and numerical solution at the inner boundary. Interestingly, we note that the

relative error increases until about t = 0.25, and then decreases again.

6.7.4 A partial mass balance moving mesh method

The Crank-Gupta problem was solved using the moving mesh method which preserves par-

tial mass balances. We used the second order approximations (6.61) to compute the mesh

velocity, and the first-order approximation (3.34) to compute the updated solution. We

also used Laplacian smoothing on the updated solution at each time-level.

When using (6.34) to calculate the boundary position, the mesh tangles, see Fig-

ure 6.10(a). Figures 6.10(b) and 6.10(c) use a polynomial extrapolation for the mesh veloc-

ity x̃10(t). We notice that the boundary moves out very rapidly. This spread increases out

of control very quickly, as these figures show the results for very small times. We conclude

that balancing the rate of change of partial masses with the source term is an improper

approach for numerically solving the Crank-Gupta problem. This may be because the mesh

velocity from the approach (6.59) does not explicitly depend upon the boundary position. It

is more appropriate to not separate the two terms of the right-hand side of (6.1), as in §6.3.

We have completed our application of our finite difference moving mesh method to

the Crank-Gupta problem. In the next section we present our results from applying the

finite element moving mesh method of Baines, Hubbard and Jimack [5] to the Crank-Gupta

problem.

139

The Crank-Gupta Problem 6.7. Numerical results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t = 0
t = 0.05
t = 0.1
t = 0.15
t = 0.2
t = 0.25
t = 0.3
t = 0.35
t = 0.4
t = 0.45
t = 0.5ũ

j
(t

)

x̃j(t)

(a) The approximate solution.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x̃
j
(t

)

t

(b) The boundary position.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x̃j(t)

t

(c) The mesh trajectory.

Fig. 6.8: The Crank-Gupta PDE with alternative boundary conditions solved

using conservation of partial masses, N = 20, ∆t = 2 × 10−4.

140

The Crank-Gupta Problem 6.7. Numerical results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

t

d

(a) Over the region at t = 0.5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

t

d

(b) Over time at j = 0.

Fig. 6.9: The difference between the exact solution and numerical solution.

141

The Crank-Gupta Problem 6.7. Numerical results

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

x̃j(t)

t

(a) The movement of the nodes when using (6.34) to approximate the bound-
ary position.

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = 0
t = 0.003

ũ
j
(t

)

x̃j(t)

(b) The solution when using extrapolation to approximate the boundary
velocity.

0 0.5 1 1.5
0

1

2

3

4

5

6

7
x 10

−3

x̃j(t)

t

(c) The movement of the nodes when using extrapolation to approximate
the boundary velocity.

Fig. 6.10: The Crank-Gupta problem solved using the mass balance method,

N = 10, ∆t = 1 × 10−5.

142

The Crank-Gupta Problem 6.8. Finite element method

6.8 Finite element method

As mentioned in §2.3, the moving mesh method we use is a finite difference version of the

Conservation Method given in [5]. We also solved the Crank-Gupta problem using the

Conservation Method with finite elements. The numerical process is given in §2.3 (with an

additional calculation for updating the mass at each time-level), but the details are omitted

since details from solving this problem are given in [5]. However, unlike [5], we have used

Matlab and reconstructed the mesh at each time step using a Delaunay Triangulation as

described in §4.8.

We see in the one-dimensional case, Figures 6.11(a)–6.11(c) that the boundary moves

out, when it should be moving in. This inaccuracy may be from one-sided approximations

taken at the boundary. In the two-dimensional case, Figure 6.12(a)–6.12(b), the outer

boundary is moving in, as desired, but the inner boundary condition of ux = 0 is not satis-

fied. This poor representation at the centre may have occured since we used a radial mesh.

The Crank-Gupta numerical solution in [5] do not present these boundary inaccuracies, so

we conclude that we have not fully implemented their method.

In the next section we summarise our work on the Crank-Gupta problem.

6.9 Summary for the Crank-Gupta problem

The Crank-Gupta problem was derived to model the diffusion of oxygen in absorbing tis-

sue. In this chapter we applied a moving mesh numerical method to solve the Crank-Gupta

problem originally presented in [38]. Applying our method to this problem is an advance

from the PME and Richards’ equation since the solution has a decreasing mass, so we

needed the additional calculation of updating the total mass at each time-level.

When determining a self-similar solution for the Crank-Gupta problem, we observed

that deriving an analytical solution which satisfies the boundary conditions is not straight-

forward. This provides motivation for a numerical approach. We used conservation of

partial masses, and the mass balance method, with explicit time-stepping. We did not

give details about implementing a semi-implicit time-stepping since we found that using

the semi-implicit scheme given in §3.4 does not allow the total mass and the mesh to be

updated simultaneously. This can cause errors as we showed in the results section. Since

we were unable to obtain a series solution that satisfied the boundary conditions, in the

results section we compared the original Crank-Gupta problem to a Fourier Series solution

from [39]. This only allows us to compare a single value of the solution, so we also solved

the Crank-Gupta problem with a different inner boundary condition, from [5], which has

143

The Crank-Gupta Problem 6.9. Summary for the Crank-Gupta problem

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t = 0
t = 0.019
t = 0.038
t = 0.057
t = 0.076
t = 0.095
t = 0.114
t = 0.133
t = 0.152
t = 0.171
t = 0.19ũ

j
(t

)

x̃j(t)

(a) The solution.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

t

x̃
j
(t

)

(b) The boundary position.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t

x̃j(t)

(c) The movement of the nodes.

Fig. 6.11: The one-dimensional Crank-Gupta PDE solved using finite elements,

N = 20, ∆t = 1 × 10−4.

144

The Crank-Gupta Problem 6.9. Summary for the Crank-Gupta problem

−0.8
−0.6

−0.4
−0.2

0 0.2
0.4

0.6
0.8

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

ũ
j
(t

)

x̃j(t)ỹj(t)

(a)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8−101
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ũ
j
(t

)

x̃j(t)

(b)

Fig. 6.12: The two-dimensional Crank-Gupta PDE solved using finite elements,

∆t = 1 × 10−4, final time t = 0.1.

145

The Crank-Gupta Problem 6.9. Summary for the Crank-Gupta problem

an exact solution. Both comparisons indicated convergence and accuracy of our moving

mesh method that conserves partial masses. It appears that the mesh and solution have

second-order convergence. There was no analysis of the method that balances the partial

masses with the source term since we found that the boundary moves out very rapidly,

which is highly inaccurate, so we conclude that it is not a suitable method to solve the

Crank-Gupta problem numerically. We also came across inaccuracies at the outer bound-

ary when numerically solving the two-dimensional radially symmetric case. We attempted

several different ways to capture the boundary behaviour, but the transformation to the

radially symmetric case appears to be more challenging than with the PME, since we did

not achieve accurate results.

We used the Conservation Method of Baines, Hubbard and Jimack [5] to solve the

Crank-Gupta problem in one and two dimensions. We did not give much detail since this

problem is discussed in [5]. We find the solutions mostly exhibit the desired behaviour.

Having considered two problems which conserve mass, and one problem that decreases

in mass, we now consider the more complicated problem of modelling tumour growth, which

involves a system of equations. We begin by giving a background on cancer research, and

a brief history of mathematics and tumour modelling.

146

7
A Tumour Growth Problem

7.1 A brief background on cancer growth

A tumour is a group of cancer cells. Like all cells, these cells gain nutrients, such as glucose

and oxygen, from the surrounding environment. There is disagreement as to what causes

a normal cell to turn into a cancer cell. Nonetheless, it is generally accepted that once a

tumour is initiated it has three successive growth stages that it can possibly go through.

The first stage is referred to as the avascular stage. At this early stage the tumour

has a large surface area in relation to its size. Consequently, a large proportion of the cells

benefit from the surrounding nutrients and proliferate, causing the tumour to grow rapidly.

This can only continue to a certain size. As the tumour grows the external nutrients cannot

diffuse into the cells in the centre. The cells in the centre enter into a quiescent state. In

this state, they are dormant - but are able to proliferate again should nutrients become

available to them. As the cells on the edge continue to proliferate, i.e. the tumour grows,

the proliferating region expands and the cells in the centre die creating a necrotic core.

At this stage, there is a balance between the maximum possible size of the tumour and its

surrounding environment, the key reason being the limited ability for the majority of cells to

obtain nutrients. However, some mathematical models include other relevant factors such

as surface tension [81], [63], attractive cell forces [22], residual stress [2] and contractility

(possibly due to the wound-healing process) [69].

147

A Tumour Growth Problem 7.2. Avascular research

Fig. 7.1: The growth of an avascular tumour.

During the avascular stage, tumours are benign and are unlikely to affect the host.

However, once the tumour obtains a dependable blood supply from a nearby capillary, then

it advances to the more aggressive vascular stage. A nutrient rich capillary is drawn into the

tumour, initiating the rapid growth of cancerous cells. The process by which the tumour

obtains its own blood supply is called angiogenesis and preventing this from occurring is of

particular interest to drug development. This is because once the tumour has obtained a

blood supply the tumour can leave its primary location via the circulatory system (metas-

tasis) and settle in multiple areas of the body. The metastatic stage is the final stage of

tumour growth, and the most difficult to treat.

These three distinct stages have different characteristics so require individual inves-

tigation. We shall study the primary stage, avascular tumour growth.

7.2 Avascular research

As previously mentioned, the later stages of tumour growth are more critical since it is

usually not until after angiogenesis that cancer is detrimental to the hosts’ health. During

the avascular stage, the tumour is benign. Indeed, following a study of human cancers in

mice [98] there is a recent controversial hypothesis that we all have small dormant avascular

tumours in our bodies.

Regardless of this clinical viewpoint, avascular tumour growth warrants the interest

of scientists. It is beneficial to understand the simple system and its components prior to

148

A Tumour Growth Problem 7.3. The role of mathematics in cancer research

attempting analysis of a more complex system. Vascular tumours have many of the same

characteristics as avascular tumours, but the quantity and quality of data on avascular

tumours is of a higher standard. This is because it is comparatively easier and cheaper to

reproduce high quality avascular tumour experimental evidence in in vitro form.

In summary, we will be investigating a model for avascular tumours (see Figure 7.2)

as they are simpler to model and help give an insight into the mechanisms of vascular

tumour growth.

Fig. 7.2: An avascular tumour.

7.3 The role of mathematics in cancer research

Ever since complex life evolved, it has been susceptible to cancer. The oldest description of

cancer in humans was found in an Egyptian papyrus written between 3000-1500 BC. Today

specialists are still extensively researching and experimenting in attempts to find cures and

improve treatments. Cancer is rife in modern society - and thereby the size of the cancer

research industry is vast.

Despite the considerable volumes of time and money that is invested in this industry,

the tools of mathematics have not really been exploited. The UK’s first specialist cancer

research organisation was set up in 1902, yet mathematics only started making a major

contribution in this field from the early seventies. Most of the research is in molecular biol-

ogy, cell biology and drug delivery. However, the use of mathematics to aid cancer research

is increasing by way of computational modelling, as well as analysis on the large library of

experimental data.

149

A Tumour Growth Problem 7.4. A mathematical model of tumour growth

Indeed, it has been noted that a conceptual framework within which all these new

(and old) data can be fitted is lacking [49]. In [47] it states that ‘clinical oncologists and

tumour biologists posses virtually no comprehensive theoretical model to serve as a frame-

work for understanding, organising and applying these data’. By being educated as to

which mechanisms are critical to the essence of tumour growth, these could possibly be

manipulated to our advantage. As Byrne [30] remarks, ‘In order to gain such insight, it is

usually necessary to perform large numbers of time-consuming and intricate experiments

- but not always. Through the development and solution of mathematical models that

describe different aspects of solid tumour growth, applied mathematics has the potential to

prevent excessive experimentation’.

Ideally, experiments and modelling work hand-in-hand. The experiments can not

only prove to be costly, but the subtleties of the many intricate processes can easily be

overlooked. By modelling tumour growth to mimic data already collected, potentially piv-

otal characteristics can be identified. This can ensure that these interactions are monitored

closely in future experiments. Ultimately, the aim for applied mathematics in tumour

growth is to enlighten biologists as to the key processes, so that these can be artificially

altered in a manner that eradicates (or manages) the disease.

Parameterisation

Gaining parameters for tumour growth is a challenge within itself. There are many vari-

ables on varying scales - some of which can be difficult to measure. For example, the in

vivo measurement of a pressure that is probably very low (∼ 10 mmHg) in a sample that

is very small in size (max 1mm) is technically very difficult [84]. ‘An important role of

modelling in this respect is to determine, via sensitivity and/or bifurcation analysis, on

which parameters the behaviour of the model crucially depends, thereby identifying which

parameters need to be measured correctly’ [84]. When choosing parameters, the values

may be chosen to show qualitative predictions. An example is given in [46] where a phe-

nomenon was shown to be largely independent of the specific parameter values. All the

same, if parameters are available then a well-parameterised model can make quantative and

qualitative predictions.

7.4 A mathematical model of tumour growth

Mathematical models of tumour growth can offer effective and efficient ways to advance

our understanding of cancer research; see, for example, the survey papers [2, 84]. In recent

years there has been a large increase in the number of PDE models describing solid tumour

150

A Tumour Growth Problem 7.4. A mathematical model of tumour growth

growth.

Whilst differences between such models exist, many exhibit the following features:

• Equations describing the diffusion of nutrients or growth factors in and around the

tumour region (generally parabolic in type);

• Mass transfer equations describing the dynamic variation in tumour tissue (generally

hyperbolic);

• Mass balance equations describing the growth of the tumour (generally elliptic).

All of these equations are generally coupled via nonlinear interactions. For instance, the

growth dynamics of a specific cell type may depend in a nonlinear way on a specific nutrient

or growth factor. Examples include Ward and King [103] who developed a two phase model

of a growing multicellular tumour spheroid (MCTS) in which cells were considered to exist

in either a live or dead state, whilst Please et al. [80, 81] considered the two phases to be

live cells and water, respectively. In contrast Tindall and Please [96] considered a three

phase model to account for proliferating and quiescent cells and dead cell material. The

complexity of such nonlinear mathematical models means they are most often solved and

investigated numerically. Given the coupling between the various equation types (parabolic,

hyperbolic and elliptic) it is important that such methods are robust and accurate.

In this work we consider a recent two phase model of tumour growth developed by

Breward et al. [22], which is a specific form of the two-phase model in [29]. The two phases,

cell and water, each have an associated velocity, pressure and volume-fraction-averaged

stress tensor. We utilise the model to compare a number of moving mesh strategies with

the commonly employed fixed numerical mesh approach. Although three phase models may

incorporate more detail our aim here is to demonstrate that moving mesh methods are an

effective tool for the numerical solution of problems such as tumour growth models, and for

this purpose a two phase model suffices. The extension to three phase models is technical

but straightforward in principle. We focus on a two-phase model to demonstrate clearly

the velocity-based moving mesh schemes, which can be adapted to numerically solve more

sophisticated models.

Our first task is to non-dimensionalise the model. This involves the partial or full

removal of units by a suitable substitution of variables. Non-dimensionalisation can simplify

a problem by reducing the number of variables. It also aids analysis of the behaviour of

a system by recovering characteristic properties. In our case, the key motivator to non-

dimensionalising the system is to enable us to take advantage of parameterisations studied

elsewhere.

In the next subsection we present the normalised one-dimensional model proposed

in [22], followed by §7.5 where we surmise the fixed numerical mesh method used in [22], so

151

A Tumour Growth Problem 7.4. A mathematical model of tumour growth

as to compare results with our moving mesh strategies, of which there are three. The details

of these strategies are given in §7.6, where we solve the tumour growth model numerically

using each one in turn. The results from the fixed mesh method and the three moving mesh

methods are discussed in §7.7. Finally, in §7.8 we conclude that a moving mesh method can

prove to be an elegant and accurate numerical approach that updates the mesh smoothly

with the solution of the orginal model, whilst preserving chosen features of the model such

as local mass balance, or relative partial masses. However, since the mesh depends upon

the model, care must be taken when choosing a feature of the model to preserve.

Model formulation

The model assumes the tumour consists of two phases, water and live cells, which are

treated as incompressible fluids whose densities are equal, to leading order. The model is

derived by applying mass balance to the cell and water phases. Further assumptions made

are that inertial effects are negligible, no external forces act on the system, and, on the

timescale of interest, the cell and water phases can be treated as viscous and inviscid fluids

respectively. The model is applied to a tumour whose growth is parallel to the x-axis, and is

symmetric about its midpoint. We have altered the notation to be consistent with previous

chapters.

From [22] the non-dimensional model, in Cartesian form, for the volume fraction

of cells u(x, t) ∈ (0, 1), with t > 0 and x ∈ [0, b(t)], where b(t) is the tumour radius, is

comprised of

∂u

∂t
+

∂

∂x
(wu) =

(1 + s1)u(1 − u)C

1 + s1C
− s2 + s3C

1 + s4C
u =: S(u,C), (7.1)

∂

∂x

[

µu
∂w

∂x
− u

u− u∗

(1 − u)2
H(u− umin)

]

=
kuw

1 − u
, (7.2)

∂2C

∂x2
=

QuC

1 +Q1C
, (7.3)

where w(x, t) is the cell velocity, C(x, t) is the nutrient concentration and H is the Heaviside

function. The volume fraction of water is 1−u. The first term of S(u,C) in (7.1) represents

cell growth due to mitosis (cell division), and the second term represents cell death. The

parameters µ (a combination of the shear and bulk viscosities), k (the drag coefficient), and

s1, s2, s3, s4, Q and Q1 are all positive constants. In addition, umin and u∗ (a natural cell

packing density) are constants such that 0 < umin < u∗ < 1. We remark that equation (7.1)

arises from the global mass balance equation,

d

dt

∫ b(t)

0
u(x, t) dx =

∫ b(t)

0
S(u,C) dx. (7.4)

152

A Tumour Growth Problem 7.5. Rescaling to a fixed numerical mesh

The normalised model has initial and boundary conditions

b = 1, u = u0(x) at t = 0, (7.5)

w =
∂C

∂x
= 0 at x = 0, t > 0, (7.6)

µ
∂w

∂x
− u− u∗

(1 − u)2
H(u− umin) = 0, C = 1,

∂b

∂t
= w at x = b, t > 0. (7.7)

Remark 7.4.1 We observe that for the case of zero viscosity µ = 0, equations (7.1)

and (7.2) reduce to

∂u

∂t
=

∂

∂x

{

1 − u

k

∂

∂x
χ(u)

}

+ S(u,C),

where χ(u) = u u−u∗

(1−u)2
H(u− umin), so the PDE is now of the form (3.27).

In the next three subsections we show that moving the mesh to preserve features of the

model can produce results in line with [22]. We also present results which demonstrate

that the local feature of the model used to track the nodes needs to be carefully chosen.

However we first consider the numerical approach that is usually employed: rescaling the

problem to a fixed mesh.

7.5 Rescaling to a fixed numerical mesh

In [22] the moving domain x ∈ [0, b(t)] is mapped to a fixed numerical domain ξ ∈ [0, 1] by

the transformation ξ = x
b(t) , τ = t. This is a common approach for problems of this kind

since it allows standard numerical methods to be applied. However, there is a danger of

disturbing the original balance laws when using this technique.

Using the chain rule to differentiate u(ξ, τ) with respect to time τ , the transformed

problem is

∂u

∂τ
− ξ

b

db

dτ

∂u

∂ξ
+

1

b

∂

∂ξ
(wu) = S(u,C), (7.8)

∂

∂ξ

(

µu
∂w

∂ξ
− bu

u− u∗

(1 − u)2
H(u− umin)

)

=
kb2uw

1 − u
, (7.9)

∂2C

∂ξ2
=

Qb2uC

1 +Q1C
, (7.10)

153

A Tumour Growth Problem 7.5. Rescaling to a fixed numerical mesh

with initial and boundary conditions

b = 1, u = u0(x) at τ = 0, (7.11)

w =
∂C

∂ξ
= 0 at ξ = 0, τ > 0, (7.12)

µ
∂w

∂ξ
− b

u− u∗

(1 − u)2
H(u− umin) = 0, C = 1,

db

dτ
= w at ξ = 1, τ > 0. (7.13)

We note that in this approach the spatial derivatives in equation (7.8), unlike in the original

equation (7.1), are not in divergence form, i.e. there is an additional term on the left-hand

side that is not a total derivative with respect to ξ. This changes the structure of the

equation which can lead to an inappropriate numerical approximation.

Although details of the numerical method are not given in [22], in order to compare

our results to those in [22] we surmise their numerical method to produce similar results.

Many authors utilise the National Algorithms Group (NAG) routine D02RAF, which uses

a finite difference approach [103]. Using the above equations we postulate an algorithm

in which we choose a time step ∆τ > 0 and divide the region (0, 1) into N equal cells

of size ∆ξ = 1
N . We define ξj = j∆ξ, j = 0, 1, . . . , N , and τm = m∆τ , m = 0, 1, . . .,

and approximations um
j ≈ u(ξj , τ

m), bm ≈ b(τm), wm
j ≈ w(ξj , τ

m), Cn
j ≈ C(ξj , τ

m), and

Sm
j ≈ S(u(ξj , τ

m), C(ξj , τ
m)). Given um

j , we compute Cm
j , wm

j and ultimately um+1
j by a

series of steps (labelled Steps F1–F4 below):

Step F1: Find Cm
j by applying central finite differences to (7.10),

Cm
j−1 − 2Cm

j + Cm
j+1

(∆ξ)2
=
Q(bm)2um

j C
m
j

1 +Q1C
m
j

, (7.14)

for j = 0, 1, . . . , N −1, where from (7.12) and (7.13), we take Cm
−1 = Cm

1 and Cm
b = 1.

Newton’s method is used to solve the subsequent system of nonlinear equations when

Q1 6= 0.

Step F2: Find wm
j by applying central finite differences to (7.9),

1

∆ξ







um
j+ 1

2



µ
wm

j+1 − wm
j

∆ξ
− bm

um
j+ 1

2

− u∗

(1 − um
j+ 1

2

)2
H(um

j+ 1

2

− umin)





−um
j− 1

2



µ
wm

j − wm
j−1

∆ξ
− bm

um
j− 1

2

− u∗

(1 − um
j− 1

2

)2
H(um

j− 1

2

− umin)











=
k(bm)2um

j

1 − um
j

wm
j , (7.15)

for j = 1, 2, . . . , N −1, where um
j+ 1

2

= 1
2(um

j +um
j+1) and um

j− 1

2

= 1
2(um

j−1 +um
j), leading

to a linear system of equations. At the inner boundary wm
0 = 0, as given by (7.12).

154

A Tumour Growth Problem 7.5. Rescaling to a fixed numerical mesh

To determine um
N , we discretise the boundary condition (7.13) by taking values (·)m

N− 1

2

and (·)m
N+ 1

2

(the average about (·)m
N) to obtain

1

2



µ
wm

N+1 − um
N

∆ξ
− bm

um
N+ 1

2

− u∗

(1 − um
N+ 1

2

)2
H(um

N+ 1

2

− umin)





− 1

2



µ
wm

N − wm
N−1

∆ξ
− bm

um
N− 1

2

− u∗

(1 − um
N− 1

2

)2
H(um

N− 1

2

− umin)



 = 0. (7.16)

We then adapt (7.15) for j = N , using (7.16) to replace the first term in square

brackets, leading to

−
um

N+ 1

2

+ um
N− 1

2

∆ξ



µ
wm

N − wm
N−1

∆ξ
− bm

um
N− 1

2

− u∗

(1 − um
N− 1

2

)2
H(um

N− 1

2

− umin)



 =
k(bm)2um

N

1 − um
N

wm
N ,

where um
N+ 1

2

+ um
N− 1

2

= 2um
N . This yields a complete set of linear equations for the

velocity wm
j , j = 1, . . . , N .

Step F3: Discretise (7.8) using an explicit Euler time-stepping scheme and a central difference

approximation in space, giving

um+1
j − um

j

∆t
=

jwm
N (um

j+1 − um
j−1)

2bm
−
wm

j+1u
m
j+1 − wm

j−1u
m
j−1

2bm∆ξ
+ Sm

j ,

for j = 1, 2, . . . , N − 1. One-sided approximations are used at the boundaries.

Step F4: Since the tumour radius moves with the cell velocity at the boundary, we calculate

the tumour radius at the new time-level using

bm+1 = bm + ∆twm
N .

We then return to Step F1 to complete the next time step. This numerical scheme produces

results in line with those in [22] (see §7.7). Although this is a perfectly reasonable scheme,

in the next section we compare it with moving mesh methods by solving the same problem

numerically. We use a velocity-based moving mesh approach in which the velocities are

defined by three different strategies.

155

A Tumour Growth Problem 7.6. Moving mesh methods

7.6 Moving mesh methods

The key component of a velocity-based moving mesh method is the criterion used to define

the mesh velocity. We investigate three different choices here, in which we move the mesh

in the following ways:

Method A - proportional to the boundary position b(t). This construction is geometrical in nature

and is very similar to the method described above;

Method B - proportional to the local cell velocity w, i.e. based on a feature which is observed over

the whole tumour. We discover that this method preserves partial mass balances,

making it the same as the method described in §3.3;

Method C - in such a way as to conserve local mass fractions of the solution u in time (the method

described in §3.2). Like Method B, this is based on a prevalent feature of the model.

For all of these moving mesh methods (and in contrast to some fixed mesh methods), the

final mesh node tracks the tumour radius.

In the model given by equations (7.1)–(7.7), x is an independent variable. We intro-

duce the dependent variable x̃j(t), j = 0, . . . , N , to represent the N + 1 nodes of the mesh,

which are dependent on t. The mesh is initially equally-spaced; however, unlike the fixed

mesh, re-scaling the grid points leads to them becoming irregularly separated, in general.

We define the velocity of the j-th node to be

v(x̃j , t) = ṽj(t) =
dx̃j

dt
. (7.17)

We choose a time step ∆t > 0 and define tm = m∆t, m = 0, 1, We denote x̃j(t
m) by xm

j ,

and use the approximations um
j ≈ ũj(t

m), wm
j ≈ w̃j(t

m), Cm
j ≈ C̃j(t

m), and vm
j ≈ ṽj(t

m).

For a given xm
j and um

j , j = 0, . . . , N , we compute Cm
j , wm

j , vm
j , xm+1

j and um+1
j by the

following algorithm:

Step 1: Find Cm
j by approximating (7.3) (with boundary conditions given by (7.6) and (7.7))

using central finite differences on the non-uniform mesh {xm
0 , · · · , xm

N}. The resulting

set of equations is similar to (7.14), of the form

T lCm
j−1 + T dCm

j + T uCm
j+1 =

Qum
j C

m
j

1 +Q1C
m
j

, j = 0, 1, . . . , N − 1,

156

A Tumour Growth Problem 7.6. Moving mesh methods

where

T l =
2

(xm
j − xm

j−1)(x
m
j+1 − xm

j−1)
,

T d =
−2

(xm
j+1 − xm

j)(xm
j − xm

j−1)
,

T u =
2

(xm
j+1 − xm

j)(xm
j+1 − xm

j−1)
,

and where xm
−1 = −xm

1 , Cm
−1 = Cm

1 and Cm
N = 1, from the boundary conditions (7.6)

and (7.7).

Step 2: Find wm
j by applying central finite differences to (7.2) on the non-uniform mesh

{xm
0 , . . . , x

m
N} with boundary conditions given by (7.6) and (7.7). The resulting set of

equations is similar to (7.15) and takes the form

1

xm
j+ 1

2

− xm
j− 1

2







um
j+ 1

2



µ
wm

j+1 − wm
j

xm
j+1 − xm

j

−
um

j+ 1

2

− u∗

(1 − um
j+ 1

2

)2
H(um

j+ 1

2

− umin)





−um
j− 1

2



µ
wm

j − wm
j−1

xm
j − xm

j−1

−
um

j− 1

2

− u∗

(1 − um
j− 1

2

)2
H(um

j− 1

2

− umin)











=
kum

j

1 − um
j

wm
j , (7.18)

where xm
j+ 1

2

− xm
j− 1

2

= 1
2(xm

j+1 − xm
j−1), j = 1, 2, . . . , N − 1, and wm

0 = 0 (from (7.6)).

As with the fixed numerical mesh method, to determine the boundary value uN we

discretise the boundary condition (7.7) in a similar way to (7.16) by taking the average

at (·)m
N− 1

2

and (·)m
N+ 1

2

, giving

1

2



µ
wm

N+1 − wm
N

xm
N+1 − xm

N

−
um

N+ 1

2

− u∗

(1 − um
N+ 1

2

)2
H(um

N+ 1

2

− umin)





− 1

2



µ
wm

N − wm
N−1

xm
N − xm

N−1

−
um

N− 1

2

− u∗

(1 − um
N− 1

2

)2
H(um

N− 1

2

− umin)



 = 0. (7.19)

We then adapt (7.18) for j = N using (7.19) to replace the first term in square

brackets, leading to

−
um

N+ 1

2

+ um
N− 1

2

xm
N+ 1

2

− xm
N− 1

2



µ
wm

N − wm
N−1

xm
N − xm

N−1

−
um

N− 1

2

− u∗

(1 − um
N− 1

2

)2
H(um

N− 1

2

− umin)



 =
kum

N

1 − um
N

wm
N ,

where um
N+ 1

2

+ um
N− 1

2

= 2um
N . This yields a complete set of linear equations for the

velocity wm
j , j = 1, . . . , N .

157

A Tumour Growth Problem 7.6. Moving mesh methods

Step 3: Calculate the mesh velocity vm
j . This step will differ for each of Methods A, B and

C, and is detailed below.

Step 4: Update the mesh points by the explicit Euler scheme applied to (7.17)

xm+1
j = xm

j + ∆tvm
j , j = 0, 1, . . . , N,

with vm
j obtained from Step 3.

Step 5: Calculate um+1
j . The details of this step will again differ for each method used, and

are given in §7.6.1, 7.6.2 and 7.6.3 respectively.

When comparing this scheme to the fixed numerical mesh algorithm in §7.5, we see that the

first two steps are essentially the same, except with a non-uniform mesh. However, whereas

the third step of the algorithm in §7.5 calculates the solution u immediately from (7.8)

on the transformed mesh, the moving mesh methods calculate the nodal positions first

and then recovers the solution u. Another distinction between the fixed numerical mesh

method of §7.5 and the moving mesh methods is that the latter methods preserve a local

mass balance through being written in divergence form.

We now give details of each moving mesh method.

7.6.1 Method A

For Method A we move the nodes in Step 3 with a velocity proportional to the velocity of

the boundary, i.e.

vm
j =

xm
j

xm
N

wm
N , j = 0, 1, . . . , N.

This velocity-based strategy is similar to the numerical mapping in §7.5, see Remark 7.6.1

below. It is geometrical in nature and draws only on information from the boundary of the

tumour to determine how to move the nodes. Once the mesh velocity is defined, the new

mesh is determined as in Step 4 above.

Now consider Step 5. To recover u on the new mesh we take an integral-based

158

A Tumour Growth Problem 7.6. Moving mesh methods

approach. First define the partial masses Θj(t) by

Θ0(t) =

∫ x̃1(t)

x̃0(t)
u(x, t) dx, (7.20)

Θj(t) =

∫ x̃j+1(t)

x̃j−1(t)
u(x, t) dx, j = 1, . . . , N − 1, (7.21)

ΘN (t) =

∫ x̃N (t)

x̃N−1(t)
u(x, t) dx. (7.22)

Note that (7.21) and (7.22) do not have a lower limit of zero. The values Θj(0) are known

from the initial data. To calculate Θj(t), we begin by constructing Θ̇j(t). For ease of

explanation we give the explicit formulae for j = 1, . . . , N−1 only, but we note that similar

formulae hold for j = 0, N . We differentiate (7.21) using the Leibnitz integral rule to give

Θ̇j(t) =
d

dt

∫ x̃j+1(t)

x̃j−1(t)
u(x, t) dx =

∫ x̃j+1(t)

x̃j−1(t)

∂u

∂t
dx+ ũj+1(t)ṽj+1(t) − ũj−1(t)ṽj−1(t).

Substituting ∂u
∂t from (7.1) gives

Θ̇j(t) =

∫ x̃j+1(t)

x̃j−1(t)
S(u,C) dx + ũj+1(t)

[

ṽj+1(t) − w̃j+1(t)
]

− ũj−1(t)
[

ṽj−1(t) − w̃j−1(t)
]

. (7.23)

We use a mid-point approximation of the integral to obtain a discrete form of (7.23) at

time t = tm,

Θ̇m
j = (xm

j+1 − xm
j−1)S

m
j + um

j+1(v
m
j+1 − wm

j+1) − um
j−1(v

m
j−1 − wm

j−1), (7.24)

where Θ̇m
j ≈ Θ̇j(t

m), j = 1, . . . , N − 1. This equation allows us to determine Θm+1
j ≈

Θj(t
m+1) in the same manner that xm+1

j is calculated in Step 4, by the explicit Euler

scheme Θm+1
j = Θm

j + ∆tΘ̇m
j .

Once an approximation to the updated partial masses Θm+1
j has been determined,

the final step for Method A is to recover the solution um+1
j using a mid-point approximation

of (7.21) at time-level m+ 1, i.e.

um+1
j =

Θm+1
j

xm+1
j+1 − xm+1

j−1

, j = 1, . . . , N − 1.

As noted above, similar formulae hold for j = 0, N .

Remark 7.6.1 The velocity of Method A corresponds to the transformation-based method

159

A Tumour Growth Problem 7.6. Moving mesh methods

of §7.5 in the sense that the transformation is effected exactly by the boundary velocity.

However, when u is calculated in §7.5 using a velocity derived from the transformation, a

quasi-Lagrangian form of the mass balance equation is used in which the velocity is incorpo-

rated using a chain rule. The result is an extra term which cannot be written in divergence

form. By contrast, in Method A we have preferred to use an integral approach which already

incorporates local conservation.

7.6.2 Method B

Under this strategy, in Step 3 the velocity of each node is determined by the cell velocity

at that node, i.e.

vm
j = wm

j , j = 0, 1, . . . , N.

This way of moving the nodes relates to the tumour model more than Method A as it uses

local cell information rather than just information from the tumour boundary. Once the

mesh velocity has been determined, the new mesh is computed as in Step 4.

In Step 5, as with Method A, we define the partial mass fractions Θj(t) as in (7.21),

and follow Method A to completion, noting that v = w at the nodes. In particular, (7.24)

reduces to

Θ̇m
j = (xm

j+1 − xm
j−1)S

m
j , j = 1, . . . , N − 1,

since the terms in the square brackets of (7.23) are zero for vm
j = wm

j . Note that this

method corresponds with the mass balance equation (7.4) over arbitrary subintervals,

d

dt

∫ x̃j+1(t)

x̃j−1(t)
u(x, t) dx =

∫ x̃j+1(t)

x̃j−1(t)
S(u,C) dx.

Therefore this is the same as the moving mesh method described in §3.3.

7.6.3 Method C

Method C moves the nodes so as to conserve local mass fractions. Like Method B, this

method also uses a feature of the model to move the nodes in such a way that information

about the distribution of cells within the tumour is carried in time. We refer to the method

in §3.2 for

G ≡ S(u,C) − ∂

∂x
(wu), (7.25)

160

A Tumour Growth Problem 7.6. Moving mesh methods

and a(t) = 0, b(t) = b(t). Let the total mass be

θ(t) =

∫ b(t)

0
u(x, t) dx,

as given by (3.19). We define cj to be the mass fraction given by (3.19), so that

cj =
1

θ(t)

∫ x̃j(t)

0
u(x, t) dx, (7.26)

and calculate x̃j(t) such that cj remains constant with respect to time.

The total mass θ will be required in order to approximate u, so we first determine θ̇

by substituting (7.25) into (3.22) giving,

θ̇(t) =

∫ b(t)

0
S(u,C) − ∂

∂x
(wu) dx+ ubvb − u0v0.

Using the boundary conditions (7.6)–(7.7), gives

θ̇(t) =

∫ b(t)

0
S(u,C) dx. (7.27)

It is worth noting that equation (7.27) corresponds exactly to the global mass balance

result (7.4).

Equation (7.27) can be approximated directly once Step 1 has been carried out. We

define the approximation θ̇m ≈ θ̇(tm) and apply a trapezoidal rule approximation to (7.27),

θ̇m =
N−1
∑

j=0

1

2
(xm

j+1 − xm
j)(Sm

j+1 + Sm
j). (7.28)

The updated total mass θm+1 ≈ θ(tm+1) is then found using (7.28) and the same time-

stepping approach used in Step 4, i.e. θm+1 = θm + ∆tθ̇m.

To derive an expression for the mesh velocity, we substitute (7.25) into (3.23) giving,

ṽj(t) =
1

ũj(t)

(

θ̇(t)cj −
∫ x̃j(t)

0
S(u,C) − ∂

∂x
(wu) dx

)

.

Using the boundary condition um
0 = vm

0 = 0 (from (7.6)), gives

ṽj(t) =
1

ũj(t)

(

θ̇(t)cj −
∫ x̃j(t)

0
S(u,C) dx

)

− w̃j(t). (7.29)

161

A Tumour Growth Problem 7.7. Numerical Results

for ũj(t) = u(x̃j , t) 6= 0. We use the composite trapezoidal rule on the integral to obtain a

discrete form of (7.29) at time t = tm,

vm
j =

cj θ̇
m

um
j

− 1

um
j

j−1
∑

i=0

1

2
(xm

i+1 − xm
i)(Sm

i+1 + Sm
i) + wm

j . (7.30)

Using (7.30), the new mesh xm+1
j is computed as in Step 4. To approximate the updated

solution um+1
j in Step 5, we use (3.25),

um+1
j =

θm+1

θ0

(

x0
j+1 − x0

j−1

)

(

xm+1
j+1 − xm+1

j−1

) u0
j .

7.7 Numerical Results

In this section we solve the tumour growth model numerically using the methods of §7.5

and §7.6, and compare the outcomes from each approach. In our experiments we used two

sets of parameters from [22], which were chosen so as to focus on the qualitative nature of

the model equations. A purpose of [22] was to examine the effect of altering the tension

constant (by altering k and µ). To compare our moving mesh methods to the commonly

used fixed mesh method, we choose the parameters from [22] that correspond to plots of u,

v and b over time. Both sets of parameters take

Q = 0.5, Q1 = 0, s1 = s4 = 10, s2 = s3 = 0.5, u0(x) = u∗ = 0.8, (7.31)

with

k = 1, µ = 1, umin = 0.8, (7.32)

in the first case, and

k = 0.25, µ = 0.25, umin = 0.6, (7.33)

in the second case. The first case does not include the effects of cellular attraction, whilst

the second case does. Furthermore, the second case has smaller k and µ than the first case,

which corresponds to a larger tension constant. Figures 7.3(a)–7.4(d) show results obtained

with the method described in §7.5, with N = 80, ∆t = 7.5 × 10−3 and final time t = 75,

i.e. 10,000 time steps. Figure 7.3 uses parameters (7.31)–(7.32) and display a travelling

wave solution. Figure 7.4 uses the second set of parameters, (7.31) and (7.33), and show

the tumour radius settling to a steady state. Figures 7.3–7.4 closely resemble the results

162

A Tumour Growth Problem 7.7. Numerical Results

shown in [22] (however, results for the nutrient concentration were not included in [22]).

Next we examine the convergence of the moving mesh methods of §7.6 for the pa-

rameter set (7.31) and (7.32), as N increases and ∆t decreases. We solve for t ∈ [0, 4]

and compute results for N = 10 × 2N̂−1, N̂ = 1, . . . , 6. In order to compare results for

different values of N̂ , we denote the points of the mesh for a particular value of N̂ by

xj,N̂ (t), j = 0, . . . , (10 × 2N̂−1). We then compute both x̃j(4) and ũj(4) at j = 2n−1i for

each i = 0, . . . , 10 as N̂ increases. The values of x̃2n−1i(4) and ũ2n−1i(4) at these points are

represented by x
2N̂−1i,N̂

and u
2N̂−1i,N̂

respectively. To balance the spatial and temporal er-

rors, and recalling that we have used explicit Euler time-stepping, we choose ∆t = O
(

1
N2

)

,

precisely ∆t = 1

50(4N̂)
. We take the results computed with N̂ = 6 (i.e. N = 320) as our

reference mesh and solution. We anticipate that the pointwise ‘errors’ |u32i,6 − u
2N̂−1i,N̂

|
and |x32i,6 − x

2N̂−1i,N̂
| will decrease as N̂ increases, for each i = 0, . . . , 10.

As a measure of the errors, we calculate

EN (u) =

√

√

√

√

∑10
i=0(u32i,6 − u

2N̂−1i,N̂
)2

∑10
i=0(u32i,6)2

, EN (x̃) =

√

√

√

√

∑10
i=0(x32i,6 − x

2N̂−1i,N̂
)2

∑10
i=0(x32i,6)2

,

for N̂ = 1, . . . , 4 (i.e. N = 10, 20, 40, 80). We investigate the hypothesis that

EN (u) ∼ 1

Np
and EN (x̃) ∼ 1

N q
,

for large N , where p and q are the estimated orders of convergence for EN (u) and EN (x̃)

approximated respectively by

p2N = − log2

(

E2N (u)

EN (u)

)

q2N = − log2

(

E2N (x̃)

EN (x̃)

)

.

Since each step of our scheme is second order in space and first order in time, and recalling

that ∆t = O
(

1
N2

)

, we might expect to see p, q ≈ 2. Convergence results are shown in

Table 7.1. We see that EN (u) and EN (x̃) decrease as N increases for each of the moving

mesh methods. This strongly suggests that as the number of nodes increases, both the

solution u and the position of the nodes x̃j are converging. For Methods A and B, the

p-values presented in this table indicate superlinear convergence of u, and the q-values

suggest second-order convergence of x̃. For Method C, the p and q values suggest second-

order convergence of both u and x̃.

Having established convergence of our moving mesh schemes we now compare the

numerical results from the methods of §7.6 with those of the method described in §7.5.

We generate results using the parameters detailed in (7.31) and (7.32). All three

163

A Tumour Growth Problem 7.7. Numerical Results

0 1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t = 7.5
t = 15
t = 22.5
t = 30
t = 37.5
t = 45
t = 52.5
t = 60
t = 67.5
t = 75

u
(x

,
t)

x

(a) Cell volume fraction.

0 1 2 3 4 5 6 7 8
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

w
(x

,
t)

(b) Cell velocity.

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

8

t

b(
t)

(c) Tumour radius.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

C

(d) Nutrient concentration.

Fig. 7.3: The fixed numerical mesh method and parameter set (7.31)–(7.32),

legend in Figure 7.3(a).

164

A Tumour Growth Problem 7.7. Numerical Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.79

0.792

0.794

0.796

0.798

0.8

0.802

0.804

0.806

t = 7.5
t = 15
t = 22.5
t = 30
t = 37.5
t = 45
t = 52.5
t = 60
t = 67.5
t = 75

u
(x

,
t)

x

(a) Cell volume fraction.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x

w
(x

,
t)

(b) Cell velocity.

0 10 20 30 40 50 60 70 80
1

1.5

2

2.5

3

3.5

4

4.5

t

b(
t)

(c) Tumour radius.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

C

(d) Nutrient concentration.

Fig. 7.4: The fixed numerical mesh method and parameter set (7.31) and (7.33),

legend in Figure 7.4(a).

165

A Tumour Growth Problem 7.7. Numerical Results

Method N EN (u) pN EN (x̃) qN
A 10 2.034 × 10−4 - 1.275 × 10−5 -

20 8.346 × 10−5 1.3 3.306 × 10−6 1.9
40 3.547 × 10−5 1.2 8.478 × 10−7 2.0
80 1.471 × 10−5 1.3 2.050 × 10−7 2.0

B 10 2.299 × 10−4 - 6.207 × 10−4 -
20 9.293 × 10−5 1.3 1.109 × 10−4 2.5
40 3.891 × 10−5 1.3 3.043 × 10−5 1.9
80 1.600 × 10−5 1.3 7.224 × 10−6 2.1

C 10 1.448 × 10−5 - 1.819 × 10−5 -
20 3.645 × 10−6 2.0 1.944 × 10−6 3.2
40 8.807 × 10−7 2.0 7.148 × 10−7 1.5
80 2.090 × 10−7 2.1 1.880 × 10−7 1.9

Table 7.1: Relative errors for u and x̃ with rates of convergence using the

explicit Euler time-stepping scheme.

methods were investigated with N = 80, ∆t = 7.5× 10−3, and final time t = 75, i.e. 10,000

time-steps. Each of Methods A and C produce very similar results, so only the results from

Method C and Method B are plotted below. Figure 7.5 is due to Method C and displays the

same travelling wave characteristics as the results in [22] for the same parameters (closely

resembling Figures 7.3(a)–7.3(c)). The value of u near the free boundary remains fairly

constant, and u at the centre of the tumour decreases at a steady rate as time increases.

The velocity peaks near the boundary, but the velocity at the boundary appears to stay

constant with respect to time for t ≥ 37.5. This coincides with the tumour radius growing

steadily, Figure 7.5(c). The minima are subtly different to that of [22]; the troughs in

Figure 7.3(b), which resemble those in [22], are slightly less rounded than those shown in

Figure 7.5(b). Interestingly, Method A (a locally conservative version of the method in

§7.5) also presented rounder minima, identical to those in Figure 7.5(b).

Figure 7.6 show that Method B appears to behave like Method A and C (and [22])

at early times. However, after approximately t = 45, u appears to grow at the boundary,

and no longer decreases at a regular rate at the centre of the tumour. Furthermore, the

velocity at the boundary decreases considerably, with the tumour radius almost at a steady

state at t = 75. This behaviour is not apparent in [22], nor from Methods A and C. The

plots from Method B are less smooth, despite the same number of nodes being used for

each method. There is a considerable kink in u and w for t = 45 which appears to dampen

at later times. The solution u does not drop below 0.4 at the centre of the tumour, even

for t = 100 (not shown here). This erratic behaviour remains with a smaller ∆t, and when

using an adaptive second and third order Runge-Kutta method for the time-stepping (see

Remark 7.7.1 below), suggesting that this behaviour is due to the choice of the velocity in

166

A Tumour Growth Problem 7.7. Numerical Results

0 1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t = 7.5
t = 15
t = 22.5
t = 30
t = 37.5
t = 45
t = 52.5
t = 60
t = 67.5
t = 75

u
(x̃

j
,
t)

x̃j(t)

(a) Cell volume fraction.

0 1 2 3 4 5 6 7 8
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x̃j(t)

w
(x̃

j
,
t)

(b) Cell velocity.

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

8

t

x̃
N

(c) Tumour radius.

Fig. 7.5: Method C and parameter set (7.31)–(7.32), legend in Figure 7.5(a).

167

A Tumour Growth Problem 7.7. Numerical Results

the numerical method. The processes of Method A and Method B are very similar, and

because Method A behaves as in Figure 7.5, it is reasonable to conclude that tracking the

cell velocity with the mesh nodes, as in Method B, results in the mesh becoming too coarse

in some areas, and too fine in others. This is a problem that could be compounded over

time, especially in the area where the cell velocities vary between positive and negative;

resulting in nodes moving in opposite directions, leaving a considerable gap in between.

Indeed if we look at Figure 7.6(b) for t = 75, we see that the velocity is mostly negative,

so that most of the nodes are moving to the left.

As a further example, we use the parameter set (7.31) and (7.33), and again present

results for the method of §7.5 and the moving mesh methods in §7.6. Once the steady

state is reached at t ≈ 40, all cells within the region have negative velocity, i.e. the cells

are moving inwards. The comparisons between the methods had similar outcomes: the

results for Methods A and C (Figure 7.7) resembled the results in [22] (as shown in Figures

7.4(a)–7.4(c)); Method B moves the nodes evenly for early times, but once negative spatial

velocities occur, the nodes become clustered to the left, as shown in Figure 7.8. When the

tumour radius settles to a steady state, the internal cells continue moving. This feature

means that the mesh for Method B never settles to a steady state, whereas the meshes for

Methods A and C do.

Finally, we examine exactly how the mesh moves for each of the different moving

mesh methods. We take the parameters that produce a steady travelling-wave profile, (7.31)

and (7.32). By definition, the nodes with Method A remain equally spaced over time, and

move to the right uniformly with the tumour growth, as shown in Figure 7.9(a). The mesh

for Method B, Figure 7.9(b), begins by spreading out fairly equally. However, at later times

when negative velocities are introduced, the nodes cluster nearer the centre of the tumour.

Indeed, it can be seen that most nodes will initially move out with the tumour growth, but

then return to the tumour centre. The node at the boundary is then significantly separated

from the others, causing unsatisfactory coarseness at the edge. When the nodes are moved

by Method C, Figure 7.9(c), the nodes behave similar to the nodes of Method A for t < 30.

For larger times, the nodes near the tumour centre spread. We would expect the spread to

be more prominent as the tumour grows, i.e. the nodes naturally spread where u is low,

and cluster where u is larger. Moreover, each node only moves to the right as the tumour

grows. When comparing Figures 7.9(a) and 7.9(c) it becomes apparent why they produce

nearly the same results, especially for t ≤ 30.

Remark 7.7.1 For the moving mesh methods we also considered using a time-stepping

scheme based on an adaptive second and third order predictor-corrector Runge-Kutta method,

which chooses the time step automatically to minimise the error (specifically, we used

168

A Tumour Growth Problem 7.7. Numerical Results

0 1 2 3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

t = 7.5
t = 15
t = 22.5
t = 30
t = 37.5
t = 45
t = 52.5
t = 60
t = 67.5
t = 75

u
(x̃

j
,
t)

x̃j(t)

(a) Cell volume fraction.

0 1 2 3 4 5 6 7
−0.1

−0.05

0

0.05

0.1

0.15

x̃j(t)

w
(x̃

j
,
t)

(b) Cell velocity.

0 10 20 30 40 50 60 70 80
1

2

3

4

5

6

7

t

x̃
N

(c) Tumour radius.

Fig. 7.6: Method B and parameter set (7.31)–(7.32), legend in Figure 7.6(a).

169

A Tumour Growth Problem 7.7. Numerical Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.775

0.78

0.785

0.79

0.795

0.8

0.805

0.81

0.815

t = 7.5
t = 15
t = 22.5
t = 30
t = 37.5
t = 45
t = 52.5
t = 60
t = 67.5
t = 75

u
(x̃

j
,
t)

x̃j(t)

(a) Cell volume fraction.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x̃j(t)

w
(x̃

j
,
t)

(b) Cell velocity.

0 10 20 30 40 50 60 70 80
1

1.5

2

2.5

3

3.5

4

4.5

t

x̃
N

(c) Tumour radius.

Fig. 7.7: Method C and parameter set (7.31) and (7.33), legend in Figure 7.7(a).

170

A Tumour Growth Problem 7.7. Numerical Results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.77

0.78

0.79

0.8

0.81

0.82

0.83

t = 7.5
t = 15
t = 22.5
t = 30
t = 37.5
t = 45
t = 52.5
t = 60
t = 67.5
t =75

u
(x̃

j
,
t)

x̃j(t)

(a) Cell volume fraction.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x̃j(t)

w
(x̃

j
,
t)

(b) Cell velocity.

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

4.5

t

x̃
N

(c) Tumour radius.

Fig. 7.8: Method B and parameter set (7.31) and (7.33), legend in Figure 7.8(a).

171

A Tumour Growth Problem 7.7. Numerical Results

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

x̃j(t)

t

(a) Method A.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

x̃j(t)

t

(b) Method B.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

x̃j(t)

t

(c) Method C.

Fig. 7.9: The position of nodes, parameter set (7.31) and (7.33).

172

A Tumour Growth Problem 7.8. Summary for the tumour growth problem

ODE23 in Matlab). When using this scheme, we took a maximum ∆t = O
(

1
N

)

to balance

the spatial and temporal errors, precisely max ∆t = 1
50(2n) . The results from the Runge-

Kutta method were very similar to results from the explicit Euler time-stepping scheme,

indicating that our approach is robust to different time-stepping approaches, and is not

particularly stiff.

7.8 Summary and conclusions for the tumour growth prob-

lem

We have numerically solved the non-dimensionalised form of an avascular tumour growth

model given in [22] using three different moving mesh methods. Working with the original

non-dimensionalised form of the model, we have replicated the results of [22] and presented

three different velocity-based approaches to move the mesh. The different approaches to

define the mesh velocity are: (A) proportional to the boundary movement; (B) following

the cell velocity; (C) conserving local mass fractions. To advance in time, each of the

three methods used either explicit Euler time-stepping or adaptive second and third order

Runge-Kutta formulas. Each method, with explicit Euler time-stepping, appears to be

convergent for small times. Methods A and C continue to work well for larger times and

replicate results in [22], but Method C has the added advantage that the nodes move in

a manner that preserves a feature of the model, specifically local mass fractions resulting

in higher resolution at the boundary. However, care is required when choosing a feature

of the model to determine the mesh velocity, as evidenced by the poor resolution apparent

when using Method B over longer times. Method C is an especially effective method when

solving problems with self-similar solutions as it preserves similarity.

In the two-phase model studied here the outer boundary is accurately followed. More

recent three-phase models that take into account proliferating, quiescent and necrotic cells

can be treated in a similar way, even though these models cannot be reduced to the study

of a single component such as u. However, in a two-phase situation the necrotic core can

possibly be modelled as a separate inner region between inner and outer moving boundaries.

A paper detailing the results in this chapter has been submitted to ‘Mathematical

and Computer Modelling’ [65].

The next chapter summarises our work on moving meshes.

173

8
Summary and Further Work

Work on moving meshes has evolved considerably over recent years, becoming a versatile

tool to accurately simulate a wide range of problems. The key advantage of a moving

mesh is its ability to adjust its distribution to focus on areas of interest, such as a moving

boundary or blow-up. In this thesis we have discussed one such method, a finite difference

moving mesh method which is well-adapted to solving one-dimensional nonlinear IBVPs. In

most cases the velocity was determined by considering the partial integrals of the solution

∫ x̃j(t)

a(t)
u dx, (8.1)

and either keeping them constant or balancing them with one of the features of the PDE.

In §3.1 we considered problems that conserve mass, and set the partial masses (8.1) to be

constant. In §3.2 we generalised upon this approach for problems that do not conserve

mass, and set the relative partial masses

∫ x̃j(t)

a(t) u dx
∫ b(t)
a(t) u dx

,

to be constant. This strategy is related to the GCL method and is similar to that used by

Baines, Hubbard and Jimack for their moving mesh finite element algorithm [5]. We also

174

Summary

considered balancing the partial masses (8.1) with a source term, where appropriate.

We applied these methods to a number of moving boundary problems to investigate

the effectiveness of this moving mesh approach. The problems we numerically solved to

demonstrate how our moving mesh approach increased in complexity, initially looking at

problems which conserve mass: the PME and Richards’ equation, both of which are fluid

flow problems. Then we looked at a problem with a variable mass: the Crank-Gupta

problem, which is used to model oxygen-diffusion through tissue. Lastly, we considered

an avascular tumour growth model, which is a system for which the mass increases over

time. This has three PDEs (two quasi-steady) which need to be updated at each time-level.

The quasi-steady PDEs were solved using finite difference on an irregular mesh, but this

process did not compromise the moving mesh method. We summarise the application of

each moving mesh approach in turn, and then discuss the time-stepping schemes used.

Preserving mass fractions

Preserving mass fractions was applied in all the problems. We examined the accuracy in all

cases and found that the numerical solution converged with roughly second-order accuracy.

Furthermore, for the Crank-Gupta problem and the tumour growth model, we found that

preserving mass fractions can lead to a higher resolution at the boundary, which is desirable.

However, the radial case for the Crank-Gupta problem highlighted problems that may

occur when estimating the boundary position. Generally, if the boundary positions are not

given, we calculated the boundary position with a polynomial extrapolation from the points

near the moving boundary. The Crank-Gupta problem approaches the outer boundary

smoothly with a zero derivative, making extrapolation inaccurate. This is overcome in

the one-dimensional case by considering the asymptotic behaviour of the solution near

the boundary, but this was not suitable for the radial Crank-Gupta problem. This is of

little concern as regards the oxygen-diffusion model, since our model was one-dimensional

(even though in reality the problem is three-dimensional). However, it highlights that an

extrapolation may not always be suitable, and care must be taken when estimating the

boundary position.

Using an alternative mass balance

As an alternative, the method given in §3.3 was applied to the Crank-Gupta problem and

the tumour growth model. For Richards’ equation in §5.6 we considered a slight variation

of the method given in §3.3. The method in §3.3 set the partial masses equal to the source

term, and the method in §5.6 set the partial masses equal to the flux term. When balancing

the partial masses with a term from the PDE the results are less satisfactory than setting

175

Summary

them to a constant. We saw that balancing the partial masses to the flux term of Richards’

equation provided results that initially appear satisfactory, but when compared to the mass

conserving approach we notice that the alternative method is less accurate. For the Crank-

Gupta problem, balancing the partial masses with the source term led to severe inaccuracies

in the boundary behaviour. For the tumour growth problem, balancing the source term with

the partial masses is equivalent to using the cell velocity to define the node movement. This

led to inaccuracies when cells displayed negative velocities (indicating that the cells were

moving inwards). Our work suggests that careful consideration is required when choosing

a feature to balance with the partial masses, and any inaccuracies which result from a bad

choice will be unique to the problem being numerically solved.

Time-stepping schemes

Throughout this thesis we have used an explicit Euler time-stepping scheme. Other explicit

time-stepping schemes we have used are the Runge-Kutta predictor-corrector methods built

into Matlab (ODE23, ODE45, ODE15s). There was little difference in the results from all

the Matlab solvers, indicating that none of the problems lead to a stiff system of differential

equations for the x̃j(t). We found that all explicit time-stepping schemes produced accurate

and stable results, with no mesh tangling, provided that sufficiently small time-steps were

taken.

The semi-implicit scheme we proposed in §3.4 ensures that the mesh does not tangle.

We found this approach to be suitable for the PME, allowing the time-step to be larger

than when an explicit time-stepping scheme is used. However, care is still required when

taking a larger time step to ensure accuracy. The semi-implicit time-stepping scheme is less

versatile than the explicit Euler time-stepping scheme since not all mesh velocity equations

(such as Richards’ equation) can be written in the required form

vm
j =

1

∆xm
j

(

φm
j+ − φm

j−

)

.

However, Richards’ equation showed that we can still use a semi-implicit scheme that is

not in the form above, but Theorem 3.4.1 is not satisfied. For this equation, we adapted

the moving mesh approach so as to balance the partial masses with the flux term. This

allowed us to use a semi-implicit time-stepping scheme which satisfied Theorem 3.4.1, but

we found it to be less accurate since the partial masses are updated explicitly, whilst the

mesh velocities are updated semi-implicitly, suggesting that updating them simultaneously

is necessary. This concept is more apparent with the Crank-Gupta problem where we

noticed inaccuracies at the inner boundary.

176

Summary

Conclusions and further work

We conclude that the mass-conserving approach, with an explicit time-stepping scheme,

is accurate for a range of problems. We note that care is required when calculating the

boundary velocities, and when implementing a semi-implicit time-stepping scheme. It may

be desirable to apply a semi-implicit time-stepping scheme when numerically solving the

tumour growth model since the solution over larger time may be required.

We considered some PME properties in details, but we did not investigate ordering

of solutions and the existence of attractors. These properties are known analytically, and

we would have liked to replicate them numerically. This is an area of current investiagtion

for which a paper is in preparation.

The tumour growth model demonstrates that the method can be used on more com-

plex problems arising from various mathematical models. There exists many problems,

such as a three phase model of tumour growth [96], the slime mould model [31] and cell

motility [40], which are systems where two or more variables are coupled. A natural pro-

gression from this thesis would be to apply the moving mesh method to these problems by

choosing a preferred variable to determine the mesh movement.

177

Bibliography

[1] Ahamadi, M. and Harlen, O.G. (2008) A Lagrangian finite element method for

simulation of a suspension under planar extensional flow. J. Comput. Phys. 227

7543-7560.

[2] Araujo, R.P. and McElwain, D.L.S. (2004) A history of the study of solid tumour

growth: The contribution of mathematical modelling. Bull. Math. Biol. 66 1039–

1091.

[3] Baer, T.A., Cairncross, R.A., Schunk, P.R., Rao, R.R. and Sackinger, P.A. (2000)

A finite element method for free surface flows of incompressible fluids in three di-

mensions. Part II. Dynamic wetting lines. Int. J. Numer. Meth.Fl. 33 405-427.

[4] Baines, M.J. (1994) Moving Finite Elements. Oxford University Press.

[5] Baines, M.J., Hubbard, M.E. and Jimack, P.K. (2005) A moving mesh finite element

algorithm for the adaptive solution of time-dependent partial differential equations

with moving boundaries. Appl. Numer. Math. 54 450–469.

[6] Baines, M.J., Hubbard, M.E. and Jimack, P.K. (2005) A moving mesh finite element

algorithm for fluid flow problems with moving boundaries. Int. J. Numer. Meth. Fl.

47 1077–1083.

[7] Baines, M.J., Hubbard, M.E., Jimack, P.K. and Jones, A.C. (2006) Scale-invariant

moving finite elements for nonlinear partial differential equations in two dimensions.

Appl. Numer. Math. 56 230-252.

[8] Baines, M.J., Hubbard, M.E., Jimack, P.K. and Mahmood, R. (2009) A moving-mesh

finite element method and its application to the numerical solution of phase-change

problems. Commun. Comput. Phys. 6 595–624.

[9] Baines, M.J., Hubbard, M.E. and Jimack, P.K. (2011) Velocity-based moving mesh

methods for nonlinear partial differential equations. Commun. Comput. Phys. To

appear.

178

[10] Barari, A., Omidvar, M., Ghotbi, A.R. and Ganji, D.D. (2009) Numerical analysis

of Richards’ problem for water penetration in unsaturated soils. Hydrol. Earth Syst.

Sci. 6 6359-6385.

[11] Barenblatt, G.I. (1996) Scaling, self-similarity, and intermediate asymptotics. Cam-

bridge University Press.

[12] Barenblatt, G.I. (1952) On some unsteady motions of fluids and gases in a porous

medium. Prikladnaya Matematika i Mekhanika. (Translated in J. Appl. Math.

Mech.) 6 67–78.

[13] Barlow, A. (2008) A compatible finite element multi-material ALE hydrodynamics

algorithm. Int. J. Numer. Meth. Fluids 56 953–964.

[14] Becket, G., Mackenzie, J.A. and Roberston, M. L. (2001) A moving mesh finite

element method for the solution of two-dimensional Stefan problems. J. Comput.

Phys. 168 500-518.

[15] Berg, M.de, Cheong, O., Kreveld, M.van and Overmars, M. (2008) Computational

Geometry: Algorithms and Applications. Springer-Verlag.

[16] Blake, K.W. (2001) Moving mesh methods for non-linear parabolic partial differen-

tial equations. Ph.D Thesis, University of Reading, UK.

[17] Blake, K. and Baines, M.J. (2002) A moving mesh method for non-linear parabolic

problems. Numerical Analysis Reports, 2/2002, University of Reading, UK.

[18] Blowey, J.F., King, J.R. and Langdon, S. (2007) Small and waiting-time behaviour

of the thin-film equation. SIAM J. Appl. Math. 67 1776–1807.

[19] Bonnerot, R. and Jamet, P. (1977) Numerical computation of the free boundary for

two-dimensional Stefan problem by space-time finite elements. J. Comput. Phys. 25

163–181.

[20] Brackbill, J.U. and Saltzman, J.S. (1982) Adaptive zoning for singular problems in

two dimensions. J. Comput. Phys. 46 342-368.

[21] Brackbill, J.U. (1993) An adaptive grid with direction control. J. Comput. Phys.

108 38-50.

[22] Breward, C.J.W., Byrne, H.M. and Lewis, C.E. (2002) The role of cell-cell interac-

tions in a two-phase model for avascular tumour growth. J. Math. Biol. 45 125–152.

[23] Budd, C.J., Leimkuhler, B. and Piggott, M.D. (2001) Scaling invariance and adap-

tivity. Appl. Numer. Math. 39 261–288.

179

[24] Budd, C.J. and Piggott, M.D. (2005) The geometric integration of scale-invariant

ordinary and partial differential equations. J. Comput. Appl. Math. 128 399–422.

[25] Budd, C.J. and Williams, J.F. (2006) Parabolic Monge-Ampere methods for blow-up

problems in several spatial dimensions. J. Phys. A 39 5425–5444.

[26] Budd, C.J. and Williams, J.F. (2008) Moving mesh generation using the Parabolic

Monge-Ampere equation. SIAM J. Sci. Comput.

[27] Budd, C., Huang, W., and Russell, R.D. (1996) Moving mesh methods for problems

with blow-up. SIAM J. Sci. Stat. Comput. 17 305–327.

[28] Budd, C., Huang, W., and Russell, R.D. (2009) Adaptivity with moving grids. Acta

Numer. 111–241.

[29] Byrne, H.M., King, J.R., McElwain, D.L.S. and Preziosi, L. (2003) A two-phase

model of solid tumour growth. App. Math. Lett. 16 567–573.

[30] Byrne, H.M. (1999a) Using mathematics to study solid tumour growth. Proceedings

of the 9th General Meetings of European Women in Mathematics. 81–107.

[31] Byrne, H.M and Owen, M.R. (2004) A new interpretation of the Keller-Segel model

based on multiphase modelling. Jour. of Math. Biol 49 604–626.

[32] Cairncross, R.A., Schunk, P.R., Baer, T.A., Rao, R.R. and Sackinger, P.A. (2000) A

finite element method for free surface flows of incompressible fluids in three dimen-

sions. Part I. Boundary fitted mesh motion. Int. J. Numer.Meth. Fl. 33 375-403.

[33] Cao, W., Huang, W. and Russell, R.D. (2002) A moving-mesh method based on the

geometric conservation law. SIAM J. Sci. Comput. 24 118-142.

[34] Cao, W., Huang, W. and Russell, R.D. (2003) Approaches for generating moving

adaptive meshes: location versus velocity. Appl. Numer. Math. 47 121-138.

[35] Caramana, E.J. and Shashkov, M.J. (1998) Elimination of artificial grid distortion

and hourglass type motions by means of Lagrangian subzonal masses and pressures.

J. Comput. Phys. 142 521-561.

[36] Carlson, N.N. and Miller, K. (1998) Design and application of a gradient-weighted

moving finite element code I: In one dimension. SIAM J. Sci. Comput. 19 728-765.

[37] Carlson, N.N. and Miller, K. (1998) Design and application of a gradient-weighted

moving finite element code II: In two dimensions. SIAM J. Sci. Comput. 19 766-798.

180

[38] Crank. J. and Gupta. R.S. (1972) A moving boundary problem arising from the

diffusion of oxygen in absorbing tissue. J. Inst. Maths. Applics. 10 19–33.

[39] Dahmardah, H.O. and Mayers, D.F. (1983) A Fourier-Series solution of the Crank-

Gupta equation. IMA J. Numer. Anal. 3 81–85.

[40] DiMilla. P.A., Barbee, K. and Lauffenburger, D.A. (1991) Mathematical model for

the effects of adhesion and mechanics on cell migration speed. Biophys J. 60 15–37.

[41] Doedel, E.J. (1981) AUTO, A program for the automatic bifurcation analysis of

autonomous systems. Congr. Numer. 30 265–384.

[42] Dorfi, E.A. and Drury, L.O’C. (1987) Simple adaptive grids for 1-D initial value

problems. J. Comput. Phys. 69 175–195.

[43] Demirdzic, I. and Peric, M. (1988) Space conservation law in finite volume calcula-

tions of fluid flow. Int. J. Numer. Meth. Fl. 8 1037-1050.

[44] Demirdzic, I. and Peric, M. (1990) Finite volume method for prediction of fluid flow

in arbitrarily shaped domains with moving boundaries. Int. J. Numer. Meth. Fl. 10

771-790.

[45] Dvinsky, A.S. (1991) Adaptive grid generation from harmonic maps on Riemannian

manifolds. J. Comput. Phys. 95 450-476.

[46] Gatenby, R.A. and Gawlinkski, E.T. (1996) A reaction-diffusion model of cancer

invasion. Cancer Res. 56 5745-5753.

[47] Gatenby, R.A. and Maini, P.K. (2003) Cancer summed up. Nature 421 321.

[48] Gelinas, R.J., Doss, S.K. and Miller, K. (1981) The moving finite element method:

application to general partial differential equations with multiple large gradients. J.

Comput. Phys. 40 202–249.

[49] Greenspan, H.P. (1976) On the growth and stability of cell cultures and solid tu-

mours. J. Theoret. Biol. 56 229–242.

[50] Grindrod, P. Ricatti rides again. Private communication.

[51] Hansen, E. and Hougaard, P. (1974) On a moving boundary problem with biome-

chanics. H. Inst. Maths. Applics. 13 385–398.

[52] Harlen, O.G., Rallinson, J.M. and Szabo, P. (1995) A split Lagrangian-Eulerian

method for simulating transient viscoelastic flows. J. Non-Newton. Fluid 60 81-104.

181

[53] Harten, A. and Hyman, J.M. (1983) Self-adjusting grid methods for one-dimensional

hyperbolic conservation laws. J. Comput. Phys. 50 235–269.

[54] Heil, M. (2004) An efficient solver for the fully coupled solution of large displacement

fluid-structure interaction problems. Comput. Methods Appl. M. 193 1-23.

[55] Huang, W., Ren, Y. and Russell, R.D. (1994) Moving mesh partial differential equa-

tions (MMPDEs) based on the equidistribution priciple. SIAM J. Sci. Comput. 31

709-730.

[56] Huang, W. and Russell, R.D. (1996) A moving collocation method for solving time

dependent partial differential equations. Appl. Numer. Math 34 1106-1126.

[57] Huang, W. and Russell, R.D. (2011) Adaptive Moving Mesh Methods. Springer,

New York.

[58] Knupp, P.M. (1995) Mesh generation using vector-fields. J. Comput. Phys. 119 142-

148.

[59] Knupp, P.M. (1996) Jacobian-weighted elliptic grid generation. SIAM J. Sci. Com-

put. 17 1475-1490.

[60] Kuhl, E., Hulshoff, S. and Borst, R.de (2003) An arbitrary Lagrangian Eulerian

finite-element approach for fluid-structure interaction phenomena. Int. J. Numer.

Meth. Eng. 57 117-142.

[61] Kuraz, M. (2009) An Adaptive Time Discretization to the Numeri-

cal Solution of Richards’ Equation. Czech University of Life Science

http://klobouk.fsv.cvut.cz/∼miguel/poster.pdf.

[62] Lacey, A.A., Ockendon, J.R. and Tayler, A.B. (1982) Waiting-time solutions of a

nonlinear diffusion equation. SIAM J. of Appl. Maths. 42 1252–1264.

[63] Landman, K.A. and Please, C.P. (2001) Tumour dynamics and necrosis: Surface

tension and stability. IMA J. Math. Appl. Medicine Biol. 18 131-158.

[64] Lee, H.K. (2001) For the behaviour of the solutions of a general porous media equa-

tions at large time scale. Information Center for Mathematical Sciences, Seoul Uni-

versity, 4 33–88.

[65] Lee, T.E., Baines, M.J., Langdon, S. and Tindall, M.J. (2011) A moving mesh

approach for modelling avascular tumour growth. Math. Comput. Model Submitted.

182

[66] Lee, K.A. and Vazquez, J.L. (2003) Geometrical properties of solutions of the Porous

Medium Equation for large times. Indiana University Mathematics Journal 52 991–

1015.

[67] Liao, G. and Anderson, D. (1992) A new approach to grid generation. Appl. Anal.

44 285-298.

[68] Liao, G. and Xue, J. (2006) Moving meshes by the deformation method. J. Com-

put.Appl. Math. 195 83-92.

[69] Lubkin, S.R. and Jackson, T. (2002) Mulitphase mechanics of capsule formation in

tumours. J. Biomech. Eng. 124 237–243.

[70] Mackenzie, J.A. and Robertson, M.L. (2000) The numerical solution of one-

dimensional phase change problems using an adaptive moving mesh method. J.

Comput. Phys. 161 537–557.

[71] Mendes, P.A. and Branco, F.A. (1999) Analysis of fluid-structure interaction by an

arbitrary Lagrangian-Eulerian finite element formulation. Int. J. Numer. Meth. Fl.

30 897-919.

[72] Miller, K. and Miller, R.N. (1981) Moving finite elements. I. SIAM J. Numer. Anal.

18 1019-1032.

[73] Miller, K. (1981) Moving finite elements. II. I, SIAM J. Numer. Anal. 18 1033-1057.

[74] Muttin, F., Coupez, T., Bellet, M. and Chenot, J.L. (1993) Lagrangian finite-element

analysis of time-dependent free-surface flow using an automatic remeshing technique

application to metal casting. Int. J. Numer. Meth. Eng. 36 2001-2015.

[75] Osman, K. (2005) Numerical schemes for a non-linear diffusion problem. MSc Dis-

sertation, University of Reading, UK.

[76] Parker, J. (2010) An invariant approach to moving-mesh methods for PDEs. MSc

Dissertation, Brasenose College, University of Oxford, UK.

[77] Pattle, R.E. (1959) Diffusion from an instantaneous point source with a

concentration-dependent coefficient. Q. J. Mech. Appl. Math. 12 407–409.

[78] Peterson, R.C., Jimack, P.K. and Kelmanson, M.A. (1999) The solution of two-

dimensional free-surface problems using automatic mesh generation. Int. J. Numer.

Meth. Fl. 31 937-960.

183

[79] Piggott, M.D., Gorman, G.J., Pain, C.C., Allison, P.A., Candy, A.S., Martin, B.T.

and Wells, M.R. (2008) A new computational framework for multiscale ocean mod-

elling based on adapting unstructured meshes. Int. J.Numer. Meth. Fl. 56 1003-

1015.

[80] Please, C.P., Pettet, G.J. and McElwain, D.L.S. (1998) A new approach to modelling

the formation of necrotic regions in tumours. Appl. Math. Lett. 11 89–94.

[81] Please, C.P., Pettet, G.J. and McElwain, D.L.S. (1999) Avascular tumour dynamics

and necrosis. Math. Models Methods Appl. Sci. 9 569–579.

[82] Ramaswamy, B. and Kawahara, M. (1987) Lagrangian finite-element analysis applied

to viscous free-surface fluid flow. Int. J. Numer. Meth. Fl. 7 953-984.

[83] Richards, L. A. (1973) Capillary conduction of liquids through porous mediums.

Physics 1 5 318-333.

[84] Roose, T., Chapman, S.J. and Maini, P.K. (2007) Mathematical models of avascular

tumour growth. SIAM Rev. 49 179–208.

[85] Russell, R.D., Williams, J.F. and Xu, X. (2007) MOVCOL4: A moving mesh code

for fourth-order time-dependent partial differential equations. SIAM J. Sci. Comput.

29 197–220.

[86] Saksono, P.H., Dettmer, W.G. and Peric, D. (2007) An adaptive remeshing strategy

for fluid flows with moving boundaries and fluid-structure interaction. Int. J. Numer.

Meth. Eng. 71 1009-1050.

[87] Scherer-Abren, G. (2011) Implicit time-stepping for a conservative moving mesh

finite difference method. Private communication.

[88] Semper, B. and Liao, G. (1995) A moving grid finite element method using grid

deformation. Numer. Meth. Part. D. E. 11 603-615.

[89] Soulaimani, A. and Saad, Y. (1998) An arbitrary Lagrangian-Eulerian finite element

method for solving three-dimensional free surface flows. Comput. Method. Appl. M.

162 70-106.

[90] Stojsavljeic, J.D. (2007) Investigation of waiting times in non-linear diffusion equa-

tions using a moving mesh method. MSc. dissertation, University of Reading, UK.

[91] Szabo, P. and Hassager, O. (1995) Simulation of free surfaces in 3-d with the arbi-

trary Lagrange-Euler method. Int. J. Numer. Meth. Eng. 38 717-734.

184

[92] Tang, T. (2005) Moving mesh methods for computational fluid dynamics. Contem-

porary mathematics AMS 383 141–173.

[93] Tenchev, R.T., Mackenzie, J.A., Scanlon, T.J. and Stickland, M.T. (2005) Finite

element moving mesh analysis of phase change problems with natural convection.

Int J. Heat Fluid Fl. 26 597–612.

[94] Thomas, P.D. and Lombard, C.K. (1979) Geometric conservation law and its appli-

cation to flow computations on moving grids. AIAA 17 1030–1037.

[95] Thompson, J.F, Warsi, Z.A. and Mastin, C.W. (1985) Numerical grid generation:

foundations and applications. Elsevier North-Holland, Inc. New York, NY, USA.

[96] Tindall, M.J. and Please, C.P. (2007) Modelling the cell cycle and cell movement in

multicellular tumour spheroids. Bull. Math. Biol. 69 1147–1165.

[97] Trulio, J.G. and Trigger, K.R. (1961) Numerical solution of the one-dimensional

Lagrangian hydrodynamic equations. Lawrence Radiation Laboratory Report, Uni-

versity of California.

[98] Udagawa, N., Fernandez, A., Achilles, E.G., Folkman, R.J. and D’Amato, R.J.

(2002) Persistence of microscopic human cancers in mice: Alterations in the angio-

genic balance accompanies loss of tumour dormacy. The FASEB Jour. 16 1361–1370.

[99] Vazquez, J.L. (2007) The porous medium equation: Mathematical theory. Oxford

University Press.

[100] Walkley, M.A., Gaskell, P.H., Jimack, P.K., Kelmanson, M.A. and Summers,

J.L.(2005) Finite element simulation of three-dimensional freesurface flow problems

with dynamic contact lines. Int. J. Numer.Meth. Fl. 47 1353–1359.

[101] Walkley, M.A., Gaskell, P.H., Jimack, P.K., Kelmanson, M.A. and Summers, J.L.

(2005) Finite element simulation of three-dimensional freesurface flow problems. J.

Sci. Comput. 24 147-162.

[102] Wang, L.R. and Ikeda, M. (2004) A Lagrangian description of sea ice dynamics using

the finite element method. Ocean Model, 7, 21-38.

[103] Ward, J.P. and King, J.R. (1997) Mathematical modelling of avascular tumour

growth. IMA J. Math. Appl. Med. Biol. 14 39–69.

[104] Wesseling, P. (2001). Principles of computational fluid dynamics. Heidelberg:

Springer.

185

[105] Winslow, A. (1967). Numerical solution of the quasi-linear Poisson equation in a

nonuniform triangle mesh. J. Comput. Phys. 1 149-172.

186

	Introduction
	Background on Moving Mesh Methods
	Location-based methods
	Velocity-based methods
	Fluid dynamics
	ALE (Arbitrary Lagrangian Eulerian) methods
	Moving finite elements
	The Geometric Conservation Law (GCL)
	The Conservation Method

	The Finite Element Conservation Method
	Determining a weighted form of the general PDE
	Determining the mesh velocity
	Recovering the solution

	A Finite Difference Velocity-Based Moving Mesh Method Based on Conservation
	Mass conserving problems
	Determining the mesh velocity
	Advancing the mesh in time
	Recovering the solution

	A problem that does not conserve mass
	Determining the rate of change of total mass
	Determining the mesh velocity
	Advancing the total mass and mesh in time
	Recovering the solution

	A method that preserves mass balance
	Determining the rate of change of partial masses
	Determining the mesh velocity
	Advancing the partial masses and mesh in time
	Recovering the solution

	Time-stepping schemes
	Explicit schemes
	A semi-implicit scheme

	The Porous Medium Equation
	Introduction
	Deriving the PME from Darcy's Law
	Properties of the PME in one dimension
	A self-similar solution
	Scale invariance
	Self-similarity
	A specific set of parameters

	Moving meshes
	Determining the mesh velocity
	Recovering the solution
	The full algorithm
	Waiting times
	Time-stepping schemes

	The radially symmetric case
	Determining the mesh velocity
	Recovering the solution
	The full algorithm

	Numerical results
	One-dimension
	Two-dimensional radially symmetric

	Finite elements
	Summary for the PME

	Richards' equation
	Introduction
	Deriving Richards' equation
	Properties of Richards' equation
	A self-similar solution
	Scale invariance
	Self-similarity

	Moving meshes
	Determining the mesh velocity
	Recovering the solution
	The full algorithm
	Time-stepping schemes

	An alternative moving mesh method
	Determining the rate of change partial masses
	Determining the mesh velocity
	Recovering the solution
	The full algorithm
	A semi-implicit time-stepping scheme

	Numerical results
	Using finite elements
	Numerically solving Richards' equation using finite elements
	Numerical details

	Summary for Richards' equation

	The Crank-Gupta Problem
	Introduction
	A self-similar solution
	Scale Invariance
	Self-Similar Solutions

	Moving mesh method
	Determining the rate of change of total mass
	Determining the mesh velocity
	Recovering the solution
	The full algorithm
	Time-stepping schemes

	The two-dimensional radially symmetric case
	Determining the rate of change of total mass
	Determining the mesh velocity
	Recovering the solution
	The full algorithm

	Alternative boundary conditions
	Determining the rate of change of total mass
	Determining the mesh velocity
	Recovering the solution
	The full algorithm

	A partial mass balance moving mesh method
	Determining the rate of change of partial masses
	Determining the mesh velocity
	Recovering the solution
	The full algorithm

	Numerical results
	Preserving partial mass fractions
	The radially symmetric case
	Alternative boundary conditions
	A partial mass balance moving mesh method

	Finite element method
	Summary for the Crank-Gupta problem

	A Tumour Growth Problem
	A brief background on cancer growth
	Avascular research
	The role of mathematics in cancer research
	A mathematical model of tumour growth
	Rescaling to a fixed numerical mesh
	Moving mesh methods
	Method A
	Method B
	Method C

	Numerical Results
	Summary for the tumour growth problem

	Summary
	Bibliography

