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Abstract

We present a new hybrid method for concurrent model state and parameter estimation. The new
algorithm uses ideas from three dimensional variational data assimilation (3D Var) and the extended
Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model
parameters alongside the model state variables in a sequential assimilation-forecast system. The
method is relatively simple to implement and computationally inexpensive to run. We demonstrate
its efficacy via a series of identical twin experiments with three simple dynamical system models. The
scheme is able to recover the true parameter values to a good level of accuracy, even when observational
data are noisy. We expect this new technique to be easily transferable to larger, more complex models.

1 Introduction

A numerical model can never completely describe the complex physical processes underlying the behaviour
of a real world dynamical system. State of the art computational models are becoming increasingly so-
phisticated but in practice these models suffer from uncertainty in their initial conditions and parameters.
Even with perfect initial data, inaccurate representation of model parameters will lead to the growth of
model error and therefore affect the ability of our model to accurately predict the true system state. Pa-
rameterizations are typically used in applications where the underlying physics of a process are not fully
known or understood, or to model subgrid scale effects that cannot be captured within a particular model
resolution. The consequence of this is that model parameters often do not represent directly measurable
quantities. Therefore, a key question in model development is how to estimate these parameters a priori.
Evensen et al. (1998) gives a useful general introduction the problem of parameter estimation in dynamical
models. Generally, parameters are determined theoretically or by adhoc calibration of the model against
observations. Various other parameter optimization methods have been developed such as downhill sim-
plex optimization (Hill et al. (2003)), genetic algorithm (Knaapen and Hulscher (2003)), hybrid genetic
algorithm (Ruessink (2005a)), classical Bayesian (Wüst (2004)) and Bayesian Generalised Likelihood Un-
certainty Estimation (GLUE) (Ruessink (2005b), Ruessink (2006)). An alternative approach is to use
data assimilation.

Data assimilation is a sophisticated mathematical technique for combining observational data with
model predictions. It is most commonly used for state estimation; estimating model variables whilst
keeping the model parameters fixed. However, by employing the method of state augmentation, it is
also possible to use data assimilation to estimate uncertain model parameters. State augmentation is a
conceptually straightforward technique that enables us to estimate and update uncertain model parameters
jointly with the model state variables as part of the assimilation process (Jazwinski (1970)). The approach
has previously been used in the context of model error or bias estimation (See e.g. Bell et al. (2004), Dee
(2005), Griffith and Nichols (1996), Griffith and Nichols (2000), Martin et al. (2002)).

In theory, state augmentation can be applied with any of the standard data assimilation methods. The
model state vector is augmented with a vector containing the parameters we wish to estimate, the equations
governing the evolution of the model state are combined with the equations describing the evolution of
these parameters and the chosen assimilation algorithm is simply applied to this new augmented system
in the usual way. Navon (1997) and Evensen et al. (1998) review the use of the technique in the context
of four dimensional variational data assimilation (4D Var). State augmentation has also been applied
with the Kalman filter; Martin (2000) uses the method for model bias estimation and Trudinger et al.
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(2008) combine the technique with the extended and ensemble Kalman filters for parameter estimation in
biogeochemical models. In Zupanski and Zupanski (2006) the approach is combined with the maximum
likelihood ensemble filter (MLEF) for both parameter and model bias estimation in the Korteweg-de
Vries-Burgers (KdVB) model.

In this work we combine the state augmentation method with a three dimensional variational data
assimilation (3D Var) scheme. Under certain statistical assumptions, the 3D Var assimilation method
approximates the Bayesian maximum a posteriori likelihood estimate of the state and parameters of
the system. A key difficulty in the construction of a data assimilation algorithm is specification of the
background error covariances. These are used to describe the error statistics of the model predicted
state and determine the weight given to the model in the assimilation. A particular issue highlighted by
Smith et al. (2008) and Smith et al. (2009a) is the role of the cross-covariances between the state and
parameter errors; for successful parameter estimation, it is crucial that these cross-covariances are given
a good a priori specification. Conventional 3D Var assumes that the error covariances are stationary; the
structure of the background error covariance matrix is specified at the start of the assimilation and kept
fixed throughout. In Smith et al. (2008) it was found that whilst this assumption was sufficient for state
estimation, it was insufficient for parameter estimation. In order to yield reliable estimates of the true
parameters, a flow dependent representation of the state-parameter cross-covariances is required.

Updating the background error covariance matrix at every time step is computationally very expen-
sive, and impracticable when the system of interest is of high dimension. To overcome this problem we
have combined ideas from 3D-Var and the extended Kalman filter to produce a new hybrid assimilation
scheme that captures the flow dependent nature of the state-parameter cross covariances without explicitly
propagating the full system covariance matrix. As we demonstrate here, the method has proved to be
applicable to a range of dynamical system models. An additional example of its application is given in
Smith et al. (2009b).

In this paper we give details of the formulation of our new hybrid scheme and demonstrate its efficacy
using three simple models: a single parameter 1D linear advection model, a two parameter non-linear
damped oscillating system, and a three parameter non-linear chaotic system.

The scheme has been tested by running a series of identical twin experiments using pseudo-observations
with a range of spatial and temporal frequencies. The results are positive and confirm that our new scheme
can indeed be a useful tool in identifying uncertain model parameters. We are able to recover the true
parameter values to a good level of accuracy, even when observations are noisy. We believe that there
is potential for successful application of our new methodology to larger, more realistic models with more
complex parameterizations.

This paper is organised as follows. In section 2 we explain the state augmentation approach and
introduce the augmented system model. In section 3 we give an overview of the 3D Var and Kalman
filter algorithms upon which our new hybrid scheme is based. Details of the the formulation of the hybrid
method are given in section 4. We introduce our models in section 5 and use the methods described in
section 4 to derive estimates for the state-parameter cross covariances in each specific case. The results
of our experiments are also presented. Finally, in section 6 we summarise the conclusions from this work.

2 Data assimilation and state augmentation

In this section we lay the foundations for understanding the methods we present in subsequent sections.
We start by introducing the general system model and explaining the data assimilation notation and
terminology that we will be using throughout this paper.

2.1 The model system equations

We consider the discrete non-linear time invariant dynamical system model

xk+1 = f(xk,p) k = 0, 1, . . . (2.1)

The vector xk ∈ R
n is known as the state vector and represents the model state at time tk, p ∈ R

q

is a vector of q uncertain model parameters, and f : R
n −→ R

n is a non-linear operator describing the
evolution of the state from time tk to tk+1.
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In this paper we use the ‘perfect’ model assumption; that is, we assume that the dynamical system we
are studying can be represented on a discrete grid and that the model (2.1) gives an exact description of
the true behaviour of this system on the grid. We also assume that f(x,p) is differentiable with respect
to x and p for all x ∈ R

n and p ∈ R
q.

In section 5.1 we consider a model for which the operator f is a linear function of the model state. In
this case we can re-write the model (2.1) in the form

xk+1 = Mk(p)xk k = 0, 1, . . . (2.2)

where the matrix Mk ∈ R
n×n is a non-singular matrix that depends non-linearly on the parameters p.

For sequential assimilation, we start with a background state xb
k ∈ R

n, with error εb
k ∈ R

n, that
represents an a priori estimate of the true system state xk at time tk. This is a best guess estimate of
the current system state obtained (for example) from a previous model forecast.

We suppose that, at time tk, we have a set of rk observations to assimilate and that these are related
to the model state by the equations

yk = hk(xk) + δk, k = 0, 1, . . . (2.3)

Here yk ∈ R
rk is a vector of rk observations at time tk. Note that the number of available observations rk

may vary with time. The vector δk ∈ R
rk represents the observation errors and is commonly interpreted

as a white noise sequence (Lewis et al. (2006)). The operator hk : R
n −→ R

rk is a nonlinear observation
operator that maps from model to observation space. If we have direct measurements but at points that
do not coincide with the model grid, h is simply an interpolation operator that interpolates the model
variables from the model grid to the observation locations. Often, the model variables we wish to analyse
cannot be observed directly and instead we have observations of another measurable quantity. In this case
h will also include transformations based on physical relationships that convert the model variables to the
observations.

2.2 The augmented system

The model (2.1) depends on parameters p whose values are imprecisely known. Sediment transport models,
for example, are typically based on empirical formulae that use various parameterizations to characterise
the physical properties of the sediment flux. We assume that these parameters remain constant over time,
that is, they are not altered by the forecast model from one time step to the next. The evolution of the
parameters can therefore be described by the equation

pk+1 = pk, k = 0, 1, . . . . (2.4)

We define a new vector w by augmenting the standard model state x with the parameter vector p

w =

(
x
p

)
∈ R

n+q. (2.5)

Combining (2.4) with the model for the evolution of the state (2.1) we can write the equivalent augmented
system model as

wk+1 = f̃(wk), (2.6)

where

f̃(wk) =

(
f(xk,pk)

pk

)
, (2.7)

with f̃ : R
n+q −→ R

n+q.

We rewrite the equation for the observations (2.3) in terms of the augmented state vector as

yk = h̃k(wk) + δk, (2.8)

where h̃k : R
n+q −→ R

rk , and

h̃(w) = h̃

(
x
p

)
= h(x). (2.9)
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The aim of data assimilation is to combine the measured observations yk with the augmented model
predictions wb

k to produce an updated augmented model state that most accurately describes the true
augmented system state wt

k at time tk. This optimal estimate is called the analysis and is denoted wa
k.

Note that the initial background state at t0, wb
0 ∈ R

n+q, must include prior estimates of both the initial
system state x0 and parameters p0. In addition to the updated state estimate, xa

k, the analysis wa
k will

also include updated estimates of the model parameters, pa
k at each k.

3 Sequential data assimilation methods

A wide variety of data assimilation schemes exist (e.g. Kalnay (2003), Lewis et al. (2006)). In this study
we combine ideas from the methods of 3D Var and the Kalman filter to produce a new hybrid scheme.
Sections (3.1) and (3.2) give a brief overview of these two methods. Although we discuss their formulation
specifically in terms of our augmented system we note that both schemes were orginally developed for
basic state estimation. The equations are equivalent and can be derived by simply omitting the parameter
vector from our descriptions.

3.1 3D Var

The 3D Var method (e.g. Courtier et al. (1998)) is based on a maximum a posteriori estimate approach
and derives the analysis by seeking a state that minimises a cost function measuring the misfit between
the model state wk and the background state wb

k and the observations yk,

J(wk) = (wk − wb
k)TB−1

k (wk − wb
k) + (yk − h̃k(wk))T R−1

k (yk − h̃k(wk)). (3.1)

The matrices Bk ∈ R
(n+q)×(n+q) and Rk ∈ R

rk×rk are the covariance matrices of the background and
observation errors. These matrices represent the uncertainties of the background and observations and de-
termine the relative weighting of wb

k and yk in the analysis. If it is assumed that the background errors are
small relative to the observation errors then the analysis will be close to the background state. Conversely,
if it is assumed that the background errors are relatively large the analysis will lie closer to the observations.

The analysis wa
k satisfies the equation

∇J(wa
k) = 2B−1

k (wa
k − wb

k) − 2H̃T
k R−1

k (yk − h̃k(wa
k)) = 0, (3.2)

where ∇J is the gradient of the cost function (3.1) with respect to wk, and the matrix H̃k ∈ R
rk×(n+q)

represents the linearisation (or Jacobian) of the observation operator h̃k evaluated at the background state
wb

k.

When the observation operator, hk, is linear the minimum of (3.1) can be found exactly and the
solution for the analysis can be written explicitly as

wa
k = wb

k + Kk(yk − H̃kw
b
k), (3.3)

where

h̃k = H̃k

def
≡
(

Hk 0
)
∈ R

rk×(n+q) (3.4)

with Hk ∈ R
rk×n.

The operator K ∈ R
(n+q)×rk is known as the gain matrix and is given by

Kk = BkH̃
T
k (H̃kBkH̃

T
k + Rk)−1. (3.5)

Equation (3.3) is known as the Optimal Interpolation formula or Best Linear Unbiased Estimator (BLUE)
(Lewis et al. (2006)). When the dimension of the problem is small it is possible to calculate K explicitly
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and compute the analysis directly from (3.3). The 3D Var method finds the analysis wa
k numerically using

a gradient descent algorithm to iterate to the minimising solution (Gill et al. (1981)). For systems of high
dimension the OI method is impractical and it is more efficient to adopt a 3D Var approach.

The crucial difference between standard 3D Var and other schemes such as 4D Var and the Kalman filter
is that the error covariance matrices are not evolved (implicitly or explicitly) by the 3D Var algorithm.
The background error covariance matrix has a fundamental impact on the quality of the analysis. Its
prescription is therefore generally considered to be one of the most difficult and important parts in the
construction of a data assimilation scheme. Rather than update Bk at each new assimilation time, the
3D Var method approximates this matrix once at the start of the assimilation and then holds it fixed
throughout, as if the forecast errors were statistically stationary (i.e. Bk = B for all k). It is therefore
vital that it is given a good a priori specification.

3.2 The Kalman filter

The Kalman filter is also a sequential method. It was developed by Kalman (1960) and Kalman and Bucy
(1961) and initially used in engineering applications. For a linear system, the Kalman filter algorithm
produces an analysis that is (given the available observations and under certain statistical assumptions)
statistically optimal in the sense that it is the minimum mean square error, or minimum variance, estimate
(Barnett and Cameron (1990), Jazwinski (1970)).

The main distinctions between the Kalman filter and 3D Var is that the error covariances are evolved
explicitly according to the model dynamics and the analysis is calculated directly. Instead of assuming that
the background error covariance matrix is fixed, the Kalman filter forecasts B forward, using knowledge
of the quality of the current analysis to specify the covariances for the next assimilation step.

3.2.1 The Kalman filter predict and update equations

Below we present the Kalman filter algorithm for a discrete linear time-invariant model of the form

wk+1 = Fwk k = 0, 1, . . .

with observations linearly related to the state by the equations

yk = H̃kwk + δk. (3.6)

Here F ∈ R
(n+q)×(n+q) is a constant, non-singular matrix describing the dynamic evolution of the state

from time tk to time tk+1 and H̃k ∈ R
rk×(n+q). We are assuming a perfect model (i.e. zero model error)

but note that this is not a necessary assumption since the Kalman filter does allow for the inclusion of
random model error (see for example, Martin et al. (1999)). The Kalman filter notation differs slightly
from 3D Var: the background state vector wb is replaced by the forecast vector wf to denote the fact
that the background is now a forecast; the constant background error covariance matrix B is replaced by
the time varying forecast error covariance matrix Pf

k ; and we introduce a new matrix Pa
k representing the

analysis error covariance.

The Kalman filter consists of the following steps:

State forecast:
wf

k+1 = Fwa
k (3.7)

Error covariance forecast:
Pf

k+1 = FPa
kF

T (3.8)

Kalman gain:
Kk+1 = Pf

k+1H̃
T
k+1(H̃k+1P

f
k+1H̃

T
k+1 + Rk+1)

−1 (3.9)

Analysis:
wa

k+1 = wf
k+1 + Kk+1(yk+1 − H̃k+1w

f
k+1) (3.10)

5



Analysis error covariance:

Pa
k+1 = (I − Kk+1H̃k+1)P

f
k+1(I − Kk+1H̃k+1)

T + Kk+1Rk+1K
T
k+1. (3.11)

If the Kalman gain K has been computed exactly this reduces to

Pa
k+1 = (I − Kk+1H̃k+1)P

f
k+1. (3.12)

The optimality of the Kalman filter solution depends on the assumptions underlying these equations being
accurate. Note that the analysis equation (3.10) and the definition of K (3.9) are the same as equations

(3.3) and (3.5) for the BLUE with Bk = Pf
k .

3.3 The Extended Kalman Filter (EKF)

The Kalman filter theory can be generalised for the case where the system model and/ or observation
operator are non-linear by linearising around a background state. This gives the extended Kalman filter
(EKF) (Gelb (1974), Jazwinski (1970)). The steps of the EKF algorithm are the same as for the standard
Kalman filter except that the state forecast (3.7) is made using the full non-linear model and the matrices
F and H̃k in equations (3.8) to (3.12) are replaced by the tangent linear model of the non-linear model
forecast operator f̃ and the tangent linear of the non-linear observation operator h̃k.

To summarise, we have

State forecast:
wf

k+1 = f̃(wa
k,pa

k) (3.13)

Error covariance forecast:
Pf

k+1 = FkP
a
kF

T
k , (3.14)

where

Fk =
∂ f̃

∂w

∣∣∣∣∣
wa

k

=

(
∂f(z,p)

∂z

∂f(z,p)
∂p

0 I

)∣∣∣∣∣
za

k
,pa

k

(3.15)

is the Jacobian of the augmented system forecast model evaluated at the current analysis state wa
k (see

appendix A).

Although the approximations made by the EKF make the optimisation problem easier to solve they do
so at the expense of the optimality of the solution. The optimal analysis property of the standard linear
Kalman filter no longer holds and the actual analysis error may differ considerably from that implied by
equation (3.11).

The Kalman filter and EKF methods are compuationally much costlier than 3D Var; the updating of
the error covariance matrices requires the equivalent of O(n) model integrations, where n is dimension of
the model state, plus adjoint and tangent linear models must be developed. If n is large the scheme becomes
prohibitively expensive. Implementation of the full Kalman filter equations is therefore impracticable for
systems of high dimension and in practice Pf is kept constant or a much simpler updating is performed.
However, the equations provide a useful starting point for the design and development of approximate
algorithms, examples of which include the Ensemble Kalman filter (EnKF) (Evensen (1994), Houtekamer
and Mitchell (2005)) and the reduced rank Kalman filter (Fisher (1998)).

4 A hybrid approach

Although the technique of state augmentation is straightforward in theory, practical implementation of
the approach relies strongly on the relationships between the parameters and state components being well
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defined and assumes that we have sufficient knowledge to reliably describe them. Since it is not possible to
observe the parameters themselves, the parameter estimates will depend on the observations of the state
variables. In basic state estimation the background error covariances govern how information is spread
throughout the model domain, passing information from observed to unobserved regions and smoothing
data if there is a mismatch between the resolution of the model and the density of the observations.
For the augmented system, it is the cross covariances describing the correlations between errors in the
parameters and errors in the model state estimate that pass information from the observed variables to
update the estimates of the unobserved parameters. This is a crucial point; if these cross covariances
are inappropriately modelled the quality of the parameter estimates will be affected. Since the correct
error statistics of the system are generally unknown we have to approximate them in some manner.
Constructing a realistic representation of the background error covariances is one of the key challenges of
data assimilation.

Previous work (Smith et al. (2008), Smith et al. (2009a)) indicated that whilst the assumption of static
covariances made by the 3D Var algorithm is sufficient for state estimation it is insufficient for parameter
estimation as it does not provide an adequate representation of the state-parameter cross covariances. In
order to reliably estimate the parameters the cross-covariances between the parameters and the state need
to evolve with the model.

We have already noted that using methods such as the Kalman filter to explicitly propagate the
covariances is computationally expensive and requires the construction of adjoint and tangent linear
models. Motivated by a desire for a low cost, uncomplicated alternative we have combined ideas from 3D-
Var and the EKF to produce a new hybrid assimilation scheme that captures the flow dependent nature
of the state-parameter cross covariances without explicitly propagating the full system covariance matrix.
A simplified version of the EKF forecast step is used to estimate the state-parameter forecast error cross
covariances and this is then combined with an empirical, static approximation of the state background
error covariances. We give details of the formulation of this new approach below.

4.1 Formulation

We can partition the forecast error covariance matrix (3.14) as follows

Pf
k =

(
Pf

xxk
Pf

xp
k

(Pf
xp

k
)T Pf

pp
k

)
. (4.1)

Here Pf
xxk

∈ R
n×n is the forecast error covariance matrix for the state vector xk at time tk, Pf

pp
k
∈ R

q×q

is the forecast error covariance matrix for the parameter vector pk and Pf
xp

k
∈ R

n×q is the covariance
matrix for the cross correlations between the forecast errors in the state and parameter vectors.

We use the EKF equations (3.13)-(3.15) as a guide and consider the form of the forecast error covariance
for a single step of the filter. Suppose we start at time tk with analysis error covariance matrix

Pa
k =

(
Pa

xxk
Pa

xp
k

(Pa
xp

k
)T Pa

pp
k

)
∈ R

(n+q)×(n+q). (4.2)

If we denote

Mk =
∂f(x,p)

∂z

∣∣∣∣
xa

k
,pa

k

and Nk =
∂f(x,p)

∂p

∣∣∣∣
xa

k
,pa

k

, (4.3)

where Mk ∈ R
m×m and Nk ∈ R

m×q, we can write the linearised augmented forecast model (3.15) as

Fk =

(
Mk Nk

0 I

)
. (4.4)
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The error covariance forecast (3.14) is then given by

Pf
k+1 =

(
Mk Nk

0 I

)(
Pa

xxk
Pa

xp
k

(Pa
xp

k
)T Pa

pp
k

)(
MT

k 0
NT

k I

)

=

(
MkP

a
xxk

+ Nk(Pa
xp

k
)T MkP

a
xp

k
+ NkP

a
pp

k

(Pa
xp

k
)T Pa

pp
k

)(
MT

k 0
NT

k I

)

=

(
MkP

a
xxk

MT
k + Nk(Pa

xp
k
)T MT

k + MkP
a
xp

k
NT

k + NkP
a
pp

k
NT

k MkP
a
xp

k
+ NkP

a
pp

k

(Pa
xp

k
)T MT

k + Pa
pp

k
NT

k Pa
pp

k

)

(4.5)

We do not want to compute the whole matrix (4.5) at every time step so we make some simplifying
assumptions:

We substitute the state forecast error covariance matrix Pf
xxk

with a standard 3D Var fixed approxi-
mation

Pf
xxk

= Bxx for all k. (4.6)

We assume that the parameter error covariance matrix is also fixed

Pf
pp

k
= Bpp for all k, (4.7)

Finally, we assume that the state-parameter cross covariances are initially zero. This leads us to propose
the following approximation for the augmented forecast error covariance matrix

Bk+1 =

(
Bxx NkBpp

BppN
T
k Bpp

)
. (4.8)

In other words, all elements of the background error covariance matrix (4.8) are kept fixed except the
state-parameter cross covariances

Bxp
k+1

= NkBpp, (4.9)

which are updated at each new analysis time by recalculating the matrix Nk, where Nk is the Jacobian
of the forecast model with respect to the parameters, as defined in equation (4.3).

The analysis wa
k is found by substituting the matrix (4.8) into the 3D Var cost function (3.1) and

minimising. Although in practice the minimum is found numerically using a gradient descent method,
the analytical form for the solution (3.3) is useful for understanding the role of the state-parameter cross-
covariances.

For the experiments presented in this report we use direct observations taken at fixed locations. We
can therefore write

H̃k = H̃ ≡ (H 0) for all k. (4.10)

The observation operator H ∈ R
r×n is a constant matrix and the number of observations rk = r is the

same for all k. We note that this is not a necessary assumption and is made purely for ease of illustration
and computation. A non-linear observation operator would have no effect on the formulation of our
method and should be relatively straight forward to implement in practice.

The gain matrix (3.5) can now be written as

Kk = BkH̃
T (H̃BkH̃

T + Rk)−1

def
=

(
Kxk

Kpk

)
. (4.11)

Separating (3.3) into state and parameter parts gives

xa
k = xb

k + Kxk
(yk − Hxb

k) (4.12)

pa
k = pb

k + Kpk
(yk − Hxb

k), (4.13)
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where the gain matrices (4.11) are given by

Kxk
= BxxH

T (HBxxH
T + Rk)−1 (4.14)

Kpk
= BppN

T
k−1H

T (HBxxH
T + Rk)−1. (4.15)

Note that since we are assuming that Bxx and H are constant matrices, the state gain Kxk
= Kx is fixed

for all time. The analysis equation for the state vector (4.12) is therefore the same as would be derived if
the 3D Var method was being used for state estimation only.

The innovation vector (yk −Hxb
k) is exactly the same in equations (4.12) and (4.13), as is the expres-

sion inside the inverse for the state and parameter gain matrices (4.14) and (4.15). Both the state and
parameters are updated according to the discrepancies between the observations and the model predicted
state, the difference lies in exactly how this information is used. This is determined by our choice of Bxx

and Bxp. We have already stated that, in order to reliably estimate the model parameters, the matrix
Bxp must adequately describe the relationship between the errors in the state estimate and the errors
in the parameters. Our proposed approximation to Bxp (4.9) does this by combining the relationship
between the errors in the parameters (described by Bpp) with the way changes in the parameters affect
the forecast model (described by Nk).

5 The models

We demonstrate this new hybrid approach using three simple models: a single parameter 1D linear
advection model, a two parameter linear damped oscillating system, and the three parameter non-linear
Lorenz 63 equations (Lorenz (1963), Sparrow (1982)).

The scheme has been tested by carrying out a series of identical twin experiments using pseudo-
observations with a range of temporal and (where applicable) spatial frequencies. The aim was to assess
the applicability of our proposed approach to modelling the background error covariances and determine
whether it is sufficient to enable the recovery of uncertain model parameters in range of dynamical system
models. In each case we specify a ‘true’ solution which is generated by running the model from a given
initial condition with set values for the model parameters. This solution is used to provide observations
for the assimilation and also to evaluate the performance of the scheme in terms of estimating the state
variables. The model is then re-run with the data assimilation, starting from a perturbed initial state and
with incorrect estimates of the parameters.

In this section we give details of the models and derive estimates for the state-parameter cross covari-
ance matrix for each specific case. A brief description of the experimental design is also given, followed
by the results.

5.1 Linear advection

We first consider the one-dimensional linear advection equation,

∂u

∂t
+ a

∂u

∂x
= 0, (5.1)

where a is the advection velocity or wave speed.

For known, non-zero, constant, a and given initial data

u(x, 0) = u0(x), −∞ < x < ∞, (5.2)

the solution of (5.1) at time t ≥ 0 is simply (LeVeque (1992))

u(x, t) = u(x0, 0) = u0(x − at), (5.3)

where x0 = x(0) and x(t) = x0 + at.
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The solution (5.3) has the property that it preserves its initial shape u0. As time evolves, the initial
data propagates undistorted at constant speed a to the right (if a > 0) or left (if a < 0).

We choose to solve (5.1) for a > 0 on the finite spatial domain x ∈ [ 0, 2 ], with periodic boundary
conditions

u(0, t) = u(2, t), (5.4)

and initial data given by the Gaussian function

u(x, 0) =






0 x < 0.01

e−
(x−0.25)2

0.01 0.01 < x < 0.5
0 x ≥ 0.5

(5.5)

For our assimilation scheme we require u(x, t) at discrete points (xj , tk). We assume that u(x, t) is
continuous and differentiable and discretise using the upwind scheme (LeVeque (1992)),

uk+1
j = uk

j − a
∆t

∆x
(uk

j − uk
j−1), j = 1, 2, . . . , n k = 0, 1, . . . , T (5.6)

with boundary conditions
uk

0 = uk
n (5.7)

where uk
j ≈ u(xj , tk) and xj = j∆x, tk = k∆t, where ∆x is the spatial grid spacing and ∆t is the model

time step.

Denoting µ = ∆t
∆x

, we can rewrite (5.6) as

uk+1
j = (1 − aµ)uk

j + aµuk
j−1. (5.8)

The upwind scheme is first order accurate and stable provided that the CFL condition aµ ≤ 1 is
satisfied. To ensure that the model remains stable during the assimilation we set ∆x = 0.01, ∆t = 0.01
and assume that a is known to be on the interval 0 ≤ a ≤ 1.

The forecast model (5.8) can be expressed as the matrix system

uk+1 = Auk (5.9)

where uk ∈ R
n is the model state at time tk and A is a (constant) n × n matrix, given by

A = A(a)





(1 − aµ) 0 aµ
aµ (1 − aµ) 0 . . .

. . .
. . .

. . .

0
0 . . . 0 aµ (1 − aµ)





, (5.10)

Since the advection velocity a is constant, we have

ak+1 = ak, (5.11)

cf. equation 2.4.

Setting

wk =

(
uk

ak

)
, (5.12)
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we can combine (5.9) and (5.11) to give the augmented system model

wk+1 = f(wk) (5.13)

=

(
A(ak) 0

0 1

)(
uk

ak

)
(5.14)

Note that the matrix A has been replaced by the parameter dependent matrix A(ak). Although the
true A is constant, the forecast model at time tk will depend on the current estimate ak of the true
advection velocity a; this will vary as ak is updated by the assimilation process.

5.1.1 State-parameter cross covariance

For the cross covariances between the errors in the model state u and parameter a we need to calculate
the matrix Nk; the Jacobian of the forecast model with respect to the model parameters. For the linear
advection model this is given by

Nk =
∂ (Akuk)

∂ak

∣∣∣∣
ua

k
,aa

k

. (5.15)

From (5.10) we have

∂Ak

∂ak

=





−µ 0 µ
µ −µ 0 . . .

. . .
. . .

. . .

0
0 . . . 0 µ −µ





. (5.16)

which is constant for all ak.

The matrix Nk is a n × 1 vector with elements Nj

Nj =
∂uk+1

j

∂ak

= −µ(uk
j − uk

j−1), j = 1, . . . , n. (5.17)

Since we only have a single unknown parameter, the parameter vector pb is scalar and

Bpp = σ2
a, (5.18)

where σ2
a is the parameter error variance.

Combining (5.17) and (5.18) we have

bk+1
up (j) = −σ2

a µ(uk
j − uk

j−1), j = 1, . . . , n. (5.19)

where bk+1
up (j) represents the cross covariance between the parameter error εa and element j of the state

background error vector εu at time tk+1.

5.1.2 Assimilation experiments

We set the true advection velocity to be a = 0.5. The initial parameter estimate a0 is generated by adding
Gaussian random noise with zero mean and variance σ2

a = 0.1 to this value. This corresponds to an
error variance of 20%. The assimilation process is carried out sequentially. Observations are generated by
sampling the analytic solution (5.3) on a regularly spaced grid and are assimilated at regular time intervals.
The state background error covariance matrix Bxx is kept fixed, as is the parameter background error
covariance matrix Bpp. The state-parameter cross covariance matrix Bxp is recalculated at each new
assimilation time as described above. At the end of each assimilation cycle the model parameters are
updated and the state analysis is integrated forward using the model (with the new parameter values) to
become the background state for the next analysis time.
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Figure 5.1: Linear advection model: true solution u(x, t)

We assume that the general shape of the initial data is known. The initial background state ub
0 is

therefore taken to be of the form (5.5) but is rescaled so that it is slightly shorter, narrower and in a
different starting position to the true initial state. The state background error covariance matrix Bxx

is kept fixed, as is the parameter background error covariance matrix Bpp. To characterise the state
background errors we use the isotropic correlation function (Rodgers (2000))

bij = σ2
bρ|i−j|, i, j = 1, . . . , n, (5.20)

where element bij defines the covariance between components i and j of the state background error vector
εu = ub − ut. Here ρ = exp(−∆x/L) where ∆x is the model grid spacing and L is a correlation length
scale that is adjusted empirically1, and σ2

b is the state background error variance which we set equal to
0.05.

We assume that the observation errors are spatially and temporally uncorrelated and set the observation
error covariance matrix Rk

Rk = R = σ2
oI, I ∈ R

r×r, (5.21)

where r is the number of observations and σ2
o is the observation error variance.

We run the model on the domain x ∈ [ 0, 2] so that the dimension of our system is n + q = 201. The
true solution is shown in figure 5.1. We adopt a 3D Var approach and minimise the cost function (3.1)
iteratively using a quasi-Newton descent algorithm (Gill et al. (1981)).

5.1.3 Results

Perfect observations

The experiments were carried out using a range of both over and under estimated initial a values, with
varying spatial and temporal observation combinations. The convergence and accuracy of the parameter
estimates and depends on a number of factors such as the quality of the initial background guess, the
location and spatial frequency of the observations and the time between successive assimilations.

Figure 5.2(a) shows the effect of varying the spatial frequency of observations for the initial estimate
a0 = 0.87116. Observations are assimilated every 10∆t, with σ2

o = 0.01 and grid spacings between
observations range from every 2∆x to every 25∆x. The scheme performs extremely well. For observations
taken every 2∆x, 10∆x and 25∆x the scheme recovers the true value of a to a high level of accuracy with
only slight differences in the rate of convergence. The quality of the state analysis is also high. There is a
noticable difference when the spacing of observations is decreased to every 50∆x and then further again
to every 100∆x. Here the estimates take much longer to stabilise. With observations every 100∆x the a
estimate gets close to but never quite settles on the true value of a, even when the assimilation period is
extended beyond that shown. The state analysis is also less accurate.

Figure 5.2(b) shows the effect of varying the temporal frequency of the observations for the same
starting estimate a0 = 0.87116. Observations are taken every 5∆x, and assimilated at intervals of 5∆t,
10∆t, 25∆t and 50∆t. The results are similar to the previous experiment; there are only small differences

1for these experiments it is set at twice the current observation spacing.
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Figure 5.2: Perfect observations: parameter updates for initial estimate a = 0.87116. (a) Varying
the spatial frequency of observations: solid black line - observations at 2∆x intervals; solid green line -
observations at 5∆x intervals; solid red line - observations at 10∆x intervals; solid blue line - observations
at 25∆x intervals; solid purple line - observations at 50∆x intervals. (b) Varying the temporal frequency
of observations: solid black line - observations every 5∆t; solid green line - observations every 10∆t; solid
red line - observations every 25∆t; solid blue line - observations every 50∆t.

visible when the time between successive assimilations is increased from every 5∆t to 10∆t to 25∆t. For
observations every 50∆t the a estimate takes slightly longer to converge and if this period is doubled again
to 100∆t the scheme completely fails to recover a.

Noisy observations

The effect of observational errors was investigated by adding random noise to the observations. This
noise was defined to have a Gaussian distribution with mean zero and variance σ2

o where σ2
o is the obser-

vation error variance. Observations are taken at 5∆x intervals and assimilated every 10∆t. Figure 5.3(a)
shows the parameter a estimates produced for error variance increasing from σ2

o = 0.0001 to σ2
o = 0.1.

This represents errors with variance of up to 10% of the maximum curve height. As we would expect,
when the observations are noisy the resulting analysis and parameter estimates are also noisy. When
σ2

o = 0.1 the state analysis is particularly messy especially around the tails of the curve where u values
are close to zero. The amplitude of oscillations in a increase as σ2

o is increased. The oscillations are,
however, approximately centered around the true a value and lie within the bounds of uncertainty placed
on the observations. We found that smoother and more accurate parameter estimates could be obtained
by averaging over a moving time window as the assimilation is running as is shown in figure 5.3(b). Here,
the above experiment has been repeated but with the a estimates being averaged over a moving time
window of 20 timesteps. Note that to allow time for the scheme to settle we omit the early estimates and
begin the averging at t = 1.5.
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Figure 5.3: Imperfect observations: parameter updates for initial estimate a = 0.87116 (a) unaveraged
estimates, and (b) time averaged estimates: solid black line σ2

o = 0.001; solid green line σ2
o = 0.01; solid

red line σ2
o = 0.1.

5.2 Nonlinear oscillator

Our second test model is an unforced, damped non-linear oscillator given by the second order ordinary
differential equation

ẍ + dẋ + mx + x3 = 0. (5.22)

where d and m are real, constant, parameters and x = x(t).

Equation (5.22) is often referred to as the Duffing equation or Duffing oscillator (Duffing (1918)). It
arises in a variety of applications and in a number of different forms. For a more detailed discussion see
e.g. Guckenheimer and Holmes (1986), Wiggins (1990), Thompson and Stewart (1986). For d,m > 0, the
form (5.22) describes the motion of a single mass attached to a spring with nonlinear elasticity and linear
damping. The parameter d is the damping coefficient and m is the square of the frequency of oscillation.
The quantity −(mx + x3) is known as the restoring or spring force and represents the force exerted by
the spring when it is subjected to a displacement x (Stoker (1966)).

Equation (5.22) can be written as the first order system

ẋ = y,

ẏ = −(mx + x3 + dy). (5.23)

The nature of the solution of this system varies greatly depending on the values of the parameters. For
d,m > 0 the sytem (5.23) has a single stable equilibrium at (x, ẋ) = (0, 0).

We solve (5.23) numerically using a second order Runge-Kutta method. Discretising the system (5.23)
gives the following set of equations

xk+1 =

(
∆t − d

∆t2

2

)
yk +

(
1 + m

∆t2

2
−

∆t2

2
x2

k

)
xk (5.24)

yk+1 =

(
1 − d∆t + m

∆t2

2
+ d2 ∆t2

2

)
yk +

(
m∆t − dm

∆t2

2
+ (d

∆t2

2
−

∆t

2
)x2

n

)
xk . . .

−
∆t

2
(xk + ∆tyk)

3
(5.25)

where the model time step ∆t = 0.1.

We combine the model parameters d and m in the parameter vector pk ∈ R
2

pk =

(
dk

mk

)
. (5.26)
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Since we are assuming that they are constant, we can write

pk+1 = pk, (5.27)

(cf. equation 2.4).

Adding the parameter vector pk to the state vector

xk =

(
xk

yk

)
, (5.28)

gives the augmented state vector

wk =

(
xk

pk

)

(cf. equation 2.5).

This allows us to write (5.24)-(5.25) and (5.27) as the equivalent augmented system

wk+1 = f̃(wk)

=

(
f(xk,pk) 0

0 I

)(
xk

pk

)
. (5.29)

5.2.1 State-parameter cross covariance

For the oscillating system the Jacobian of the forecast model with respect to the parameters is defined as

Nk =

(
∂f(xk,pk)

∂dk

∂f(xk,pk)

∂mk

)∣∣∣∣
xa

k
,pa

k

=





∂xk+1

∂dk

∂xk+1

∂mk
∂yk+1

∂dk

∂yk+1

∂mk





∣∣∣∣∣∣∣
xb

k+1,pa

k

(5.30)

From (5.24) and (5.25) we have

∂xk+1

∂dk

=
−∆t2

2
yk, (5.31)

∂xk+1

∂mk

=
∆t2

2
xk (5.32)

and

∂yk+1

∂dk

=
(
d∆t2 − ∆t

)
yk +

(
x2

k − m
) ∆t2

2
xk (5.33)

∂yk+1

∂mk

=
∆t2

2
yk +

(
∆t − d

∆t2

2

)
xk. (5.34)

We assume that d and m are uncorrelated and set

Bpp =

(
σ2

d 0
0 σ2

m

)
, (5.35)

where σ2
d and σ2

m are the error variances for parameters d and m respectively.

The state-parameter cross covariance matrix is then given by

Bxpk+1 = NkBpp

=

(
σ2

d

∂f(xk,pk)

∂dk

σ2
m

∂f(xk,pk)

∂mk

)∣∣∣∣
xa

k
,pa

k

. (5.36)
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Figure 5.4: Damped, unforced nonlinear oscillator: computed numerical solution for x and y.

5.2.2 Assimilation experiments

We define the ‘true’ solution to be that given by the discretised equations (5.23) - (5.24) with initial dis-
placement x0 = 2.0 and initial velocity y0 = 0.0 and parameter values d = 0.1 and m = 0.5. Observations
of both x and y are taken from this solution and assimilated at regular time intervals. The true solution
for x and y is shown in figure 5.4. The initial background estimate for the state xb

0 is generated by adding
random noise to the the true initial conditions. This noise is taken from a Gaussian distribution with zero
mean and variance σ2

b = 0.01. The state background error covariance matrix is set at

Bxx = σ2
b I, I ∈ R

2×2. (5.37)

For the observation error covariance matrix we use

R = σ2
oI, I ∈ R

2×2. (5.38)

We generate an initial estimates d0 and m0 for the parameters d and m by adding random noise with
error variance σ2

d = 0.01 and σ2
m = 0.05 respectively to the ‘true’ values. Since in this case the dimension

of augmented state is small (n + q = 4) we compute the analysis directly from equation (3.3).

5.2.3 Results

Perfect observations

Figures 5.5(a) and (b) show the parameter d and m updates for initial estimates d0 = 0.056641 and
m0 = 0.74804 with observations of x and y taken at varying temporal frequencies. The observation error
variance is set at σ2

o = 0.01. The scheme manages to retrieve both d and m to a good level of accuracy
for observation intervals up to every 25∆t. In this example, the estimates produced using an observation
interval of 25∆t are actually slightly better than when observations are taken every 10∆t. We see a big
increase in error when the observation frequency is decreased to 50∆t; here the d and m estimates are
almost twice their true values. A particular difficultly with this system is that the solution decays to
zero quite quickly and so there is only a limited amount of time in which the assimilation scheme is of
use. When observations are very infrequent there are not enough observations taken before the system
becomes very damped and this limits the ability of our scheme to identify the true parameter values.

Noisy observations

The above experiments were repeated using imperfect observations. Figures 5.6(a) and (b) show the
results produced when random noise with variance σ2

o = 0.01 was added to the observations as described
in section 5.1.3 above. As with the linear advection model, the state and parameter estimates are both
noisy. The impact of noise on the observations is greatest when observations are assimilated every ∆t.
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Here, the noisy observations are too frequent and the model does not have sufficient time to adjust to the
new parameter value before the next input of data. For intervals of 5∆t to 25∆t the parameter estimates
actually improve as the frequency of the observations is decreased.

Figure 5.7(a) and (b) show the effect of averaging the parameter estimates over a moving time window
of 50 timesteps with averaging starting at t = 20. With the exception of the case where observations are
taken at every timestep, the accuracy of the smoothed parameter estimates is similar to the perfect obser-
vations case and possibly even better for the parameter m. If the observation error variance is increased
to σ2

o = 0.1 there is a noticeable difference in the quality of the state analysis but we are still able to
obtain reasonable parameter estimates.
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Figure 5.5: Perfect observations (a) Parameter d updates for initial estimate d0 = 0.056641, (b)
Parameter m updates for initial estimate m0 = 0.74804: solid black line - observations every ∆t; solid
green line - observations every 5∆t; solid red line - observations every 10∆t; solid blue line - observations
every 25∆t; solid purple line - observations every 50∆t.
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Figure 5.6: Imperfect observations σ2
o = 0.01 (a) Parameter d updates for initial estimate d0 =

0.056641, (b) Parameter m updates for initial estimate m0 = 0.74804: solid black line - observations
every ∆t; solid green line - observations every 5∆t; solid red line - observations every 10∆t; solid blue line
- observations every 25∆t; solid purple line - observations every 50∆t.
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Figure 5.7: Imperfect observations σ2
o = 0.1 (a) Averaged parameter d updates for initial estimate

d0 = 0.056641, (b) Parameter m updates for initial estimate m0 = 0.74804: solid black line - observations
every ∆t; solid green line - observations every 5∆t; solid red line - observations every 10∆t; solid blue line
- observations every 25∆t; solid purple line - observations every 50∆t.

5.3 Lorenz equations

The Lorenz equations is the name given to a system of first order differential equations describing a
simple nonlinear dynamical system that exhibits chaotic behaviour. The system was originally derived
from a model of fluid convection and consist of the three coupled, nonlinear ordinary differential equations
(Lorenz (1963))

ẋ = −σ(x − y) , (5.39)

ẏ = ρx − y − xz , (5.40)

ż = xy − βz , (5.41)

where x = x(t), y = y(t) and z = z(t) and σ, ρ and β are real, positive parameters.

The strong nonlinearity of these equations means that the model solution is extremely sensitive to
perturbations in the initial conditions and parameters. For this reason, the model is often used as a
framework for examinining the properties of data assimilation methods when applied to highly nonlinear
dynamical systems.

The origin is a stationary point for all parameter values. When ρ > 1 there are two other stationary
points (

±
√

β(ρ − 1),±
√

β(ρ − 1), ρ − 1)
)

.

For these experiments we set the ‘true’ parameters at σ = 10, ρ = 28 and β = 8/3. These are the classic
values first used by Lorenz. At these values all three equilibrium points are unstable giving rise to chaotic
solutions (Sparrow (1982)).

For this system we adapt a pre-existing Matlab routine written by M.J Martin2 (Martin et al. (1999),
Martin (2000)). The program solves equations (5.39)-(5.41) numerically using a second order Runge-Kutta
method (see e.g. Burden and Faires (1997)). The discrete system is given by

2The code was originally developed as a training aid to illustrate the application of sequential data assimilation schemes
to state estimation in simplified models. A copy of the original, unmodified code can be obtained from the NERC National
Centre for Earth Observation website at http://www.nceo.ac.uk/training.php.
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xk+1 = xk + σ∆t/2 [2(yk − xk) + ∆t(ρxk − yk − xkzk) − σ∆t(yk − xk)] , (5.42)

yk+1 = yk + ∆t/2 [ρxk − yk − xkzk + ρ(xk + σ∆t(yk − xk)) − yk − ∆t(ρxk − yk − xkzk)

− (xk + σ∆t(yk − xk))(zk + ∆t(xkyk − βzk))] (5.43)

zk+1 = zk + ∆t/2 [xkyk − βzk + (xk + ∆tσ(yk − xk))(yk + ∆t(ρxk − yk − xkzk))

− β(zk + ∆t(xkyk − βzk))] (5.44)

where ∆t = 0.01 is the model time step.

Proceeding as in the previous section we set

xk =




xk

yk

zk



 , pk =




σk

ρk

βk



 , and wk =

(
xk

pk

)
.

Our augmented system model is then given by

wk+1 = f̃(wk)

=

(
f(xk,pk) 0

0 I

)(
xk

pk

)
. (5.45)

where f(xk,pk) is the state evolution model given by (5.42)-(5.44) evaluated at pk.

5.3.1 State-parameter cross covariance

For the Lorenz model we have

Nk =

(
∂f(xk,pk)

∂σk

∂f(xk,pk)

∂ρk

∂f(xk,pk)

∂βk

)∣∣∣∣
xa

k
,pa

k

=





∂xk+1

∂σk

∂xk+1

∂ρk

∂xk+1

∂βk
∂yk+1

∂σk

∂yk+1

∂ρk

∂yk+1

∂βk
∂zk+1

∂σk

∂zk+1

∂ρk

∂zk+1

∂βk





∣∣∣∣∣∣∣∣∣∣∣
xb

k+1,pa

k

(5.46)

Using (5.42), (5.43) and (5.44) we calculate the elements of Nk as follows

∂xk+1

∂σk

= ∆t/2 [2(yk − xk) + ∆t(ρkxk − yk − xkzk) − 2σk∆t(yk − xk)]

= ∆t(1 − σk∆t)(yk − xk) + ∆t2/2(ρkxk − yk − xkzk), (5.47)

∂xk+1

∂ρk

= σk(∆t2/2)xk (5.48)

∂xk+1

∂βk

= 0 (5.49)
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∂yk+1

∂σk

= ∆t/2 [ρk∆t(yk − xk) − ∆t(yk − xk)(zk + ∆t(xkyk − βkzk))] ,

= ∆t2/2(yk − xk) [ρk − zk − ∆t(xkyk − βkzk)] (5.50)

∂yk+1

∂ρk

= ∆t/2 [xk + xk + σk∆t(yk − xk) − ∆txk]

= ∆t/2 [(2 − ∆t)xk + σk∆t(yk − xk)]

= (∆t − ∆t2/2)xk − σk∆t2/2(yk − xk), (5.51)

∂yk+1

∂βk

= ∆t/2 [xk∆tzk + σk∆t(yk − xk)∆tzk]

= ∆t2/2 [xk + σk∆t(yk − xk)] zk, (5.52)

∂zk+1

∂σk

= ∆t/2 [∆t(yk − xk)(yk + ∆t(ρkxk − yk − xkzk))]

= ∆t2/2 [(yk − xk)yk + ∆t(yk − xk)(ρkxk − yk − xkzk))] (5.53)

∂zk+1

∂ρk

= ∆t/2 [(xk + ∆tσk(yk − xk))∆txk]

= ∆t2/2 [xk + σk∆t(yk − xk)]xk, (5.54)

∂zk+1

∂βk

= ∆t/2 [−zk − ∆txkyk + 2βk∆tzk]

= ∆t2/2(xkyk) + ∆t/2(2βk∆t − 1)zk (5.55)

We assume that σ, ρ and β are uncorrelated and set

Bpp =




σ2

σ 0 0
0 σ2

ρ 0
0 0 σ2

β



 , (5.56)

where σ2
σ, σ2

ρ and σ2
β are the error variances for parameters σ, ρ and β respectively.

The state-parameter cross covariance matrix is then given by

Bxpk+1 = NkBpp

=

(
σ2

σ

∂f(xk,pk)

∂σk

σ2
ρ

∂f(xk,pk)

∂ρk

σ2
β

∂f(xk,pk)

∂βk

)∣∣∣∣
xa

k
,pa

k

. (5.57)

5.3.2 Assimilation experiments

We define the ‘true’ solution to be given by the discrete equations (5.42) - (5.44) with initial conditions
x0 = −5.4458, y0 = −5.4841 and z0 = 22.5606. Observation of x, y and z are taken from this solution
and assimilated at regular time intervals. The solutions for x and z are shown in figure 5.8. The initial
background guess xb

0 is equal to the true initial conditions plus random noise. This noise is taken from
a Gaussian distribution with zero mean and variance σ2

b = 0.1. The state background error covariance
matrix is taken as

Bxx = σ2
b I, I ∈ R

3×3. (5.58)

The initial estimates of the parameters σ0, ρ0 and β0 are generated by adding random noise with variance
equal to 20% of the true value to each of σ, ρ and β. Although by adding the parameters to the state
vector we double the dimension of the system, w ∈ R

n+q=6 is still relatively small and so we use equation
(3.3) to compute the analysis directly.
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Figure 5.8: Lorenz equations: true solution for x and z.

5.3.3 Results

Perfect observations

Figures 5.9(a) show the parameter estimates produced using the randomly generated starting values
σ0 = 11.0311, ρ0 = 30.1316 and β0 = 1.6986 for observation frequencies 5∆t, 10∆t and 20∆t, with
σ2

o = 0.01. The estimates of ρ and β get close to their true values fairly quickly; the updating of σ is
a lot slower but it nonetheless converges to the correct value. Figures 5.9(b) shows the estimates for a
observation interval of 30∆t. Here the scheme takes much longer to stabilise and we see much bigger
deviations in the estimates. If we try and further increase the period between assimilations to 40∆t the
scheme fails to find the correct parameter values.

Noisy observations

Again, we re-ran our experiments using noisy observations. We used observation error variances σ2
o = 0.01,

σ2
o = 0.1 and σ2

o = 0.25 and assimilated observations at varying time intervals. Figures 5.10 and 5.11 show
the parameter updates obtained when the observation error variances were set at 0.1 and 0.25 respectively
for initial parameter estimates σ0 = 9.2405, ρ0 = 25.5385 and β0 = 3.395. The results for σ2

o = 0.01
are not shown as the convergence and quality of the parameter estimates was very similar to the perfect
observation case. When we set σ2

o = 0.1 and σ2
o = 0.25 the parameter estimates are extremely noisy; the

size of the parameter errors increases as σ2
o increases (note the difference in the y axis scale in figure 5.11)

and also as the frequency of the observations decreases. We have only shown results for intervals of 5∆t
and 10∆t as beyond this the oscillations are extremely large. The right hand panels of figures 5.10 and
5.11 show the corresponding time averaged estimates, produced using a moving time window with averag-
ing starting at t = 1.5. For assimilation intervals of 5∆t and 10∆t the averaged parameter estimates are
extremely good. When σ2

o = 0.1 we are also able to get reasonable estimates for an observation interval of
20∆t by increasing the length of the averaging window, but when σ2

o = 0.25 even the averaged estimates
are unreliable.
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Figure 5.9: Perfect observations Parameter updates for initial estimates σ0 = 11.0311, ρ0 = 30.1316,
β0 = 1.6986 (a) solid black line - observations every 5∆t; solid green line - observations every 10∆t; solid
red line - observations every 20∆t (b) solid blue line - observations every 30∆t.
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Figure 5.10: Imperfect observations Parameter updates for initial estimates σ0 = 9.2405, ρ0 = 25.5385
and β0 = 3.395, with observation error variance σ2

o = 0.1 (a) unaveraged updates, (b) averaged updates:
solid black line - observations every 5∆t; solid green line - observations every 10∆t
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Figure 5.11: Imperfect observations Parameter updates for initial estimates σ0 = 9.2405, ρ0 = 25.5385
and β0 = 3.395, with observation error variance σ2

o = 0.25 (a) unaveraged updates, (b) averaged updates:
solid black line - observations every 5∆t; solid green line - observations every 10∆t.
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6 Conclusions

A new method for concurrent model parameter and state estimation, employing a hybrid data assimilation
scheme, has been proposed and demonstrated via a series of identical twin experiments with three simple
numerical models.

A key difficulty in the construction of a data assimilation algorithm is specification of the background
error covariances. These covariances play an important role in the filtering and spreading of observational
data and have a direct influence on the quality of the analysis. For parameter estimation, it is the joint
state-parameter cross covariances, given by the off-diagonal elements of the augmented state background
error covariance matrix B, that transfer information from the observations to the parameter estimates and
therefore play a crucial role in the parameter updating. A good a priori specification of these covariances
is vital for accurate parameter estimation.

Earlier work (Smith et al. (2008), Smith et al. (2009a)) suggested that the state-parameter covariances
should be time-dependent. However, explicitly propagating the B matrix is computationally expensive and
requires the construction of adjoint and tangent linear models. Since the requirement for time dependence
did not extend to the estimation of the state error covariances an alternative approach was sought. By
combining the ideas from the 3D Var and Kalman filter techniques we have developed a new hybrid scheme
that provides a flow dependent approximation of the state-parameter cross-covariances but which avoids
the computational complexities associated with implementation of the full Kalman filter equations. This
allows us to use the state augmentation technique with 3D Var and OI type algorithms which traditionally
make the assumption of a static B.

In this paper we have presented details of this new methodology and illustrated its versatility by
applying it to a range of simple dynamical system models in which the use of incorrect parameters has a
direct impact on the model solution. As the results show, the scheme performed well in all of the three
cases considered and was successful in recovering the parameter values we had specified to a good level
of accuracy, even when the observational data were noisy. This had a positive impact on the skill of the
forecast model and enabled more accurate predicitions of the true model state.

The method is less successful in situations where the model is relatively insensitive to a particular
parameter, as was the case for certain settings in oscillating system. This is not surprising; we cannot
expect to be able to correct parameters that cause errors in the model solution that are on smaller scales
than can be observed. This raises the issues of observability and identifiability (Barnett and Cameron
(1990), Navon (1997)); whether the available observations contain sufficient information for us to be able
to determine the parameters of interest and whether these parameters have a unique deterministic set of
values. A parameter estimation method can only be expected to work reliably when both these properties
hold. Future work will investigate observability and identifiability and how they relate to this new method.

In this work we assumed that the parameters in the oscillating and Lorenz models were uncorrelated
and set the cross covariances between the parameters equal to zero. Whilst this assumption worked for
these particular models it may not adequate for models in which the parameters are strongly correlated.
A model sensitivity analysis can be used to help identify the interdependence of parameters and ascertain
whether cross correlations are needed. In this case, more attention will need to be given to the parameter
error covariance matrix Bpp and methods for defining the cross correlations will need to be considered
(Smith et al. (2009b)). In some situations, it may be prudent to consider a re-parameterisation of the
model equations to improve the identifiability of the parameters or even to transform the parameters to
a set of uncorrelated variables (Sorooshian and Gupta (1995)).

To date, our new technique has only been tested in models of relatively low dimension, where the
number of parameters is small and, since the required parameters are constants, the dynamics of the
parameter model are simple. The increase in the dimension of the problem caused by the addition of
the parameters to the state vector does not have a significant impact on the computational cost of the
assimilation scheme and the re-calculation of the matrix Nk at each new assimilation time is not infeasible.
We note that, although available for the models we used here, a computational tangent linear model is not
necessarily required. The matrix Nk could, for example, be computed using a finite difference approach
as described in Smith et al. (2009b). There could, however, potentially be issues if an efficient means of
approximating Nk is not available and/ or the state vector and the number of parameters to be estimated
is large.

This study has provided a valuable insight into how the method is likely to perform in a range of
dynamical systems. The results are extremely encouraging; the scheme has proved effective in both linear

25



and non-linear systems. We believe that there is potential for successful application of this new method-
ology to larger, more realistic models with more complex parameterizations.
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A Tangent Linear Model (TLM)

Definition

If f is a non linear model defined as
xk+1 = f(xk),

then the tangent linear model of f , called F is

δxk+1 = Fkδxk =
∂f(xk)

∂x
δxk

Tangent Linear of the augmented system model

Starting from an initial state ŵk at time tk we generate a reference state at tk+1 using the model equation
(2.6)

ŵk+1 = f̃(ŵk). (A.1)

We define a perturbation to this state as

δwk+1 = wk+1 − ŵk+1. (A.2)

This perturbation then satisfies
δwk+1 = f̃(wk) − f̃(ŵk). (A.3)

Assuming δwk+1 is small, we can expand (A.3) in a Taylor series about ŵk+1. To first order we have

δwk+1 = f̃(ŵk + δwk) − f̃(ŵk)

= f̃(ŵk) + Fkδwk + . . . − f̃(ŵk)

≈ Fkδwk, (A.4)

where

Fk =
∂ f̃(ŵk)

∂w
, (A.5)

is the Jacobian of the forecast model with respect to w evaluated at ŵk.

Thus we can approximate
f̃k(wk) − f̃k(ŵk) ≈ Fk(wk − ŵk) (A.6)

Note that this approximation is only valid if the perturbations to the model state are small, i.e. small
‖w − ŵk‖2.
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