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Abstract

In the hydraulics industry, an accurate numerical approximation of the equations

governing sediment transport in coastal regions has recently become a major topic of

interest. These equations comprise the shallow water equations governing the water

flow with the addition of a bed transport equation. It is common practice in industry

to simplify the equations governing sediment transport by assuming the water flow

is in an equilibrium state and the bed has a negligible effect on the water flow.

However, this approach is limited as only steady flow and a slow moving bed can be

approximated accurately in this manner. Thus, an unsteady approach is required

that is considerably more robust and approximates the full system simultaneously.

Until recently, the classic Lax-Wendroff scheme has been widely used in industry

to obtain a numerical solution to the equations, but not surprisingly the numerical

results obtained suffered from spurious oscillations resulting in the numerical scheme

becoming unstable for long time periods. In industry, different measures have been

applied to the use of classic Lax-Wendroff scheme to try to eliminate the spurious

oscillations such as flux-limiter methods and using a small Courant number.

Unfortunately, the spurious oscillations could not be eliminated and overpowered

the numerical results for long computational run times. In this thesis, a variety

of numerical schemes are discussed including adapted versions of the Lax-Friedrichs

scheme, classic Lax-Wendroff scheme, MacCormack scheme and Roe’s scheme. High

resolution schemes are also derived that satisfy the TVD property so that no spurious

oscillations will occur in the numerical results. Five different formulations are then

derived, which are based on either a steady or unsteady approach, and are used

with the most accurate scheme and compared with the classic Lax-Wendroff scheme

to obtain a numerical approximation of the equations. The numerical results are

compared to determine which approach and numerical scheme is the most accurate.

Sediment transport in both one and two dimensions is considered and dimensional

splitting schemes are also discussed in two dimensions.
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Chapter 1

Introduction

1.1 Motivation

In recent years, sand transport has become a major topic of interest in the hydraulics

community. The understanding of how sand interacts in certain environments is

crucial for both the environment and businesses. For example, sand transport

influences how harbours are constructed since if too much sand enters a harbour,

the walls may become severely damaged and the costs of dredging the harbour may

become too expensive and impractical. Reservoirs can lose all storage capacity due

to sediment build up. Cunge et al. [3] stated that by 1973, 33% of the US reservoirs

built before 1935 had lost between 25% to 50% of their original capacity due to

sediment build up.

In this thesis, we discuss a variety of numerical techniques that can be used to

obtain a numerical solution of the equations that govern sediment transport. For a

one dimensional channel, these comprise the equation for conservation of mass,

∂h

∂t
+

∂(uh)

∂x
= 0, (1.1)
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Figure 1.1: The shallow water domain.

the equation for conservation of momentum,

∂(uh)

∂t
+

∂
[
hu2 + 1

2
gh2

]
∂x

= −ghBx, (1.2)

and the bed-updating equation,

∂B

∂t
+ ξ

∂q

∂x
= 0, (1.3)

where ξ = 1
1−ε

, ε being the porosity of the bed, which is non-dimensional, with

0 ≤ ε < 1. In this thesis, we use a value of 0.4 for the porosity. Here η(x, t)

represents the surface elevation, h(x, t) is the total height above the bottom of the

channel (m), B(x, t) is the height of the riverbed (m), u(x, t) is the velocity in

the x direction (m/s) and q(u, h) is the total (suspended and bedload) volumetric

sediment transport rate in the x direction (m2/s), see Figure 1.1. As suggested by

the notation, the sediment transport flux q(u, h) is not in general a direct function

of B, which can cause difficulties in obtaining an accurate numerical approximation.

In some cases, the sediment transport flux cannot be written analytically and

is calculated by using a “black box” approach where the flux is deduced from

experimental data. Unfortunately, the equation for conservation of momentum (1.2)

is not valid when discontinuities appear in the bed thus, a modified version of the

equation is derived for this special case in Section 1.3.
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Until recently, the system (1.1) to (1.3) has been approximated by using a steady

approach, which was pioneered by Cunge et al. [3]. The approach assumes that

the changes in the bed have a negligible effect on the water flow and decouples

the system. The system is decoupled into a water flow approximation, which

is iterated to an equilibrium state, followed by a bed update. The approach is

used with the classic Lax-Wendroff scheme in industry, but the scheme suffers from

dispersion resulting in spurious oscillations occurring in the numerical results.

Various techniques, including flux-limiter methods, have been used to try to eliminate

the spurious oscillations. Unfortunately, the spurious oscillations could not be

eliminated and overpowered the numerical results for long computational run times,

see Damgaard [4] and Damgaard & Chesher [5]. Thus, even with the various

techniques, the classic Lax-Wendroff scheme could only be used for short

computational run times otherwise, spurious oscillations overpowered the numerical

results resulting in the scheme becoming unstable. In this thesis, we discuss a

variety of numerical techniques for approximating the equations governing sediment

transport so that an accurate solution with no numerical oscillations present may

be obtained.

In this chapter, we discuss the derivation of the equations governing sediment

transport together with two alternative sediment transport flux formulae. In

Chapter 2, a variety of numerical schemes including adaptations of the classic

Lax-Friedrichs, classic Lax-Wendroff, MacCormack and Roe’s scheme are discussed

and applied to the shallow water equations without bed movement. To determine

which scheme is the most accurate, three test problems are used to compare the

numerical results of the different schemes. In Chapter 3, five different formulations

of the governing equations are derived, which can be used to obtain a numerical

approximation of the equations governing sediment transport. One of the

formulations is based on the steady approach and the other four on the unsteady

approach, where the water flow and bed update are approximated simultaneously.

The flux-limited version of Roe’s scheme and the classic Lax-Wendroff scheme are

then used to obtain a numerical solution of the different formulations for two test

problems. The different formulations and numerical schemes are then compared to

see which is the most accurate combination. In Chapter 4 the two dimensional
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case is considered and a variety of two dimensional schemes are discussed and

applied to the 2D shallow water equations without bed movement. A test problem

is used to determine which of the schemes is the most accurate. In Chapter 5,

we discuss how to obtain an accurate approximation of the equations governing

sediment transport in two dimensions. The different formulations used in one

dimension are adapted to two dimensions and are numerically approximated using

the classic 2D Lax-Wendroff scheme, a flux-limited 2D version of Roe’s scheme

and a dimensional splitting scheme. A conical sand dune test problem is used to

determine which formulation and numerical scheme produced the most accurate

numerical results. In Chapter 6, we discuss the results found in this thesis and

propose further work.

1.2 Derivation of the Equations

We first derive the equations that govern fluid flow with sediment transport. By

considering a region between x1 and x2 in the one dimensional channel illustrated

in Figure 1.1, we can derive the equations governing sediment transport.

1.2.1 Conservation of Mass

In the region x1 to x2, we can determine that

[
Net volume of fluid into

the region x1 to x2

]
=

[
Rate of change of total volume

of fluid in the region x1 to x2

]
.

Now, the total volume of fluid in the region x1 to x2 is

∫ x2

x1

∫ h+B

B

dydx =

∫ x2

x1

(h + B − B) dx =

∫ x2

x1

h dx
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and by differentiating with respect to t, we obtain

[
Rate of change of total volume

of fluid in the region x1 to x2

]
=

d

dt

∫ x2

x1

h dx.

Also,

[
Total volume of

fluid entering at x1

]
= (uh)x1 and

[
Total volume of

fluid leaving at x2

]
= (uh)x2

thus, [
Net volume of fluid into

the region x1 to x2

]
= (uh)x1 − (uh)x2 .

Hence, we obtain the integral form of the equation for conservation of mass

d

dt

∫ x2

x1

h dx + [uh]x2

x1
= 0. (1.4)

To obtain the differential form, we integrate (1.4) with respect to t over the interval

[t1,t2], where t2 > t1,

∫ x2

x1

h(x, t2) dx −
∫ x2

x1

h(x, t1) dx +

∫ t2

t1

[uh]x2

x1
dt = 0.

Then, by assuming that h(x, t) and u(x, t) are differentiable functions and using

h(x, t2) − h(x, t1) =

∫ t2

t1

∂h

∂t
dt and [uh]x2

x1
=

∫ x2

x1

∂(uh)

∂x
dx,

we obtain ∫ t2

t1

∫ x2

x1

{
∂h

∂t
+

∂(uh)

∂x

}
dxdt = 0.

Since x1, x2 and t1, t2 are arbitrary, we obtain the differential form of the equation

for conservation of mass,
∂h

∂t
+

∂(uh)

∂x
= 0.

Note that the common practice of re-writing this equation as

∂η

∂t
+

∂(u(η − B))

∂x
=

∂B

∂t

5



for the case of a fixed bed is not valid for the moving bed case considered here since

Bt �= 0.

1.2.2 Conservation of Momentum

In the region x1 to x2, we can determine that

[
Total rate of change of

momentum in x direction

]
= [Force applied in x direction] .

Now,

[
Total rate of change of

momentum in x direction

]
=

d

dt

∫ x2

x1

∫ h+B

B

u dydx + (hu2)x2 − (hu2)x1

=
d

dt

∫ x2

x1

uh dx + (hu2)x2 − (hu2)x1 .

Also

[Pressure force on ends] = g

[∫ h+B

B

(y − (h + B)) dy

]x2

x1

= g

[[
1

2
y2 − (h + B)y

]h+B

B

]x2

x1

=

[
−1

2
gh2

]x2

x1

and

[Pressure force from riverbed] = −g

∫
CB1,2

h dy,

where CB1,2 is the path of the line integral and denotes the curve of the riverbed in

the region x1 to x2. By assuming that no discontinuities are present in the riverbed

[Pressure force from riverbed] = −g

∫ x2

x1

h
dB

dx
dx,

6



we obtain

[Force applied in x direction] =

[
−1

2
gh2

]x2

x1

− g

∫ x2

x1

h
dB

dx
dx.

Hence,

d

dt

∫ x2

x1

uh dx + (hu2)x2 − (hu2)x1 =

[
−1

2
gh2

]x2

x1

− g

∫ x2

x1

h
dB

dx
dx

and by re-arranging, we obtain the integral form of the equation for conservation of

momentum,

d

dt

∫ x2

x1

uh dx +

[
hu2 +

1

2
gh2

]x2

x1

= −g

∫ x2

x1

h
dB

dx
dx. (1.5)

To obtain the differential form of the equation for conservation of momentum, we use

the same approach as we did for the equation for conservation of mass and assume

that h(x, t) and u(x, t) are differentiable functions and obtain

∂(uh)

∂t
+

∂
[
hu2 + 1

2
gh2

]
∂x

= −ghBx.

1.2.3 Bed-Updating Equation

In the region x1 to x2, we can determine that

[
Net flux of mass into

the region x1 to x2

]
=

[
Rate of change of total mass

in the region x1 to x2

]
.

Now, the total volume of sediment in the region x1 to x2 is

∫ x2

x1

∫ B

0

dydx =

∫ x2

x1

B dx

7



and by differentiating with respect to t, we obtain

[
Rate of change of total mass

in the region x1 to x2

]
=

d

dt

∫ x2

x1

B dx.

In addition we have[
Total volume of

sediment entering at x1

]
= ξq(u, h)x1 and

[
Total volume of

sediment leaving at x2

]
= ξq(u, h)x2 ,

where ξ = 1
1−ε

and ε is the porosity of the bed material, see Cunge et al. [3]. Thus,

[
Net flux of mass into

the region x1 to x2

]
= ξ (q(u, h)x1 − q(u, h)x2) .

Hence, we obtain the integral form of the bed-updating equation,

d

dt

∫ x2

x1

B dx + ξ [q(u, h)]x2

x1
= 0. (1.6)

To obtain the differential form of the bed-updating equation, we use the same

approach as we did for the equation for conservation of mass and assume that h(x, t)

and u(x, t) are differentiable functions and obtain

∂B

∂t
+ ξ

∂q

∂x
= 0.

1.3 Modification for a Discontinuity in the

Riverbed

When a discontinuity is present in the riverbed, see Figure 1.2, the integral

conservation laws (1.4) and (1.6) are valid for non complex discontinuities

(Needham & Hey [29] and Zanré & Needham [46]). However, the integral form

of the equation for conservation of momentum (1.5) becomes invalid along the face

of the discontinuity due to the term on the right side of (1.5) being derived with

8



Figure 1.2: A discontinuity present in the riverbed.

the assumption that no discontinuities are present in the riverbed. This term arises

from the hydrostatic pressure force from the riverbed

−g

∫
CB1,2

h dy,

where CB1,2 is the path of the line integral and denotes the curve of the riverbed in

the region x1 to x2. Away from the discontinuity, the line integral along CB1,2 can

be determined

−g

∫
CB1,2

h dy = −g

∫ x2

x1

h
dB

dx
dx

and equation (1.5) can be used. However, along the face of the discontinuity, we

cannot evaluate this integral as h(x, t) is undefined. Zanré & Needham [46] noted

that when a discontinuity appears in the riverbed, we can use

h = d′(y), min(BL, BR) ≤ y ≤ max(BL, BR), (1.7)

where

d′(y) = hL +
(hR − hL)(y − BL)

BR − BL

(1.8)
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to determine the value of h(x, t) along the face of the discontinuity. By integrating

(1.8), we obtain

d(y) = hLy +
y(hR − hL)(y − 2BL)

2(BR − BL)
. (1.9)

Thus, away from the discontinuity, the integral conservation laws (1.4), (1.5) and

(1.6) can be used but at the discontinuity, (1.5) must be replaced with

d

dt

∫ x2

x1

uh dx +

[
hu2 +

1

2
gh2

]x2

x1

= −g

∫
CB1,2

h dy

where (1.7), (1.8) and (1.9) provide a definition of depth along the face of the

discontinuity

1.4 Sediment Transport Flux Formulae

The total load sediment transport flux includes suspended and bed-load sediment

transport. Bed-load sediment transport includes the effects of grains of sand being

transported on the surface of the bed by friction and gravity (for slopes). Suspended

sediment transport includes the effects of grains of sand being picked up by the

water flow and transported above the bed. For slow water flow, bed-load sediment

transport is more dominant as not much sediment is carried by the water flow but

as the water flow increases, suspended sediment transport becomes more dominant

and sediment can be transported several meters above the bed especially if the grain

size is small (see Soulsby [36] for more details).

Numerous analytical sediment transport flux formulae have been derived that

include both suspended and bed-load sediment transport and the choice of which

to use is usually determined by the situation being modelled. In this thesis, we

consider two of the more well known sediment transport flux formulae:

• Grass [14] discussed one of the most basic sediment transport fluxes which

10



follows a simple power law,

q(u) = Au|u|m−1. (1.10)

Here, A is a dimensional constant (s2/m), that encompasses the effects of grain

size and kinematic viscosity and is usually determined from experimental data

with m being chosen so that 1 ≤ m ≤ 4. Unless u is not allowed to change sign,

(1.10) cannot be differentiated with respect to u. However, by considering odd

integer values of m only, (1.10) can be differentiated and is valid for all values

of u. For example, if we let m = 3 then

q(u) = Au|u2| = Au3, (1.11)

which can now be differentiated with respect to u and is valid for all values of

u.

• Van Rijn [42, 43] derived a more complex sediment transport flux,

q(u, h) =

{
Au (|u| − ucr)

2.4 if |u| > ucr

0 otherwise
, (1.12)

where ucr is the threshold current speed which is calculated from

ucr =

⎧⎪⎪⎨
⎪⎪⎩

0.19(d50)
0.1 log10

(
2h

d50

)
if 100 ≤ d50 ≤ 500μm

8.5(d50)
0.6 log10

(
2h

d50

)
if 500 ≤ d50 ≤ 2000μm

,

A =
d50

(
0.005

(
d50

h

)0.2
+ 0.012D−0.6

∗
)

(gd50(s∗ − 1))1.2 (1.13)

and the particle diameter is

D∗ = d50

(
g

γ2
(s� − 1)

)1/3

.

Here, d50 is the median grain diameter in m, s� = ρs

ρ
is the specific gravity, ρs
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is the mineral density of the sediment in kg/m3 (2650kg/m3 for quartz), ρ is

the density of the water in kg/m3 and γ is the kinematic viscosity of the water

in m2/s. Values of d50, ρs and γ can be obtained from Table 1.1, Table 1.2

and Table 1.3 respectively. When calculating the threshold current speed, d50

must be in m and not in μm.

The sediment transport flux (1.12) is a simplified version of the full method of

van Rijn [42] and is only valid for 0.5 ≤ |u(x, t)| ≤ 2.5m/s and 1 ≤ h(x, t) ≤
20m. Van Rijn derived (1.12) for fresh water, whose salinity is 0 parts per

thousand (ppt), at a temperature of 15oC but the method can be used with

a different salinity (i.e. salt water whose salinity is 35 ppt) and temperature

with a minimal loss of accuracy.

Notice that the sediment transport flux of van Rijn is considerably harder to

differentiate than the sediment transport flux discussed by Grass. A variety of

other sediment transport fomulae can be found in Soulsby [36] and van Rijn [43].

The sediment transport flux of van Rijn can be re-written in the form of (1.10)

by assuming that the threshold wave speed is ucr = 0 and setting m = 3.4. Thus, by

assuming that h is constant, we can use (1.13) to obtain a realistic approximation

of A for (1.10). For example, if the situation being modelled is for seawater, whose

salinity is 35ppt, with a temperature of 10oC, the following values are obtained

1. ρs = 2650kg/m3, which is the mineral density of quartz.

2. ρ = 1027kg/m3, which is the density.

3. s = ρs

ρ
= 2.580331061, which is the specific gravity.

4. ν = 1.357 × 10−6m2/s, which is the kinematic viscosity.

5. d50 = 0.2 × 10−4m, which is the grain diameter of fine sand.

6. h ≈ 10m, which is the total height above the bottom of the channel.
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Hence, by using the above values, we obtain the realistic value

A ≈ 0.00680396635637,

which can be used with the sediment transport flux discussed by Grass.

Mud / Sand d50 in μm

Fine Clay 0 to 0.9765625
Medium Clay 0.9765625 to 1.953125
Coarse Clay 1.953125 to 3.90625

Very Fine Silt 3.90625 to 7.8125
Fine Silt 7.8125 to 15.625

Medium Silt 15.625 to 31.25
Coarse Silt 31.25 to 62.5

Very Fine Sand 62.5 to 125
Fine Sand 125 to 250

Medium Sand 250 to 500
Coarse Sand 500 to 1000

Very Coarse Sand 1000 to 2000

Table 1.1: The grain size in μm (taken from Soulsby [36]).

1.5 Summary

In this chapter, we have derived the equations governing sediment transport in one

dimension. We have also discussed two different sediment transport formulae that

can be used. In the next chapter, we discuss a variety of numerical schemes that can

be used to numerically approximate the equations governing sediment transport.
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Temperature oC
Salinity 0 5 10 15 20 25 30 35 40

0 999.8 1000 999.7 999.1 998.2 997 995.7 994 992.2
5 1003.9 1004 1003.6 1003 1002 1000.8 999.4 997.7 995.9
10 1008 1007.9 1007.5 1006.8 1005.8 1004.6 1003.1 1001.4 999.6
15 1012 1011.9 1011.4 1010.6 1009.6 1008.3 1006.8 1005.1 1003.2
20 1016 1015.8 1015.3 1014.4 1013.4 1012.1 1010.5 1008.8 1006.9
25 1020 1019.8 1019.2 1018.3 1017.2 1015.8 1014.3 1012.5 1010.6
30 1024.1 1023.7 1023.1 1022.1 1021 1019.6 1018 1016.2 1014.3
35 1028.1 1027.7 1027 1026 1024.8 1023.3 1021.7 1019.9 1018
40 1032.2 1031.6 1030.9 1029.8 1028.6 1027.1 1025.5 1023.7 1021.7

Table 1.2: Density of water in kg/m3 (taken from Ramsing & Gundersen [32]).

Temperature oC
Salinity 0 5 10 15 20 25 30 35 40

0 1790.1 1517.5 1305.2 1140.2 1009.9 901.5 802.2 699.5 580.4
5 1795.2 1524.5 1312.9 1147.8 1016.9 907.7 807.9 705.1 586.9
10 1800.2 1531.4 1320.5 1155.3 1023.8 913.9 813.6 710.8 593.4
15 1805.3 1538.3 1328.1 1162.8 1030.7 920 819.2 716.3 599.8
20 1810.3 1545.2 1335.6 1170.2 1037.5 926.1 824.7 721.9 606.2
25 1820.2 1558.7 1350.5 1184.8 1050.9 938.1 835.7 727.4 612.5
30 1820.2 1558.7 1350.5 1184.8 1050.9 938.1 835.7 732.8 618.8
35 1825.1 1565.4 1357.8 1192 1057.6 944.1 841.1 738.2 625
40 1829.9 1572 1365.1 1199.2 1064.2 949.9 846.5 743.6 631.2

Table 1.3: Kinematic viscosity of water in ×10−9m2/s (taken from Ramsing &
Gundersen [32]).
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Chapter 2

Numerical Schemes for Systems of

Conservation Laws in One

Dimension

Now that we have derived the equations governing sediment transport, we discuss

a variety of numerical schemes that can be used to numerically approximate the

equations. We discuss an adapted version of the Lax-Friedrichs (LxF) scheme (see

Garcia-Navarro et al. [9]), the staggered, non-staggered and central LxF and NT

scheme (see Nessyahu & Tadmor [30] and Jiang et al. [22]), the Lax-Wendroff scheme

(see Lax & Wendroff [24]), an adapted version of the MacCormack approach (see

LeVeque & Yee [27], Yee [45] and Hudson [20]) and an adaptation of Roe’s Scheme

(see Roe [33], Glaister [11] and Hubbard & Garcia-Navarro [18]). Flux limiter

methods and slope limiter methods are employed to minimise numerical oscillations.

The equations governing sediment transport can be written as a system of

conservation laws with source term, i.e.

∂w

∂t
+

∂F(w)

∂x
= R, (2.1)
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where F(w) is the flux-function and R is the source term. Before considering the

full system, we illustrate the numerical techniques for systems of conservation laws

using the example of the shallow water equations,

[
h

uh

]
t

+

[
uh

hu2 + 1
2
gh2

]
x

=

[
0

−ghBx

]
, (2.2)

which are a system of conservation laws. Some of the numerical schemes discussed

in this chapter require the Jacobian matrix associated with the system (2.1), which

for the shallow water equations is

A(w) =

[
0 1

gh − u2 2u

]
,

whose eigenvalues are

λ1 = u −
√

gh and λ2 = u +
√

gh,

with corresponding eigenvectors

e1 =

[
1

u −√
gh

]
and e2 =

[
1

u +
√

gh

]
.

2.1 Test Problems

We use the following three test problems for the shallow water equations to illustrate

the accuracy of the numerical schemes discussed in this chapter. For all three test

problems, the riverbed is fixed.
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2.1.1 Test Problem A: The Dam Break Problem

For this test problem, the riverbed is of constant depth thus, the source term is no

longer present, R = 0. The test problem consists of a 1D channel of length 1m with

walls at either end. The initial velocity is 0 and a barrier is present at x = 0.5,

which is removed at t = 0. The initial conditions consist of

u(x, 0) = 0 and h(x, 0) =

{
hL if 0 ≤ x ≤ 1

2

hR if 1
2

< x ≤ 1

and are illustrated in Figure 2.1.

�

�
DAM

�

�

�

�
hL

hR

x0 0.5 1

h

Figure 2.1: Initial conditions of the dam break problem.

Stoker [38] derived an analytical solution of the dam break problem which can

be used to illustrate the accuracy of the numerical schemes. The exact solution is

u(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if x < 1
2
− t

√
ghL

1

3t

(
2(x + t

√
ghL) − 1

)
if 1

2
− t

√
ghL ≤ x ≤ (u2 − c2)t + 1

2

u2 if (u2 − c2)t + 1
2

< x ≤ St + 1
2

0 if x > St + 1
2

17



and

h(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

hL if x < 1
2
− t

√
ghL

1

9g

(
2
√

ghL − 1

2t
(2x − 1)

)2

if 1
2
− t

√
ghL ≤ x ≤ (u2 − c2)t + 1

2

hR

2

(√
1 +

8S2

ghR

− 1

)
if (u2 − c2)t + 1

2
< x ≤ St + 1

2

hR if x > St + 1
2

where

u2 = S − ghR

4S

(
1 +

√
1 +

8S2

ghR

)
and c2 =

√√√√ghR

2

(√
1 +

8S2

ghR

− 1

)
.

The bore speed, S, is the positive root of

u2 + 2c2 − 2
√

ghL = 0.

The exact solution with hL = 1m and hR = 0.5m is illustrated in Figure 2.2 and

Figure 2.3, where the bore speed is approximately S = 2.957918120187525. The

exact solution is only valid until either the bore or the rarefraction wave hits the

walls. For a more in depth analysis of the exact solution, see Stoker [38] and

Glaister [11].

2.1.2 Test Problem B: Wave Propagation Test Problem

LeVeque [26] discussed a wave propagation test problem with a pulse present in the

riverbed and a small disturbance in the river. Since the riverbed is not constant, a

source term is now present. The initial conditions are

u(x, 0) = 0, h(x, 0) =

{
1 + ω − B(x) if 0.1 ≤ x ≤ 0.2

1 − B(x) otherwise
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Figure 2.2: Exact solution of the dam break test problem for t = 0 to 0.1s (h).
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Figure 2.3: Exact solution of the dam break test problem for t = 0 to 0.1s (u).
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Figure 2.4: Initial conditions of the wave propagation test problem with ω = 0.2 (h
& B).

and the bathymetry is

B(x) =

{
1
4

(
cos

(
10π

(
x − 1

2

))
+ 1

)
if |x − 1

2
| ≤ 1

10

0 otherwise
,

which are illustrated in Figure 2.4 for ω = 0.2. The value of ω is taken as either 0.2

or 0.01 and we follow LeVeque [26] and use a gravitational constant of g = 1. The

disturbance in the river created by ω splits into two waves propagating in opposite

directions and for small ω the characteristic speeds are approximately ±√
gh. For

small ω, an accurate numerical solution is harder to obtain.
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Figure 2.5: Initial conditions of the tidal wave propagation test problem (h & B).
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Figure 2.6: Upstream boundary condition of the tidal wave propagation test problem
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2.1.3 Test Problem C: Tidal Wave Propagation Test Problem

Bermúdez & Vázquez [1] discussed a tidal wave propagation test problem that

consists of the initial conditions

u(x, 0) = 0, h(x, 0) = 60.5 − B(x)

and bathymetry

B(x) =
40x

L
+ 10

(
1 − sin

(
π

(
4x

L
+

1

2

)))
,

where L is the length of the channel which is usually taken as L = 648, 000m. The

physical boundary condition,

h(0, t) =

{
64.5 + 4 sin

(
π
2

(
t

10800
− 1

))
if t ≤ 43, 200s

60.5 if t > 43, 200s

is used to simulate a tidal wave of 4m amplitude entering the region at the upstream

boundary, see Figure 2.6. At the downstream boundary, the physical boundary

condition u(L, t) = 0 is also required. The tidal wave reaches a full height of 8m at

t = 21, 600s and since the wave propagates at approximately
√

gh, at t = 10, 800s

the tidal wave should have only reached as far as x ≈ 216, 000m for L = 648, 000m.

2.2 Conservative Numerical Schemes

We can accurately numerically approximate a system of conservation laws by using

a conservative numerical scheme with source term approximation,

wn+1
i = wn

i − s(F∗
i+ 1

2
− F∗

i− 1
2
) + sR∗

i , (2.3)
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Figure 2.7: The one dimensional mesh.

where s = Δt
Δx

, Δx and Δt are the step sizes in space and time respectively, F∗
i+ 1

2

is

the numerical flux, R∗
i is the source term approximation and

wn
i ≈ 1

Δx

∫ x
i+1

2

x
i− 1

2

w(x, tn) dx

is the numerical approximation, see Figure 2.7. Here, the points x = x− 1
2

and

x = xI+ 1
2

are the spatial boundaries and we require numerical boundary conditions

at these points. The spatial step size, Δx, is fixed and we use a variable time step,

Δt =
νΔx

maxi(|λk|) ,

where λk are the eigenvalues of the Jacobian matrix and ν is the required CFL

number (Courant, Friedrichs and Lewey). Unless stated, all schemes discussed in

this chapter are stable for ν ≤ 1.

To ensure the error of a numerical scheme does not grow, the variables are non-

dimensionalised so that the spatial and time step-sizes are less than one, i.e. Δx < 1

and Δt < 1. For the shallow water equations, we non-dimensionalise the variables
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by using

x∗ =
x

L
, t∗ =

t

T
, h∗ =

h

L
, B∗ =

B

L
, g∗ =

gT 2

L
and u∗ =

uT

L
,

where

L = |xI − x0| and T =

√
L

g

denote the non-dimensional coefficients and L is the length of the domain.

2.2.1 Source Term Approximation

In gas dynamics, source terms can become stiff being extremely difficult to

approximate accurately, see LeVeque & Yee [27] for more details. For the shallow

water equations, the source term becomes increasingly difficult to approximate as

the variation in the riverbed becomes more pronounced, see Hudson [20] for more

details. In general, the source term can be approximated in two ways:

• a pointwise approach, where the source term approximation is calculated at

the nodal points, i.e.

R∗
i ≈ ΔxR(wn

i ).

• an upwind characteristic based approach, where the source term is

approximated in a more physical way by averaging the source term,

R∗
i ≈

Δx

2

(
Rn

i+ 1
2

+ Rn
i− 1

2

)
,

and obtaining upwind approximations, Rn
i± 1

2

, of the source term.

In general, the pointwise approach is considerably less accurate than the upwind

approach due to the pointwise approach not satisfying the C-property, which is

discussed in the next section.
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Figure 2.8: The quiescent flow case: u = 0 and h = D − B.

2.2.2 C-Property

Bermúdez & Vázquez [1] and Vázquez-Cendón [44] discussed an approach for

approximating source terms which is designed for quasi-steady and steady flow.

Consider the shallow water equations for the quiescent flow case,

u(x, t) ≡ 0 and h(x, t) ≡ D − B(x, t) ∀(x, t),

see Figure 2.8. For this stationary case wt = 0 and thus the flux function and source

term balance:

Fx = R.

Therefore, an accurate numerical scheme would also balance the numerical flux with

the source term approximation,

F∗
i+ 1

2
− F∗

i− 1
2

= R∗
i .

Hence, we derive numerical schemes that satisfy the C-property (conservation

property) when applied to the quiescent flow case. If the source term approximation

balances with the numerical fluxes, then the numerical scheme satisfies:

• the approximate C-property, if the numerical scheme is accurate to the order

O(Δx2) when applied to the quiescent flow case;
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• the exact C-property, if the numerical scheme is exact when applied to the

quiescent flow case.

If a numerical scheme does not satisfy the C-property (exact or approximate) then

spurious waves may occur in the numerical results.

2.3 High-Resolution Schemes

Unfortunately, second order numerical schemes suffer from dispersion resulting in

spurious oscillations appearing in the numerical results, especially around

discontinuities. This is due to second order numerical schemes not satisfying the

Total Variational Diminishing (TVD) property, which is discussed in the next

section. Thus, we construct a numerical scheme that satisfies the TVD property

by using a second order accurate numerical scheme on smooth solutions and adding

diffusion to the numerical scheme near discontinuities. We call such numerical

schemes high-resolution schemes, which are at least second order accurate on smooth

solutions and minimise the spurious oscillations present near discontinuities.

2.3.1 Total Variational Diminishing

Consider the scalar conservation law

wt + fx = 0, (2.4)

which can be numerically approximated by using the conservative numerical scheme

wn+1
i = wn

i − s
(
f ∗

i+ 1
2
− f ∗

i− 1
2

)
. (2.5)
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The exact solution of a scalar conservation law (2.4) has Total Variation,

TV(w) =

∫
|wx| dx,

which does not increase and only decreases across shocks, see Lax [23] for more

details. For scalar conservation laws (2.4), this property can be used to eliminate

spurious oscillations present in a numerical scheme. Unfortunately, this property

does not hold for systems of conservation laws but the design criteria based on

this property can still be used to minimise the spurious oscillations present in a

numerical scheme when applied to systems. Harten [15] deduced that a numerical

scheme should also satisfy the Total Variation Diminishing (TVD) property,

TV(wn+1) ≤ TV(wn),

where the numerical Total Variation is defined by

TV(wn+1) =
∑

i

|wn+1
i+1 − wn+1

i |.

For scalar conservation laws, if a numerical scheme satisfies the TVD property, then

no spurious oscillations will occur in the numerical results. Harten [15] discussed an

approach that determines if a numerical scheme is TVD by re-writing (2.5) as

wn+1
i = wn

i + Dn
i+ 1

2

(
wn

i+1 − wn
i

)− Cn
i− 1

2

(
wn

i − wn
i−1

)
.

and determining if the inequalities

Cn
i+ 1

2
≥ 0, Dn

i+ 1
2
≥ 0 and 0 ≤ Cn

i+ 1
2

+ Dn
i+ 1

2
≤ 1

are satisfied ∀i. If the inequalities are satisfied, the numerical scheme satisfies the

TVD property.
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Flux-limiter Φ(θ)

Minmod max(0, min(1, θ))

Roe’s Superbee max(0, min(2θ, 1), min(θ, 2))

van Leer
|θ| + θ

1 + |θ|
van Albada

θ2 + θ

1 + θ2

Table 2.1: Some flux-limiters

2.3.2 Flux-Limiter Methods

One approach we can use to construct a high-resolution scheme is to use a flux-limiter

method as discussed by Sweby [40] and LeVeque [25]. For the scalar conservation

law (2.4), we used the conservative numerical scheme (2.5). Flux-limiter methods

construct a numerical flux of the form

fTV D
i+ 1

2
= fFO

i+ 1
2

+ Φn
i+ 1

2

(
fSO

i+ 1
2
− fFO

i+ 1
2

)
, (2.6)

where fSO
i+ 1

2

is a second order numerical flux, fFO
i+ 1

2

is a first order numerical flux and

Φn
i+ 1

2

is a limiter. The limiter is chosen such that if the data is smooth, then the

limiter is 1, which reverts the numerical flux to a second order approximation but if

the data is near a discontinuity, the limiter is 0, which reverts the numerical flux to

a first order approximation. van Leer [41] and Roe [34] discussed an approach we

can use to measure the smoothness of the data by looking at the ratio of consecutive

gradients,

θn
i+ 1

2
=

wn
I+1 − wn

I

wn
i+1 − wn

i

, where I = i − sgn
(
λn

i+ 1
2

)
.

Here, λ is the wave speed and if θn
i+ 1

2

is close to 1, then the data is smooth, but

if θn
i+ 1

2

is near 0, then a kink is present in the data. Thus, we take Φn
i+ 1

2

to be a
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Figure 2.9: A piecewise constant and linear representation.

function of θn
i+ 1

2

, i.e.

Φn
i+ 1

2
= Φ

(
θn

i+ 1
2

)
,

where Φ is a given function. Sweby [40] discussed a variety of limiters that guarantee

second order accuracy whilst still satisfying the TVD property, which are listed in

Table 2.1.

2.3.3 Slope-Limiter Methods

We can also use a geometric approach to obtain a high-resolution scheme.

LeVeque [25] discussed slope-limiter methods in detail and noted that to obtain

a slope-limiter method, we must construct a numerical scheme as follows:

1. We use the numerical data wn
i and construct a piecewise linear function

w̃n(x, tn) = wn
i + σn

i (x − xi) where xi− 1
2

< x < xi+ 1
2

and σn
i = Δiw

Δx
is the slope of the ith cell, see Figure 2.9, which is based on the

numerical data.
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2. The exact solution of a generalised Riemann problem, w̃n(x, tn+1), which is

related to (2.4) is then obtained using the piecewise linear function.

3. The exact solution is then averaged,

wn+1
i =

1

Δx

∫ x
i+1

2

x
i− 1

2

w̃n(x, tn+1)dx,

to obtain the new data wn+1
i and the process is repeated.

Consider the following example, as discussed by LeVeque [25], for the scalar linear

advection equation,

wt + awx = 0,

whose exact solution is

w(x, t) = w(x − at, 0).

By constructing the piecewise linear function described in step 1 from the data, we

obtain the exact solution

w̃n(x, tn+1) = w̃n(x − aΔt, tn),

and by integrating the exact solution (for a > 0) as described in step 3, we obtain

wn+1
i = wn

i − ν(wn
i − wn

i−1) −
1

2
aΔt(1 − ν)(σn

i − σn
i−1). (2.7)

Now, we must choose the slopes, σn
i , such that the scheme (2.7) is second order

accurate and satisfies the TVD property. If we choose σn
i = 0, we obtain the first

order upwind scheme and by choosing σn
i = 1

Δx
(wn

i+1 − wn
i ), we obtain the classic

Lax-Wendroff scheme. If the upwind slopes are used, the scheme is not second order

accurate and if the Lax-Wendroff slopes are used, then overshoots may occur in

the piecewise linear representation, see Figure 2.9, which results in an increase in

Total Variation. Thus, we can view these as being a poor choice of slopes. A better

choice of slopes, which makes the scheme second order accurate and satisfy the TVD

30



property, is to use the minmod limiter,

σn
i =

1

Δx
minmod(wn

i+1 − wn
i , wn

i − wn
i−1),

where

minmod(a, b) =
1

2
(sgn(a) + sgn(b))min(|a|, |b|).

It is also interesting to note that by setting

σn
i =

1

Δx
(wn

i+1 − wn
i )Φn

i+ 1
2
,

the scheme reverts back to a flux-limited scheme, where Φn
i+ 1

2

is a flux-limiter, which

was discussed in the previous section. Thus, the minmod limiter can also be used

as a slope-limiter.

2.4 Boundary Conditions

Boundary conditions are required at the upstream and downstream boundaries. For:

• Test Problem A, walls are present at the upstream and downstream boundaries

and thus we need to reflect the velocity

un
−i = −un

i−1 and un
I+i = −un

I−i−1

and for the water depth, we use the simple boundary conditions

hn
−i = hn

0 and hn
I+i = hn

I ,

where i = 1, 2.

• Test Problem B, we require transmissive boundary conditions due to the

disturbance in the river splitting into two waves travelling in opposite

directions, which we discuss next.
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• Test Problem C, we use the physical boundary conditions

hn
−i = h(0, tn) and un

I+i = 0,

where i = 0, 1, 2 and the numerical boundary conditions

hn
I+i = h0

I and un
−i = un

0 ,

where i = 1, 2.

2.4.1 Transmissive Boundary Conditions

In some test problems, waves pass through the boundaries and, if the incorrect

boundary conditions are chosen, then the wave may be reflected back into the domain

resulting in an inaccurate numerical solution. Transmissive boundary conditions

allow waves to leave the region without being reflected back into the domain. One

type of transmissive boundary conditions can be obtained by using the k-Riemann

invariants (see Godlewski & Raviart [13]), which are obtained by solving

∂rk

∂w
· ek = 0,

where ek are the eigenvectors, r denotes the k-Riemann invariants and k is the kth

component of the system. For the shallow water equations we have

∂r1

∂h
+
(
u −

√
gh

) ∂r1

∂(uh)
= 0

and
∂r2

∂h
+
(
u +

√
gh

) ∂r2

∂(uh)
= 0

and by solving the two equations, we obtain

r1 = u − 2
√

gh and r2 = u + 2
√

gh.
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Hence, by using the k-Riemann invariants, we obtain the following approximations

of u and h,

u =
1

2
(r1 + r2) and h =

1

16g
(r2 − r1)

2.

We can use these approximations of u and h at the boundaries to allow waves to

pass through without being reflected back into the domain. For subcritical flow, i.e.√
gh > |u|, r1 and r2 represent the left and right moving waves respectively. Thus,

at the upstream boundary, we want to eliminate all the right moving waves but let

the left moving waves pass through the boundary, which may be obtained by setting

r1 = un
1 − 2

√
ghn

1 and r2 = u∗
0 + 2

√
gh∗

0,

where u∗
0 and h∗

0 denote the initial values of the velocity and height of the river at the

upstream boundary respectively. Similarly, at the downstream boundary, we want

to eliminate all the left moving waves but let the right moving waves pass through

the boundary, which may be obtained by setting

r1 = u∗
I − 2

√
gh∗

I and r2 = un
I−1 + 2

√
ghn

I−1,

where u∗
I and h∗

I denote the initial values of the velocity and height of the water

above the bottom of the channel at the downstream boundary respectively.

2.5 LxF and NT Scheme

2.5.1 Adapted LxF Scheme

One of the most basic numerical schemes we can use to approximate (2.1) is the

Lax-Friedrichs (LxF) scheme as discussed by Garcia-Navarro et al. [9],

wn+1
i = θwn

i +
1 − θ

2
(wn

i+1 + wn
i−1) −

s

2
(Fn

i+1 − Fn
i−1) + sR∗

i , (2.8)
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where 0 ≤ θ ≤ 1. The scheme is unstable for a value of θ = 1 and as θ −→ 0,

the scheme becomes more stable but unfortunately more diffusive. The value of

θ = 0.1 is most commonly used and θ = 0 is the classic Lax-Friedrichs scheme.

Unfortunately, the Lax-Friedrichs scheme suffers badly from diffusion and a

“staircase” effect, where kinks are present in the numerical results, can

sometimes occur in the numerical results, especially for θ = 0. However a numerical

approximation of the Jacobian is not required.

We use a centralised pointwise approach to approximate the source term, Rn
i ,

and for the shallow water equations this takes the form

R∗
i =

[
0

−g

4
(hn

i+1 + hn
i−1)(B

n
i+1 − Bn

i−1)

]
.

Unfortunately, we cannot derive a source term approximation that makes the Lax-

Friedrichs scheme satisfy the C-property. For the quiescent flow case,

hn+1
i = θhn

i +
1 − θ

2

(
hn

i+1 + hn
i−1

)
and since h ≈ D − B and hn+1

i = hn
i , we obtain

(θ − 1) (Bi+1 − 2Bi + Bi−1) = 0,

which can only be satisfied if either θ = 1 or the riverbed is linear. Taking θ = 1

renders the numerical scheme unstable and the source term is zero when the bed is

linear.

2.5.2 Staggered and Non-Staggered LxF Scheme

Nessyahu & Tadmor [30] and Jiang et al. [22] discussed a first order central scheme

called the staggered LxF scheme,

wn+1
i+ 1

2

=
1

2
(wn

i+1 + wn
i ) − s(Fn

i+1 − Fn
i ) + sRn

i+ 1
2
, (2.9)
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Figure 2.10: Staggered grid.

which is a modified version of the classic Lax-Friedrichs scheme (LxF) and is derived

on a staggered grid, see Figure 2.10. The scheme has been adapted to include a

pointwise source term approximation, which for the shallow water equations takes

the form

R∗
i+ 1

2
=

[
0

−g

2
(hn

i+1 + hn
i )(Bn

i+1 − Bn
i )

]
.

We can obtain a non-staggered version of this scheme by averaging the two

neighbouring staggered cells,

wn+1
i =

1

2

(
wn+1

i+ 1
2

+ wn+1
i− 1

2

)
=

1

4

(
wn

i+1 + 2wn
i + wn

i−1

)− s

2

(
Fn

i+1 − Fn
i−1

)
+

s

2

(
Rn

i+ 1
2

+ Rn
i− 1

2

)
. (2.10)

By averaging the staggered version of the scheme, we slightly reduce the accuracy

but obtain numerical results at the desired points. As with the adapted LxF scheme,

both the staggered and non-staggered version of the LxF scheme do not satisfy the

C-property and are stable for ν ≤ 0.5. Notice that by using the staggered or non-

staggered LxF scheme, the Courant number has halved compared to the adapted

LxF scheme.
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2.5.3 Central, Staggered and Non-Staggered NT Scheme

Nessyahu & Tadmor [30] extended the staggered LxF scheme to second order and

derived a high-resolution non-oscillatory central difference scheme called the

staggered NT scheme,

wn+1
i+ 1

2

=
1

2

(
wn

i+1 + wn
i

)− 1

8

(
(wx)

n
i+1 − (wx)

n
i

)−s
(
F

n+ 1
2

i+1 − F
n+ 1

2
i

)
+sR

n+ 1
2

i+ 1
2

, (2.11)

where

w
n+ 1

2
i = wn

i +
s

2
(Rn

i − (Fx)
n
i ) .

The staggered NT scheme (2.11) has been adapted to approximate a system of

conservation laws with source term present (2.1). To ensure that the staggered NT

scheme is non-oscillatory, we use either the limiter

(wx)
n
i = MM

(
αΔwi+ 1

2
,
1

2

(
Δwi+ 1

2
+ Δwi− 1

2

)
, αΔwi− 1

2

)
, (2.12)

where 0 ≤ α < 4, or the UNO limiter [16]

(wx)
n
i = MM

(
Δwi+ 1

2
− 1

2
MM

(
Δ2wi+1, Δ

2wi

)
, Δwi− 1

2
+

1

2
MM

(
Δ2wi, Δ

2wi−1

))
,

(2.13)

where Δwi+ 1
2

= wn
i+1 − wn

i , Δ2wi = wn
i+1 − 2wn

i + wn
i−1. Here, MM denotes the

minmod limiter

minmod(a, b, c) =

{
d min(|a|, |b|, |c|) if d = sgn(a) = sgn(b) = sgn(c),

0 otherwise.

The value of (Fx)
n
i can be determined from either the UNO limiter, (2.12) or from

(Fx)
n
i = An

i (wx)
n
i . Notice that setting the numerical approximations (wx)

n
i =

(Fx)
n
i = 0 reverts the scheme to the first order LxF scheme.

We use a centralised pointwise approach to approximate the source term, Rn
i ,
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and for the shallow water equations this takes the form

Rn
i =

[
0

−ghn
i (Bx)

n
i

]
and R

n+ 1
2

i+ 1
2

=

⎡
⎣ 0

−g

2
(h

n+ 1
2

i+1 + h
n+ 1

2
i )(B

n+ 1
2

i+1 − B
n+ 1

2
i )

⎤
⎦ .

A non-staggered version of the NT scheme can be obtained with a slight loss

of accuracy by averaging the neighbouring staggered cells with a piecewise-linear

interpolant to obtain

wn+1
i =

1

2

(
wn+1

i+ 1
2

+ wn+1
i− 1

2

)
− 1

8

(
(wx)

n
i+ 1

2
− (wx)

n
i− 1

2

)
,

where

(wx)
n
i+ 1

2
= MM

(
Δwn+1

i+1 , Δwn+1
i

)
and Δwn+1

i = wn+1
i+ 1

2

− wn+1
i− 1

2

.

Hence,

wn+1
i =

1

4

(
wn

i+1 + 2wn
i + wn

i−1

)− 1

16

(
(wx)

n
i+1 − (wx)

n
i−1

)−1

8

(
(wx)

n
i+ 1

2
− (wx)

n
i− 1

2

)
− s

2

(
F

n+ 1
2

i+1 − F
n+ 1

2
i−1

)
+

s

2

(
R

n+ 1
2

i+ 1
2

+ R
n+ 1

2

i− 1
2

)
, (2.14)

which is the non-staggered NT scheme. Both the staggered and non-staggered

version of the NT scheme are stable for ν ≤ 0.5 and as with the first order LxF

schemes, neither satisfy the C-property.

Nessyahu & Tadmor [30] also extended the classic central Lax-Friedrichs scheme,

(2.8) with θ = 0, to second order. The high-resolution central NT scheme is

wn+1
i =

1

2

(
wn

i+1 + wn
i−1

)− 1

4

(
(wx)

n
i+1 − (wx)

n
i−1

)− s

2

(
F

n+ 1
2

i+1 − F
n+ 1

2
i−1

)
+ sR

n+ 1
2

i ,

(2.15)

where

w
n+ 1

2
i = wn

i +
s

2
(Rn

i − (Fx)
n
i )
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and for the shallow water equations the source term approximations are

Rn
i =

[
0

−ghn
i (Bx)

n
i

]
and R

n+ 1
2

i =

⎡
⎣ 0

−g

4
(h

n+ 1
2

i+1 + h
n+ 1

2
i−1 )(B

n+ 1
2

i+1 − B
n+ 1

2
i−1 )

⎤
⎦ .

The high-resolution central NT scheme is stable for ν ≤ 1 and does not satisfy the

C-property. If we set the numerical approximations (wx)
n
i = (Fx)

n
i = 0, then the

central NT scheme reverts back to the classic Lax-Friedrichs scheme.

2.5.4 Numerical Results of the First Order LxF Schemes

To compare the different versions of the LxF schemes, we use Test Problem A, which

is the dam break test problem. The dam break test problem is used with hL = 1m

and hR = 0.5m. The central and adapted LxF schemes are used with ν = 0.8 and

the staggered and non-staggered LxF schemes are used with ν = 0.4. By using

the different first order LxF schemes with Δx = 0.01m, we obtain the numerical

results in Figure 2.11 and Figure 2.12. The dam break test problem also has an exact

solution which is illustrated to show the accuracy of the different LxF schemes. Here,

we can see that the staggered LxF scheme produced the most accurate numerical

results but the scheme was still very dissipative. The non-staggered LxF scheme

produced similar numerical results to the staggered LxF scheme but they were less

accurate due to the scheme being more diffusive. The adapted LxF scheme with θ =

0.1 was more diffusive than both the staggered and non-staggered LxF schemes. The

central LxF scheme, which is the classic Lax-Friedrichs scheme, produced completely

inaccurate numerical results due to the “staircase” effect.

Test Problem A does not have a source term present thus, we use Test Problem

B, which is the wave propagation test problem to determine which first order LxF

scheme is the most accurate when a source term is present. For this test problem,

we use ω = 0.2 and Δx = 0.01. The central and adapted LxF schemes are used with

ν = 0.8 and the staggered and non-staggered LxF schemes are used with ν = 0.4. A

flux-limited second order version of Roe’s scheme, which is discussed in Section 2.7,
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Figure 2.11: Numerical results of the different first order LxF schemes for Test
Problem A at t = 0.1s (h).
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Figure 2.12: Numerical results of the different first order LxF schemes for Test
Problem A at t = 0.1s (u).
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on a fine mesh, Δx = 0.0001, is also used as a reference solution. From Figure 2.13

and Figure 2.14, we can see that none of the different first order LxF schemes have

produced accurate results compared to the fine mesh numerical results. All of the

numerical schemes suffered badly from diffusion and have produced oscillations over

the pulse in the riverbed. This is due to none of the numerical schemes satisfying

the C-property and thus oscillations have occurred in the numerical results.

2.5.5 Numerical Results of the High-Resolution NT Schemes

To compare the different versions of the high-resolution NT schemes, we use Test

Problem B, which is the wave propagation test problem. For this test problem, we

use ω = 0.2 and Δx = 0.01. The central and adapted NT schemes are used with

ν = 0.8 and the staggered and non-staggered NT schemes are used with ν = 0.4. A

flux-limited second order version of Roe’s scheme, which is discussed in Section 2.7,

on a fine mesh, Δx = 0.0001, is also used as a reference solution. From Figure 2.15

and Figure 2.16, we can see that as with the first order LxF schemes, none of the

different high-resolution NT schemes have produced accurate results compared to

the fine mesh numerical results. All of the numerical schemes suffered badly from

oscillations and the central NT scheme has again produced the “staircase” effect.

This is due to none of the numerical schemes satisfying the C-property and thus,

oscillations have occurred in the numerical results.

Hence, when a source term is present, the LxF and NT schemes produce

inaccurate numerical results due to spurious oscillations being present. These

spurious oscillations can be reduced by making the LxF and NT schemes satisfy

the C-property but unfortunately, no source term approximation can be derived

that makes the schemes satisfy the C-property.
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Figure 2.13: Numerical results of the different first order LxF schemes for Test
Problem B with ω = 0.2 at t = 0.7 (h + B).
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2.6 Lax-Wendroff & MacCormack Scheme

2.6.1 Lax-Wendroff Scheme

The Lax-Wendroff scheme [24] is derived from a Taylor’s series expansion,

wn+1
i ≈ wn

i + Δt(wt)
n
i +

Δt2

2
(wtt)

n
i + O(Δt3),

where the partial differential equation is used to replace the time derivatives with

spatial derivatives and leads to the Lax-Wendroff numerical flux-function

F∗
i+ 1

2
=

1

2

(
Fn

i+1 + Fn
i

)− s

2
An

i+ 1
2

(
Fn

i+1 − Fn
i

)
. (2.16)

The Lax-Wendroff scheme requires a numerical approximation of the Jacobian

matrix, which can be approximated by averaging the neighbouring cells,

Ai+ 1
2

= A

(
wn

i+1 + wn
i

2

)
. (2.17)

For the shallow water equations, we can use a pointwise approach,

R∗
i =

[
0

−g

4
(hn

i+1 + hn
i−1)(B

n
i+1 − Bn

i−1)

]
, (2.18)

to approximate the source term but this is a crude approximation as it does not

satisfy the C-property and reduces the accuracy of the numerical scheme as the

scheme is no longer strictly second order accurate. Another more accurate approach,

which maintains second order accuracy is to include the source term in the Taylor

series expansion to obtain

R∗ = ΔtR +
Δt2

2
(Rt − (AR)x) .
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Thus, we obtain

R∗
i =

1

2

(
Rn

i+ 1
2

+ Rn
i− 1

2

)
− s

2

(
An

i+ 1
2
Rn

i+ 1
2
− An

i− 1
2
Rn

i− 1
2

)
=

1

2

((
I − sAn

i+ 1
2

)
Rn

i+ 1
2

+
(
I + sAn

i− 1
2

)
Rn

i− 1
2

)
(2.19)

where for the shallow water equations,

Rn
i+ 1

2
=

[
0

−g

2
(hn

i+1 + hn
i )(Bn

i+1 − Bn
i )

]
.

Here, the Rt term has been omitted resulting in a slight loss of accuracy but the

Lax-Wendroff scheme with (2.19) satisfies the C-property. Alternatively, we can

approximate this term by using the chain rule Rt = Rwwt. Thus, we obtain a

semi-implicit version of the Lax-Wendroff scheme

wn+1
i = wn

i − s
[
I − s

2
(Rw)n

i

]−1 (
F∗

i+ 1
2
− F∗

i− 1
2
− R∗

i

)
(2.20)

where for the shallow water equations

(Rw)n
i =

[
0 0

−g
2
(Bn

i+1 − Bn
i−1) 0

]
.

Unfortunately, the semi-implicit approach cannot be used for all systems of

conservation laws as the derivative of R with respect to w can sometimes be difficult

to obtain.

2.6.2 Flux-Limited Lax-Wendroff Scheme

The Lax-Wendroff scheme suffers from dispersion resulting in spurious oscillations

occurring in the numerical results. However, we can minimise these spurious

oscillations by constructing a high-resolution scheme as discussed in Section 2.3,

which also satisfies the TVD property. We use flux-limiter methods to adapt the

Lax-Wendroff scheme for a system of conservation laws to a high-resolution scheme
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by constructing a numerical flux-function of the form

FTV D
i+ 1

2
= FFO

i+ 1
2

+ Φ
(
FSO

i+ 1
2
− FFO

i+ 1
2

)
, (2.21)

where FSO
i+ 1

2

is a second order numerical flux, FFO
i+ 1

2

is a first order numerical flux,

Φ = diag(Φk) where Φk is a flux-limiter, which can be any of the flux-limiters listed

in Table 2.1, and k is the kth component of the system. For the second order

numerical flux, we use the Lax-Wendroff numerical flux (2.16) and re-write it by

using

A = XΛX−1,

where X is a matrix containing the right eigenvectors, ek, of A and Λ = diag(λk) is

the diagonal matrix of eigenvalues, λk of A. Hence, we obtain

FLW
i+ 1

2
=

1

2

(
Fn

i+1 + Fn
i

)− s

2

(
XΛX−1

)n

i+ 1
2

(
Fn

i+1 − Fn
i
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(
Fn

i+1 + Fn
i

)− s

2
(XΛ2X−1)n
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2

(
wn

i+1 − wn
i

)
.

For the first order approximation, we use the upwind numerical flux

FUP
i+ 1

2
=

1

2

(
Fn

i+1 + Fn
i

)− 1

2
|A|ni+ 1

2

(
wn

i+1 − wn
i

)
(2.22)

=
1

2

(
Fn

i+1 + Fn
i

)− 1

2
(X|Λ|X−1)n

i+ 1
2

(
wn

i+1 − wn
i

)
.

Thus,

FLW
i+ 1

2
− FUP

i+ 1
2

=
1

2

(
X|Λ| (I − s|Λ|)X−1

)n

i+ 1
2

(
wn

i+1 − wn
i

)
and by using (2.6), we obtain the flux-limited Lax-Wendroff numerical flux

F∗
i+ 1

2
=

1

2

(
Fn

i+1 + Fn
i

)− 1

2

(
X|Λ|LX−1

)n

i+ 1
2

(
wn

i+1 − wn
i

)
, (2.23)

where

L = diag (1 − Φ(θk)(1 − s|λk|)) .
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A more convenient way of writing (2.23) is in a decomposed form,

F∗
i+ 1

2
=

1

2

(
Fn

i+1 + Fn
i

)− 1

2

p∑
k=1

[αk|λk|(1 − Φ(θk)(1 − |νk|))ek]
n
i+ 1

2
, (2.24)

where

θk =
(αk)

n
I+ 1

2

(αk)n
i+ 1

2

, I = i − sgn(νk)
n
i+ 1

2
, νk = sλk.

Here, p is the number of components of the system, k = 1, 2, . . . , p represents the kth

component of the system and αk are the wave strengths, i.e. X−1Δw, associated with

each component of the decomposition onto the eigenvectors ek. We can determine

the values of αk by using

Δwn
i+ 1

2
=

p∑
k=1

(αkek)
n
i+ 1

2
where Δw

i+ 1
2

= wi+1 − wi

and for the shallow water equations, we obtain

(α1,2)
n
i+ 1

2
=

1

2

[
Δh ∓ 1√

gh
(Δ(uh) − uΔh)

]n

i+ 1
2

.

We require a source term approximation for the numerical scheme and adopt an

approach discussed by Hubbard & Garcia-Navarro [18, 19], which is based on the

approach of Roe [35] and Glaister [11]. The approach derives an upwind source term

approximation that balances with the flux functions thus, making the numerical

scheme satisfy the C-property. The source term approximation is constructed in a

similar way to the numerical flux,

R∗
i = RTV D

i+ 1
2

+ RTV D
i− 1

2
, (2.25)

where

RTV D
i+ 1

2
= RFO

i+ 1
2

+ Φ
(
RSO

i+ 1
2
− RFO

i+ 1
2

)
.
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For the first order approximation, we used the upwind flux (2.22) and adopt the

approach of Bermúdez & Vázquez [1] where

RFO
i± 1

2
=

1

2

((
I ∓ |A|A−1

)
R
)

i± 1
2

=
1

2

(
X
(
I ∓ Λ−1|Λ|)X−1R

)
i± 1

2

,

which satisfies the C-property. Now, for the second order approximation, we used the

Lax-Wendroff numerical flux. For the Lax-Wendroff flux, we deduced that a more

accurate approximation of the source term was to use the second order accurate

approximation (2.19), which satisfies the C-property. Thus, we use this second

order approximation to balance the Lax-Wendroff numerical flux. Now,

RLW
i± 1

2
=

1

2
((I ∓ sA)R)i± 1

2

=
1

2

(
X
(
I ∓ sΛ−1Λ2

)
X−1R

)
i± 1

2

.

Therefore

RLW
i± 1

2
− RUP

i± 1
2

= ∓1

2

(
XΛ−1|Λ| (s|Λ| − I)X−1R

)
i± 1

2

and by using (2.25) we obtain a flux-limited second order approximation of the

source term

R∗
i = R−

i+ 1
2

+ R+
i− 1

2

, (2.26)

where

R±
i+ 1

2

=
1

2

(
X
(
I ± Λ−1|Λ|L)X−1R

)
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2

and for the shallow water equations,

Rn
i+ 1

2
=

[
0

−g

2
(hn

i+1 + hn
i )(Bn

i+1 − Bn
i )

]
.

Alternatively, we can re-write (2.26) in decomposed form,

R±
i+ 1

2

=
1

2

p∑
k=1

[βkek(1 ± sgn(λk)(1 − Φ(θk)(1 − |νk|)))]ni+ 1
2
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where the values of βk are the components of X−1R and can be determined from

p∑
k=1

[βkek]
n
i+ 1

2
= Rn

i+ 1
2
.

For the shallow water equations, we obtain

(β1,2)
n
i+ 1

2
= ±1

2

(√
ghΔB

)n

i+ 1
2

where ΔBn
i+ 1

2
= Bn

i+1 − Bn
i

and to satisfy the C-property, we must take wn
i+ 1

2

= 1
2

(
wn

i+1 + wn
i

)
.

It should be noted at this point that by applying flux-limiters to the source term

approximation as well as the flux-function, spurious oscillations can still occur in

the numerical results, especially if the source term is significant. For the shallow

water equations, the source term becomes more significant as the variation of the

riverbed becomes more pronounced. To minimise the chances of spurious oscillations

occurring in the numerical results, we must choose the flux-limiter carefully. For

example, the superbee flux-limiter reduces the CFL limit of the scheme more than

the minmod flux-limiter and thus, the superbee flux-limiter has more of a chance of

producing spurious oscillations than the minmod flux-limiter. Hudson [20] illustrated

the importance of choosing the correct limiter and deduced that, in general, the

minmod limiter was the most accurate limiter. In some cases, even with the minmod

limiter, the scheme can still produce spurious oscillations but this is very rare and

can usually be resolved by using a smaller Courant number.

2.6.3 MacCormack Approach

LeVeque & Yee [27] and Yee [45] adapted the MacCormack approach [28] to

approximate systems of conservation laws with a source term present,

wn+1
i =

1

2
(wn

i + w
(1)
i ) − s

2
(F

(1)
i − F

(1)
i−1) +

s

2
R

(1)

i− 1
2

, (2.27)

48



where

w
(1)
i = wn

i − s(Fn
i+1 − Fn

i ) + sRn
i+ 1

2
.

The MacCormack scheme is a predictor-corrector scheme and reverts back to the

classic Lax-Wendroff scheme for the constant coefficient case. The advantage of

using (2.27) is that we do not need to approximate the eigenvalues and eigenvectors

of the Jacobian matrix. However, the numerical scheme does not satisfy the TVD

property, thus spurious oscillations may occur in the numerical solution. LeVeque

& Yee [27] adapted (2.27) so that the numerical scheme satisfies the TVD property

by using slope limiters

wn+1
i = w

(2)
i + Dn

i+ 1
2
− Dn

i− 1
2

(2.28)

where w
(2)
i is the numerical approximation derived from (2.27),

Dn
i+ 1

2
=

1

2

p∑
k=1

[|νk|(1 − |νk|)(αk − Qk)ek]
n
i+ 1

2
,

and αk are the wave strengths associated with each component of the decomposition,

i.e. X−1Δw, and can be determined by using

Δwn
i+ 1

2
=

p∑
k=1

(αkek)
n
i+ 1

2
where Δw

i+ 1
2

= wi+1 − wi.

The slope-limiter, (Qk)
n
i+ 1

2

= Qk
i+ 1

2

, can be any of the following (see Yee [45])

Qk
i+ 1

2
= minmod(αk

i− 1
2
, αk

i+ 1
2
, αk

i+ 3
2
) (2.29a)

Qk
i+ 1

2
= minmod(αk

i− 1
2
, αk

i+ 1
2
) + minmod(αk

i+ 1
2
, αk

i+ 3
2
) − αk

i+ 1
2

(2.29b)

Qk
i+ 1

2
= minmod(2αk

i− 1
2
, 2αk

i+ 1
2
, 2αk

i+ 3
2
,
1

2
(αk

i− 1
2

+ αk
i+ 3

2
)) (2.29c)

where

minmod(a, b, c) =

{
d min(|a| , |b| , |c|) if d = sgn(a) = sgn(b) = sgn(c),

0 otherwise.
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For the shallow water equations, the source term approximation is

Rn
i+ 1

2
=

[
0

−g

2
(hn

i+1 + hn
i )(Bn

i+1 − Bn
i )

]
,

which makes the MacCormack scheme satisfy the C-property for the second order

scheme (2.27).

Unfortunately, the slope-limited version of the MacCormack scheme (2.28) does

not satisfy the C-property, for consider the shallow water equations with the

quiescent flow case, u = 0 and h = D − B. Here, the second term on the right

hand side of (2.28) is

Dn
i+ 1

2
=

[
d1 + d2√

gh(d2 − d1)

]
i+ 1

2

where dk =
s

2

√
gh(1 − s

√
gh)(αk − Qk).

Now, for the shallow water equations,

α1,2 =
1

2

[
Δh ∓ 1√

gh
(Δ(uh) − uΔh)

]
,

thus, for the quiescent flow case αk = 1
2
Δh and so, Q1 = Q2. Therefore,

d1 = d2 =
s

2

√
gh(1 − s

√
gh)(

1

2
Δh − Q)

and we obtain

Dn
i+ 1

2
=

[
s
√

gh(1 − s
√

gh)(1
2
Δh − Q)

0

]
i+ 1

2


= 0.

Hence, (2.28) does not satisfy the C-property unless Q = 1
2
Δh, which reverts the

scheme to the second order MacCormack approach. Unfortunately, the MacCormack

scheme cannot satisfy the C-property by using slope-limiters but the scheme can if
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we use flux-limiters instead. Hence, the flux-limited MacCormack approach is

wn+1
i = w

(2)
i + Dn

i+ 1
2
− Dn

i− 1
2

(2.30)

where w
(2)
i is the numerical approximation derived from (2.27),

Dn
i+ 1

2
=

s

2

p∑
k=1

[(αk|λk| − βksgn(λk)) (1 − |νk|)(1 − Φ(θk))ek]
n
i+ 1

2

and Φ is now a flux-limiter, which can be any of the limiters listed in Table 2.1. As

in the previous section, the values of βk are the components of X−1R and can be

determined from
p∑

k=1

[βkek]
n
i+ 1

2
= Rn

i+ 1
2
.

The source term approximation Rn
i+ 1

2

must first be carefully chosen so that (2.27)

satisfies the C-property.

2.6.4 Numerical Results of the Different Lax-Wendroff

Schemes

To illustrate the accuracy of the Lax-Wendroff scheme and the flux-limited Lax-

Wendroff scheme (2.23), we use Test Problem B, which is the wave propagation test

problem, with ω = 0.01. The Lax-Wendroff scheme (LxW) is used with both the

pointwise (PW) source term approximation (2.18) and the second order accurate

source term approximation (2.19), which satisfies the C-property (CP). The flux-

limited (FxL) Lax-Wendroff scheme (2.23) is also used with the pointwise (PW)

source term approximation (2.18) and the flux-limited source term approximation

(2.26), which makes the scheme satisfy the C-property (CP). For both numerical

schemes, we use ν = 0.8, Δx = 0.01 and the minmod flux-limiter. A flux-limited

second order version of Roe’s scheme, which is discussed in Section 2.7, on a fine

mesh, Δx = 0.0001, is also used as a reference solution. The semi-implicit version

of the schemes are not illustrated as the numerical results produced were practically
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identical to the explicit schemes. From Figure 2.17 and Figure 2.18, we can see that

both schemes with the pointwise source term approximation have produced poor

numerical results due to spurious oscillations being present. The Lax-Wendroff

scheme with the second order accurate source term approximation has produced

considerably more accurate numerical results due to the numerical scheme satisfying

the C-property but spurious oscillations are still present near the disturbance. The

flux-limited scheme with the flux-limited source term approximation produced the

most accurate numerical results due to the numerical scheme satisfying the C-

property.

2.6.5 Numerical Results of the Different MacCormack

Approaches

To illustrate the accuracy of the different MacCormack schemes, we use Test Problem

C, which is the tidal wave propagation test problem. We use the second order (2.27),

slope-limited (2.28) and flux-limited (2.30) versions of the MacCormack scheme. For

all numerical schemes, we use ν = 0.8, a spacial step-size of Δx = 6, 480m and a

final time of t = 10, 800s. For the slope-limited version of the MacCormack scheme,

we use the limiter (2.29a) and for the flux-limited version of the MacCormack

scheme, we use the minmod limiter. For this test problem, at t = 10, 800s no

movement should occur past x ≈ 216, 000m as the tidal wave has not propagated

past this point. However, from Figure 2.19 and Figure 2.20 we can see that the

slope-limited version of the MacCormack scheme has produced spurious waves past

this point whereas the second order and flux-limited versions have not produced any

movement past this point. This is due to the slope-limited version not satisfying the

C-property whereas the other two versions satisfy this property. Hence, the slope-

limited version is considerably less accurate than the second order and flux-limited

versions of the MacCormack scheme. It should be noted that even though the second

order version has produced very similar results to the flux-limited version, when a

discontinuity is present the second order scheme will produce spurious oscillations

due to the numerical scheme not satisfying the TVD property.
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Figure 2.17: Numerical results of the different Lax-Wendroff schemes for Test
Problem B with ω = 0.01 at t = 0.7 (h + B).
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Figure 2.18: Numerical results of the different Lax-Wendroff schemes for Test
Problem B with ω = 0.01 at t = 0.7 (u).
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Figure 2.19: Numerical results of the different MacCormack schemes for Test
Problem C at t = 10, 800 s (h + B).
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Figure 2.20: Numerical results of the different MacCormack schemes for Test
Problem C at t = 10, 800 s (u).
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2.7 Roe’s Scheme

Roe [33] derived an approach which approximates systems of conservation laws,

∂w

∂t
+

∂F

∂x
= 0, (2.31)

by using the numerical data, wn
i , to construct a piecewise constant function

w (x, tn) = wn
i , x ∈

[
xn

i− 1
2
, xn

i+ 1
2

]
.

Now, for any two adjacent states of the piecewise data, wL and wR, (2.31) can be

solved by determining the exact solution of a linearised Riemann problem,

∂w

∂t
+ Ã(wL,wR)

∂w

∂x
= 0,

which is related to (2.31) where Ã(wL,wR) ≈ ∂F
∂w

is the linearised Jacobian matrix

and ˜ is called the Roe average. The Roe averaged Jacobian matrix, Ã(wL,wR),

must be chosen such that the following properties are satisfied

• Ã(wL,wR) must be diagonalisable with real eigenvalues (hyperbolicity);

• Ã(wL,wR) −→ A(w) as wL,wR −→ w (consistency);

• ΔF = Ã(wL,wR)Δw (conservation).

The eigenvalues and eigenvectors of Ã are λ̃ and ẽ respectively which are determined

from the decomposition

ΔF =

p∑
k=1

α̃kλ̃kẽk = ÃΔw

where Δw = wR − wL, p is the number of components in the system and α̃k

represents the wave strengths associated with each component of the decomposition,
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i.e. X̃−1Δw, and are determined from

Δw =

p∑
k=1

α̃kẽk.

Once the eigenvalues, eigenvectors and wave strengths associated with the linearised

Riemann problem have been obtained, we can use any of the numerical schemes

discussed in the previous section with the Roe averaged values. For example, the

flux-limited version of the Lax-Wendroff scheme can be used,

F∗
i+ 1

2
=

1

2
(Fn

i+1 + Fn
i ) − 1

2

p∑
k=1

[
α̃k|λ̃k|(1 − Φ(θk)(1 − |νk|))ẽk

]
i+ 1

2

, (2.32)

where

νk = sλ̃k, θk =
(α̃k)I+ 1

2

(α̃k)i+ 1
2

, I = i − sgn(νk)i+ 1
2
,

and Φk can be any of the flux-limiters listed in Table 2.1. Since this version of

the flux-limited Lax-Wendroff scheme uses the Roe averaged values, we call this a

flux-limited version of Roe’s Scheme. Glaister [11, 12] determined the following Roe

averaged Jacobian matrix for the shallow water equations

Ã =

[
0 1

c̃2 − ũ2 2ũ

]
, where c̃ =

√
gh̃,

with eigenvalues

λ̃1 = ũ − c̃ and λ̃2 = ũ + c̃

and corresponding eigenvectors

ẽ1 =

[
1

ũ − c̃

]
and ẽ2 =

[
1

ũ + c̃

]

and wave strengths

α̃1,2 =
1

2
Δh ∓ 1

2c̃
(Δ(uh) − ũΔh) ,
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where the Roe averages are

ũ =

√
hRuR +

√
hLuL√

hR +
√

hL

and h̃ =
1

2
(hR + hL) .

The Roe averaged values can also be used for the source term approximations. For

example, the source term approximation that was derived for the flux-limited Lax-

Wendroff scheme (2.26) can be used,

R±
i+ 1

2

=
1

2

p∑
k=1

[
β̃kẽk(1 ± sgn(λ̃k)(1 − Φk(1 − |νk|)))

]
i+ 1

2

(2.33)

where the values of β̃k are the components of X̃−1R̃ and are determined from

1

Δx

p∑
k=1

β̃kẽk = R̃.

Glaister [11, 12] also determined that for the shallow water equations,

β̃1 =
c̃ΔB

2
and β̃2 = − c̃ΔB

2
.

2.7.1 Numerical Results of the Flux-Limited Version of Roe’s

Scheme

To compare the accuracy of the Roe averaged Jacobian matrix with the averaged

Jacobian matrix (2.17), we use the flux-limited Lax-Wendroff numerical flux (2.23)

with the source term approximation (2.33), which satisfies the C-property. Test

Problem C is used with a final time of t = 21, 600s and both schemes are run

using ν = 0.9, a spatial step-size Δx = 6, 480m and the minmod flux-limiter.

Figure 2.21 illustrates a comparison of the numerical results of the surface

elevation for both schemes. Here, we can see that both approximations have

produced very similar numerical results. The numerical results are smooth and

are free from spurious oscillations. Both schemes have produced similar numerical
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Figure 2.21: Numerical results of the flux-limited scheme with the different Jacobian
approximations for Test Problem C at t = 21, 600s (h + B).

results due to the approximations of the Jacobian matrices being similar. For the

shallow water equations, the only difference between the two approximations of the

Jacobian is the approximation of u,

û =
1

2
(uR + uL) and ũ =

√
hRuR +

√
hLuL√

hR +
√

hL

,

as the approximation of h is the same. This results in both approximations of

the Jacobian matrices being similar for most test problems. However, the two

approximations of the Jacobian matrices will become increasingly different as the

system grows due to the complexity of the Jacobian.
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2.8 Summary

Throughout this chapter, we have discussed a variety of numerical scheme that

can be used to approximate systems of conservation laws with source terms. We

have shown that the LxF and NT schemes are accurate when a source term is

not present but inaccurate when a source term is present due to the numerical

schemes not satisfying the C-property. We have derived a flux-limited version of

the Lax-Wendroff scheme, which satisfies the C-property, and is very accurate even

when the source term is significant. A flux-limited version of the MacCormack

scheme was also derived that is also accurate for all of the test problems discussed

in this chapter. Two approximations of the Jacobian matrix, a basic averaged

approximation and a Roe averaged approximation, were derived for the flux-limited

Lax-Wendroff scheme. For the shallow water equations, both approximations of

the Jacobian matrix produced very similar results. However, for larger systems the

Jacobian matrix becomes more complex, which may result in the two approximations

of the Jacobian matrix producing different results. In the next chapter, we extend

the schemes discussed in this chapter to approximate the equations governing

sediment transport in one dimension.
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Chapter 3

Numerical Formulations for

Approximating the Equations

Governing Sediment Transport in

One Dimension

In the previous chapter we discussed a variety of numerical schemes that can be used

to approximate systems of conservation laws in one dimension. We used the shallow

water equations to illustrate the derivation and accuracy of the different numerical

schemes. In this chapter we adapt the numerical schemes discussed in the previous

chapter to numerically approximate the equations governing sediment transport in

1D. The classic Lax-Wendroff scheme and the flux-limited version of Roe’s scheme

are adapted to approximate the equations. The classic Lax-Wendroff scheme is

widely used in industry, but not surprisingly the numerical results obtained suffer

from spurious oscillations resulting in the numerical scheme becoming unstable for

long time periods. Different measures have been applied to the classic Lax-Wendroff

scheme to try to eliminate the spurious oscillations such as a smaller Courant number

and the scheme has been adapted to satisfy the TVD property. Unfortunately, the

spurious oscillations could not be eliminated and overpowered the numerical results
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for long computational run times, see Damgaard [4] and Damgaard & Chesher [5].

These difficulties are mainly due to the source term approximation, i.e. the scheme

does not satisfy the C-property. The flux-limited version of Roe’s scheme was derived

to overcome these difficulties so that we can obtain accurate numerical results with

no spurious oscillations present, even for long time periods. Thus, it is useful to

illustrate the numerical results obtained from both schemes to highlight the improved

accuracy of the flux-limited version of Roe’s scheme compared to the classic Lax-

Wendroff scheme.

Before we adapt the numerical schemes, we look at five different formulations

that can be used with the numerical schemes to approximate the equations.

3.1 Different Formulations

There are numerous approaches that can be used to obtain an approximation of the

equations governing sediment transport. In this thesis, we consider following two

approaches:

1. the steady approach, where the water flow is assumed to be steady and the

changes in the bed update have a negligible effect on the water flow, i.e. the

wave speed of the bed-updating equation is considerably smaller in magnitude

than the wave speeds of the water flow. By making these assumptions, the

system is decoupled into a water flow approximation, which is iterated to an

equilibrium state, followed by a bed update.

2. the unsteady approach, where no assumptions are made and the water flow

and riverbed are calculated simultaneously. With this approach, the water

flow can be either steady or unsteady and the changes in the bed update are

considered to be significant, i.e. the wave speed of the bed-updating equation is

of a similar magnitude to the wave speeds of the water flow. For this approach,

the system is discretised simultaneously.
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A considerable amount of research has been carried out on the steady approach,

which was pioneered by Cunge et al. [3] who discussed both approaches at length.

Cunge et al. stated that for most physical cases, the bed moves at a considerably

slower speed than the water flow. For example, for a 100 km channel, the water

flow usually takes one or two days to propagate over the entire channel whereas the

bed usually takes many years. Thus, we expect the wave speed of the bed-updating

equation to be considerably smaller in magnitude than the wave speeds associated

with the water flow. This enables the steady approach to be derived, where the

water flow and the bed update is decoupled and discretised separately making the

equations considerably easier to numerically approximate. The steady approach of

Cunge et al. also assumes the water flow is in an equilibrium state which allows

equations (1.1) and (1.2) to be re-written as

Qx = 0 ⇒ Q(x, t) = Qc ∀(x, t), (3.1)

which results in a constant discharge throughout the domain, and

[
1

2
u2 + g(h + B)

]
x

= 0, (3.2)

where the equation has been re-written in nonconservative variable form. Thus,

a numerical approximation of (3.2) and (1.3) is now only required. In this thesis,

we slightly adapt the approach by iterating the water flow to an equilibrium state,

which has the effect of imposing a constant discharge, and then updating the bed.

Unfortunately, the steady approach is very limited as the water flow is assumed to

be in an equilibrium state, but rarely is. There are also cases, where the wave speed

of the bed-updating equation is of a similar magnitude to the wave speeds of the

water flow, see Perdreau and Cunge [31], but this case is rare. However, the steady

approach cannot be used for these cases as the bed is assumed to have a negligible

effect on the water flow.

The unsteady approach approximates the whole system simultaneously on the

same time scale. This approach can be used with steady and unsteady water flow

and is considerably more robust than the steady approach. Little research has been
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carried out on the unsteady approach as until recently, a full numerical solution of

the approach was considered to be too complex and expensive to obtain, see Cunge

et al. [3]. This is mainly due to the complexity of the sediment transport flux,

which can range from a basic analytical function, as discussed in Section 1.4, to a

system of equations such as the equations derived by Einstein [8]. In some cases,

the sediment transport flux cannot be written analytically and is determined by

using a “black box” approach where the flux is deduced from empirical data. The

steady approach can easily incorporate all of these sediment transport fluxes, but

the unsteady approach is considerably harder.

In this thesis, to determine the validity of the steady and unsteady approach, we

consider five different formulations that can be used to approximate the equations

governing sediment transport. Each formulation will be derived for the sediment

transport flux (1.10) for positive values of u,

q(u) = Aum where u ≥ 0. (3.3)

Four of the formulations will be based on the unsteady approach and one will be

based on the steady approach.

3.1.1 Formulation A

The equations (1.1), (1.2) and (1.3) can be used as written in three different ways:

1. Formulation A-CV: The following method is based on the steady approach

and consists of

• a “fixed-bottom step”, where the shallow water equations,

[
h

uh

]
t

+

[
uh

hu2 + 1
2
gh2

]
x

=

[
0

−ghBx

]
,

are iterated to an equilibrium state whilst keeping the bed fixed.
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• a “changing bottom step”, where the bed is updated whist keeping all

other variables fixed.

Numerically, an equilibrium state has been obtained when

|wn+1
i − wn

i | ≤ tol ∀i,

where tol is the desired tolerance level. Thus the numerical approximation

of the water flow must satisfy the tolerance level before the bed is updated

and the process is repeated. The overall time step of this formulation is the

morphological time step of the bed-updating equation.

2. Formulation A-NC: Here, the shallow water equations and the bed-updating

equation are numerically approximated sequentially using the same time step.

This formulation is similar to Formulation A-CV as the water flow is still

calculated separately from the bed update. However, the water flow is no

longer iterated to an equilibrium or steady state after each bed update.

3. Formulation A-SF: All three equations are re-written in system form,

⎡
⎢⎣

h

uh

B

⎤
⎥⎦

t

+

⎡
⎢⎣

uh

hu2 + 1
2
gh2

ξq

⎤
⎥⎦

x

=

⎡
⎢⎣

0

−ghBx

0

⎤
⎥⎦ (3.4)

and the whole system is numerically approximated simultaneously. This

formulation is based on the unsteady approach.

All three formulations have a source term present, which must be treated carefully

to avoid difficulties obtaining an accurate numerical approximation. The Jacobian

matrix will be required for each variation of Formulation A. For

1. Formulations A-NC and A-CV, the shallow water equations’ Jacobian matrix

is

A =

[
0 1

c2 − u2 2u

]
,
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where c =
√

gh, which has eigenvalues

λ1 = u − c and λ2 = u + c,

with corresponding eigenvectors

e1 =

[
1

u − c

]
and e2 =

[
1

u + c

]
.

Both Formulations A-CV and A-NC require an approximation of the wave

speed of the bed-updating equation,

λ = ξ

[
∂q

∂B

]
,

which can be difficult to obtain as the sediment transport flux is not a direct

function of B, see Section 3.4.

2. Formulation A-SF, if the sediment transport flux (3.3) is used then the

Jacobian matrix is

A =

⎡
⎢⎣

0 1 0

c2 − u2 2u 0

−ud d 0

⎤
⎥⎦ ,

where c =
√

gh and d = ξ
h
Amum−1 for u ≥ 0. Notice that this Jacobian matrix

is singular, which we might expect to create difficulties when implementing a

numerical scheme for this formulation. The eigenvalues of the Jacobian matrix

are

λ1 = u − c, λ2 = 0 and λ3 = u + c,

with corresponding eigenvectors

e1 =

⎡
⎢⎢⎣

1

u − c
−cd

u − c

⎤
⎥⎥⎦ , e2 =

⎡
⎢⎣

0

0

1

⎤
⎥⎦ and e3 =

⎡
⎢⎢⎣

1

u + c
cd

u + c

⎤
⎥⎥⎦ .

For this formulation, notice that the eigenvalue associated with the bed-
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updating equation is zero due to the Jacobian being singular. This implies

that movement in the bed is created only by the water flow and thus, implies

that the water flow cannot be decoupled from the bed update.

3.1.2 Formulation B

Another approach that can be used is to re-write the equation of conservation of

momentum (1.2) as
∂u

∂t
+

∂
[

1
2
u2 + g(h + B)

]
∂x

= 0, (3.5)

by using (1.1) and then combine (1.1), (3.5) and (1.3) into system form to obtain

Formulation B, ⎡
⎢⎣

h

u

B

⎤
⎥⎦

t

+

⎡
⎢⎣

uh
1
2
u2 + g(h + B)

ξq

⎤
⎥⎦

x

= 0. (3.6)

Notice that this formulation does not have a source term present, hence, Formulation

B will be easier to approximate numerically. However, Formulation B may not be

in conservative variable form, which could results in shocks propagating at incorrect

speeds. If the sediment transport flux (3.3) is used then the Jacobian matrix of

Formulation B is

A =

⎡
⎢⎣

u h 0

g u g

0 d 0

⎤
⎥⎦ ,

where d = Aξmum−1 for u ≥ 0. Notice that the Jacobian matrix of Formulation B

is not singular. The eigenvalues, λ, of the Jacobian matrix cannot be easily written

analytically since they are the roots of the polynomial

P (λ,w) = λ3 − 2uλ2 +
[
u2 − g(h + d)

]
λ + gud = 0.
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However, we can prove that the roots of P (λ,w) are always real by using formulae

for the roots of a cubic, see Spiegel & Liu [37]. For a cubic equation,

P (x) = x3 + a1x
2 + a2x + a3 = 0,

if we let

Q =
1

9
(3a2 − a2

1) and R =
1

54
(9a1a2 − 27a3 − 2a3

1),

then the discriminant is D = Q3 + R2 and if

1. D > 0 then one root is real and two are complex;

2. D = 0 then all roots are real and two are equal;

3. D < 0 then all roots are real and unequal.

If D < 0 then the roots of P (x) are

x1 = 2
√

−Q cos(
1

3
θ) − 1

3
a1, (3.7a)

x2 = 2
√
−Q cos(

1

3
(θ + 2π)) − 1

3
a1 (3.7b)

and

x3 = 2
√
−Q cos(

1

3
(θ + 4π)) − 1

3
a1 (3.7c)

where cos θ =
R√−Q3

.

Now, by using the above approach, for Formulation B

a1 = −2u, a2 = u2 − g(h + d) and a3 = gud

which implies that

Q = −1

9
(u2 + 3g(h + d)) and R =

u

54
(9g(2h − d) − 2u2).
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Hence,

D =
g

108
[8gu2h2 − u2(4hu2 + gd(d + 20h)) − 4g2(h3 + d3 + 3hd(h + d))]

and for all three roots to be real and unequal,

8gu2h2 < u2(4hu2 + gd(d + 20h)) + 4g2(h3 + d3 + 3hd(h + d)),

which is always satisfied since h(x, t) > 0 and u(x, t) ≥ 0 ⇒ d ≥ 0. Hence, the roots

of P (λ,w) are always real and unequal. The signs of the roots of the Jacobian can

be obtained from the determinant of A

|A| = λ1λ2λ3 = −udg (3.8)

and since, the determinant is negative this implies that either all three eigenvalues

are negative or two are positive and one is negative. Also, as the parameter A → 0,

the eigenvalues of the Jacobian tend to

λ1 → u − c, λ2 → 0 and λ3 → u + c,

which are identical to the eigenvalues of Formulation A-SF. Thus, we can determine

that one of the roots is negative and two of the roots are positive, i.e.

λ1 < 0 < λ2 < λ3.

De Vries [7] obtained an approximation of the eigenvalue associated with the bed-

updating equation by assuming

λ1 = u − c and λ3 = u + c,

and substituting into (3.8) to obtain

λ2 =
gud

c2 − u2
.
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De Vries deduced from this approximation that λ1 < 0 and λ2 > 0 for subcritical

flow, u < c, whereas λ1 > 0 and λ2 < 0 for supercritical flow, u > c. Now that we

have proved that the roots of P (λ) are always real, the eigenvectors,

ek =

⎡
⎢⎢⎢⎢⎣

1
1

h
(λk − u)

(u − λk)
2 − gh

gh

⎤
⎥⎥⎥⎥⎦ ,

can be obtained where the λk are given by (3.7).

3.1.3 Formulation C

In order to obtain a formulation that is written in conservative variable form and

whose Jacobian matrix is not singular, we use the product rule, (hB)x = hBx+Bhx,

to re-write the equation of the conservation of momentum (1.2) as

∂(uh)

∂t
+

∂
[
hu2 + 1

2
gh2 + ghB

]
∂x

= gBhx. (3.9)

Now, combining equations (1.1), (3.9) and (1.3) into system form, we obtain

⎡
⎢⎣

h

uh

B

⎤
⎥⎦

t

+

⎡
⎢⎣

uh

hu2 + 1
2
gh2 + ghB

ξq

⎤
⎥⎦

x

=

⎡
⎢⎣

0

gBhx

0

⎤
⎥⎦ . (3.10)

Unfortunately, Formulation C has a source term present. If the sediment transport

flux (3.3) is used then the Jacobian matrix of Formulation C is

A =

⎡
⎢⎣

0 1 0

g(h + B) − u2 2u gh

−ud d 0

⎤
⎥⎦ ,
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where d = ξ
h
Amum−1 for u ≥ 0. The eigenvalues, λ, of the Jacobian matrix again

cannot be easily written analytically since they are the roots of the polynomial

P (λ,w) = λ3 − 2uλ2 +
[
u2 − g(h + B + hd)

]
λ + ghud = 0.

However, we can prove that the roots of P (λ,w) are always real by using the

approach discussed in Section 3.1.2. For Formulation C,

a1 = −2u, a2 = u2 − g(h + B + hd) and a3 = ghud

which implies that

Q = −1

9
(u2 + 3g(h + B + hd)) and R = − u

54
(2u2 − 9g(2h + 2B − hd)).

Hence,

D =
g

108
[8u2g(h + B)2 − u2[4u2(B + h) + ghd(20(h + B) + hd)]

−4g2(h3 + B3 + h3d3 + 3h(d + 1)(h + B)(hd + B))]

and for all three roots to be real and unequal,

8u2g(h + B)2 < u2[4u2(B + h) + ghd(20(h + B) + hd)]

+4g2(h3 + B3 + h3d3 + 3h(d + 1)(h + B)(hd + B)),

which is satisfied if h(x, t) + B(x, t) > 0 since h(x, t) > 0, u(x, t) ≥ 0 ⇒ d ≥ 0 and

−∞ < B(x, t) < ∞. Hence, the roots of P (λ,w) are always real and unequal if

h(x, t)+B(x, t) > 0. As with Formulation B, it can also be shown that P (λ,w) has

one negative root and two positive roots, i.e.

λ1 < 0 < λ2 < λ3.
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Now that we have proved that the roots of P (λ) are always real, we need to determine

the eigenvectors. The eigenvectors of the Jacobian matrix are

ek =

⎡
⎢⎢⎢⎣

1

λk

u2 − g(h + B) + (λk − 2u)λk

gh

⎤
⎥⎥⎥⎦ ,

where again λk are given by (3.7).

Throughout this section, we have discussed five different formulations that can

be used to numerically approximate the system (1.1), (1.2) and (1.3). In the next

section, we discuss how these different formulations can be numerically approximated

using the flux-limited version of Roe’s scheme, which was discussed in the previous

chapter.

3.2 Adaptation of the Classic Lax-Wendroff

Scheme

The classic Lax-Wendroff scheme (2.16) can be used to approximate the equations

governing sediment transport. Unfortunately, the scheme suffers from spurious

oscillations, which can result in an inaccurate numerical solution. For the source

term approximation, we adopt the pointwise approach, which is used in industry.

The classic Lax-Wendroff scheme does not satisfy the C-property when the pointwise

source term approximation is used.

The classic Lax-Wendroff scheme can easily be adapted to approximate the

different formulations discussed in the previous section.
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3.2.1 Formulation A-CV

For Formulation A-CV, the system is decoupled into a water flow approximation

followed by a bed update. The classic Lax-Wendroff scheme can easily be adapted to

approximate this formulation. In the previous chapter, the shallow water equations

were approximated using the classic Lax-Wendroff scheme, see Section 2.6.1.

However, for the bed-updating equation we need to adapt the scheme to numerically

approximate the scalar conservation law. For the bed-updating equation, we obtain

Bn+1
i = Bn

i − ξs
(
q∗
i+ 1

2
− q∗

i− 1
2

)
, (3.11)

where the numerical flux-function is

q∗
i+ 1

2
=

1

2

(
qn
i+1 + qn

i

) − s

2
λn

i+ 1
2

(
qn
i+1 − qn

i

)
and the wave speed approximation is

λn
i+ 1

2
= ξ

[
∂q

∂B

]n

i+ 1
2

.

Unfortunately, (3.11) requires an accurate approximation of the wave speed, which

can be very difficult to obtain since the sediment transport flux is not a direct

function of B. A variety of approaches that can be used to obtain an approximation

of the wave speed are discussed in Section 3.4 where the advantages and

disadvantages of each approach are discussed as well.

3.2.2 Formulation A-NC

Formulation A-NC is practically identical to Formulation A-CV, with the exception

that the shallow water equations are no longer iterated to an equilibrium or steady

state.
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3.2.3 Formulation A-SF

The classic Lax-Wendroff scheme (2.16) can be used to approximate Formulation

A-SF as written. The Jacobian matrix is given in Section 3.1 and the source term

is approximated using a pointwise approach,

R∗
i =

⎡
⎢⎣

0

−g
4
(hn

i+1 + hn
i−1)(B

n
i+1 − Bn

i−1)

0

⎤
⎥⎦ .

3.2.4 Formulation B

The classic Lax-Wendroff scheme (2.16) can be used to approximate Formulation

B. The Jacobian matrix is given in Section 3.1 and no source term is present for

Formulation B, thus

R∗
i = 0.

3.2.5 Formulation C

The classic Lax-Wendroff scheme (2.16) can be used to approximate Formulation

C as written. The Jacobian matrix is given in Section 3.1 and the source term is

approximated using a pointwise approach,

R∗
i =

⎡
⎢⎣

0
g
4
(Bn

i+1 + Bn
i−1)(h

n
i+1 − hn

i−1)

0

⎤
⎥⎦ .
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3.3 Adaptation of the Flux-Limited Version of

Roe’s Scheme

In the previous chapter, we discussed a variety of numerical schemes that can be

used to approximate systems of conservation laws with source term. We used the

shallow water equations to illustrate our techniques and to determine which scheme

produced the most accurate numerical results. We determined that out of all of the

numerical schemes discussed, the flux-limited version of Roe’s scheme (2.32) with the

source term approximation (2.33) was the most accurate numerical scheme. This was

mainly due to the scheme satisfying the C-property. Thus, in this section we adapt

the flux-limited version of Roe’s scheme to approximate the different formulations

discussed in the previous section.

3.3.1 Formulation A-CV

For Formulation A-CV, the system is decoupled into a water flow approximation,

the shallow water equations, and a bed update. The flux-limited version of Roe’s

scheme can easily adapted to approximate this formulation. In the previous chapter,

this scheme was discussed based on the shallow water equations. However, for bed-

updating equation, we need to adapt the flux-limited version of Roe’s scheme to

numerically approximate the scalar conservation law. For the bed-updating equation,

we obtain

Bn+1
i = Bn

i − s
(
q∗
i+ 1

2
− q∗

i− 1
2

)
, (3.12)

where the numerical flux-function is

q∗
i+ 1

2
=

ξ

2

(
qn
i+1 + qn

i

) − 1

2

∣∣∣λn
i+ 1

2

∣∣∣ (
1 − Φ

(
θn

i+ 1
2

) (
1 −

∣∣∣νn
i+ 1

2

∣∣∣)) (
Bn

i+1 − Bn
i

)
,

νn
i+ 1

2
= sλn

i+ 1
2
, θn

i+ 1
2

=
Bn

I+1 − Bn
I

Bn
i+1 − Bn

i

,
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I = i − sgn
(
νn

i+ 1
2

)
, λn

i+ 1
2

= ξ

[
∂q

∂B

]n

i+ 1
2

and Φ can be any of the flux-limiters listed in Table 2.1. In order to be able to

use (3.12), we need to be able to obtain an accurate approximation of the wave

speed, λ, which can be very difficult to obtain since the sediment transport flux is

not a direct function of B. A variety of approaches that can be used to obtain an

approximation of the wave speed are discussed in Section 3.4 where the advantages

and disadvantages of each approach are discussed as well.

3.3.2 Formulation A-NC

Formulation A-NC is practically identical to Formulation A-CV, with the exception

that the shallow water equations are no longer iterated to an equilibrium or steady

state.

3.3.3 Formulation A-SF

Formulation A-SF can easily be used with the flux-limited version of Roe’s scheme.

For the sediment transport flux (3.3), we obtain the Roe averaged Jacobian matrix

Ã =

⎡
⎢⎣

0 1 0

c̃2 − ũ2 2ũ 0

−ũd̃ d̃ 0

⎤
⎥⎦ ,

where c̃ =

√
gh̃. The eigenvalues of the Roe averaged Jacobian matrix are

λ̃1 = ũ − c̃, λ̃2 = 0 and λ̃3 = ũ + c̃,
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with corresponding eigenvectors

ẽ1 =

⎡
⎢⎢⎢⎣

1

ũ − c̃

−c̃d̃

ũ − c̃

⎤
⎥⎥⎥⎦ , ẽ2 =

⎡
⎢⎣

0

0

1

⎤
⎥⎦ and ẽ3 =

⎡
⎢⎢⎢⎣

1

ũ + c̃

c̃d̃

ũ + c̃

⎤
⎥⎥⎥⎦

and the wave strengths are

α̃1 =
1

2
Δh − 1

2c̃
(Δ(uh) − ũΔh)

α̃2 = ΔB − d̃ (Δ(uh) − (ũ2 + c̃2)Δh)

(ũ − c̃)(ũ + c̃)
,

and

α̃3 =
1

2
Δh +

1

2c̃
(Δ(uh) − ũΔh) .

The Roe averaged values are

ũ =

√
hRuR +

√
hLuL√

hR +
√

hL

, h̃ =
1

2
(hR + hL)

and

d̃ =
ξΔ(Aum)

Δ(uh) − ũΔh
.

If m is an integer, then d̃ can be re-written as

d̃ =
Aξ(

√
hR +

√
hL)√

hLhR +
√

hRhL

m−1∑
k=0

(uR)k(uL)m−(1+k).

For the source term approximation,

β̃1 =
c̃ΔB

2
, β̃2 =

d̃ũc̃2ΔB

(ũ − c̃)(ũ + c̃)
and β̃3 = − c̃ΔB

2
.
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3.3.4 Formulation B

Formulation B can also be used with the flux-limited version of Roe’s scheme. For

the sediment transport flux (3.3), we can obtain the following Roe averaged Jacobian

matrix

A =

⎡
⎢⎣

ũ h̃ 0

g ũ g

0 d̃ 0

⎤
⎥⎦ .

The eigenvalues, λ̃, of the Roe averaged Jacobian are obtained by finding the roots

of the polynomial

P̃ (λ̃) = λ̃3 − 2ũλ̃2 +
[
ũ2 − g(h̃ + d̃)

]
λ + gũd̃ = 0.

The roots of P̃ (λ̃) are determined by using the approach which was discussed in

Section 3.1.2. Once the Roe averaged eigenvalues have been obtained, they are used

to determine the values of the corresponding eigenvectors,

ẽk =

⎡
⎢⎢⎢⎢⎣

1
1

h̃
(λ̃k − ũ)

(ũ − λ̃k)
2 − gh̃

gh̃

⎤
⎥⎥⎥⎥⎦

and the wave strengths

α̃k =
((ũ − λ̃a)(ũ − λ̃b) + gh̃)Δh + (2ũ − λ̃a − λ̃b)hΔu + gh̃ΔB

(λ̃k − λ̃a)(λ̃k − λ̃b)

where a 	= k 	= b. The Roe averaged values are

ũ =
1

2
(uR + uL), h̃ =

1

2
(hR + hL) and d̃ =

ξΔ(Aum)

Δu
.
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If m is an integer, then d̃ can be re-written as

d̃ = Aξ
m−1∑
k=0

(uR)k(uL)m−(1+k).

Since Formulation B does not have a source term present,

β̃k = 0.

3.3.5 Formulation C

We can also adapt the flux-limited version of Roe’s scheme to approximate

Formulation C. For the sediment transport flux (3.3), the Jacobian matrix is

A =

⎡
⎢⎣

0 1 0

g(h̃ + B̃) − ũ2 2ũ gh̃

−ũd̃ d̃ 0

⎤
⎥⎦ .

The eigenvalues, λ̃, of the Roe averaged Jacobian matrix are obtained by finding

the roots of the polynomial

P̃ (λ̃) = λ̃3 − 2ũλ̃2 +
[
ũ2 − g(h̃ + B̃ + h̃d̃)

]
λ̃ + gh̃ũd̃ = 0.

The roots of P̃ (λ̃) are determined by using the approach which was discussed in

Section 3.1.2. Once the Roe averaged eigenvalues have been obtained, they are used

to determine the values of the corresponding eigenvectors,

ẽk =

⎡
⎢⎢⎢⎣

1

λ̃k

ũ2 − g(h̃ + B̃) + (λ̃k − 2ũ)λ̃k

gh̃

⎤
⎥⎥⎥⎦ ,
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and wave strengths

α̃k =
(λ̃aλ̃b + g(h̃ + B̃) − ũ2)Δh + (2ũ − λ̃a − λ̃b)Δ(uh) + gh̃ΔB

(λ̃k − λ̃a)(λ̃k − λ̃b)
,

where a 	= k 	= b. The Roe averages are

ũ =

√
hRuR +

√
hLuL√

hR +
√

hL

, h̃ =
1

2
(hR + hL), B̃ =

1

2
(BR + BL)

and

d̃ =
ξΔ(Aum)

Δ(uh) − ũΔh
.

If m is an integer, then d̃ can be re-written as

d̃ =
Aξ(

√
hR +

√
hL)√

hLhR +
√

hRhL

m−1∑
k=0

(uR)k(uL)m−(1+k).

For the source term approximation, we use

β̃k =
gB̃(2ũ − λ̃a − λ̃b)Δh

(λ̃k − λ̃a)(λ̃k − λ̃b)
where a 	= k 	= b.

3.4 Approximating the Wave Speed of the Bed-

Updating Equation

Most of the numerical schemes that can be used with Formulations A-NC and A-CV

require a numerical approximation of the wave speed of the bed-updating equation,

∂B

∂t
+ ξ

∂q

∂x
= 0,

whose wave speed is λ = ξ ∂q
∂B

. Unfortunately, the sediment transport flux, q, is

not a direct function of B, which can create difficulties in obtaining an accurate

approximation of the wave speed.
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Figure 3.1: The occurrence of a negative wave speed.

One approach that can be used to approximate the wave speed is to use a finite

difference approach,

λi+ 1
2

= ξ
qi+1 − qi

Bi+1 − Bi

if Bi+1 − Bi 	= 0. (3.13)

Unfortunately, the finite difference approach can only be used when Bi+1 − Bi 	= 0

and can also produce an inaccurate approximation of the wave speed when the

gradient of the riverbed changes sign. If the gradient of the riverbed and the velocity

do not change sign at the same time, the sign of the wave speed may change. For

example, for a small positive velocity, the wave speed of the bed-updating equation

is always positive. However, the finite difference approach may produce a negative

wave speed, as illustrated in Figure 3.1, where it can be seen that Bi+1−Bi > 0 but

qi+1 − qi < 0, which implies that for the illustrated data

λi+ 1
2

= −ξ
|qi+1 − qi|
|Bi+1 − Bi| .

Hence, the finite difference approach has produced a negative wave speed but the

analytic wave speed is positive.

Another approach that can be used is an analytical approach as discussed by

Chesher et al. [2], but can only be used for problems where the height of the water

from the bottom of the channel is considerably larger than the height of the riverbed.
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The approach assumes the river is of a constant height, h + B ≈ D, and Q = uh so

that u can be re-written in terms of B,

u = Qh−1 ≈ Q(D − B)−1.

As an example, consider the sediment transport flux (3.3), which can be re-written

in terms of B as

q(u) = Aum ≈ AQm(D − B)−m.

Thus, the sediment transport flux can now be differentiated with respect to B,

∂q

∂B
≈ AmQm(D − B)−m−1.

Hence, we obtain an analytical approximation of the wave speed for the bed-updating

equation,

λ ≈ ξAm

h
um. (3.14)

This approximation of the wave speed for the bed-updating equation is very limited

as it can only be used for subcritical flow, u <
√

gh. For supercritical flow, the

bed should propagate upstream but the analytical approximation of the wave speed

results in the bed propagating downstream.

De Vries [7] also derived an analytical approximation of the wave speed associated

with the bed-updating equation,

λ2 =
gud

c2 − u2
where d = ξ

[
∂q

∂u

]
,

and was discussed in Section 3.1.2. Unfortunately, the wave speed approximation is

only valid for sediment transport fluxes that are know functions of u only, i.e. q(u),

and the approximation cannot be used when the flow is near critical. However, the

approximation can be used for subcritical and supercritical flow. For the sediment

transport flux (3.3), d = Amum−1 thus,

λ2 =
Aξmgum

gh − u2
. (3.15)
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Figure 3.2: Comparison of the analytical wave speed approximations (3.14) and
(3.15) with D = 10 and A = 0.001 for Fr = 0 to 2.

From Figure 3.2, we can see that the analytical wave speed approximations of De

Vries and Chesher et al. produce similar values when the Froude number is small,

i.e. Fr < 0.4. In this thesis, only small Froude numbers are considered thus, the

wave speed approximation derived by Chesher et al. (3.14) is used.

3.5 Test Problems

To determine which formulation with the flux-limited version of Roe’s scheme

produces the most accurate numerical results, we use the following two test problems.

Both test problems consist of a channel of length 1000m with the following dummy

initial conditions

h∗(x, 0) = 10 − B∗(x, 0) and u∗(x, 0) =
Q

h∗(x, 0)
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where Q is a constant. The bathymetry for

1. Channel Test Problem A is

B(x, 0) =

⎧⎨
⎩ B̂ sin2

(
π(x − 300)

200

)
if 300 ≤ x ≤ 500

0 otherwise
,

where B̂ is the maximum height of the bed.

2. Channel Test Problem B is

B(x, 0) =

{
BL if x ≤ 300

BR if x > 300
.

To obtain the initial conditions, the water flow is iterated with the dummy initial

conditions to an equilibrium state whilst keeping the riverbed fixed, i.e.

|wn+1
i − wn

i | ≤ tol,

where tol is the desired tolerance level. This ensures that the initial conditions

of the water flow and bed are consistent and greatly reduces the possibility of an

impulsive start occurring for larger values of A. The initial conditions for Channel

Test Problem A with B̂ = 1m and Q = 10 are illustrated in Figure 3.3 and Figure 3.4

and for Channel Test Problem B with BL = 1m, BR = 0m and Q = 10 are illustrated

in Figure 3.5 and Figure 3.6.

For both test problems, the sediment transport flux discussed by Grass (1.10) is

used with m = 3,

q(u) = Au3,

which is valid for all values of u. To ensure the error of the numerical schemes do

not grow, the variables are non-dimensionalised,

x∗ =
x

L
, t∗ =

t

T
, h∗ =

h

L
, B∗ =

B

L
, g∗ =

gT 2

L
,
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Figure 3.6: Initial conditions for Channel Test Problem B (u).
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u∗ =
uT

L
, A∗ =

AL

T 2
and tol∗ =

tol

L
,

where L = 1000 and T =
√

1000
g

are the non-dimensional coefficients. Here, L is

taken as the length of the channel.

It should be noted that even though in Chapter 1 it was stated that the differential

form of equation for conservation of momentum (1.2) becomes invalid when a

discontinuity appears in the riverbed, this is only analytically and the equation holds

numerically as long as the discontinuity in the riverbed is small. Thus, Channel Test

Problem B can be used as long as the discontinuity in the riverbed is small.

3.5.1 Approximate Solution for Channel Test Problem A

We can determine an approximate solution of Channel Test Problem A by assuming

that the total height of the river is constant and the discharge is constant throughout

the whole domain, i.e.

h(x, t) ≈ D − B(x, t) and u(x, t)h(x, t) ≈ Qc ∀(x, t),

where Qc is a constant. These assumptions are only valid when the riverbed is

interacting slowly with the water flow, A < 0.01, and when the water flow is moving

slowly, Qc ≤ 10. However, the assumptions enable the velocity to be re-written in

terms of the riverbed,

u(x, t) ≈ Qc

D − B(x, t)
.

An approximate solution of B(x, t) is now required. The bed-updating equation

(1.3) can be re-written in quasi-linear form as

Bt + λBx = 0,

where the wave speed is

λ = ξ

[
∂q

∂B

]
.
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Since the sediment transport flux is not a direct function of B, the wave speed of

the bed-updating equation can be difficult to obtain. However in Section 3.4, an

analytical approximation was derived which assumes the total height of the river is

constant and uses u ≈ Q(D − B)−1 to re-write the sediment transport flux (3.3) in

terms of the riverbed,

q(u) = Aum ≈ AQm(D − B)−m.

The sediment transport flux can now be differentiated with respect to B and we

obtain the analytical approximation of the wave speed

λ ≈ AξmQm(D − B)−m−1.

By assuming the discharge is constant, the characteristics are given by

dx

dt
= AξmQm

c (D − B(x0, 0))−m−1

and with initial bathymetry

B(x, 0) =

⎧⎨
⎩ B̂ sin2

(
π(x − 300)

200

)
if 300 ≤ x ≤ 500

0 otherwise

thus

dx

dt
= AξmQm

c

⎧⎪⎨
⎪⎩

(
D − B̂ sin2

(
π(x0 − 300)

200

))−(m+1)

if 300 ≤ x0 ≤ 500,

D−(m+1) otherwise.

Now, by integrating we obtain

x = x0 + AξmQm
c t

⎧⎨
⎩

(
D − B̂ sin2

(
π(x0−300)

200

))−(m+1)

if 300 ≤ x0 ≤ 500,

D−(m+1) otherwise,
(3.16)
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which unfortunately cannot be re-written in terms of x0. Hence, the approximate

solution of B is

B(x, t) =

⎧⎨
⎩ B̂ sin2

(
π(x0 − 300)

200

)
if 300 ≤ x0 ≤ 500,

0 otherwise,

where the value of x is determined by substituting values of x0 and t into (3.16).

Unfortunately, this approximate solution is only valid until the characteristics cross,

which first occurs in the region 300 ≤ x0 ≤ 500. We can determine the time the

characteristics first cross by using

dx

dx0

= 0

and finding the smallest positive value of t. For the current approximate solution,

the characteristics first cross in the region 300 ≤ x0 ≤ 500,

dx

dx0

= 1 +
m(m + 1)AξQm

c B̂πt sin
(

2π(x0−300)
200

)
200

[
D − B̂ sin2

(
π(x0−300)

200

)]m+2 .

Thus, by setting this equal to zero and re-arranging, we obtain

t =
−200

[
D − B̂ sin2

(
π(x0−300)

200

)]m+2

m(m + 1)AξQm
c πB̂ sin

(
π(x0−300)

100

) .

Hence, we can determine the time the characteristics first cross by finding the

minimum positive value of t in the region 300 ≤ x0 ≤ 500. For m = 3, B̂ = 1m,

ε = 0.4 and Qc = 10, we can determine that the approximate solution is only valid

until

t = 238079.124A−1 seconds .
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3.6 Numerical Results

In the next few sections, we use the classic Lax-Wendroff scheme and the flux-limited

version of Roe’s scheme with the different formulations to obtain a numerical solution

of either Channel Test Problem A or B. Both numerical schemes use Δx = 10m and

ν = 0.8 and the flux-limited version of Roe’s scheme uses the minmod flux-limiter.

All schemes use the basic free flow boundary conditions,

wn+1
−i,j = wn

0,j, wn+1
I+i,j = wn

I,j, wn+1
i,−j = wn

i,0 and wn+1
i,J+j = wn

i,J ,

where i, j = 1 to 5. Formulation A-CV used a tolerance level of tol = 0.000001 to

determine when the shallow water equations have reached an equilibrium state. If a

formulation’s numerical results are not illustrated for a particular scheme then this

is due to the scheme becoming unstable for this formulation.

3.6.1 Channel Test Problem A: Numerical Results for a

Small Bed which is Interacting Slowly with the Water

Flow

For the first test case, we simulate a small pulse in the riverbed which is interacting

slowly with the water flow, where the water flow is moving slowly. To simulate this,

we use the values A = 0.001, B̂ = 1m and Q = 10. Thus, by using these values

with the two different schemes, we obtain the numerical results of the classic Lax-

Wendroff scheme, which are illustrated in Figure 3.7, and the flux-limited version of

Roe’s scheme, which are illustrated in Figure 3.8.

From Figure 3.7, we can see that the classic Lax-Wendroff scheme has produced

poor numerical results for all formulations. The scheme became unstable for

Formulations A-CV and A-SF and the numerical results of Formulation A-NC were

completely inaccurate due to spurious oscillations occurring initially in the numerical

results that were then propagated over the whole domain. This resulted in the
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Figure 3.7: Comparison of the different formulations for Channel Test Problem A
using the classic Lax-Wendroff scheme with A = 0.001 and Q = 10 at t = 238079s
(B).
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Figure 3.8: Comparison of the different formulations for Channel Test Problem A
using the flux-limited version of Roe’s scheme with A = 0.001 and Q = 10 at
t = 238079s (B).
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total height of the river, the height of the riverbed and the overall velocity

being greatly reduced (initially, the overall velocity was approximately 1m/s, but

at t = 238079s, the overall velocity was approximately 0.92m/s). The scheme is

considerably more accurate with Formulations B and C, but the numerical results

were still poor due to spurious oscillations being present in the numerical results.

From Figure 3.8, we can see that the flux-limited version of Roe’s scheme has

produced accurate numerical results for all formulations except Formulation A-SF

due to spurious oscillations beginning to occur in the numerical results. For

Formulation A-CV, the scheme produced numerical results that were very close

to the approximate solution (for the bathymetry). The scheme produced practically

identical numerical results for Formulations A-NC, B and C with no spurious

oscillations present. However, the numerical results of Formulations A-NC, B and

C were more diffusive than Formulation A-CV due to Formulation A-CV requiring

considerably less time steps to reach the final time than Formulations A-NC, B and

C. Formulation A-CV had an overall time step of Δt ≈ 2.9 hours and required

approximately 3 minutes to iterate the water flow to an equilibrium state each time

the bed was updated whereas Formulations A-NC, B and C had an overall time step

of Δt ≈ 0.7 seconds). Also, notice that Formulations A-NC, B and C have produced

slightly different numerical results than the approximate solution and Formulation

A-CV due to the position of the top of the pulse in the bathymetry. Formulations

A-NC, B and C placed the top of the pulse in the bathymetry slightly to the left of

Formulation A-CV and the approximate solution.

To determine if the numerical schemes become unstable for longer computational

run times, we run the test problem with the same values for longer until t = 150

hours (540,000 seconds). Thus, we obtain the numerical results of the classic Lax-

Wendroff scheme, which are illustrated in Figure 3.9, and the flux-limited version of

Roe’s scheme, which are illustrated in Figure 3.10.

From Figure 3.9, we can see that the numerical results of the classic Lax-Wendroff

scheme have become considerably worse for a longer computational run time. All

variations of Formulation A have now become unstable and Formulations B and C
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Figure 3.9: Comparison of the different formulations for Channel Test Problem A
using the classic Lax-Wendroff scheme with A = 0.001 and Q = 10 at t = 150h (B).
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Figure 3.10: Comparison of the different formulations for Channel Test Problem
A using the flux-limited version of Roe’s scheme with A = 0.001 and Q = 10 at
t = 150h (B).
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have both produced very poor numerical results with spurious oscillations present.

From Figure 3.10, we can see that the flux-limited version of Roe’s scheme

has again produced very accurate numerical results for all formulations, with the

exception of Formulation A-SF that suffered badly from spurious oscillations. Notice

that the difference of the position of the top of the pulse in the bathymetry between

Formulation A-CV and Formulations A-NC, B and C has increased. Formulations

A-CV and A-NC are identical apart from Formulation A-CV iterates the water flow

to an equilibrium state each time the bed is updated. Thus, the difference is created

by Formulation A-CV iterating the water flow to an equlibrium state each time

the bed is updated. If the test problem is run for even longer then the difference

becomes more significant.

Hence, the flux-limited version of Roe’s scheme is considerably more accurate

than the classic Lax-Wendroff scheme for all formulations. Formulation A-SF is

the least accurate formulation for both schemes and Formulations A-NC and A-CV

were accurate with the flux-limited version of Roe’s scheme but became unstable

with the classic Lax-Wendroff scheme. Formulations B and C worked well for both

schemes but the classic Lax-Wendroff scheme produced spurious oscillations in the

numerical results.

3.6.2 Channel Test Problem A: Numerical Results for a

Small Bed which is Interacting Quickly with the

Water Flow

In the previous section we used a value of A = 0.001, which simulated a slow moving

riverbed. We now use a value of A = 1 to simulate a fast moving riverbed, which

is now reacting quickly with the water flow. There are a few cases where the bed

interacts quickly with the water flow, see Perdreau and Cunge [31], but these cases

are rare. However, it is interesting to study the numerical results of the different

formulations for this case so that we can determine which formulations can be used
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with large values of A. Unfortunately when using large values of A, the initial

conditions used produce an impulsive start for all unsteady approaches due to the

initial conditions not representing a fast moving riverbed. Formulation A-CV is the

only formulation that does not produce an impulsive start with the initial conditions

due to the formulation being a steady approach, which assumes the riverbed is

interacting slowly with the water flow. At present, obtaining initial conditions for

a fast moving riverbed can be very difficult. To obtain such initial conditions,

empirical data could be used but physical cases where the riverbed is interacting

quickly with the riverbed are very rare. Alternatively, the initial conditions could

be obtained by iterating an unsteady approach, which includes bed movement, until

the water flow has settled down, see Hudson & Sweby [21].

Now, by using Q = 10, B̂ = 1m and A = 1 with a final time of t = 238s, we

obtain the numerical results of the classic Lax-Wendroff scheme, which are illustrated

in Figure 3.11, and the flux-limited version of Roe’s scheme, which are illustrated

in Figure 3.12. Notice that the pulse in the riverbed has moved at a considerably

quicker wave speed than with the smaller value of A.

From Figure 3.11, we can see that by using the classic Lax-Wendroff scheme,

the scheme became unstable for all of the variations of Formulation A. The scheme

only remained stable for Formulations B and C, but the numerical results of both

schemes suffered from spurious oscillations.

From Figure 3.12, we can see that by using the flux-limited version of Roe’s

scheme, the scheme became unstable for Formulations A-SF and A-NC.

Formulations A-CV, B and C have all produced smooth numerical results free

from spurious oscillations. However, as with the classic Lax-Wendroff scheme, the

numerical results obtained from Formulation A-CV differed significantly from all the

other formulations. The pulse in the riverbed has been moved at a slower speed for

Formulations B and C than Formulation A-CV. The difference between Formulations

B and C and Formulation A-CV still occurs when the scheme is used with a finer

mesh, Δx = 0.5, see Figure 3.13. The difference also occurred with the small value

of A used in the previous section, but the difference was considerably less significant.
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Figure 3.11: Comparison of the different formulations for Channel Test Problem A
using the classic Lax-Wendroff scheme with A = 1 and Q = 10 at t = 238s (h & B).
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Figure 3.12: Comparison of the different formulations for Channel Test Problem A
using the flux-limited version of Roe’s scheme with A = 1 and Q = 10 at t = 238s
(h & B).

95



-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700 800 900

x

B(
x,

23
8s

)

A-CV B C

9.986

9.988

9.99

9.992

9.994

9.996

9.998

10

10.002

0 200 400 600 800 1000

x

Su
rfa

ce
 e

le
va

tio
n

Figure 3.13: Comparison of the different formulations for Channel Test Problem
A using the flux-limited version of Roe’s scheme on a fine mesh with A = 1, and
Q = 10 at t = 238s (h & B).

The difference is due to the assumptions made when deriving a steady approach.

The steady approach assumes that the water flow has a negligible effect on the bed,

which results in the system being decoupled into a water flow approximation, that

is iterated to an equilibrium state, followed by a bed update. By iterating the water

flow to an equilibrium state, the equation for conservation of mass (1.1) becomes

Qx = 0 ⇒ Q(x, t) = Qc ∀(x, t),

where Qc is a constant. Thus, when the water flow has reached an equilibrium state,

the discharge is constant over the whole domain. Hence, since Formulation A-CV

iterates the water flow to an equilibrium state, this has the effect of imposing a

constant discharge.

Figure 3.14 and Figure 3.15 illustrate the discharge, Q, for each formulation

compared to the assumed value, Qc = 10, with A = 0.001 and A = 1 respectively.

From Figure 3.14, we can see for A = 0.001, the approximate values of the discharge
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Figure 3.14: Comparison of the discharge for the different formulations with A =
0.001 at t = 238079s (Q).
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at t = 238s (Q).

97



are very close to the assumed values for all formulations. From Figure 3.15 we

can see for A = 1, the approximate values of the discharge for Formulation A-CV

are practically identical to the values obtained with A = 0.001 and are close to

the assumed values. However, Formulations B and C have produced values that

are beginning to differ from the assumed value. Formulation A-CV assumes the

water flow is in and equilibrium state, which has the effect of imposing a constant

discharge. This implies that Formulation A-CV becomes invalid as A → 1 and can

only be used for small values of A whereas Formulations B and C can be used for

all values of A. More detailed comparisons of the different formulations with A = 1

can be found in Hudson & Sweby [21], where it is also illustrated that the numerical

results of Formulations C and A-CV differ.

3.6.3 Channel Test Problem A: Numerical Results for a

Large Bed which is Interacting Slowly with the Water

Flow

For the third test problem, we increase the height of the pulse in the bed from

B̂ = 1m to B̂ = 5m. The riverbed is interacting slowly with the water flow, A =

0.001, and the discharge is Q = 10. By using these values, we obtain the numerical

results of the classic Lax-Wendroff scheme, which are illustrated in Figure 3.16,

and the flux-limited version of Roe’s scheme, which are illustrated in Figure 3.17.

The numerical results are for t = 5339s and are illustrated with the approximate

solution, which cannot be calculated beyond this time.

From Figure 3.16, we can see that the classic Lax-Wendroff scheme has again

produced spurious oscillations in the numerical results. The scheme has moved the

pulse at the same wave speed for all formulations, but Formulation A-SF suffers

the most from spurious oscillations. Formulation A-CV produced results with the

least spurious oscillations present and the results were similar to the approximate

solution.
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Figure 3.16: Comparison of the different formulations for Channel Test Problem A
using the classic Lax-Wendroff scheme with A = 0.001, B̂ = 5m and Q = 10 at
t = 5339s (B).
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Figure 3.17: Comparison of the different formulations for Channel Test Problem A
using the flux-limited version of Roe’s scheme with A = 0.001, B̂ = 5m and Q = 10
at t = 5339s (B).
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Figure 3.18: Comparison of the different formulations for Channel Test Problem
A using the flux-limited version of Roe’s scheme on a fine mesh with A = 0.001,
Q = 10 and B̂ = 5m at t = 5339s (B).

From Figure 3.17, we can see that the flux-limited version of Roe’s scheme

produced very accurate results for all formulations, except for Formulation A-SF,

where the scheme is starting to produce spurious oscillations. The numerical results

for all formulations were very close to the approximate solution. Figure 3.18

illustrates the numerical results obtained using the flux-limited version of Roe’s

scheme on a finer mesh, Δx = 0.5, with the different formulations. Here, we can

see that all of the different formulations with the scheme have produced practically

identical results. Formulation A-SF with the scheme has produced spurious

oscillations whereas all of the other formulations produced smooth numerical results.

Notice that the top of the pulse in the bed has been moved slightly further with

the different formulations than the approximate solution. This implies that the

approximate solution has become invalid for B̂ = 5m.

Hence, the flux-limited version of Roe’s scheme was again considerably more

accurate than the classic Lax-Wendroff scheme. The numerical results of all

formulations with the flux-limited version of Roe’s scheme were very similar to the
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approximate solution if Δx = 10 was used, but the results started to differ if a finer

mesh was used, i.e. Δx = 0.5. Formulation A-SF with both schemes produced the

least accurate numerical results due to spurious oscillations being present.

3.6.4 Channel Test Problem A: Numerical Results for a

Large Velocity with a Small Bed which is Interacting

Slowly with the Water Flow

So far, all variations of Channel Test Problem A have been with a small velocity

resulting in a small Froude number. However, for this test case, we use Q = 50

with A = 0.001 and B̂ = 1m to simulate a small pulse in a riverbed that is still

interacting slowly with the water flow, but the speed of the water flow has been

increased. For this test problem, the Froude number is approximately 0.5, and

the flow is still subcritical. By using these values, we obtain the numerical results

of the classic Lax-Wendroff scheme, which are illustrated in Figure 3.19, and the

flux-limited version of Roe’s scheme, which are illustrated in Figure 3.20.

From Figure 3.19, we can see that the classic Lax-Wendroff scheme has again

produced spurious oscillations in the numerical results. For Formulation A-CV, the

scheme has become unstable and the scheme has produced poor numerical results

for all formulations, with the exception of Formulation A-NC. Surprisingly, the

numerical results of Formulation A-NC do not have any spurious oscillations present

even though the classic Lax-Wendroff scheme is used.

From Figure 3.20, we can see that the flux-limited version of Roe’s scheme

produced very accurate results for Formulations B and C but produced spurious

oscillations for Formulation A-SF. The scheme became unstable for Formulation

A-CV and with Formulation A-NC, and a small kink has appeared at the top of

the pulse in the bed. Formulations A-CV and A-NC require an approximation of

the wave speed of the bed-updating equation, see Section 3.4. The wave speed

approximation of Chesher et al. (3.14) was used for Formulations A-CV and A-NC,
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Figure 3.19: Comparison of the different formulations for Channel Test Problem A
using the classic Lax-Wendroff scheme with A = 0.001 and Q = 50 at t = 1904s
(B).
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Figure 3.20: Comparison of the different formulations for Channel Test Problem
A using the flux-limited version of Roe’s scheme with A = 0.001 and Q = 50 at
t = 1904s (B).
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Figure 3.21: Comparison of the different formulations for Channel Test Problem
A using the flux-limited version of Roe’s scheme with A = 0.001 and Q = 50 at
t = 1904s (h + B).
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Figure 3.22: Comparison of Formulations A-CV and A-NC for Channel Test Problem
A using the flux-limited version of Roe’s scheme with A = 0.001 and Q = 50 at
t = 1904s (B).
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Figure 3.23: Comparison of the different formulations for Channel Test Problem A
using the flux-limited version of Roe’s scheme on a fine mesh with A = 0.001 and
Q = 50 at t = 1904s (h & B).

but the approximation assumes that the surface elevation is constant, i.e. h ≈ 10−B.

From Figure 3.21 we can see that the numerical values of the surface elevation

for the different formulation are not constant. This implies that for Formulations

A-CV and A-NC, the wave speed approximation of Chesher et al. has become

inaccurate. In Section 3.4, we also discussed the wave speed approximation of

De Vries (3.15). Figure 3.22 illustrates the numerical results of the flux-limited

version of Roe’s scheme with Formulations A-CV and A-NC using either the wave

speed approximation of Chesher et al. (A-CV/NC-C) or De Vries (A-CV/NC-

D). The numerical results of Formulations B and C are also illustrated. From

the results, we can see that Formulation A-NC has produced smoother numerical

results with the wave speed approximation of De Vries due to the kink at the top

of the pulse in the bed no longer being present. The scheme became unstable for

Formulation A-CV with the wave speed approximation of Chesher et al., but with

the approximation of De Vries, the scheme remained stable and produced smooth

numerical results. However, the formulation moved the pulse in the bed at a faster

speed than Formulations A-NC, B and C. This difference still occurs when the
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Figure 3.24: Comparison of the different formulations for Channel Test Problem
B using the flux-limited version of Roe’s scheme with A = 0.001 and Q = 10 at
t = 250h (B).

scheme is used with a finer mesh, Δx = 0.5, see Figure 3.23.

Hence, overall the flux-limited version of Roe’s scheme was again considerably

more accurate than the classic Lax-Wendroff scheme. Formulations B and C with

the flux-limited version of Roe’s scheme produced accurate numerical results with

no spurious oscillations present. Formulation A-NC produced accurate numerical

results for both schemes and the wave speed approximation of De Vries was the

most accurate. Formulation A-CV became unstable with the classic Lax-Wendroff

scheme, and only remained stable with the flux-limited version of Roe’s scheme if

the wave speed approximation of De Vries was used. Formulation A-SF produced

completely inaccurate numerical results for both schemes.
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3.6.5 Channel Test Problem B: Numerical Results for a

Small Discontinuity in the Bed

So far, we have only numerically approximated variations of Channel Test Problem

A. We now use Channel Test Problem B with A = 0.001, Q = 10, BL = 1m

and BR = 0m to simulate a small sediment bore propagating in a river. By using

these values, we obtain the numerical results of the the flux-limited version of Roe’s

scheme, which are illustrated in Figure 3.24, at t = 250h. The numerical results

obtained with the classic Lax-Wendroff scheme are not illustrated due to the scheme

becoming unstable for all formulations.

From Figure 3.24, we can see that the flux-limited version of Roe’s scheme

produced spurious oscillations in the numerical results for Formulation A-SF. The

scheme did not produce any spurious oscillations for any of the other formulations.

Formulations A-NC, B and C produced practically identical numerical results but

moved the sediment bore slightly further than Formulation A-CV. This is due to

Formulation A-CV assuming the discharge and surface elevation are constant, which

is clearly not the case when a discontinuity is present in the riverbed. Notice that

Formulation B has moved the sediment bore at the same speed as Formulation C

even for this long computational run time. This implies that Formulation B may

be written in conservative variable form, but more investigation is required to verify

this.

3.7 Summary

Throughout this chapter, we have discussed five different formulations with two

different numerical schemes that can be used to numerically approximate the

equations governing sediment transport. For both test problems, we have seen that

the classic Lax-Wendroff scheme produced poor numerical results with spurious

oscillations present. The flux-limited version of Roe’s scheme did not produce

106



spurious oscillations for Formulations B and C, but did with Formulation A-SF.

Formulation A-CV with the flux-limited version of Roe’s scheme also produced poor

numerical results for test problems with A = 1 and Q = 50 but produced accurate

numerical results for small values of A and Q. Formulation A-SF was extremely

inaccurate due to the numerical results suffering from spurious oscillations if either

scheme was used. This is due to the formulation having a singular Jacobian matrix.

If a small value of A is used, Formulations B and C with both schemes suffered

more from diffusion than Formulation A-CV. This is due to Formulation A-CV

discretising the water flow and bed update separately resulting in considerably less

time steps required to reach the final computational run time. Formulation A-CV

has an overall morphological time step, which is calculated by using

Δt =
νΔx

maxi(|λ|) , where λ =
3ξAu3

h
.

Now,

maxi(|λ|) =
3ξAmaxi(|u3|)

mini(|h|)
and from the numerical results of Channel Test Problem A with Q = 10, B̂ = 1 and

D = 10, maxi(|u|) ≈ 1.1 and mini(|h|) ≈ 9 thus, we obtain

maxi(|λ|) ≈ 0.759795A,

and by using, Δx = 10 and ν = 0.8,

Δt ≈ νΔx

0.759795A
= 10.52915589A−1 seconds .

For small values of A, the morphological time step is large, i.e. if A = 0.001 then

Δt ≈ 10529 seconds, and as A → 1, Δt → 10 seconds. This implies that for small

values of A, Formulation A-CV takes a small amount of time steps to reach the final

computational run time but as A tends to one, the formulation takes longer due to

the formulation iterating the water flow to an equilibrium state each time the bed

is updated. For the other formulations, with A = 0.001 the eigenvalues are

λ1 ≈ −8.28, λ2 ≈ 0.000772 and λ3 ≈ 10.51
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Figure 3.25: Comparison of the different schemes with Formulation A-NC for
Channel Test Problem A using A = 1, B̂ = 1 and Q = 10 at t = 238s (B).

and the eigenvalues associated with the water flow, λ1 and λ3, are the dominant

eigenvalues and determine the overall time step of the scheme, which is approximately

Δt ≈ 0.7. As A becomes large, the eigenvalue associated with the bed-updating

equation becomes the dominant eigenvalue but for realistic test problems, the value

of A is usually small. Thus a numerical scheme that can be used with a large time

step is required for all unsteady formulations, such as an implicit scheme.

Formulation A-NC with the flux-limited version of Roe’s scheme produced

accurate numerical results for test problems where A is small but as A → 1, spurious

oscillation started to appear in the numerical results. We can minimise these

oscillations by using a smaller Courant number, but this can be impractical due

to long computational run times. As an alternative, we could use the flux-limited

version of Roe’s Scheme to numerically approximate the shallow water equations

with

Bn+1
i = Bn

i − sξ(q∗
i+ 1

2
− q∗

i− 1
2
), (3.17)
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where

q∗
i+ 1

2
=

⎧⎨
⎩

qn
i + 1

2
(1 − νn

i+ 1
2

)(qn
i+1 − qn

i )Φn
i if νn

i+ 1
2

> 0

qn
i+1 − 1

2
(1 + νn

i+ 1
2

)(qn
i+1 − qn

i )Φn
i if νn

i+ 1
2

< 0
,

to numerically approximate the bed-updating equation for Formulation A-NC.

Unfortunately, the numerical scheme becomes unstable resulting in the scheme being

considerably worse than the normal approach (3.12). However, by using a staggered

approach,

q∗
i+ 1

2
=

⎧⎨
⎩

qn+1
i + 1

2
(1 − νn+1

i+ 1
2

)(qn+1
i+1 − qn+1

i )Φn
i if νn+1

i+ 1
2

> 0

qn+1
i+1 − 1

2
(1 + νn+1

i+ 1
2

)(qn+1
i+1 − qn+1

i )Φn
i if νn+1

i+ 1
2

< 0
, (3.18)

we can minimise these spurious oscillations without having to reduce the Courant

number, see Figure 3.25. Here, we can see that all oscillations have been

eliminated resulting in a smooth numerical solution, that is considerably more

accurate than the normal approach.

Formulations B and C with the flux-limited version of Roe’s scheme started to

produce different numerical results than Formulation A-CV as A → 1 due to the

formulation assuming that the discharge and total height of the river are constant

throughout the domain. Thus, Formulation A-CV should only be used for test

problems where the riverbed is interacting slowly with the water flow.

Hence, the flux-limited version of Roe’s scheme was considerably more accurate

for all formulations. Formulation A-NC produced accurate numerical results for

test problems where the riverbed interacts slowly with the water flow but became

unstable when the riverbed interacts quickly with the water flow, unless the staggered

scheme was used. Formulation A-SF was the worst formulation and both schemes

with Formulation A-CV became unstable when the riverbed interacts quickly with

the water flow or the velocity is large. Formulation A-CV produced different

numerical results to Formulations A-NC, B and C when the riverbed is interacting

quickly with the water flow and both schemes become unstable when the velocity

is large. Thus, Formulation A-CV should only be used for test problems where Q

and A are small whereas Formulations B and C can be used for any test problem
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with any value of A and Q. In the next chapter, we extend the numerical schemes

discussed in this chapter and the previous chapter to two dimensions.
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Chapter 4

Numerical Schemes for Systems of

Conservation Laws in Two

Dimensions

So far, we have only discussed sediment transport in one dimension. In this chapter

we discuss a variety of numerical techniques that can be used to approximate

the equations governing sediment transport in two dimensions. The classic Lax-

Wendroff scheme in 2D with either a pointwise or second order accurate source term

approximation, a flux-limited 2D Lax-Wendroff scheme, a flux-limited 2D version of

Roe’s scheme and dimensional splitting will be discussed and the numerical results

compared using a 2D wave propagation test problem. The source terms will be

constructed to satisfy a 2D version of the C-property of Bermúdez & Vázquez [1].

All numerical schemes will be derived so that they can be used to approximate

systems of conservation laws with source term in 2D,

∂w

∂t
+

∂F(w)

∂x
+

∂G(w)

∂y
= R, (4.1)
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where F(w) and G(w) are the flux-functions and R is the source term, which can

be re-written as

R = f + g, (4.2)

where f and g contains the x or y derivative terms only of the source term

respectively. To help illustrate the numerical techniques, we use the 2D shallow

water equations,

⎡
⎢⎣

h

uh

vh

⎤
⎥⎦

t

+

⎡
⎢⎣

uh

hu2 + 1
2
gh2

huv

⎤
⎥⎦

x

+

⎡
⎢⎣

vh

huv

hv2 + 1
2
gh2

⎤
⎥⎦

y

=

⎡
⎢⎣

0

−ghBx

−ghBy

⎤
⎥⎦ , (4.3)

where h(x, y, t) is the height of the water above the bottom of the channel (m),

B(x, y, t) is the height of the riverbed (m) and u(x, y, t) and v(x, y, t) are the

velocities in the x and y direction, respectively (m/s). Some of the numerical

schemes discussed in this chapter require the Jacobian matrices of the fluxes, which

for the 2D shallow water equations are

A =
∂F

∂w
=

⎡
⎢⎣

0 1 0

c2 − u2 2u 0

−uv v u

⎤
⎥⎦ and B =

∂G

∂w
=

⎡
⎢⎣

0 0 1

−uv v u

c2 − v2 0 2v

⎤
⎥⎦ ,

where c =
√

gh, whose corresponding eigenvalues for A are

λF
1 = u − c, λF

2 = u and λF
3 = u + c,

and for B are

λG
1 = v − c, λG

2 = v and λG
3 = v + c.

The eigenvectors are, for A

eF
1 =

⎡
⎢⎣

1

u − c

v

⎤
⎥⎦ , eF

2 =

⎡
⎢⎣

0

0

c

⎤
⎥⎦ and eF

3 =

⎡
⎢⎣

1

u + c

v

⎤
⎥⎦ ,
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Figure 4.1: Illustration of the initial bathymetry for 2D Test Problem B (B).

and for B

eG
1 =

⎡
⎢⎣

1

u

v − c

⎤
⎥⎦ , eG

2 =

⎡
⎢⎣

0

−c

0

⎤
⎥⎦ and eG

3 =

⎡
⎢⎣

1

u

v + c

⎤
⎥⎦ .

4.1 2D Test Problem: Wave Propagation Test

Problem

We use a two dimensional wave propagation test problem, which was discussed

by LeVeque [26] and Hubbard & Garcia-Navarro [18], for the 2D shallow water

equations to illustrate the accuracy of the numerical schemes discussed in this

chapter. For this test problem, the riverbed is fixed. The initial conditions consist
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of

h(x, y, 0) =

{
1.01 − B(x, y) if 0.1 < x < 0.2, 0 ≤ y ≤ 1

1 − B(x, y) otherwise
,

u(x, y, 0) = 0, v(x, y, 0) = 0

with bathymetry

B(x, y) = 0.5exp
(−50

(
(x − 0.5)2 + (y − 0.5)2)) ,

which is illustrated in Figure 4.1. We use a gravitational constant of g = 1, which

was used by LeVeque [26]. For this test problem, the small disturbance in the river

splits into two waves which propagate in opposite directions. One of the waves

propagates over the hemisphere that is present in the riverbed. This can cause

difficulties in obtaining an accurate numerical approximation, depending on how

the source term is approximated.

4.2 Conservative Numerical Schemes in 2D

For 2D systems, there are numerous techniques that can be used to approximate

the system (4.1). In this thesis, we consider two techniques: a basic finite difference

scheme and dimensional splitting. Both approaches are discretised on a cartesian

mesh, see Figure 4.2, where Δx and Δy are the spatial step sizes in the x and y

direction respectively and F∗
i+ 1

2
,j

and G∗
i,j+ 1

2

are the numerical flux-function in the

x and y direction respectively. As with the 1D case, we non-dimensionalise the

variables,

x∗ =
x

L
, y∗ =

y

L
, t∗ =

t

T
, h∗ =

h

L
, B∗ =

B

L
,

g∗ =
gT 2

L
, v∗ =

vT

L
and u∗ =

uT

L
,

where

L = maxi,j(|xI,j − x0,j|, |yi,J − yi,0|) and T =

√
L

g
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Figure 4.2: The two dimensional mesh.

denote the non-dimensional coefficients and L is the maximum length of the domain.

Non-dimensionalising the variables in this way results in the spatial and time step-

sizes being less than one, i.e. Δx, Δy < 1 and Δt < 1, which ensures the error

of a numerical scheme does not grow. For all schemes, we use the basic free flow

boundary conditions,

wn+1
−i,j = wn

0,j, wn+1
I+i,j = wn

I,j, wn+1
i,−j = wn

i,0 and wn+1
i,J+j = wn

i,J ,

where i, j = 1 to 5.

4.2.1 Basic Finite Difference Scheme

The most basic approach for approximating (4.1) is to construct a finite difference

scheme of the form

wn+1
i,j = wn

i,j − sx

(
F∗

i+ 1
2
,j
− F∗

i− 1
2
,j

)
− sy

(
G∗

i,j+ 1
2
− G∗

i,j− 1
2

)
+ ΔtR∗

i,j, (4.4)
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where

sx =
Δt

Δx
, sy =

Δt

Δy
.

The numerical flux-functions F∗
i+ 1

2
,j

and G∗
i,j+ 1

2

and source term approximation R∗
i,j

can be obtained by either discretising the whole system (4.1) or by discretising

the system separately in the two coordinate directions. If the system is discretised

separately in the two coordinate directions, then any of the one dimensional

numerical fluxes discussed in Chapter 2 can be used and the source term

approximation is re-written as

ΔtR∗
i,j = sxf

∗
i,j + syg

∗
i,j, (4.5)

where f∗i,j and g∗
i,j are the source term approximations that contain the x and y

direction components only. To ensure the basic finite difference scheme remains

stable, we use a variable time step

Δt =
ν min(Δx, Δy)

maxi,j(|λF |, |λG|) ,

where λF and λG are the eigenvalues of the Jacobian matrices A and B respectively

and ν is the required Courant number. Unless stated, all versions of the basic finite

difference scheme discussed in this chapter are stable for ν ≤ 1
2
.

4.2.2 Dimensional Splitting Scheme

Strang [39] derived a dimensional splitting approach that can be used to approximate

two dimensional systems of conservation laws (4.1). The approach discretises the

system in parts, effectively solving

1

2

∂w

∂t
+

∂F(w)

∂x
= f (4.6)

and
1

2

∂w

∂t
+

∂G(w)

∂y
= g (4.7)
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by re-writing the source term as (4.2). The most basic form of dimensional splitting

is to discretise in two steps, where an approximation of (4.6) is obtained using a half

a time step, Δt
2

. The results are then used as the initial conditions for (4.7), which is

then approximated using a half a time step to obtain results at the next time level

tn+1. Hence, we obtain the first order dimensional splitting scheme,

w
(1)
i,j = wn

i,j − sx

(
F∗

i+ 1
2
,j
− F∗

i− 1
2
,j

)
+ sxf

∗
i,j (4.8a)

and

wn+1
i,j = w

(1)
i,j − sy

(
G

(1)

i,j+ 1
2

− G
(1)

i,j− 1
2

)
+ syg

(1)
i,j , (4.8b)

where F∗
i+ 1

2
,j

and G∗
i,j+ 1

2

can be any of the numerical flux functions discussed in

Chapter 2. Unfortunately, the scheme is only first order accurate in time. However,

Strang [39] extended the approach to be second order accurate in time by discretising

in three steps, where an approximation of (4.6) is obtained using a quarter a time

step, Δt
4

. The results are then used as the initial conditions for (4.7), which is then

approximated using a half a time step, Δt
2

. These results are then used as the initial

conditions for (4.6) using a quarter a time step to obtain results at the next time

level tn+1. Hence we obtain a second order accurate dimensional splitting scheme,

w
(1)
i,j = wn

i,j −
sx

2

(
F∗

i+ 1
2
,j
− F∗

i− 1
2
,j

)
+

sx

2
f∗i,j, (4.9a)

w
(2)
i,j = w

(1)
i,j − sy

(
G

(1)

i,j+ 1
2

− G
(1)

i,j− 1
2

)
+ syg

(1)
i,j (4.9b)

and

wn+1
i,j = w

(2)
i,j − sx

2

(
F

(2)

i+ 1
2
,j
− F

(2)

i− 1
2
,j

)
+

sx

2
f
(2)
i,j . (4.9c)

One advantage of using dimensional splitting is that the CFL condition of the scheme

is less restrictive than the basic finite difference scheme. However, both versions of

the dimensional splitting schemes require considerably more computations than the

basic finite difference scheme. The first and second order versions of the dimensional

splitting scheme require two and three times as many calculations than the basic

finite difference approach respectively. To ensure the dimensional splitting scheme
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remains stable, we use a variable time step

Δt =
ν min(Δx, Δy)

maxi,j(|λF |, |λG|) .

Unless stated, all versions of the dimensional splitting scheme discussed in this

chapter are stable for ν ≤ 1.

4.2.3 2D C-Property

The C-property discussed in Section 2.2.2 can be extended to two dimensions.

Consider the 2D shallow water equations for the quiescent flow case,

u(x, y, t) ≡ 0, v(x, y, t) ≡ 0 and h(x, y, t) ≡ D − B ∀(x, y, t).

For this stationary case, wt = 0 thus, the flux functions and source terms balance

F(w)x + G(w)y = R.

In the 1D case, we only needed to balance two terms but here, there are now three

terms that need to balance, which can be considerably harder to obtain numerically.

However, by re-writing the source term as (4.2) and splitting the equation in two,

we obtain

F(w)x = f and G(w)y = g.

Here, the fluxes must balance with the source term approximations. To obtain this

condition numerically, a scheme must balance the numerical fluxes with the source

term approximations,

F∗
i+ 1

2
,j
− F∗

i− 1
2
,j

= f∗i,j and G∗
i,j+ 1

2
− G∗

i,j− 1
2

= g∗
i,j.

If the source term approximations balance with the numerical fluxes, then the

numerical scheme satisfies:
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• the approximate C-property, if the numerical scheme is accurate to the order

O(Δx2), when applied to the quiescent flow case;

• the exact C-property, if the numerical scheme is exact when applied to the

quiescent flow case.

If a numerical scheme does not satisfy the C-property (exact or approximate) then

spurious waves may occur in the numerical results, as illustrated in one dimension.

4.3 Lax-Wendroff Scheme in 2D

The classic 2D Lax-Wendroff scheme is a basic finite difference scheme (4.4), where

the whole system is discretised, and is derived by using the Taylor’s series expansion,

wn+1
i,j ≈ wn

i,j + Δt(wt)
n
i,j +

Δt2

2
(wtt)

n
i,j + O(Δt3)

to obtain the numerical flux-functions

F∗
i+ 1

2
,j

=
1

2

(
Fn

i+1,j + Fn
i,j

) − sx

2
An

i+ 1
2
,j

(
Fn

i+1,j − Fn
i,j

)
− sy

8

(
An

i+1,j

(
Gn

i+1,j+1 − Gn
i+1,j−1

)
+ An

i,j

(
Gn

i,j+1 − Gn
i,j−1

))
(4.10a)

and

G∗
i,j+ 1

2
=

1

2

(
Gn

i,j+1 + Gn
i,j

) − sy

2
Bn

i,j+ 1
2

(
Gn

i,j+1 − Gn
i,j

)
− sx

8

(
Bn

i,j+1

(
Fn

i+1,j+1 − Fn
i−1,j+1

)
+ Bn

i,j

(
Fn

i+1,j − Fn
i−1,j

))
. (4.10b)

The scheme requires an approximation of the Jacobian matrices, which can be

approximated by averaging the neighbouring cells,

An
i+ 1

2
,j

= A

(
wn

i+1,j + wn
i,j

2

)
and Bn

i,j+ 1
2

= B

(
wn

i,j+1 + wn
i,j

2

)
.
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For the source term approximation, we use a pointwise approach

R∗
i,j =

⎡
⎢⎣

0

− g
4Δx

(
hn

i+1,j + hn
i−1,j

) (
Bn

i+1,j − Bn
i−1,j

)
− g

4Δy

(
hn

i,j+1 + hn
i,j−1

) (
Bn

i,j+1 − Bn
i,j−1

)
⎤
⎥⎦ (4.11)

but as with the 1D case, this is a crude approximation of the source term since it

does not make the scheme satisfy the C-property. The classic 2D Lax-Wendroff is

stable for ν ≤ 1√
2
.

Figure 4.3 and Figure 4.4 show the numerical results obtained using the classic

2D Lax-Wendroff scheme (4.10) with the pointwise source term approximation (4.11)

at t = 0.1 for the 2D Test Problem. The scheme was used with Δx = Δy = 0.001

and ν = 0.4. Here, we can see that even though the test problem has not been run

for very long, the scheme has produced very poor numerical results with spurious

oscillations present. Even though the water surface is supposed to be smooth away

from the disturbances, a hemisphere has appeared on the water surface just above

the hemisphere in the riverbed. The poor results obtained are due to the pointwise

source term approximation which results in the scheme not satisfying the C-property.

In 1D, we derived a second order accurate source term approximation for the

classic 2D Lax-Wendroff scheme, which made the scheme satisfy the C-property. A

2D version of this scheme can be obtained by including the source term in the Taylor

series expansion when deriving the classic 2D Lax-Wendroff scheme to obtain

R∗ = ΔtR +
Δt2

2

(
Rt − (AR)x − (BR)y

)
.

Now, by re-writing the source term using (4.2), we obtain

R∗ = Δt (f + g) − Δt2

2

(
(Af)x + (Bg)y

)
− Δt2

2

(
(Ag)x + (Bf)y

)
,

where the term Δt2

2
Rt has been omitted for convenience and is discretised separately.

Even though this term has been omitted, the source term approximation still ensures

the scheme satisfy the C-property. Hence, we obtain a second order accurate source
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Figure 4.3: Numerical results of the classic 2D Lax-Wendroff scheme at t = 0.1
(h + B).
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Figure 4.4: Numerical results of the classic 2D Lax-Wendroff scheme at t = 0.1
(h + B).

121



term approximation,

R∗
i,j =

1

2Δx

((
I − sxA

n
i+ 1

2
,j

)
fn
i+ 1

2
,j

+
(
I + sxA

n
i− 1

2
,j

)
fn
i− 1

2
,j

)
+

1

2Δy

((
I − syB

n
i,j+ 1

2

)
gn

i,j+ 1
2

+
(
I + syB

n
i,j− 1

2

)
gn

i,j− 1
2

)
− sx

2Δy

(
(Ag)n

i+1,j − (Ag)n
i−1,j

)
− sy

2Δx

(
(Bf)n

i,j+1 − (Bf)n
i,j−1

)
,

which can be re-written in a more convenient way as

ΔtR∗
i,j = sx

(
f−
i+ 1

2
,j

+ f+
i− 1

2
,j

)
+ sy

(
g−

i,j+ 1
2

+ g+
i,j− 1

2

)
, (4.12)

where

f±
i+ 1

2
,j

=
1

2

(
I ± sxA

n
i+ 1

2
,j

)
fn
i+ 1

2
,j
∓ sy

2

(
(Ag)n

i+1,j + (Ag)n
i,j

)
and

g±
i,j+ 1

2

=
1

2

(
I ± syB

n
i,j+ 1

2

)
gn

i,j+ 1
2
∓ sx

2

(
(Bf)n

i,j+1 + (Bf)n
i,j

)
.

For the 2D shallow water equations, we obtain

fn
i+ 1

2
,j

=

⎡
⎢⎣

0

−g
2

(
hn

i+1,j + hn
i,j

) (
Bn

i+1,j − Bn
i,j

)
0

⎤
⎥⎦ ,

fn
i,j =

⎡
⎢⎣

0

−g
2
hn

i,j

(
Bn

i+1,j − Bn
i−1,j

)
0

⎤
⎥⎦ ,

gn
i,j+ 1

2
=

⎡
⎢⎣

0

0

−g
2

(
hn

i,j+1 + hn
i,j

) (
Bn

i,j+1 − Bn
i,j

)
⎤
⎥⎦

and

gn
i,j =

⎡
⎢⎣

0

0

−g
2
hn

i,j

(
Bn

i,j+1 − Bn
i,j−1

)
⎤
⎥⎦ .
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The Δt2

2
Rt term, which was omitted earlier, can be included by using the chain

rule Rt = Rwwt. Thus, we obtain a semi-implicit version of the 2D Lax-Wendroff

scheme

wn+1
i,j = wn

i,j − sx

[
I − Δt

2
(Rw)n

i,j

]−1 (
F∗

i+ 1
2
,j
− F∗

i− 1
2
,j

)

− sy

[
I − Δt

2
(Rw)n

i,j

]−1 (
G∗

i,j+ 1
2
− G∗

i,j− 1
2

)
+ Δt

[
I − Δt

2
(Rw)n

i,j

]−1

R∗
i,j,

where for the 2D shallow water equations

(Rw)n
i,j =

⎡
⎢⎣

0 0 0

− g
2Δx

(
Bn

i+1,j − Bn
i−1,j

)
0 0

− g
2Δy

(
Bn

i,j+1 − Bn
i,j−1

)
0 0

⎤
⎥⎦ .

To illustrate the accuracy of the second order accurate source term approximation,

we use the 2D Test Problem. Figure 4.5 and Figure 4.6 show the numerical results

obtained using the classic 2D Lax-Wendroff scheme (4.10) with the second order

accurate source term approximation (4.12) at t = 0.7 for the 2D Test Problem.

The scheme was used with Δx = Δy = 0.001 and ν = 0.4. Here, we can see that

even though the numerical results are considerably more accurate than using the

pointwise source term approximation (4.11), spurious oscillations have started to

appear in the numerical results.

4.4 Flux-Limited Lax-Wendroff Scheme in 2D

The Lax-Wendroff scheme suffers from spurious oscillations, which can be minimised

by adapting the scheme so that it satisfies the TVD property. Flux-limiter methods

are used to obtain a high resolution scheme by constructing numerical flux functions

of the form

FTV D
i+ 1

2
,j

= FFO
i+ 1

2
,j
+Φ

(
FSO

i+ 1
2
,j
− FFO

i+ 1
2
,j

)
and GTV D

i,j+ 1
2

= GFO
i,j+ 1

2
+Φ

(
GSO

i,j+ 1
2
− GFO

i,j+ 1
2

)
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Figure 4.5: Numerical results of the classic 2D Lax-Wendroff scheme with the second
order accurate source term approximation at t = 0.7 (h + B).
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Figure 4.6: Numerical results of the classic 2D Lax-Wendroff scheme with the second
order accurate source term approximation at t = 0.7 (h + B).
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where FSO
i+ 1

2
,j

and GSO
i,j+ 1

2

are second order numerical fluxes, FFO
i+ 1

2
,j

and GFO
i,j+ 1

2

are

first order numerical fluxes, Φ = diag(Φk) and Φk is a flux-limiter. By using the

classic Lax-Wendroff numerical flux (4.10) with the first order upwind numerical

flux,

F∗
i+ 1

2
,j

=
1

2

(
Fn

i+1,j + Fn
i,j

) − 1

2
|An

i+ 1
2
,j
| (wn

i+1,j − wn
i,j

)
,

we obtain the flux-limited Lax-Wendroff numerical flux

F∗
i+ 1

2
,j

=
1

2

(
Fn

i+1,j + Fn
i,j

) − 1

2

(
X|ΛF |LX−1

)n

i+ 1
2
,j

(
wn

i+1,j − wn
i,j

)
− sy

8
Φn

i+ 1
2
,j

(
An

i+1,j

(
Gn

i+1,j+1 − Gn
i+1,j−1

) − An
i,j

(
Gn

i,j+1 − Gn
i,j−1

))
, (4.13a)

where X is a matrix containing the right eigenvectors, eF
k , of the Jacobian matrix

associated with F, ΛF = diag(λF
k ) is the diagonal matrix of eigenvalues, λF

k , and

L = diag
(
1 − Φ(θk)(1 − s|λF

k |)
)
.

Similarly, for G we obtain

G∗
i,j+ 1

2
=

1

2

(
Gn

i,j+1 + Gn
i,j

) − 1

2

(
Y|ΛG|LY−1

)n

i,j+ 1
2

(
wn

i,j+1 − wn
i,j

)
− sx

8
Φn

i,j+ 1
2

(
Bn

i,j+1

(
Fn

i+1,j+1 − Fn
i−1,j+1

) − Bn
i,j

(
Fn

i+1,j − Fn
i−1,j

))
, (4.13b)

where Y is a matrix containing the right eigenvectors, eG
k , of the Jacobian matrix

associated with G, ΛG = diag(λG
k ) is the diagonal matrix of eigenvalues, λG

k , and

L = diag
(
1 − Φ(θk)(1 − s|λG

k |)
)
.

We require a source term approximation for the numerical scheme that makes the

scheme satisfy the C-property and adopt an approach discussed by Hubbard &

Garcia-Navarro [18, 19], where the flux functions and source term approximations

are balanced so that the numerical scheme satisfies the C-property. As with the 1D

case, we construct source term approximations of the form (4.5) where

f∗i,j = fTV D
i+ 1

2
,j

+ fTV D
i− 1

2
,j
, fTV D

i+ 1
2
,j

= fFO
i+ 1

2
,j

+ Φn
i+ 1

2
,j

(
fSO
i+ 1

2
,j
− fFO

i+ 1
2
,j

)
,
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g∗
i,j = gTV D

i,j+ 1
2

+ gTV D
i,j− 1

2
and gTV D

i,j+ 1
2

= gFO
i,j+ 1

2
+ Φn

i,j+ 1
2

(
gSO

i,j+ 1
2
− gFO

i,j+ 1
2

)
,

where the superscripts FO and SO denote first and second order accurate source

term approximations respectively. In the previous section, we derived a second

order accurate source term approximation (4.12) that makes the scheme satisfy

the C-property. We use this approximation with the first order approximation of

Bermúdez & Vázquez [1] where

fFO
i± 1

2
=

1

2

((
I ∓ |A|A−1

)
f
)n

i± 1
2
,j

to obtain a flux-limited second order approximation of the source term

f∗i,j = f−
i+ 1

2
,j

+ f+
i− 1

2
,j
,

where

f±
i+ 1

2
,j

=
1

2

(
X

(
I ± (

ΛF
)−1 |ΛF |L

)
X−1f

)n

i+ 1
2
,j
∓ sy

2
Φn

i+ 1
2
,j

(
(Ag)n

i+1,j + (Ag)n
i,j

)
.

Similarly, for g we obtain

g∗
i,j = g−

i,j+ 1
2

+ g+
i,j− 1

2

,

where

g±
i,j+ 1

2

=
1

2

(
Y

(
I ± (

ΛG
)−1 |ΛG|L

)
Y−1g

)n

i,j+ 1
2

∓ sx

2
Φn

i,j+ 1
2

(
(Bf)n

i,j+1 + (Bf)n
i,j

)
.

To illustrate the accuracy of the flux-limited 2D Lax-Wendroff scheme, we use the

2D Test Problem. Figure 4.7 and Figure 4.8 show the numerical results

obtained using the flux-limited 2D Lax-Wendroff scheme at t = 0.7 for the 2D

Test Problem. The scheme is used with spatial step-sizes Δx, Δy = 0.01, ν = 0.4

and the minmod flux-limiter. Here, we can see that the scheme has produced very

smooth numerical results, which are in agreement with the results found in Hubbard

& Garcia-Navarro [18]. The scheme is considerably more accurate than the classic

Lax-Wendroff scheme with either source term approximation.

126



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

1.006

Figure 4.7: Numerical results of the flux-limited 2D Lax-Wendroff scheme at t = 0.7
(h + B).
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Figure 4.8: Numerical results of the flux-limited 2D Lax-Wendroff scheme at t = 0.7
(h + B).

127



4.5 Roe’s Scheme in 2D

In two dimensions, the flux-limited 2D version of Roe’s scheme is obtained by

discretising the system separately in the two coordinate directions. Hence, we obtain

the flux-limited version of Roe’s 2D numerical fluxes

F∗
i+ 1

2
,j

=
1

2
(Fn

i+1,j + Fn
i,j) −

1

2

p∑
k=1

[
α̃F

k |λ̃F
k |(1 − Φ(θF

k )(1 − |νF
k |))ẽF

k

]
i+ 1

2
,j

, (4.14a)

and

G∗
i,j+ 1

2
=

1

2
(Gn

i,j+1 + Gn
i,j) −

1

2

p∑
k=1

[
α̃G

k |λ̃G
k |(1 − Φ(θG

k )(1 − |νG
k |))ẽG

k

]
i,j+ 1

2

, (4.14b)

where

νk = sλ̃k, θF
k =

(α̃F
k )I+ 1

2
,j

(α̃F
k )i+ 1

2
,j

, I = i − sgn(νF
k )i+ 1

2
,j,

θG
k =

(α̃G
k )i,J+ 1

2

(α̃G
k )i,j+ 1

2

, J = j − sgn(νG
k )i,j+ 1

2
,

and Φk can be any of the flux-limiters listed in Table 2.1. The values of λ̃k and ẽk

are the eigenvalues and eigenvectors of the Roe averaged Jacobian matrix, Ã or B̃,

and α̃k are the wave strengths, which are determined from the decomposition, see

Section 2.7 for more details. The superscripts F and G denote if the terms are for

Jacobian matrix Ã or B̃, respectively. Glaister [11] determined the following Roe

averaged Jacobian matrices for the 2D shallow water equations,

Ã =

⎡
⎢⎣

0 1 0

c̃2 − ũ2 2ũ 0

−ũṽ ṽ ũ

⎤
⎥⎦ and B̃ =

⎡
⎢⎣

0 0 1

−ũṽ ṽ ũ

c̃2 − ṽ2 0 2ṽ

⎤
⎥⎦

where c̃ =

√
gh̃, whose corresponding eigenvalues for Ã are

λ̃F
1 = ũ − c̃, λ̃F

2 = ũ and λ̃F
3 = ũ + c̃,
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and for B̃ are

λ̃G
1 = ṽ − c̃, λ̃G

2 = ṽ and λ̃G
3 = ṽ + c̃.

The eigenvectors are, for Ã

ẽF
1 =

⎡
⎢⎣

1

ũ − c̃

ṽ

⎤
⎥⎦ , ẽF

2 =

⎡
⎢⎣

0

0

c̃

⎤
⎥⎦ and ẽF

3 =

⎡
⎢⎣

1

ũ + c̃

ṽ

⎤
⎥⎦ ,

and for B̃

ẽG
1 =

⎡
⎢⎣

1

ũ

ṽ − c̃

⎤
⎥⎦ , ẽG

2 =

⎡
⎢⎣

0

−c̃

0

⎤
⎥⎦ and ẽG

3 =

⎡
⎢⎣

1

ũ

ṽ + c̃

⎤
⎥⎦ .

The wave strengths are for Ã

α̃F
1,3 =

1

2
Δh ± 1

2c̃
(ũΔh − Δ(uh)) and α̃F

2 =
1

c̃
(Δ(vh) − ṽΔh) ,

where Δw = wR,j − wL,j, and for B̃

α̃G
1,3 =

1

2
Δh ± 1

2c̃
(ṽΔh − Δ(vh)) and α̃G

2 =
1

c̃
(Δ(uh) − ũΔh) ,

where Δw = wi,R − wi,L. The Roe averages are

ũ =

√
hRuR +

√
hLuL√

hR +
√

hL

, ṽ =

√
hRvR +

√
hLvL√

hR +
√

hL

and h̃ =
1

2
(hR + hL) ,

where R and L denote the right and left components in either the direction x or y.

For the source term approximation, we also discretise separately (4.2) to obtain

f∗i,j = f−
i+ 1

2
,j

+ f+
i− 1

2
,j

and g∗
i,j = g−

i,j+ 1
2

+ g+
i,j− 1

2

, (4.15)

where

f±
i+ 1

2
,j

=
1

2

p∑
k=1

[
β̃F

k ẽF
k (1 ± sgn(λ̃F

k )(1 − Φk(1 − |νF
k |)))

]
i+ 1

2
,j

,
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g±
i,j+ 1

2

=
1

2

p∑
k=1

[
β̃G

k ẽG
k (1 ± sgn(λ̃G

k )(1 − Φk(1 − |νG
k |)))

]
i,j+ 1

2

and the values of β̃k are the coefficients of the decomposition of the source terms

onto the eigenvectors of the characteristic decomposition, see Section 2.7 for more

details. For the 2D shallow water equations we obtain

β̃1 =
c̃ΔB

2
, β̃2 = 0 and β̃3 = − c̃ΔB

2

for both F and G. By using this source term approximation, the scheme satisfies the

C-property. The flux-limited version of Roe’s 2D numerical fluxes (4.14) with source

term approximations (4.15) can be used with the basic finite difference scheme (4.4)

and the first and second order accurate in time dimensional splitting schemes (4.8)

and (4.9) respectively. In this thesis, we denote the flux-limited version of Roe’s 2D

numerical fluxes with the basic scheme as the B-FLR scheme and the second order

dimensional splitting schemes as the DS2-FLR scheme.

To illustrate the accuracy of the basic scheme (B-FLR) and dimensional splitting

scheme (DS2-FLR) we use the 2D Test Problem. The schemes are used with

Δx, Δy = 0.01, ν = 0.4 and the minmod flux-limiter. Figure 4.9 and Figure 4.10

show the numerical results obtained using the basic scheme (B-FLR) at t = 0.7.

Here, we can see that the B-FLR scheme has produced numerical results similar to

the flux-limited 2D Lax-Wendroff scheme, see Figure 4.7 and Figure 4.8, but the

numerical results are slightly more accurate. The results are also similar to those

obtained in Hubbard & Garcia-Navarro [18].

Figure 4.11 and Figure 4.12 show the numerical results obtained using the

dimensional splitting (DS2-FLR) scheme at t = 0.7. Here, we can see that the

scheme has produced slightly better numerical results than using the basic finite

difference scheme. The results are also similar to those obtained in Hubbard &

Garcia-Navarro [18].
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Figure 4.9: Numerical results of the basic scheme (B-FLR) at t = 0.7 (h + B).
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Figure 4.10: Numerical results of the basic scheme (B-FLR) at t = 0.7 (h + B).
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Figure 4.11: Numerical results of the dimensional splitting scheme (DS2-FLR) at
t = 0.7 (h + B).
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Figure 4.12: Numerical results of the dimensional splitting scheme (DS2-FLR) at
t = 0.7 (h + B).
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4.6 Summary

Throughout this chapter, we have discussed a variety of numerical techniques that

can be used to approximate the equations governing sediment transport. We used

the 2D shallow water equations to help derive and illustrate the accuracy of the

numerical schemes. We showed that the classic 2D Lax-Wendroff scheme suffered

badly from spurious oscillations, which were considerably worse when a pointwise

source term approximation was used. The second order accurate source term

approximation eliminated some of the spurious oscillations and greatly improved the

accuracy of the scheme, but spurious oscillations were still present. A flux-limited

2D Lax-Wendroff scheme was derived that was very accurate with no spurious

oscillations present in the numerical results. The flux-limited version of Roe’s

scheme was adapted to two dimensions and the basic finite difference scheme and

dimensional splitting schemes were discussed. The numerical results obtained using

the flux-limited 2D version of Roe’s numerical fluxes were the most accurate with

the second order accurate dimensional scheme producing the best set of numerical

results.

In the next chapter, we adapt the different formulations discussed in Chapter 3

to two dimensions and use the basic scheme (B-FLR), the second order accurate

dimensional splitting scheme (DS2-FLR) and the 2D Lax-Wendroff scheme with

pointwise source term approximation to obtain a numerical approximation.
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Chapter 5

Numerical Formulations for

Approximating the Equations

Governing Sediment Transport in

Two Dimensions

In the previous chapter we discussed a variety of schemes that can be used to

approximate systems of conservation laws in two dimensions. In this chapter, we

discuss how to approximate accurately the equations governing sediment transport

in two dimensions, which comprise of the equation for conservation of mass,

∂h

∂t
+

∂(uh)

∂x
+

∂(vh)

∂y
= 0, (5.1)

the equation for conservation of momentum in the x-direction,

∂(uh)

∂t
+

∂
(
hu2 + 1

2
gh2

)
∂x

+
∂(huv)

∂y
= −ghBx, (5.2)
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the equation for conservation of momentum in the y-direction,

∂(vh)

∂t
+

∂ (huv)

∂x
+

∂
(
hv2 + 1

2
gh2

)
∂y

= −ghBy (5.3)

and the bed-updating equation,

∂B

∂t
+ ξ

∂(q1)

∂x
+ ξ

∂(q2)

∂y
= 0, (5.4)

where ξ = 1
1−ε

and ε is the porosity of the riverbed. Here h(x, y, t) denotes the

height of the water above the bottom of the channel, B(x, y, t) denotes the height

of the riverbed, u(x, y, t) and v(x, y, t) are the velocities in the x and y direction

respectively and q1(u, v, h) and q2(u, v, h) are the total (suspended and bedload)

volumetric sediment transport rates in the x and y direction respectively. The

sediment transport fluxes are not direct functions of B and are more complex in two

dimensions.

In Chapter 3, the steady and unsteady approaches were discussed and used

to derived five different formulations. Here, we extend the two most accurate

formulations to two dimensions. To obtain an approximation of the different

formulations some of the different schemes discussed in Chapter 4 are adapted.

In this chapter, the classic 2D Lax-Wendroff scheme (4.10) and the basic (B-FLR)

and dimensional splitting (DS2-FLR) schemes, which both use the flux-limited 2D

version of Roe’s numerical flux (4.14), are adapted. A 2D Channel Test Problem

is then used to illustrate the accuracy of the two formulations and the different

numerical schemes.

5.1 Different Formulations

In Chapter 3, we derived five different formulations that can be used to approximate

the equations governing sediment transport in one dimension. In this section, we

extend some of the formulations to two dimensions:
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• Formulation A-CV will be extended to 2D even though the numerical results

sometimes differed from the other formulations in 1D. This is the formulation

currently used in industry and is based on the steady approach, where the bed

is assumed to have a negligible effect on the water flow.

• Formulation A-NC produced poor numerical results for some of the test

problems in 1D and therefore will not be extended to 2D.

• Formulation A-SF produced poor numerical results with spurious oscillations

present for all schemes in 1D and will not be extended to 2D.

• Formulation B cannot be extended to 2D since the equation for conservation

of momentum in the x direction (5.2) can be re-written in non-conservative

variable form as

ut +

[
1

2
u2 + g(h + B)

]
x

+ vuy = 0,

but cannot be written in conservative form due to the vuy term. This is also

the case with the equation for conservation of momentum in the y direction.

• Formulation C will be extended to 2D and was one of the most accurate

formulations in 1D. This formulation is based on the unsteady approach, where

the water flow and bed update are discretised simultaneously.

Thus, Formulation A-CV, which is a steady approach, and Formulation C, which is

an unsteady approach, will be extended to two dimensions. The two dimensional

sediment transport fluxes must first be derived for the formulations.

5.1.1 Sediment Transport in 2D

In two dimensions, the sediment transport flux is treated as a vector, it’s components

being given by

q1(u, v, h) =
u|q|
|U| and q2(u, v, h) =

v|q|
|U| ,
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where the magnitude of the velocity is

|U| =
√

u2 + v2

and |q| is the magnitude of the sediment transport flux, which is determined from

any of the one dimensional sediment transport fluxes discussed in Section 1.4. For

example, if the sediment transport flux (3.3) is used in two dimensions then

|q| = A|U|m = A
(
u2 + v2

)m
2 . (5.5)

Hence, we obtain the sediment transport fluxes in the x and y direction

q1(u, v) = Au
(
u2 + v2

) 1
2
(m−1)

and q2(u, v) = Av
(
u2 + v2

) 1
2
(m−1)

(5.6)

respectively. Notice that in 2D, the sediment transport fluxes have become more

complicated, which leads to even more difficulties in obtaining an accurate numerical

approximation. In this thesis, all formulations discussed in 2D will be based on the

sediment transport fluxes (5.6) with m = 3,

q1(u, v) = Au(u2 + v2) and q2(u, v) = Av(u2 + v2). (5.7)

5.1.2 Formulation A

Even though the numerical results obtained from Formulation A-CV differed from

the other formulations for certain test problems in 1D, we extend the formulation

to 2D as this is the approach currently used in industry. Formulation A is based

on the steady approach, which assumes that the bed has a negligible effect on the

water flow and decouples the system. This formulation was pioneered by Cunge et

al. [3] and consists of

137



• a “fixed-bottom step”, where the 2D shallow water equations,

⎡
⎢⎣

h

uh

vh

⎤
⎥⎦

t

+

⎡
⎢⎣

uh

hu2 + 1
2
gh2

huv

⎤
⎥⎦

x

+

⎡
⎢⎣

vh

huv

hv2 + 1
2
gh2

⎤
⎥⎦

y

=

⎡
⎢⎣

0

−ghBx

−ghBy

⎤
⎥⎦ ,

are iterated to an equilibrium state whilst keeping the riverbed fixed.

• a “changing bottom step”, where the riverbed is updated whilst keeping all

other variables fixes.

The 2D shallow water equations are iterated to an equilibrium state each time the

bed is updated and the overall time step is the morphological time step of the bed-

updating equation. Numerically, an equilibrium state in two dimensions is obtained

when

|wn+1
i,j − wn

i,j| ≤ tol ∀(i, j).

In two dimensions, this condition is hard to obtain, especially for low tolerance levels

as there are a considerable amount of points to satisfy. Thus, the numerical schemes

have a cut off time, where if the tolerance level hasn’t been obtained but the water

surface is calm, the water flow is assumed to have reached an equilibrium state. This

cut off time varies considerably depending on which test problem is used.

For Formulation A, the Jacobian matrices of the 2D shallow water equations will

be required and are discussed in Chapter 4. An approximation of the wave speeds

of the bed-updating equation are required,

λF = ξ

[
∂(q1)

∂B

]
and λG = ξ

[
∂(q2)

∂B

]
,

which can be difficult to obtain. In this thesis, we extend the analytical approach,

which was discussed in Section 3.4, to two dimensions. The analytical approach

assumes that the discharge and the surface elevation are constant, i.e.

h(x, y, t) = D − B(x, y, t), u(x, y, t) =
Qu

h(x, y, t)
and v(x, y, t) =

Qv

h(x, y, t)
,
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and then re-writes the velocities in terms of B,

u(x, y, t) = Qu(D − B)−1 and v(x, y, t) = Qv(D − B)−1,

so that the sediment transport fluxes can be re-written in terms of B. For example,

consider the sediment transport fluxes (5.6) which can now be re-written in terms

of B,

q1(u, v) = Au(u2 + v2)
1
2
(m−1) = AQu

(
Q2

u + Q2
v

) 1
2
(m−1)

(D − B)−m

and

q2(u, v) = Av(u2 + v2)
1
2
(m−1) = AQv

(
Q2

u + Q2
v

) 1
2
(m−1)

(D − B)−m ,

and by differentiating with respect to B, we obtain analytical approximations of the

wave speeds,

λF =
Aξmu

h

(
u2 + v2

) 1
2
(m−1)

and λG =
Aξmv

h

(
u2 + v2

) 1
2
(m−1)

. (5.8)

5.1.3 Formulation C

A two dimensional version of Formulation C, which is an unsteady approach, can

be obtained by re-writing the equations for conservation of momentum in the x and

y directions as

(uh)t +

[
hu2 +

1

2
gh2 + ghB

]
x

+ (huv)y = gBhx (5.9)

and

(vh)t + (huv)x +

[
hv2 +

1

2
gh2 + ghB

]
y

= gBhy (5.10)
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respectively by using the chain rule. Now, combining (5.1), (5.9), (5.10) and (5.4)

into system form, we obtain

⎡
⎢⎢⎢⎢⎣

h

uh

vh

B

⎤
⎥⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎢⎣

uh

hu2 + 1
2
gh2 + ghB

huv

ξq1

⎤
⎥⎥⎥⎥⎦

x

+

⎡
⎢⎢⎢⎢⎣

vh

huv

hv2 + 1
2
gh2 + ghB

ξq2

⎤
⎥⎥⎥⎥⎦

y

=

⎡
⎢⎢⎢⎢⎣

0

gBhx

gBhy

0

⎤
⎥⎥⎥⎥⎦ .

(5.11)

If the sediment transport fluxes (5.7) are used with Formulation C, then the

Jacobian matrix of F is

A =
∂F

∂w
=

⎡
⎢⎢⎢⎢⎣

0 1 0 0

g(h + B) − u2 2u 0 gh

−uv v u 0

−ud − ve d e 0

⎤
⎥⎥⎥⎥⎦ ,

where d = Aξ
h

(3u2 + v2) and e = 2Aξuv
h

. One of the eigenvalues of the Jacobian is

λF
4 = u and the other three are obtained by solving the cubic

P (λ,w) = λ3 − 2uλ2 +
[
u2 − g(h + B + hd)

]
λ + ghud = 0.

In Section 3.1.3, we proved that the roots of this polynomial are always real and

unequal and deduced that we can use (3.7) to determine the values of the roots.

Once the roots of P (λ,w) have been obtained, they are used to determine the

eigenvectors,

eF
k =

⎡
⎢⎢⎢⎢⎢⎣

1

λk

v
u2 − g(h + B) + (λk − 2u)λk

gh

⎤
⎥⎥⎥⎥⎥⎦ ,
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for k = 1, 2, 3 where a �= k �= b and if e �= 0 then

eF
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

u

v − u

he
(h + B)

−1

h
(h + B)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

otherwise eF
4 =

⎡
⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎦ .

Similarly, for G the Jacobian matrix is

B =
∂G

∂w
=

⎡
⎢⎢⎢⎢⎣

0 0 1 0

−uv v u 0

g(h + B) − v2 0 2v gh

−vd − ue e d 0

⎤
⎥⎥⎥⎥⎦ ,

where d = Aξ
h

(3v2 + u2) and e = 2Aξuv
h

. One of the eigenvalues of the Jacobian is

λG
4 = v and the other three are obtained by solving the cubic

P (λ,w) = λ3 − 2vλ2 +
[
v2 − g(h + B + hd)

]
λ + ghud = 0.

Once the roots of P (λ,w) have been obtained, they are used to determine the

eigenvectors,

eG
k =

⎡
⎢⎢⎢⎢⎢⎣

1

u

λk

v2 − g(h + B) + (λk − 2v)λk

gh

⎤
⎥⎥⎥⎥⎥⎦ ,

for k = 1, 2, 3 where a �= k �= b and if e �= 0 then

eG
4 =

⎡
⎢⎢⎢⎢⎢⎣

1

u − v

he
(h + B)

v

−1

h
(h + B)

⎤
⎥⎥⎥⎥⎥⎦ otherwise eG

4 =

⎡
⎢⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎥⎦ .
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Now that we have discussed Formulations A and C, in the next section we adapt

the classic 2D Lax-Wendroff scheme and the 2D variations of the flux-limited version

of Roe’s scheme.

5.2 Adaptation of the Classic 2D Lax-Wendroff

Scheme

The classic 2D Lax-Wendroff scheme has numerical flux functions (4.10) and the

source term is approximated using a pointwise approach,

R∗
i,j = R(wn

i,j),

and is commonly used in industry to approximate the equations governing sediment

transport in two dimensions. As with the 1D case, the classic 2D Lax-Wendroff

scheme suffers badly from spurious oscillations occurring in the numerical results.

The pointwise source term approximation results in the scheme not satisfying the

C-property.

5.2.1 Formulation A

Formulation A is a steady approach, where the system is decoupled into a water

flow approximation followed by a bed update. The classic 2D Lax-Wendroff scheme

can be adapted for this formulation. In the previous chapter, the 2D shallow water

equations were approximated using the classic 2D Lax-Wendroff scheme, see

Section 4.3 for details. However, the scheme needs to be adapted to approximate

the bed-updating equation (5.4), which is easily obtained

Bn+1
i,j = Bn

i,j − ξsx

(
(q1)

∗
i+ 1

2
,j
− (q1)

∗
i− 1

2
,j

)
− ξsy

(
(q2)

∗
i,j+ 1

2
− (q2)

∗
i,j− 1

2

)
, (5.12)
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where the numerical fluxes are

(q1)
∗
i+ 1

2
,j

=
1

2

(
(q1)

n
i+1,j + (q1)

n
i,j

) − sx

2
λF

i+ 1
2
,j

(
(q1)

n
i+1,j − (q1)

n
i,j

)
− sy

8

(
λF

i+1,j

(
(q2)

n
i+1,j+1 − (q2)

n
i+1,j−1

)
+ λF

i,j

(
(q2)

n
i,j+1 − (q2)

n
i,j−1

))
and

(q2)
∗
i,j+ 1

2
=

1

2

(
(q2)

n
i,j+1 + (q2)

n
i,j

) − sy

2
λG

i,j+ 1
2

(
(q2)

n
i,j+1 − (q2)

n
i,j

)
− sx

8

(
λG

i,j+1

(
(q1)

n
i+1,j+1 − (q1)

n
i−1,j+1

)
+ λG

i,j

(
(q1)

n
i+1,j − (q1)

n
i−1,j

))
and where λF and λG are the analytical approximations of the wave speeds of the

bed-updating equation (5.8).

5.2.2 Formulation C

The classic 2D Lax-Wendroff scheme (4.10) can be used as written to approximate

Formulation C. The Jacobian matrices of the formulation are given in Section 5.1.3

and the source term is approximated with a pointwise approach,

R∗
i,j =

⎡
⎢⎢⎢⎢⎣

0
g

4Δx

(
Bn

i+1,j + Bn
i−1,j

) (
hn

i+1,j − hn
i−1,j

)
g

4Δy

(
Bn

i,j+1 + Bn
i,j−1

) (
hn

i,j+1 − hn
i,j−1

)
0

⎤
⎥⎥⎥⎥⎦ .

5.3 Adaptation of the Basic and Dimensional

Splitting Schemes

Both the basic scheme (B-FLR) and the second order accurate dimensional splitting

scheme (DS2-FLR), which both used the flux-limited 2D version of Roe’s numerical
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fluxes (4.14), produced very accurate numerical results in the previous chapter. This

is mainly due to both schemes using the source term approximation (4.15), which

results in both schemes satisfying the C-property. Thus, in this section, we adapt

both numerical schemes to approximate Formulations A and C.

5.3.1 Formulation A

Formulation A is a steady approach, where the system is decoupled into a water

flow approximation followed by a bed update. The flux-limited 2D version of

Roe’s scheme can be adapted for this formulation. In the previous chapter, the 2D

shallow water equations were approximated using both the basic scheme (B-FLR)

and dimensional splitting scheme (DS2-FLR), see Section 4.5 for details. However,

the schemes needs to be adapted to approximate the bed-updating equation (5.4).

Thus, we obtain the following numerical fluxes for the bed-updating equation,

(q1)
∗
i+ 1

2
,j

=
ξ

2

(
(q1)

n
i+1,j + (q1)

n
i,j

)
− 1

2

∣∣∣λF
i+ 1

2
,j

∣∣∣ (
1 − Φ

(
θF

i+ 1
2
,j

) (
1 −

∣∣∣νF
i+ 1

2
,j

∣∣∣)) (
Bn

i+1,j − Bn
i,j

)
(5.13a)

and

(q2)
∗
i,j+ 1

2
=

ξ

2

(
(q2)

n
i,j+1 + (q2)

n
i,j

)
− 1

2

∣∣∣λG
i,j+ 1

2

∣∣∣ (
1 − Φ

(
θG

i,j+ 1
2

) (
1 −

∣∣∣νG
i,j+ 1

2

∣∣∣)) (
Bn

i,j+1 − Bn
i,j

)
, (5.13b)

where

νF
i+ 1

2
,j

= sxλ
F
i+ 1

2
,j
, νG

i,j+ 1
2

= syλ
G
i,j+ 1

2
, θF

i+ 1
2
,j

=
Bn

I+1,j − Bn
I,j

Bn
i+1,j − Bn

i,j

,

θG
i,j+ 1

2
=

Bn
i,J+1 − Bn

i,J

Bn
i,j+1 − Bn

i,j

, I = i − sgn
(
νF

i+ 1
2
,j

)
, J = j − sgn

(
νG

i,j+ 1
2

)

and Φ can be any of the flux-limiters listed in Table 2.1. Here, λF and λG are the

analytical approximations of the wave speeds of the bed-updating equation (5.8).

The numerical fluxes of the bed-updated equation (5.13) can be used with both
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the basic finite difference scheme (4.4) and the dimensional splitting schemes (4.8)

and (4.9). In this thesis, if the basic scheme (B-FLR) or the dimensional splitting

scheme (DS2-FLR) are used then the numerical fluxes (5.13) are used with (4.4) or

(4.9) respectively.

5.3.2 Formulation C

Formulation C can be used as written with both the basic scheme (B-FLR) and the

dimensional splitting scheme (DS2-FLR). Both versions require the Roe averages

of the system. For the sediment transport fluxes (5.7), the Roe averaged Jacobian

matrix for F is

Ã =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

g(h̃ + B̃) − ũ2 2ũ 0 gh̃

−ũṽ ṽ ũ 0

−ũd̃ − ṽẽ d̃ ẽ 0

⎤
⎥⎥⎥⎥⎦ .

One of the eigenvalues of the Jacobian is λ̃F
4 = ũ and the other three are obtained

by solving the cubic

P̃ (λ̃) = λ̃3 − 2ũλ̃2 +
[
ũ2 − g(h̃ + B̃ + h̃d̃)

]
λ̃ + gh̃ũd̃ = 0.

The roots of P̃ (λ̃) are determined by using the approach discussed in Section 3.1.3.

Once the Roe averaged eigenvalues have been obtained, they are used to determine

the eigenvectors,

ẽF
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

λ̃k

ṽ

ũ2 − g(h̃ + B̃) + (λ̃k − 2ũ)λ̃k

gh̃

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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for k = 1, 2, 3 where a �= k �= b and if e �= 0 then

ẽF
4 =

⎡
⎢⎢⎢⎢⎢⎣

1

ũ

f̃

−1

h̃
(h̃ + B̃)

⎤
⎥⎥⎥⎥⎥⎦ otherwise ẽF

4 =

⎡
⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎦ ,

where f̃ = ṽ − ũ

h̃ẽ

(
h̃ + B̃

)
. The wave strengths are

• if ẽ �= 0 then

α̃k =
ψk

(f̃ − ṽ)(λ̃k − λ̃a)(λ̃k − λ̃b)
,

where

ψk =
[
(2ũ − λ̃a − λ̃b)ũṽ − (h̃ + B̃)gṽ + (λ̃aλ̃b + g(h̃ + B̃) − ũ2)f̃

]
Δh

+ (f̃ − ṽ)
[
gh̃ΔB + (2ũ − λ̃a − λ̃b)Δ(uh)

]
− (ũ − λ̃a)(ũ − λ̃b)Δ(vh)

for k = 1, 2, 3, where a �= k �= b and

α̃4 =
Δ(vh) − ṽΔh

f̃ − ṽ

• if ẽ = 0 then

α̃k =
(λ̃aλ̃b + g(h̃ + B̃) − ũ2)Δh + (2ũ − λ̃a − λ̃b)Δ(uh) + gh̃ΔB

(λ̃k − λ̃a)(λ̃k − λ̃b)

for k = 1, 2, 3, where a �= k �= b and

α̃4 = Δ(vh) − ṽΔh.

For the source term,

β̃k =
(2ũ − λ̃a − λ̃b)gB̃Δh

(λ̃k − λ̃a)(λ̃k − λ̃b)
and β̃4 = 0,
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where k = 1, 2, 3 and a �= k �= b.

Similarly for G, the Roe averaged Jacobian matrix is

B̃ =

⎡
⎢⎢⎢⎢⎣

0 0 1 0

−ũṽ ṽ ũ 0

g(h̃ + B̃) − ṽ2 0 2ṽ gh̃

−ṽd̃ − ũẽ ẽ d̃ 0

⎤
⎥⎥⎥⎥⎦ ,

One of the eigenvalues of the Roe averaged Jacobian is λ̃G
4 = ṽ and the other three

are obtained by solving the cubic

P̃ (λ̃) = λ̃3 − 2ṽλ̃2 +
[
ṽ2 − g(h̃ + B̃ + h̃d̃)

]
λ̃ + gh̃ṽd̃ = 0.

The roots of P̃ (λ̃) are determined by using the approach discussed in Section 3.1.3.

Once the Roe averaged eigenvalues have been obtained, they are used to determine

the eigenvectors,

ẽG
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

ũ

λ̃k

ṽ2 − g(h̃ + B̃) + (λ̃k − 2ṽ)λ̃k

gh̃

⎤
⎥⎥⎥⎥⎥⎥⎦

,

for k = 1, 2, 3 where a �= k �= b and if e �= 0 then

ẽG
4 =

⎡
⎢⎢⎢⎢⎢⎣

1

f̃

ṽ

−1

h̃
(h̃ + B̃)

⎤
⎥⎥⎥⎥⎥⎦ otherwise ẽG

4 =

⎡
⎢⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎥⎦ ,

where f̃ = ũ − ṽ

h̃ẽ

(
h̃ + B̃

)
. The wave strengths are

• if ẽ �= 0 then

α̃k =
ψk

(f̃ − ũ)(λ̃k − λ̃a)(λ̃k − λ̃b)
,
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where

ψk = (f̃ − ũ)
[
gh̃ΔB + (2ṽ − λ̃a − λ̃b)Δ(vh)

]
− (ṽ − λ̃a)(ṽ − λ̃b)Δ(uh)

+
[
(2ṽ − λ̃a − λ̃b)ṽũ − (h̃ + B̃)gũ + (λ̃aλ̃b + g(h̃ + B̃) − ṽ2)f̃

]
Δh

for k = 1, 2, 3, where a �= k �= b and

α̃4 =
Δ(uh) − ũΔh

f̃ − ũ
.

• if ẽ = 0 then

α̃k =
(λ̃aλ̃b + g(h̃ + B̃) − ṽ2)Δh + (2ṽ − λ̃a − λ̃b)Δ(vh) + gh̃ΔB

(λ̃k − λ̃a)(λ̃k − λ̃b)

for k = 1, 2, 3, where a �= k �= b and

α̃4 = Δ(uh) − ũΔh.

For the source term,

β̃k =
(2ṽ − λ̃a − λ̃b)gB̃Δh

(λ̃k − λ̃a)(λ̃k − λ̃b)
and β̃4 = 0,

where k = 1, 2, 3 and a �= k �= b.

The Roe averaged values are

ṽ =

√
hRvR +

√
hLvL√

hR +
√

hL

, ũ =

√
hRuR +

√
hLuL√

hR +
√

hL

, h̃ =
1

2
(hR + hL) ,

B̃ =
1

2
(BR + BL) , d̃F =

Aξ
(√

hR +
√

hL

)
√

hLhR +
√

hRhL

(
u2

R + uRuL + u2
L + ṽ2

)
,

d̃G =
Aξ

(√
hR +

√
hL

)
√

hLhR +
√

hRhL

(
v2

R + vRvL + v2
L + ũ2

)
,
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ẽF =
ξ
[
2
√

hR

√
hL(uRvR + uLvL) + (hLuR + hRuL)(vR + vL)

]
(
√

hRhL +
√

hLhR)(
√

hR +
√

hL)

and

ẽG =
ξ
[
2
√

hR

√
hL(vRuR + vLuL) + (hLvR + hRvL)(uR + uL)

]
(
√

hRhL +
√

hLhR)(
√

hR +
√

hL)
.

5.4 2D Channel Test Problem: Conical Sand Dune

Test Problem

To determine which formulation and scheme is the most accurate, we use a conical

sand dune test problem as discussed by Chesher et al. [2] and De Vriend [6]. The

test problem consists of a channel of length 1000m × 1000m with dummy initial

conditions

h∗(x, y, 0) = 10 − B(x, y, 0), u∗(x, y, 0) =
Q

h∗(x, y, 0)
, v∗(x, y, 0) = 0

and the initial bathymetry consists of a conical sand dune,

B(x, y, 0) =

{
sin2

(
π(x−300)

200

)
sin2

(
π(y−400)

200

)
if 300 ≤ x ≤ 500, 400 ≤ y ≤ 600,

0 otherwise

and is illustrated in Figure 5.1. The upstream boundary has constant discharge,

hn+1
−i,j = hn

0,j, (uh)n+1
−i,j = Q, (vh)n+1

−i,j = (vh)n
0,j and Bn+1

−i,j = Bn
0,j,

where Q is a constant and the downstream boundary conditions are

wn+1
I+i,j = wn

I,j, wn+1
i,−j = wn

i,0 and wn+1
i,J+j = wn

i,J ,

where i, j = 1 to 5. To obtain the initial conditions, the water flow with the dummy

initial conditions and boundary conditions are iterated to an equilibrium state whilst
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Figure 5.1: Initial conditions for 2D Channel Test Problem A (B).

keeping the bed fixed, where

|wn+1
i,j − wn

i,j| ≤ tol

and tol is the desired tolerance level. The sediment transport fluxes (5.7) are used

and the porosity is taken as ε = 0.4. To ensure the error of the numerical schemes

do not grow, the variables are non-dimensionalised,

x∗ =
x

L
, y∗ =

y

L
, t∗ =

t

T
, h∗ =

h

L
, B∗ =

B

L
,

g∗ =
gT 2

L
, v∗ =

vT

L
, A∗ =

AL

T 2
, tol∗ =

tol

L
and u∗ =

uT

L
,

where

L = maxi,j(|xI,j − x0,j|, |yi,J − yi,0|) and T =

√
L

g

denote the non-dimensional coefficients. In this thesis, we take Q = 10 from which

the initial conditions illustrated in Figure 5.2 may be obtained. Notice that small
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Figure 5.2: Initial conditions for 2D Channel Test Problem with Q = 10.

kinks are present in the initial conditions, which do not grow over time. Unless

stated, the initial conditions illustrated are used for the 2D Channel Test Problem.

5.4.1 Approximate Solution for Angle of Spread

De Vriend [6] derived an approximate solution for the angle of spread of the pulse in

the riverbed. For the conical sand dune test case, the pulse in the riverbed gradually

changes into a star shaped pattern, which spreads out over time. An approximate

solution for the angle of spread of the star shaped pattern can be obtained by
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Figure 5.3: Approximate solution for angle of spread.

assuming that the riverbed is interacting slowly with the water flow, i.e. A < 0.01,

and the water flow is in an equilibrium state. This allows the equations of water

flow, i.e. (5.1), (5.2) and (5.3), to be simplified,

(uh)x + (vh)y = 0,

[
1

2
u2 + g(h + B)

]
x

+ (huv)y = 0

and

(huv)x +

[
1

2
v2 + g(h + B)

]
y

= 0.

Thus, De Vriend determined an approximate solution for the angle of spread for the

star shaped pattern,

tan α =
3Tu

√
3

9Tu − 8Th

,

where

Tu =
Û

q̂

[
∂q̂

∂Û

]
− 1 and Th =

h

q̂

[
∂q̂

∂h

]
− 1,

which is illustrated in Figure 5.3. Here, q̂ denotes the streamwise sediment transport

flux and Û =
√

u2 + v2 the streamwise velocity. For example, if the sediment

transport flux (3.3) is used in two dimensions, then the streamwise sediment transport
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flux is

q̂ = AÛ
m

= A
(
u2 + v2

)m
2

from which we obtain

Tu =
Û

AÛ
m

[
AmÛ

m−1
]
− 1 = m − 1

and

Th =
h

AÛ
m

⎡
⎣∂

(
AÛ

m
)

∂h

⎤
⎦ − 1 = −1.

Hence, the analytical approximation of the angle of spread for the star shaped

pattern is

tan α =
3
√

3(m − 1)

9m − 1
,

and if m = 3 then the angle of spread is

α = tan−1

(
3
√

3

13

)
= 21.7867893o.

5.5 Numerical Results

In the next few sections, we use the classic 2D Lax-Wendroff scheme, the basic

scheme (B-FLR) and dimensional splitting scheme (DS2-FLR) with Formulations

A and C to obtain an approximation for the 2D Channel Test Problem. The 2D

Channel Test Problem is used with a riverbed that is interacting slowly and quickly

with the water flow so that Formulations A and C can be compared. Both the basic

and dimensional splitting schemes use the flux-limited 2D version of Roe’s numerical

flux (4.14). All numerical schemes in this section are used with Δx = Δy = 20m and

the minmod flux-limiter. The basic scheme is used with ν = 0.4 and the dimensional

splitting scheme is used with ν = 0.8. Formulation A is used with a tolerance level

of tol = 0.00001 and a cut off time of 15 minutes is used to determine if the water

flow has reached an equilibrium state.
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5.5.1 Formulation A: Numerical Results for a Bed which is

Interacting Slowly with the Water Flow

We first consider the 2D Channel Test Problem with a riverbed that is interacting

slowly with the water flow, i.e. A = 0.001. The classic 2D Lax-Wendroff scheme,

the basic scheme (B-FLR) and the dimensional splitting scheme (DS2-FLR) are

used with Formulation A to obtain an approximation of the conical sand dune test

problem at t = 100 hours. The numerical results of the classic 2D Lax-Wendroff

scheme with Formulation A are not illustrated due to the scheme producing spurious

oscillations in the results almost immediately, which rendered the scheme unstable.

From Figure 5.4 and Figure 5.5 we can see that the B-FLR scheme has produced

smooth numerical results that do not suffer from spurious oscillations. Also, from

Figure 5.6 and Figure 5.7 we can see that the DS2-FLR scheme has produced smooth

numerical results that are similar to the B-FLR scheme. However, both schemes

produced kinks in the numerical results and DS2-FLR scheme has produced a slightly

different star shaped pattern than the B-FLR scheme. Figure 5.8 and Figure 5.9

illustrate the approximate angle of spread compared to the numerical results for the

B-FLR scheme and DS2-FLR scheme respectively. Here we can see that the DS2-

FLR scheme produced an angle of spread for the star shaped pattern that was closer

to the approximate angle of spread than the B-FLR scheme. Also, notice that from

Figure 5.10 we can see that both schemes produced small kinks in the numerical

results and have increased the total height of the river by a small amount. However,

the DS2-FLR scheme produced numerical results with fewer kinks present and with

an angle of spread that was closer to the approximate value. Thus, the DS2-FLR

scheme is the most accurate scheme. The numerical results of the B-FLR scheme

and the DS2-FLR scheme are devoid of the spurious oscillations present in the

numerical results obtained with PISCES, see Chesher et al. [2], in some simulations

and therefore represent a notable improvement.
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Figure 5.4: Numerical results for Formulation A using the basic scheme (B-FLR)
with A = 0.001 and at t = 100h (B).
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Figure 5.5: Numerical results for Formulation A using the basic scheme (B-FLR)
with A = 0.001 and at t = 100h (B).
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Figure 5.6: Numerical results for Formulation A using the dimensional splitting
scheme (DS2-FLR) with A = 0.001 and at t = 100h (B).
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Figure 5.7: Numerical results for Formulation A using the dimensional splitting
scheme (DS2-FLR) with A = 0.001 and at t = 100h (B).
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Figure 5.8: Illustration of the angle of spread for Formulation A using the basic
scheme (B-FLR) with A = 0.001 (B).
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Figure 5.9: Illustration of the angle of spread for Formulation A using the dimen-
sional splitting scheme (DS2-FLR) with A = 0.001 (B).
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Figure 5.10: Numerical results for Formulation A using the basic scheme (B-FLR)
and the dimensional splitting scheme (DS2-FLR) with A = 0.001 and at t = 100h.
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5.5.2 Formulation C: Numerical Results for a Bed which is

Interacting Slowly with the Water Flow

Formulation C is now used with the classic 2D Lax-Wendroff scheme, the basic

scheme (B-FLR) and the dimensional splitting scheme (DS2-FLR) to obtain a

numerical approximation of the 2D Channel Test Problem for a riverbed that is

interacting slowly with the water flow, i.e. A = 0.001, at t = 100 hours. From

Figure 5.11 and Figure 5.12 we can see that the classic 2D Lax-Wendroff scheme has

produced spurious oscillations in the numerical results. However, from Figure 5.13

and Figure 5.14 we can see that the B-FLR scheme has produced smooth numerical

results that do not suffer from spurious oscillations. Also, from Figure 5.15

and Figure 5.16 we can see that the DS2-FLR scheme has produced smooth

numerical results that are similar to the B-FLR scheme. Notice that no kinks are

present in the numerical results obtained with Formulation C, but kinks were present

in the results obtained with Formulation A. Figure 5.17 and Figure 5.18 illustrate the

approximate angle of spread compared to the numerical results for the B-FLR

scheme and DS2-FLR scheme respectively. As with the numerical results obtained

with Formulation A, here we can see that the DS2-FLR scheme produced an angle

of spread for the star shaped pattern that was closer to the approximate angle of

spread than the B-FLR scheme. The angle of spread obtained from using

Formulation C with the B-FLR scheme and the DS2-FLR scheme are also closer

to the approximate value than the angle of spread obtained from using Formulation

A. However, from Figure 5.19 we can see that the numerical results obtained with

Formulation C have significantly increased the total height of the river and velocity

from their original values. This is due to all schemes requiring a considerable amount

of time steps to reach the final computation time of 100 hours and the upstream

boundary also having constant discharge imposed. Thus, a numerical scheme that

can be used with large time steps such as an implicit scheme is required to obtain an

approximation of Formulation C. Also, notice that a few small kinks are present in

the total height of the river and velocity for the numerical results of Formulation C

but they do not appear in the riverbed and are not as prominent as with Formulation

A. As with the numerical results obtained with Formulation A, the numerical results
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Figure 5.11: Numerical results for Formulation C using the classic 2D Lax-Wendroff
scheme with A = 0.001 and at t = 100h (B).
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Figure 5.12: Numerical results for Formulation C using the classic 2D Lax-Wendroff
scheme with A = 0.001 and at t = 100h (B).
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Figure 5.13: Numerical results for Formulation C using the basic scheme (B-FLR)
with A = 0.001 and at t = 100h (B).
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Figure 5.14: Numerical results for Formulation C using the basic scheme (B-FLR)
with A = 0.001 and at t = 100h (B).
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Figure 5.15: Numerical results for Formulation C using the dimensional splitting
scheme (DS2-FLR) with A = 0.001 and at t = 100h (B).
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Figure 5.16: Numerical results for Formulation C using the dimensional splitting
scheme (DS2-FLR) with A = 0.001 and at t = 100h (B).
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Figure 5.17: Illustration of the angle of spread for Formulation C using the basic
scheme (B-FLR) with A = 0.001 (B).

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

x

y

t = 0      

t = 25h    

t = 50h    

t = 75h    

t = 100h   

approx soln

Figure 5.18: Illustration of the angle of spread for Formulation C using the dimen-
sional splitting scheme (DS2-FLR) with A = 0.001 (B).
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Figure 5.19: Numerical results for Formulation C using the basic scheme (B-FLR)
and the dimensional splitting scheme (DS2-FLR) with A = 0.001 and at t = 100h.

164



of the B-FLR scheme and the DS2-FLR scheme are devoid of the spurious oscillations

present in the numerical results obtained with PISCES, see Chesher et al. [2], in some

simulations and therefore represent a notable improvement.

5.5.3 Formulation A: Numerical Results for a Bed which is

Interacting Quickly with the Water Flow

For the second test problem, we use the 2D Channel Test Problem with a riverbed

that is now interacting quickly with the water flow, i.e. A = 1. The classic 2D Lax-

Wendroff scheme, the basic scheme (B-FLR) and the dimensional splitting scheme

(DS2-FLR) are used with Formulation A to obtain an approximation of the conical

sand dune test problem at t = 500 seconds. The numerical results of the classic

2D Lax-Wendroff scheme with Formulation A are not illustrated due to the scheme

producing spurious oscillations in the results almost immediately, which rendered

the scheme unstable. From Figure 5.20 and Figure 5.21 we can see that the B-FLR

scheme produced numerical results with no spurious oscillations present. By using

the DS2-FLR scheme, we obtain the numerical results illustrated in Figure 5.22 and

Figure 5.23. Here, we can see that the DS2-FLR scheme has produced numerical

results that differ to the B-FLR scheme. This is due both schemes producing

completely different star shaped patterns. The DS2-FLR scheme has produced a step

in the ramp behind the star-shaped pattern whereas the B-FLR scheme produced

a smooth ramp without a step present. The step present in the numerical results

of the DS2-FLR scheme was also present when A = 0.001 was used, but the step

is now larger. The angle of spread of the star shaped patterns also differs. Also,

notice that both schemes have produced kinks in the numerical results. Figure 5.24

shows the total height of the river and velocity for the B-FLR scheme and DS2-FLR

scheme. Notice that both schemes have produced slightly different numerical results

where the height of the river and velocity has changed from the original values. This

is due to the formulation imposing a constant discharge on the upstream boundary

and requiring a considerable amount of time steps to reach the final computation

time of 500 seconds.
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Figure 5.20: Numerical results for Formulation A using the basic scheme (B-FLR)
with A = 1 and at t = 500s (B).
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Figure 5.21: Numerical results for Formulation A using the basic scheme (B-FLR)
with A = 1 and at t = 500s (B).
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Figure 5.22: Numerical results for Formulation A using the dimensional splitting
scheme (DS2-FLR) with A = 1 and at t = 500s (B).
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Figure 5.23: Numerical results for Formulation A using the dimensional splitting
scheme (DS2-FLR) with A = 1 and at t = 500s (B).
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Figure 5.24: Numerical results for Formulation A using the basic scheme (B-FLR)
and the dimensional splitting scheme (DS2-FLR) with A = 1 and at t = 500s.
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5.5.4 Formulation C: Numerical Results for a Bed which is

Interacting Quickly with the Water Flow

Formulation A is now used with the classic 2D Lax-Wendroff scheme, the basic

scheme (B-FLR) and the dimensional splitting scheme (DS2-FLR) to obtain a

numerical approximation of the 2D Channel Test Problem for a riverbed that is

interacting quickly with the water flow, i.e. A = 1, at t = 500 seconds. Figure 5.25

and Figure 5.26 illustrate the numerical results of the classic 2D Lax-Wendroff

scheme. Here, as with A = 0.001, we can see that the classic 2D Lax-Wendroff

scheme has produced very poor numerical results due to spurious oscillations

occurring in the numerical results. From Figure 5.27 and Figure 5.28 we can

see that the B-FLR scheme produced smooth numerical results with no spurious

oscillations or kinks present. By using the DS2-FLR scheme, we obtain the numerical

results illustrated in Figure 5.22 and Figure 5.23. Here, we can see that as with

Formulation A, the DS2-FLR scheme has produced numerical results that differ

to the B-FLR scheme due to the star shaped pattern differing. The DS2-FLR

scheme has also produced a smoother ramp behind the star shaped pattern than

the B-FLR scheme. The angle of spread of the star shaped pattern also differs for

the B-FLR scheme and the DS2-FLR scheme. Also, from Figure 5.31 we can see

that the total height of the river and velocity have remained close to the initial

values and the results are also smooth with very few kinks present. As with

A = 0.001, the numerical results obtained with Formulations A and C differed, but

considerably more with A = 1 due to the sand dune being moved slightly faster with

Formulation A than Formulation C. This significant difference also occurred in one

dimension, see Chapter 3, when a large value of A was used and was due to

Formulation A-CV assuming the water flow is in an equilibrium state, which

resulted in a constant discharge being imposed.

169



0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

x

y

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.25: Numerical results for Formulation C using the classic 2D Lax-Wendroff
scheme with A = 1 and at t = 500s (B).
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Figure 5.26: Numerical results for Formulation C using the classic 2D Lax-Wendroff
scheme with A = 1 and at t = 500s (B).
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Figure 5.27: Numerical results for Formulation C using the basic scheme (B-FLR)
with A = 1 and at t = 500s (B).
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Figure 5.28: Numerical results for Formulation C using the basic scheme (B-FLR)
with A = 1 and at t = 500s (B).
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Figure 5.29: Numerical results for Formulation C using the dimensional splitting
scheme (DS2-FLR) with A = 1 and at t = 500s (B).
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Figure 5.30: Numerical results for Formulation C using the dimensional splitting
scheme (DS2-FLR) with A = 1 and at t = 500s (B).
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Figure 5.31: Numerical Results for Formulation C using the basic scheme (B-FLR)
and the dimensional splitting scheme (DS2-FLR) with A = 1 and at t = 500s.

173



5.6 Summary

In this chapter, we extended Formulations A-CV and C to two dimensions and

adapted the classic 2D Lax-Wendroff scheme, the basic scheme (B-FLR) and the

dimensional splitting scheme (DS2-FLR) to approximate each formulation. A two

dimensional conical sand dune test problem was used to determine which scheme

was the most accurate. The 2D Channel Test Problem was used with a riverbed

that interacts either quickly, A = 1, or slowly, A = 0.001, with the water flow so that

the different formulations and numerical schemes could be thoroughly tested. For

both formulations, the classic 2D Lax-Wendroff scheme produced poor numerical

results for all values of A and with Formulation A, the scheme became unstable

almost immediately due to spurious oscillations overpowering the numerical results.

Formulation A with either the B-FLR scheme or the DS2-FLR scheme produced

numerical results with no spurious oscillations present, but kinks appeared in the

numerical results for all values of A. The numerical results obtained with

Formulation C and either the B-FLR scheme or the DS2-FLR scheme were very

smooth and did not suffer from spurious oscillations or kinks, which were present

when Formulation A was used. Notice that the numerical results obtained with

the B-FLR scheme and the DS2-FLR scheme differ for both formulations. When

Formulation A is used with the DS2-FLR scheme, a step appears in the ramp

behind the star shaped pattern, which is more prominent when A = 1, and does not

appear when Formulation C or the B-FLR scheme is used. Also, the angle of spread

obtained produced by the DS2-FLR scheme is closer to the approximate value than

the B-FLR scheme. The numerical results of the riverbed for both formulations were

similar when A = 0.001 but when A = 1 was used, Formulation A moved the sand

dune at a faster wave speed than Formulation C. When A = 0.001 was used, the

schemes with Formulation C dramatically changed the surface elevation and velocity

whereas Formulation A only changed the values slightly. However, when A = 1 was

used, the different schemes with Formulation A changed the surface elevation and

velocity significantly from the initial values whereas Formulation C with the schemes

produced values very close. This is due to Formulation C with the different schemes

requiring a considerable amount of time steps to reach the final computation time
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of t = 100 hours when A = 0.001 but requiring very few time steps when A = 1

due to the final computation time now being t = 500 seconds. Formulation C with

the B-FLR scheme uses an average time step of Δt ≈ 0.72 seconds for all values of

A ≤ 1 due to the eigenvalues of the water flow being the dominant values. Thus, for

A = 0.001, the B-FLR scheme requires approximately 500,000 time steps to reach the

final computation time whereas with A = 1, the scheme only requires approximately

695 time steps. A constant discharge is imposed at the upstream boundary at each

time step thus, when a small value of A is used, a large amount of time steps are

required, which results in the boundary condition changing the surface elevation and

velocity. Formulation A also produces a different surface elevation and velocity from

the initial values, but for a large value of A. This is due to the formulation assuming

the water flow is in an equilibrium state so that the water flow can be approximated

separately from the water flow and a large morphological time step can then be

used. For the B-FLR scheme, Formulation A has an overall morphological time step

that is computed using

Δt =
νmin (Δx, Δy)

2maxi,j (|λF |, |λG|) ,

where

λF =
3Aξu

h

(
u2 + v2

)
and λG =

3Aξv

h

(
u2 + v2

)
.

Now, from the initial values we obtain

mini,j(|h|) ≈ 9, maxi,j(|u|) ≈ 1.08 and maxi,j(|v|) ≈ 0.01,

which implies that

maxi,j(|λF |) ≈ 0.6999A and maxi,j(|λG|) ≈ 0.0064805556A.

Thus,

Δt ≈ νmin(Δx, Δy)

1.3998A

and since values of ν = 0.8 and Δx = Δy = 20 were also used, we obtain

Δt ≈ 11.4302A−1 seconds .

175



Hence, when a small value of A is used, the morphological time step is large, i.e.

A = 0.001 implies that Δt ≈ 11, 430 seconds, but as A → 1, Δt → 11 seconds. Also,

Formulation A iterates the water flow to an equilibrium state each time the bed is

updated, which has a cut off time of t = 15 minutes and results in Formulation

A requiring a considerable amount of computations when a large value of A is

used. Thus, a numerical scheme that can be used with large time steps, such as

implicit schemes, or more accurate boundary conditions are required to obtain a

better approximation of the different formulations. Hence, Formulation A can only

be used for small values of A. The DS2-FLR scheme produced considerably more

accurate numerical results for all formulations than any of the other schemes due to

the angle of spread of the star shaped pattern and the numerical results obtained

were very smooth.
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Chapter 6

Conclusions and Further Work

6.1 Conclusion

Throughout this thesis, we have discussed a variety of numerical techniques for

approximating the equations governing sediment transport in one and two

dimensions. In Chapter 1, the equations governing sediment transport were derived

and two different sediment transport fluxes were discussed.

Chapter 2 discussed how to obtain an accurate approximation of one dimensional

systems of conservation laws with source terms. The shallow water equations were

used to illustrate the different numerical techniques and the accuracy of the schemes.

The Lax-Friedrichs scheme, classic Lax-Wendroff scheme, MacCormack scheme and

Roe’s scheme were all adapted to approximate systems of conservation laws with

source terms. High resolution schemes were also constructed so that the numerical

scheme satisfies the Total Variational Diminishing property, which ensures no

spurious oscillations occur in the numerical results. Three test problems were used

to determine which numerical scheme was the most accurate in one dimension. The

flux-limited version of Roe’s scheme was the most accurate scheme in one dimension.
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In Chapter 3, five different formulations based on either a steady or unsteady

approach were derived to obtain an approximation of the equations governing

sediment transport. The flux-limited version of Roe’s scheme and the classic Lax-

Wendroff scheme were used to obtain a numerical approximation of the different

formulations. Two test problems were considered and the numerical results compared

to determine which formulation and scheme was the most accurate. We illustrated

that the flux-limited version of Roe’s scheme was considerably more accurate than

the classic Lax-Wendroff scheme, which produced poor numerical results for all

formulations and became unstable for all variations of Formulation A. Formulation

A-SF with all schemes produced poor numerical results due to spurious oscillations

being present. We also showed that Formulation A-NC can only be used for small

values of A unless the staggered scheme (3.18) was used. We also illustrated

that Formulation A-CV, which is a steady approach, can only be used for small

values of A and Q whereas Formulations B and C, which are unsteady approaches,

can be used for all values of A and Q. Unfortunately, the numerical schemes of

Formulations A-NC, B and C suffered badly from diffusion due to the schemes

requiring a considerable amount of time steps to reach the final computation time

when a small value of A was used.

Chapter 4 discussed how to obtain an accurate approximation of a system of

conservation laws with source term in two dimension. The 2D shallow water

equations were used to illustrate the numerical techniques and the accuracy of the

different schemes. The classic 2D Lax-Wendroff scheme, the flux-limited 2D Lax-

Wendroff scheme and the flux-limited version of Roe’s scheme were extended to two

dimensions. A basic scheme and a dimensional splitting scheme was also discussed.

A 2D test problem was used to determine which scheme produced the most accurate

numerical results. The numerical schemes were compared for a 2D test problem and

the DS2-FLR scheme produced the most accurate numerical results.

In Chapter 5, the equations governing sediment transport in two dimensions

were approximated. Formulations A-CV and C were extended from one dimension to

approximate the equations in two dimensions. The classic 2D Lax-Wendroff scheme,

the basic scheme (B-FLR) and the dimensional splitting scheme (DS2-FLR) were
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adapted to approximate Formulations A and C. We illustrated that as with the

one dimensional case, the classic 2D Lax-Wendroff scheme produced poor numerical

results for all formulations and became unstable almost immediately with

Formulation A. Both the B-FLR scheme and the DS2-FLR scheme produced kinks

in the numerical results with Formulation A but did not with Formulation C, where

the numerical results were very smooth. The DS2-FLR scheme produced more

accurate numerical results than the B-FLR scheme due to the angle of spread for

the star shaped pattern being closer to the approximate value. We also illustrated

that Formulation A can only be used for small values of A due to the formulation

being a steady approach whereas Formulation C can be used for all values of A.

Therefore, in this thesis we have illustrated that formulations based on the steady

approach can only be used for small values of A and Q whereas formulations based

on the unsteady approach, with the exception of Formulation A-SF, can be used

for all values of A and Q. If a large value of A was used, the numerical results of

the steady approached differed significantly to the unsteady approach. The classic

Lax-Wendroff scheme produced poor numerical results for all formulations in one

and two dimensions whereas the adaptations of the flux-limited version of Roe’s

scheme produced very accurate numerical results.

6.2 Further Work

There is a considerable amount of further work that requires investigation. For

example, Formulations A-CV and A-NC require a more robust and accurate

approximation of the wave speed of the bed-updating equation. This can be

considerably difficult to obtain, especially if the sediment transport flux is determined

by a “black box” approach. In this thesis, all the formulations and numerical schemes

discussed in one and two dimensions are based on the sediment transport flux

discussed by Grass [14] and need to be adapted to approximate a general

sediment transport flux, including the “black box” approach. Numerical schemes

that can use large time steps, such as implicit schemes need to be investigated with
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the unsteady approaches so that the numerical results of the unsteady approach

are less diffusive. Friction, wind resistance and other factors can be included in the

shallow water equations and the different formulations and numerical schemes

adapted. For Formulation A-CV, instead of iterating the equations to an

equilibrium state and then updating the bed, an approximation of the two

simplified equations (1.3) and (3.2), which were discussed by Cunge et al. [3],

can be obtained instead. In two dimensions, finite volume schemes and genuinely

multidimensional upwinding schemes, see Hubbard & Baines [17] and Garcia-Navarro

et al. [10] for more details, need to be investigated and used to numerically

approximate the different formulations. With these scheme, instead of the basic

cartesian mesh being used, different grids can also be used such as triangles and

even adaptive unstructured grids, where the mesh is determined to conform with

the geometry. This enables a more accurate numerical approximation to be obtained.
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ISBN 3-7643-2723-5 (1992).

[26] R.J. LeVeque, Balancing Source Terms and Flux Gradients in High-Resolution

Godunov Methods: The Quasi-Steady Wave Propagation Algorithm, J. Com-

put. Phys. 146 (1998).

[27] R.J. LeVeque & H.C. Yee, A Study of Numerical Methods for Hyperbolic

Conservation Laws with Stiff Source Terms, J. Comput. Phys. 86, 187 - 210

(1990).

[28] R.W. MacCormack, The Effects of Viscosity in Hybervelocity Impact Cratering,

AIAA Paper, 69 - 354 (1969).

183



[29] D.J. Needham & R.D. Hey, On Nonlinear Simple Waves in Alluvial River

FLows: A Theory for Sediment Bores, Phil. Trans. R. Soc. Lond. A 334, 25 -

53 (1991).

[30] Haim Nessyahu & Eitan Tadmor, Non-Oscillatory Central Differencing for

Hyperbolic Conservation Laws, J. Comput. Phys. 87, 408 - 463 (1990).

[31] N. Perdreau and J.A. Cunge, Sedimentation dans les estuaries et les

embouchures bouchon marin et bouchon fluvial, I.A.H.R. International

Seminar on Hydraulics of Alluvial Streams, Paris (1971).

[32] Niels Ramsing & Jens Gundersen, Seawater and Gases: Tabulated Physical

Parameters of Interest to People Working with Microsensors in Marine Systems,

Unisense. Obtained via the web at www.unisense.com.

[33] P.L. Roe, Approximate Riemann Solvers, Parameter Vectors and Difference

Schemes, J. Comput. Phys. 43, 357 - 372 (1981).

[34] P.L. Roe, Numerical Algorithms for the Linear Wave Equation, Royal Aircraft

Establishment Technical Report 81047 (1981).

[35] P.L. Roe, Upwind Diferencing Schemes for Hyperbolic Conservation Laws with

Source Terms. In Proc. First International Conference on Hyperbolic Problems,

Carasso, Raviart and Serre (Editors), 41-51. Springer (1986).

[36] R.L. Soulsby, Dynamics of Marine Sands, A Manual for Practical Applications,

HR Wallingford, Report SR 466, February 1997.

[37] M.R. Spiegel & J. Liu, Mathematical Handbook of Formulas and

Tables, Second Edition, Schaum’s Outline Series, McGraw-Hill, ISBN 0-07-

038203-4 (1999).

[38] J.J. Stoker, Water Waves, Wiley Interscience (1957).

[39] G. Strang, On the Construction and Comparison of Difference Schemes, SIAM

J. Num. Anal. 5, 506 - 517 (1968).

184



[40] P.K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic

Conservation Laws, SIAM J. Num. Anal. 21, 995 (1984).

[41] B. van Leer, Towards the Ultimate Conservative Difference Scheme II:

Monotonicity and Conservation Combined in a Second Order Scheme, J. Com-

put. Phys. 14, 361 - 370 (1974).

[42] L.C. van Rijn, Sediment Transport: Part I: Bed Load Transport; Part II:

Suspended Load Transport; Part III: Bed Forms and Alluvial Roughness, Proc.

ASCE Journal of Hydraulics Division, Vol 110, HY10, 1431-1456; HY11, 1613

- 1641; HY12, 1733 - 1754 (1984).

[43] L.C. van Rijn, Principles of Sediment Transport in Rivers, Estuaries and

Coastal Seas, Aqua Publications, ISBN 90-800356-2-9 (1993).

[44] M.E. Vázquez-Cendón, Improved Treatment of Source Terms in Upwind

Schemes for the Shallow Water Equations in Channels with Irregular Geometry,

J. Comput. Phys. 148, 497 - 526 (1999).

[45] H.C. Yee, Upwind and Symmetric Shock-Capturing Schemes, NASA Ames

Research Center Technical Memoranda 89464 (1987).
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