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Abstract

We present a technique for using data assimilation to estimate uncertain model parameters and
discuss its application within the context of coastal morphodynamic modelling. A key difficulty in the
construction of a data assimilation algorithm is specification of the background error covariances. For
parameter estimation, it is particularly important that the cross-covariances between the parameters
and the state are given a good a priori specification. We have combined the methods of three di-
mensional variational data assimilation (3D Var) and the Kalman filter to produce a new hybrid data
assimilation scheme that captures the flow dependent nature of the state-parameter cross covariances
without explicitly propagating the full system covariance matrix. Here, an idealised two parameter 1D
non-linear test model with pseudo-observations is used to demonstrate the method. The results are
postive with the scheme able to recover the model parameters to a high level of accuracy. We believe
that there is potential for successful application of the methodology to larger, more complex models.

1 Introduction

Data assimilation is a sophisticated mathematical technique for combining observational data with model
predictions to 1) produce a model state that most accurately approximates the current and future states
of the true system and 2) provide estimates of the model parameters. Data assimilation acts by feeding
information from measured observations of the true system into the model, hence producing a model
trajectory that more closely follows the true system trajectory and thus improving the ability of the
model to predict the future. These observations may be infrequent and need not provide full coverage of
the model domain. They may also only be indirectly related to the variables or parameters of interest.

Coastal morphodynamic modelling is challenging; a particular difficulty is that the physical processes
that drive morphological change occur on much shorter time-scales than the morphological changes them-
selves (Masselink and Hughes (2003)). In reality, a model can never completely describe the complex
physical processes underlying the behaviour of a morphodynamic system. State of the art models are
becoming increasingly sophisticated in an attempt to accurately model coastal morphology (Lesser et al.
(2004)) but in practice these models suffer from uncertainity in their initial conditions and parameters.
Even with perfect initial data, inaccurate representation of model parameters will lead to the growth
of model error and therefore affect the ability of our model to accurately predict the true system state
(Ruessink (2005)). A key question in model development is how to estimate these parameters a priori.
Generally, parameters are determined theoretically or by adhoc calibration of the model against obser-
vations. Various other methods have been developed including downhill simplex optimization (Hill et al.
(2003)), genetic algorithm (Knaapen and Hulscher (2003)), and probabilistic approaches (Vrugt et al.
(2005), Wüst (2004)). An alternative is to use data assimilation.

While data assimilation has been used in atmospheric and oceanic prediction for some years, it’s ap-
plication within the context of coastal morphodynamic modelling is relatively recent. In a precursor to
the current work, Scott and Mason (2007) explored the use of data assimilation for state estimation in
estuarine morphodynamic modelling using Morecambe Bay as a study site. A two dimensional depth
averaged (2DH) decoupled morphodynamic model of the bay was enhanced by integrating waterline ob-
servations derived from SAR (Synthetic Aperture Radar) satellite images (Mason et al. (2001)) using a
simple optimal interpolation (OI) assimilation scheme. Despite the known deficiencies of the OI algorithm
(see e.g. Lorenc (1981)), the method was shown to improve the ability of the model to predict large scale
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changes in bathymetry over a three year period. In an unrelated study, van Dongeren et al. (2008) used
a least squares estimator to assimilate multiple, remotely-sensed information sources into the Delft 3D
modelling system. This system did not take account of spatial correlations between model variables and
thus only updated model variables where there were co-located observations. Nevertheless, the system
showed good skill in estimating the nearshore subtidal bathymetry when applied to two data-rich test
sites.

The current work is focused on using data assimilation to produce improved morphodynamic model
parameter estimates. This can be achieved through state augmentation. State augmentation is a concep-
tually straightforward technique that allows us to estimate and update uncertain model parameters jointly
with the model state variables as part of the assimilation process (Jazwinski (1970)). The approach has
previously been used in the context of model error or bias estimation (See e.g. Bell et al. (2004), Griffith
and Nichols (1996), Griffith and Nichols (2000), Martin et al. (2002), Dee (2005)) and more recently for
parameter estimation in biogeochemical models (Trudinger et al. (2008)).

This report builds upon the recent work described in Smith et al. (2008) and Smith et al. (2009) in
which the state augmentation method was combined with a three dimensional variational data assimilation
(3D Var) scheme and successfullly used to estimate the parameter in an idealised 1D linear model of bed-
form propagation. A key issue that the previous study highlighted is the importance of the correct
specification of the cross covariances between the background state and parameter errors. Conventional
3D Var assumes that the error covariances are stationary; the structure of the background error covariance
matrix is specified at the start of the assimilation and kept fixed throughout. It was found that whilst
this assumption is sufficient for state estimation, it is insufficient for parameter estimation as it does not
provide an adequate representation of these cross-covariances. In order to yield accurate estimates of
the true parameters, it is crucial that the state-parameter cross covariances are given a good a priori
specification.

Updating the background error covariance matrix at every time step is computationally very expen-
sive, and impracticable when the system of interest is of high dimension. To overcome this problem we
have developed a new hybrid data assimilation scheme that gives a flow dependent approximation of the
state-parameter cross covariances without explicitly propagating the full system covariance matrix. Here
we give details of the formulation of our new method and demonstrate its efficacy using a simplified 1D,
two-parameter, non-linear sediment transport model. Although the long term goal is to use data assimila-
tion for parameter estimation in a full morphodynamic assimilation-forecast system applied to some real
study sites, the simple model we have chosen for this work provides a framework within which we can
develop the technique theoretically and allows us to test our ideas without the obfuscating complexities
of a more realistic model. Our results confirm that data assimilation can be used to accurately estimate
uncertain model parameters and suggest that the technique of state augmentation could indeed be a use-
ful tool in identifying uncertain morphodynamic model parameters. We believe that the methodology we
present has the potential to be transferred not only to larger, more realistic morphodynamic models but
also other more general dynamical system models.

This report is organised as follows. In section 2 we explain state augmentation and introduce the
augmented system model. In section 3 we give an overview of the 3D Var and the Kalman filter algorithms
upon which our new hybrid scheme is based. In section 4 we discuss some of the issues associated with the
practical implementation of the state augmentation technique. In section 5 we focus on the specification of
the background error covariances and give details of the formulation of our hybrid method. We introduce
our simple 1D test model in section 6 and use the results of section 5 to derive estimates for the state-
parameter cross covariances in this specific case. The experimental design is described in section 7 followed
by the main results. Finally, in section 8 we summarise the conclusions from this work.

2 Data assimilation and state augmentation

The data assimilation methods we present in this section are relevant in many contexts so we describe
them for a general system model. The simple model that we have been using to investigate the efficacy of
our new scheme will be introduced later in section 6. Our notation is similar to that of Ide et al. (1997).
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2.1 Non-linear model system equations

We consider the discrete non-linear time invariant dynamical system model

zk+1 = f(zk,pk) + εk k = 0, 1, . . . , N − 1, (2.1)

where the vector zk ∈ R
m is known as the state vector and represents the model state at time tk, f is a

non-linear operator describing the evolution of the state from time tk to tk+1 and pk ∈ R
q is a vector of

(uncertain) model parameters. Later in this paper we consider the case where the model state vector z is
a 1D vector representing bathymetry or bed height and the operator f represents the equations describing
the evolution of the bed-form over time.

We suppose that we have a set of r observations to assimilate and that these are related to the model
state by the equations

yk = h(zk) + δk, k = 0, 1, . . . , N − 1. (2.2)

Here yk ∈ R
r is a vector of r observations to assimilate at time tk and h : R

m −→ R
r is a nonlinear

observation operator that maps from model to observation space. The vector δk ∈ R
r represents the

observation errors and is commonly interpreted as a white noise sequence (Lewis et al. (2006)). If we have
direct measurements but at points that do not coincide with the model grid, h is simply an interpolation
operator that interpolates the model variables from the model grid to the observation locations. Often, the
model variables we wish to analyse cannot be observed directly and instead we have observations of another
measurable quantity. In this case h will also include transformations based on physical relationships that
convert the model variables to the observations.

We also suppose that we have a background state zb
0 ∈ R

m, with error εb
0 ∈ R

m, that represents an a
priori estimate of the true initial system state z0. This is a best guess estimate obtained (for example)
from a previous assimilation run or a recent bathymetric survey.

The aim of data assimilation is to combine the measured observations y with the model predictions
zb in order to derive an updated model state that most accurately describes the true state of the system
zt. This optimal estimate is called the analysis and is denoted za.

2.2 State augmentation

Data assimilation is most commonly used for ‘state estimation’; estimating model variables whilst keeping
the model parameters fixed. However, by employing the technique of state augmentation (also known as
joint estimation), it is also possible to use data assimilation to estimate uncertain model parameters.

In theory state augmentation can be applied with any of the standard data assimilation methods. The
model state vector is augmented with a vector containing the parameters we wish to estimate, the equations
governing the evolution of the model state are combined with the equations describing the evolution of
these parameters and the chosen assimilation algorithm is simply applied to this new augmented system
in the usual way. Navon (1997) and Evensen et al. (1998) review the use of the technique in the context
of 4D Var. Yang and Hamrick (2003) use a related scheme to recover parameters for cohesive sediment
modelling. State augmentation has also been applied with the Kalman filter; Martin (2000) uses the
method for model bias estimation and Trudinger et al. (2008) combine the technique with the extended
and ensemble Kalman filters for parameter estimation in biogeochemical models.

2.2.1 The augmented system

The model (2.1) depends on parameters whose values are imprecisely known. Sediment transport models,
for example, are typically based on empirical formulae that use various parameterizations to characterise
the physical properties of the sediment flux. We use the vector p ∈ R

q to represent these parameters,
where q is the number of unknowns. We assume that they are time-invariant, that is, they are not altered
by the forecast model from one time step to the next. The parameter vector p is therefore constant and
the model for the evolution of the parameters can be written as

pk+1 = pk. (2.3)

Combining (2.3) with the model for the evolution of the state (2.1) we can write the equivalent augmented
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system model as
wk+1 = f̃(wk), (2.4)

where

w =

(
z

p

)
∈ R

m+q, (2.5)

is the augmented state vector, and

f̃(wk) =

(
f(zk,pk)

pk

)
∈ R

m+q. (2.6)

We rewrite the equation for the observations (2.2) in terms of the augmented state vector as

yk = h̃(wk) + δk, (2.7)

where h̃ : R
m+q −→ R

r, and

h̃(w) = h̃

(
z

p

)
= h(z). (2.8)

Our aim is now to combine the observations y with the augmented model predictions wb to produce
an analysis state wa that most accurately describes the true augmented system state wt. Note that our
initial background state wb

0 ∈ R
m+q, must now include prior estimates of both the initial system state z0

and parameters p0. In addition to the updated state estimate, the analysis wa will also include updated
estimates of the model parameters.

3 Data assimilation methods

A wide variety of data assimilation schemes exist (e.g. Kalnay (2003), Lewis et al. (2006)). In this study
we combine the methods of three dimensional variational data assimilation (3D Var) and the Kalman
filter to produce a new hybrid scheme. Sections (3.1) and (3.2) give a brief overview of these two methods.
Although we discuss their formulation specifically in terms of our augmented system we note that both
schemes were orginally developed for basic state estimation. The equations are equivalent can be derived
by simply omitting the parameter vector from our descriptions.

3.1 Three dimensional variational assimilation

The 3D Var method is so called because it resolves the three spatial dimensions but does not account
for the fourth dimension - time. Instead 3D Var schemes are designed to produce an analysis at a single
time. Typically, in applications such as NWP, observations are not taken simultaneously but are collected
across a given time window. 3D Var schemes assume that the state does not evolve significantly within
this period and treats all observations as if they had been taken at the same time and assimilating them
simultaneously. The analysis time is usually taken as the midpoint of the observation time window. If
a 3D Var scheme is applied cyclically (as is done in this work) it can be regarded as a sequential data
assimilation method. With sequential assimilation the model is evolved one step at a time; each time a
new set of observations becomes available a new analysis is produced giving an updated estimate of the
current system state. The model is then forecast forward to the time of the next observations, using the
analysis as the initial state, and the assimilation process is repeated.

The 3D Var method (e.g. Courtier et al. (1998)) is based on a maximum a posteriori estimate approach
and derives the analysis by seeking a state that minimises a cost function measuring the misfit between
the model state w and the background state wb and the observations y,

J(w) = (w − wb)TB̃−1(w − wb) + (y − h̃(w))TR−1(y − h̃(w)). (3.1)
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The matrices B̃ ∈ R
(m+q)×(m+q) and R ∈ R

r×r are the covariance matrices of the background and
observation errors. If we assume that these errors are unbiased, we can define

B̃ = E
(
εb ε

T
b

)
and R = E

(
δ δ

T
)
, (3.2)

where εb = wb − wt and δ = y − h̃(wt).

These matrices represent the uncertainties of the background and observations and determine the rel-
ative weighting of wb and y in the analysis. If it is assumed that the background errors are small relative
to the observation errors then the analysis will be close to the background state. Conversely, if it is
assumed that the background errors are relatively large the analysis will lie closer to the observations.

The analysis wa is found using the gradient of the cost function with respect to w. The 3D Var method
does this numerically using a gradient descent algorithm to iterate to the minimising solution (Gill et al.
(1981)).

The crucial difference between standard 3D Var and other schemes such as 4D Var and the Kalman filter
is that the error covariance matrices are not evolved (implicitly or explicitly) by the 3D Var algorithm.
The background error covariance matrix has a fundamental impact on the quality of the analysis. Its
prescription is therefore generally considered to be one of the most difficult and important parts in the
construction of a data assimilation scheme. The 3D Var method approximates this matrix once at the start
of the assimilation window and then holds it fixed throughout, as if the forecast errors were statistically
stationary. It is therefore vital that it is given a good a priori specification.

3D Var is a robust and well established method that has many advantages, such as ease of implementa-
tion (no model adjoints required); computational robustness (given reasonably specified covariances) and
computational efficiency.

3.2 The Kalman filter

The Kalman filter is also a sequential method. It was developed by Kalman (1960) and Kalman and Bucy
(1961) and initially used in engineering applications. For a linear system, the Kalman filter algorithm
produces an analysis that is (given the available observations and under certain statistical assumptions)
statistically optimal in the sense that it the minimum mean square error, or minimum variance, estimate
(Barnett and Cameron (1990), Jazwinski (1970)).

The main distinctions between the Kalman filter and 3D Var is that the error covariances are evolved
explicitly according to the model dynamics and the analysis is calculated directly. Instead of assuming that
the background error covariance matrix is fixed, the Kalman filter forecasts B̃ forward, using knowledge
of the quality of the current analysis to specify the covariances for the next assimilation step. This allows
information from all previously assimilated observations to be taken into account, giving much greater
observational impact.

Below we present the Kalman filter algorithm for a discrete linear time-invariant model. We are
assuming a perfect model (i.e. zero model error) but note that this is not a necessary assumption since
the Kalman filter does allow for the inclusion of random model error (see for example, Martin et al.
(1999)). Notation is as above except: the background state vector wb is replaced by the forecast vector
wf to denote the fact that the background is now a forecast; the background error covariance matrix B̃

is replaced by Pf ; and we introduce a new matrix Pa representing the analysis error covariance.

3.2.1 The Kalman filter predict and update equations

For a perfect, discrete linear time invariant dynamical system model

wk+1 = Fwk k = 0, 1, . . . , N − 1,

with observations linearly related to the state by the equations

yk = H̃kzk + δk. (3.3)

where F is a constant, non-singular matrix describing the dynamic evolution of the state from time tk to
time tk+1 and H̃k ∈ R

r×(m+q),

5



the Kalman filter consists of the following steps:

State forecast:
w

f
k+1 = Fwa

k (3.4)

Error covariance forecast:
P

f
k+1 = FPa

kF
T (3.5)

Kalman gain:
K̃k+1 = P

f
k+1H̃

T
k+1(H̃k+1P

f
k+1H̃

T
k+1 + Rk+1)

−1 (3.6)

Analysis:
wa

k+1 = w
f
k+1 + K̃k+1(yk+1 − H̃k+1w

f
k+1) (3.7)

Analysis error covariance:

Pa
k+1 = (I − K̃k+1H̃k+1)P

f
k+1(I − K̃k+1H̃k+1)

T + K̃k+1RK̃T
k+1. (3.8)

If the Kalman gain K̃ has been computed exactly this reduces to

Pa
k+1 = (I − K̃k+1H̃k+1)P

f
k+1. (3.9)

We note that the optimality of the Kalman filter solution depends on the assumptions underlying the
equations being accurate. If they do not hold then this quality will be lost.

3.3 The Extended Kalman Filter

The Kalman filter theory can be generalised for the case where the system model and/ or observation
operator are non-linear by linearising around a background state. This gives the extended Kalman filter
(EKF) (Gelb (1974), Jazwinski (1970)). The steps of the EKF algorithm are the same as for the stan-
dard Kalman filter except that the state forecast (3.4) is made using the full non-linear model and the
matrices F and H̃k in equations (3.5) to (3.9) are replaced by the tangent linear model of the non-linear
model forecast operator f̃ and (in the case of indirect observations) the tangent linear of the non-linear
observation operator h̃k.

To summarise, we have

State forecast:
w

f
k+1 = f̃(wa

k) (3.10)

Error covariance forecast:
P

f
k+1 = FkP

a
kF

T
k , (3.11)

where

Fk =
∂ f̃

∂w

∣∣∣∣∣
wa

k

=

(
∂f(z,p)

∂z

∂f(z,p)
∂p

0 I

)∣∣∣∣∣
za

k
,pa

k

(3.12)

is the Jacobian of the augmented system forecast model evaluated at the current analysis state wa
k (see

appendix A).
Although the approximations made by the EKF make the optimisation problem easier to solve they do

so at the expense of the optimality of the solution. The optimal analysis property of the standard linear
Kalman filter no longer holds and the actual analysis error may differ considerably from that implied by
equation (3.8).
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The Kalman filter and EKF methods are compuationally much costlier than 3D Var; the updating of the
error covariance matrices requires the equivalent of O(m) model integrations, where m is dimension of the
model state, plus adjoint and tangent linear models must be developed. If m is large the scheme becomes
prohibitively expensive. Implementation of the full Kalman filter equations is therefore impracticable for
systems of high dimension and in practice Pf is kept constant or a much simpler updating is performed.
However, the equations provide a useful starting point for the design and development of approximate
algorithms, examples of which include the Ensemble Kalman filter (EnKF) (Evensen (1994), Houtekamer
and Mitchell (2005)) and the reduced rank Kalman filter (Fisher (1998)).

4 State augmentation and parameter estimation

Although the technique of state augmentation is straightforward in theory, practical implementation of
the approach relies strongly on the relationships between the parameters and state components being well
defined and assumes that we have sufficient knowledge to reliably describe them. Since it is not possible
to observe the parameters directly, the parameter updates are only influenced by the observations through
the cross covariances that describe the correlations between the error of the model state estimate and the
error of the model parameter estimate (Martin (2000), Smith et al. (2009)).

In basic state estimation the background error covariances govern how information is spread throughout
the model domain, passing information from observed to unobserved regions and smoothing data if there
is a mismatch between the resolution of the model and the density of the observations. For the augmented
system, it is the state-parameter cross covariances, given by the off diagonal blocks of the augmented
background error covariance matrix B̃, that pass information from the observed variables to update/
improve the estimates of the unobserved parameters. This is a crucial point; if the state-parameter cross
covariances are inappropriately modelled the quality of the parameter estimates will be affected. Since the
correct error statistics of the system are generally unknown we have to approximate them in some manner.
Constructing a realistic representation of the background error covariances is one of the key challenges of
data assimilation.

Initial work with a simple 1D linear model (Smith et al. (2008), Smith et al. (2009)) indicated that
whilst the assumption of static covariances made by the 3D Var algorithm is sufficient for state estimation
it is insufficient for parameter estimation as it does not provide an adequate representation of the state-
parameter cross covariances required by the augmented system. In order to update the parameters these
covariances need to be flow dependent. However, as already noted, using methods such as the Kalman filter
equations to explicitly propagate the covariances is computationally expensive and requires adjoint and
tangent linear models. Here we propose a hybrid approach by combining the 3D Var and EKF techniques.
A simplified version of the extended Kalman filter forecast step is used to estimate the state-parameter
forecast error cross covariances and this is then combined with an empirical, static approximation of the
state background error covariances. We give details of the formulation of this new approach in the next
section.

5 Background (forecast) error covariances

We can partition the forecast error covariance matrix (3.11) as follows

P
f
k =

(
Pf

zzk
Pf

zp
k

(Pf
zp

k
)T Pf

pp
k

)
. (5.1)

Here Pf
zzk

∈ R
m×m is the forecast error covariance matrix for the state vector zk at time tk, Pf

pp
k
∈ R

q×q

is the covariance matrix of the errors in the parameter vector pk and Pf
zp

k
∈ R

m×q is the covariance
matrix for the cross correlations between the forecast errors in the state and parameter vectors.

5.1 State background (forecast) error covariance

The standard approach in 3D Var is to assume that the background error covariances are homogeneous and
isotropic. The state background error covariance matrix, which we will denote Bzz, is then equal to the
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product of the estimated error variance and a correlation matrix defined using a pre-specified correlation
function. Here we use the correlation function (Rodgers (2000))

bij = σ2
bρ|i−j|, i, j = 1, . . . ,m, (5.2)

where element bij defines the covariance between components i and j of the state background error vector
εz = zb−zt. Here ρ = exp(−∆x/L) where ∆x is the model grid spacing and L is a correlation length scale
that is adjusted empirically, and σ2

b is the state background error variance. The reason for choosing this
covariance matrix is that its inverse can be calculated explicitly and has a particularly simple tridiagonal
form (Smith et al. (2008)).

5.2 State-parameter cross covariance

Taking the EKF equations as a guide and considering the form of the error covariance forecast for a single
step of the filter we construct a simplified method for propagating the state-parameter cross covariances.

To simplify, we assume that the observations are linearly related to the model state and taken at fixed
locations, so that

H̃k = H̃ ≡ (H 0) (5.3)

for all k, where H ∈ R
r×m.

Similarly for the observation error covariance matrix we set

Rk = R. (5.4)

where R is a constant diagonal matrix.

The Kalman gain (3.6) can now be written as

K̃k =

(
Pf

zzk

(Pf
zp

k
)T

)
HT (HPf

zzk
HT + R)−1

def
=

(
Kzk

Kpk

)
, (5.5)

where Kzk
∈ R

m×r and Kpk
∈ R

q×r.

Suppose we start at time tk with analysis error covariance matrix

Pa
k =

(
Pa

zzk
Pa

zp
k

(Pa
zp

k
)T Pa

pp
k

)
∈ R

(m+q)×(m+q), (5.6)

where Pa
zz ∈ R

m×m, Pa
zp ∈ R

m×q and Pa
pp ∈ R

q×q.

If we denote

Mk =
∂f(z,p)

∂z

∣∣∣∣
za

k
,pa

k

and Nk =
∂f(z,p)

∂p

∣∣∣∣
za

k
,pa

k

, (5.7)

where Mk ∈ R
m×m and Nk ∈ R

m×q, we can re-write (3.12) as

Fk =

(
Mk Nk

0 I

)
. (5.8)
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The error covariance forecast (3.11) is then given by

P
f
k+1 =

(
Mk Nk

0 I

)(
Pa

zzk
Pa

zp
k

(Pa
zp

k
)T Pa

pp
k

)(
MT

k 0

NT
k I

)

=

(
MkP

a
zzk

+ Nk(Pa
zp

k
)T MkP

a
zp

k
+ NkP

a
pp

k

(Pa
zp

k
)T Pa

pp
k

)(
MT

k 0

NT
k I

)

=

(
MkP

a
zzk

MT
k + Nk(Pa

zp
k
)T MT

k + MkP
a
zp

k
NT

k + NkP
a
pp

k
NT

k MkP
a
zp

k
+ NkP

a
pp

k

(Pa
zp

k
)T MT

k + Pa
pp

k
NT

k Pa
pp

k

)

(5.9)

We do not want to recalculate (5.9) at every time step so we make some simplifying assumptions. We
substitute the state forecast error covariance matrix Pf

zzk
with our fixed approximation (5.2),

Pf
zzk

= Bzz for all k. (5.10)

We assume that the parameter error covariance matrix is also fixed

Pf
pp

k
= Bpp for all k, (5.11)

and we assume that the state-parameter cross covariances are initially zero. This leads us to propose the
following approximation for the augmented forecast error covariance matrix

B̃k+1 =

(
Bzz NkBpp

BppN
T
k Bpp

)
. (5.12)

In other words, all elements of the background error covariance matrix (5.12) are kept fixed except the
cross covariance terms

Bzp
k

= NkBpp, (5.13)

which are updated at each new analysis time by recalculating the matrix Nk, where Nk is the Jacobian of
the forecast model with respect to the parameters, as defined in equation (5.7). Explicitly calculating the
Jacobian of complex functions can be a difficult task, requiring complicated derivatives if done analytically
or being computationally costly if done numerically. We continue in our pursuit of a simplistic approach
and use finite differences to approximate Nk. Further details of this calculation are given in section 6.2
for our specific model.

The analysis wa
k is found by substituting the matrix (5.12) into the 3D Var cost function (3.1) and

minimising. When the observation operator h is linear the minimum of (5.12) can be written explicitly as

wa
k = wb

k + K̃k(yk − H̃wb
k), (5.14)

where

K̃k = B̃kH̃
T (H̃B̃kH̃

T + R)−1

def
=

(
Kzk

Kpk

)
. (5.15)

Although in practice the cost function (3.1) is minimised numerically, the analytical form for the solution
(5.14) is useful for helping to understand the role of the state-parameter cross-covariances.

Separating (5.14) into state and parameter parts gives

za
k = zb

k + Kzk
(yk − Hzb

k) (5.16)

pa
k = pb

k + Kpk
(yk − Hzb

k) (5.17)
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The gain matrices (5.15) are given by

Kzk
= BzzH

T (HBzzH
T + R)−1 (5.18)

Kpk
= BppN

T
k HT (HBzzH

T + R)−1 (5.19)

Note that since we are assuming that Bzz and H are constant matrices, the state gain Kzk
= Kz is fixed

for all time. The analysis equation for the state vector (5.16) is therefore the same as would be derived if
the 3D Var method was being used for state estimation only.

The innovation vector (yk −Hzb
k) is exactly the same in equations (5.16) and (5.17), as is the expres-

sion inside the inverse for the state and parameter gain matrices (5.18) and (5.19). Both the state and
parameters are updated according to the discrepancies between the observations and the model predicted
state, the difference lies in exactly how this information is used. This is determined by our choice of Bzz

and Bzp. We have already stated that, in order to reliably estimate the model parameters, the matrix
Bzp must adequately describe the relationship between the errors in the state estimate and the errors
in the parameters. Our proposed approximation to Bzp (5.13) does this by combining the relationship
between the parameters (described by Bpp) with the way changes in the parameters effect the forecast
model (described by Nk).

6 The model

We investigate the application of our hybrid scheme to the problem of morphodynamic model parameter
estimation using a simple 1D non-linear model of bed-form propagation. This model has two uncertain
parameters that need to be set and is based on the 1D sediment conservation equation (Soulsby (1997)).

6.1 The sediment conservation equation

The sediment conservation equation can be used to describe changes in bathymetry due to flow induced
sediment transport. In one dimension it is written as

∂z

∂t
= −

(
1

1 − ε

)
∂q

∂x
, (6.1)

in the x direction, where z(x, t) is the bathymetry, t is the time, q is the total (suspended and bedload)
sediment transport rate, and ε is the sediment porosity. If ∂z

∂t
is positive accretion is occurring, and if ∂z

∂t

is negative erosion is occurring.

The sediment transport rate q is calculated using a power law equation (Grass (1981))

q = Aun (6.2)

where u = u(x, t) is the current in the x direction and A and n are parameters whose values need to be set.
The parameter A is a dimensional constant whose value depends on various properties of the sediment
and water, such as flow depth and velocity range, sediment grain size and kinematic viscosity. van Rijn
(1993) gives a formula that can be used to obtain an approximation to A for a given set of sediment and
water properties. The derivation of the parameter n is less clear. It is usually set by fitting to field data
and generally takes a value in the range 1 ≤ n ≤ 4.

The power law expression (6.2) is one of the most basic sediment transport flux formulae and is a very
simplified version of a complex set of formulae derived by van Rijn (1993). Numerous alternative formulae
have been proposed, many of which are presented in Soulsby (1997). These are typically based on a
mixture of fundamental physics and empirical results and the choice of which to use generally depends on
the particular situation being modelled. In Pinto et al. (2006) the strengths, weaknesses and applicability
of five popular formulae are assessed, references to other comparision studies are also given.

10



x

ba
th

ym
et

ry
 (

z)

time

t0 t1 t2 t3

Figure 6.1: Solutions to the non-linear advection equation for Gaussian initial

To solve (6.1) we re-write it in the quasi-linear form

∂z

∂t
+ a(z, q)

∂z

∂x
= 0, (6.3)

where

a(z, q) =

(
1

1 − ε

)
∂q

∂z
. (6.4)

The coefficient a(z, q) is the advection velocity or bed celerity. It is a non-linear function, depending on
the bathymetry z both directly and through the sediment transport rate q.

To close the problem, we assume that the water height h and flux F are constant in space and set

F = u(h − z). (6.5)

Using (6.5) we can re-write (6.2) as

q = A

(
F

h − z

)n

. (6.6)

Substituting (6.6) into (6.4) gives

a(z) =

(
nAFn

1 − ε

)
(h − z)−(n+1). (6.7)

The bed celerity is now a function of the bed height z only. We assume that the water height h, flux F
and sediment porosity ε are known constant values but that the values of the parameters A and n are
uncertain.

As discussed in Smith et al. (2007) we can use the method of characteristics to derive an analytic
solution to the advection form of the sediment conservation equation (6.3). Figure 6.1 illustrates the
evolution of the solution for a smooth, initially symmetric, isolated bed-form generated using Gaussian
initial data. As time increases the bed propagates across the model domain with velocity (6.7). Since
a(z) is non-linear the bed profile becomes distorted and eventually overturns. Whilst this type of solution
would make sense in some contexts (such as a breaking wave) we wouldn’t expect it here. In real life, this
overturning is prevented by natural phenomena such as bed-slope effects (Soulsby (1997)). We create a
more physically realistic solution that remains smooth and single valued by adding a small diffusive term
to the right hand side of (6.3). Our model then becomes an advection-diffusion equation. We calculate the
solution numerically using a combined semi-Lagrangian Crank-Nicolson scheme based on that presented
in Spiegelman and Katz (2006).
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Since we are assuming that the parameters are constant, the evolution equations for A and n are taken
as

dA

dt
= 0 and

dn

dt
= 0. (6.8)

Equations (6.8) together with the bed updating equation (6.3) constitute our augmented system model
(2.4).

We use this simple system to test our hybrid approach to modelling the background error covariances.
We investigate whether, given an uncertain initial bathymetry and approximated values of A and n, and
using synthetic observations taken from the true solution, our proposed method can successfully deliver
both an accurate estimate of the current bathymetry and accurate estimates of the uncertain parameters
thereby improving the predictive ability of our model.

6.2 State-parameter cross covariances for the simple non-linear model

Before we can implement our augmented scheme we need to construct the state-parameter cross covariance
matrix Bzp as outlined in section 5.2.

We include the uncertain model parameters A and n in the parameter vector pk ∈ R
2

pk =

(
Ak

nk

)
, (6.9)

where Ak and nk are the model estimated values of parameters A and n at time tk.

This is added to a vector zk ∈ R
m representing the bathymetry at discrete points to give the augmented

state vector (2.5).

Our approximation of the state-parameter cross covariances (5.13) requires an approximation of the
matrix Nk, the Jacobian of the forecast model with respect to pk. For our two parameter model this is
defined as

Nk =
(

∂f(z,p)
∂Ak

∂f(z,p)
∂nk

)∣∣∣
za

k
,pa

k

. (6.10)

Writing the covariance matrix of the errors in the parameter vector Bpp as

Bpp =

(
σ2

A σAn

σnA σ2
n

)
, (6.11)

where σ2
A = E(ε2

A) and σ2
n = E(ε2

n) are the error variances for A and n respectively and σAn = σnA =
E(εAεn) is the covariance between the errors in A and n. The state-parameter cross covariance matrix
(5.13) is given by

Bzp
k

= NkBpp

=
(

∂f
∂Ak

∂f
∂nk

)( σ2
A σAn

σAn σ2
n

)

=
(

σ2
A

∂f
∂Ak

+ σAn
∂f

∂nk

σ2
n

∂f
∂nk

+ σAn
∂f

∂Ak

)
(6.12)

Rather than explicitly calculate the Jacobian matrix (6.10) at each new assimilation time tk, we approxi-
mate using simple finite differences. Defining

zb
k+1 = f(za

k,pa
k) and ẑb

k+1 = f(za
k, p̂a

k) (6.13)

we approximate ∂f
∂A

and ∂f
∂n

as follows,

∂f(za
k,pa

k)

∂A
≈

ẑb
k+1 − zb

k+1

δA
(6.14)
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Figure 6.2: Approximating the matrix Nk: (a) ∂f
∂A

, and (b) ∂f
∂n

at t = 0 for an example assimilation run
with A0 = 0.02ms−1, δA = 10−5, n0 = 2.4, δn = 10−2.

where

p̂a
k =

(
Aa

k + δA
na

k

)
, (6.15)

pa
k is the current parameter estimate and δA is a small perturbation to the current approximation of the

parameter A.

Similarly
∂f

∂n

∣∣∣∣
za

k
,pa

k

≈
ẑb

k+1 − zb
k+1

δn
(6.16)

where

ẑb
k+1 = f(za

k, p̂a
k) and p̂a

k =

(
Aa

k

na
k + δn

)
,

and δn is a small perturbation to the current approximation of the parameter n.

Figures 6.2(a) and (b) show ∂f
∂A

and ∂f
∂n

calculated at for an example assimilation run. The model is
run forward over a single time step; once using the current parameter estimate (a) Aa

k or (b) na
k and a

second time using the perturbed value Aa
k + δA (or na

k + δn). The difference between the two forecasts
divided by the perturbation δA (or δn) is then calculated yielding the approximation (6.14) or (6.16) .

The effect on the model of a change in A or n is similar in both cases. As can be seen from equation
(6.6) A and n affect the magnitude of the sediment transport rate and in turn the bed celerity (6.7). It
is a feature of our choice of sediment transport flux formula (6.6) that the model is more sensitive to the
parameter A than it is to n. Incorrect estimation of either parameter produces a phase error but the
divergence of the model from the true solution is more rapid when the error is in A. If the current u in
(6.2) is close or equal to 1 ms−1, a change in n will have little or no effect on the model.

A further problem is that of equifinality, that is, there exists a range of different parameter combinations
that produce similar model behaviour (Navon (1997), Sorooshian and Gupta (1995)). This can lead to
estimates that are, strictly speaking, ‘incorrect’ but that are in practice sufficiently accurate when used to
forecast over short time periods. Our early work has found that if the state-parameter cross covariances
are poorly specified, the tendency of the model is to compensate for errors in the value of n through A,
i.e. an underestimated n value is offset by an overestimate of parameter A and vice versa. These issues
will be discussed further in the following results section.

7 Results

We test our augmented scheme by running a series of identical twin experiments. We assume that our
numerical model is perfect and generate a ‘true’ solution by running the model from a Gaussian initial
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state with set parameter values A = 0.002 ms−1 and n = 3.4. This solution is used to provide pseudo-
observations for the data assimilation and also to evaluate the performance of our scheme. The model is
then re-run with the data assimilation, starting from a perturbed initial bathymetry and with incorrect
starting estimates of parameters A and n.

The assimilation process was carried out sequentially, with a new set of observations being assimilated
every hour. The model was sampled on a regular grid with a spacing of ∆x = 1.0 m and the cost function
was minimised iteratively using a quasi-Newton descent algorithm (Gill et al. (1981)). Observations were
generated from the true solution at intervals of 25∆x. Initially, they are assumed to be perfect and
without any added noise (i.e. y = h(zt)); we therefore weight in their favour. In the examples shown the
observation and state background error variances are set at a ratio of 1:5. The state background error
covariance matrix Bzz is given by (5.2) and is kept fixed, as is the parameter background error covariance
matrix Bpp. The state-parameter cross covariance matrix Bzp is recalculated at each new assimilation
time as described in section 6.2. At the end of each assimilation cycle the model parameters are updated
and the state analysis is integrated forward using the model (with the new parameter values) to become
the background state for the next analysis time.

7.1 Experiments

Figures 7.1 and 7.2 illustrate the impact incorrect parameter estimates can have on the modelled bathymetry
by comparing model runs performed with and without data assimilation over a 24 hour period. In these
examples, the parameter A is initially over estimated (A0 = 0.02ms−1) and n under estimated (n0 = 2.4).
With no data assimilation (figure 7.1), the effect on the predictive ability of the model is marked/ consid-
erable. The model bathymetry (dashed blue line) rapidly diverges away from the true bathymetry (solid
red line). After 4 hours the model bathymetry has travelled further than the true bathymetry in 24 hours,
and after 24 hours it has moved beyond the model domain.

Re-running the model with the augmented data assimilation scheme greatly improves the model pre-
dictions as is illustrated in figure 7.2. The dotted red line represents the true bathymetry, observations
are given by circles, the background state by the dashed blue line and the analysis by the solid green line.
At 24 hours it is almost impossible to distinguish between the predicted model bathymetry and the true
bathymetry.

The corresponding parameter A and n updates are shown in figures 7.3 (a) and (b). Figures 7.4 (a)
and (b) show the parameter updating for a second test case in which the situation is reversed so that A
is underestimated (A0 = 0.0) and n is overestimated (n0 = 4.4). In both instances, the scheme retrieves
the true A and n values to a high level of acccuracy. The convergence of the estimates is much slower
in the second case. As we discussed in section 6.2, our model is much more sensitive to the choice of
parameter A than it is to the parameter n. In this example, the low A estimate and means that the
model predicted bathymetry does not diverge away from the true bathymety as quickly as when A is
overestimated. Because the initial background bathymetry is relatively well defined/ prescribed, the time
between successive assimilations is short and we are weighting towards the observations, the difference
between the modelled and true bathymetry remains small. The observation minus background increments
are therefore small, leading to small analysis increments and hence slower updating. In other words, the
state estimation alone is good enough to compensate for the incorrect parameters over short timescales.
We found that the convergence of the estimates could be improved by inflating the error variances (figure
7.5).

In these examples we have chosen A and n so that the initial errors εA = Ab
0−At and εn = nb

0−nt are
of opposite sign. When A is over (under) estimated the increments in A need to be negative (positive),
and the same applies for n. Both the state and parameters are updated according to the observations,
exactly how the information in these observations is used depends on the background error covariance
matrices. Specifically, the magnitude and direction of the parameter updates will depend on the state-
parameter cross covariances BzA and Bzn and these in turn depend on the error variances σ2

A, σ2
n and

cross covariance σAn. To ensure that the parameters are updated correctly, our choice of σ2
A, σ2

n and σAn

needs to be consistent with the true error statistics.
From section 6.2, figure 6.2, we see that ∂f

∂A
and ∂f

∂n
are always the same sign. Using definition (6.12),

if the parameter cross covariance σAn ≥ 0 then the elements of BzA and Bzn will also always have the
same sign and so A and n will both be updated in the same direction. When the errors in A and n are in
opposite directions we need BzA and Bzn to take opposite signs. We can achieve this by setting σAn < 0
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and choosing a σ2
A and σ2

n that take account of the relative magnitude of the errors in the parameter
estimates.

Figures 7.6 and 7.7 show the parameter estimates produced when the two test cases described above
were repeated using σAn > 0. The parameters A and n are now both updated in the same direction.
The direction of the increments seems to be dominated by the direction of the error in the A estimate.
This is most likely due to our model being more sensitive to small changes in A than n. The A estimates
converge towards the true value of A but are less accurate than in the previous examples. In both cases,
the scheme completely fails to find the correct n value.

Despite the inability to recover the correct n value, the model is still able to produce accurate predic-
tions of the bathymetry as is illustrated in figure 7.8. The state analyses corresponding to the updates in
figure 7.7 are not shown as they are almost identical to figure 7.8.

7.2 Imperfect observations

Figures 7.9 to 7.14 show the results of a further set of experiments investigating the effect of observational
errors. This was done by adding random noise to the observations. The noise was defined to have a
Gaussian distribution with mean of zero and standard deviation σo, where σ2

o is the observation error
variance. Figures 7.9 and 7.11 show the estimates produced for initial parameter combinations A0 =
0.02 ms−1, n0 = 2.4 and A0 = 0.0 ms−1, n0 = 4.4 with σo = 0.1. This σo value is equivalent to 10% of
maximum bed height and believed to represent a realistic level of measurement error. As we would expect,
when the observations are noisy the resulting analysis and parameter estimates are also noisy. However,
the oscillations in the A and n estimates appear to be approximately centered around their true values. If
we calculate the time average of the current and preceeding estimates at each new assimilation time, as is
shown in figures 7.10 and 7.12, we find that we are actually moving very close to the true A and n values.

In the above experiments, the background and observation error variances were set at a ratio of 5:1.
In order for the maximum amount of information to be extracted from the observations, the weight given
to the observations relative to the background must be correctly specified. The background error correla-
tions play a key role in the filtering of the observational noise. When the observations are noisy, too much
weight given to the observations relative to the background will produce a noisy analysis. We found that
the size of the oscillations could be reduced by increasing the weight given to the background. Figures
7.15 and 7.16 show the parameter estimates obtained using σ2

o = 0.01, σ2
b = 0.02 and σ2

o = 0.01, σ2
b = 0.01

for the case A0 = 0.02 ms−1, n0 = 2.4. The oscillations can be reduced even further by underweighting
the observations, that is, using σo = 0.1 to generate the observation noise but inflating the value of σ2

o in
the assimilation. This is illustrated in figures 7.17 and 7.18 for the combinations σ2

o = 0.02, σ2
b = 0.01 and

σ2
o = 0.05, σ2

b = 0.05 respectively.
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Figure 7.1: Model run with without data assimilation: the solid red line represents the true bathymetry
zt and the dashed blue line represents the predicted model bathymetry zb.
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Figure 7.2: Model run with data assimilation: the dotted red line represents the true bathymetry zt,
observations y are given by circles, the background zb is given by the dashed blue line and the analysis
za is given by the solid green line.
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Figure 7.3: Parameter updates for initial estimates A0 = 0.02ms−1 and n0 = 2.4.
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Figure 7.4: Parameter updates for initial estimates A0 = 0.0 ms−1 and n0 = 4.4.
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Figure 7.5: Parameter updates for initial estimates A0 = 0.0 ms−1 and n0 = 4.4 using inflated error
covariances.
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Figure 7.6: Incorrect parameter cross covariance: parameter updates for initial estimates A0 = 0.02 ms−1

and n0 = 2.4.
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Figure 7.7: Incorrect parameter cross covariance: parameter updates for initial estimates A0 = 0.0 ms−1

and n0 = 4.4.
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Figure 7.8: State analysis corresponding to parameter updates shown in figure 7.6: the dotted red line
represents the true bathymetry zt, observations y are given by circles, the background zb is given by the
dashed blue line and the analysis za is given by the solid green line.
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Figure 7.9: Adding noise to observations: parameter updates for initial estimates A0 = 0.02 ms−1 and
n0 = 2.4, σo = 0.1.

18



0 12 24 36 48 60 72
0

0.005

0.01

0.015

0.02
(a)

t (hours)

A
 a

ve
ra

ge

0 12 24 36 48 60 72
2.2

2.4

2.6

2.8

3

3.2

3.4

(b)

t (hours)

n
 a

ve
ra

g
e

Figure 7.10: Adding noise to observations: averaged parameter updates for initial estimates A0 =
0.02 ms−1 and n0 = 2.4, σo = 0.1.
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Figure 7.11: Adding noise to observations: parameter updates for initial estimates A0 = 0.0 ms−1 and
n0 = 4.4, σo = 0.1.
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Figure 7.12: Adding noise to observations: averaged parameter updates for initial estimates A0 = 0.0ms−1

and n0 = 4.4, σo = 0.1.
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Figure 7.13: Adding noise to observations: parameter updates for initial estimates A0 = 0.02 ms−1 and
n0 = 2.4, σo = 0.2.
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Figure 7.14: Adding noise to observations: averaged parameter updates for initial estimates A0 =
0.02 ms−1 and n0 = 2.4, σo = 0.2.
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Figure 7.15: Increasing weight given to the background state: σ2
o = 0.01, σ2

b = 0.02, parameter updates
for initial estimates A0 = 0.02 ms−1 and n0 = 2.4.
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Figure 7.16: Increasing weight given to the background state: σ2
o = 0.01, σ2

b = 0.01, parameter updates
for initial estimates A0 = 0.02 ms−1 and n0 = 2.4.
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Figure 7.17: Underweighting the observations: true σo = 0.1, prescribed variances σ2
o = 0.02, σ2

b = 0.01,
parameter updates for initial estimates A0 = 0.02 ms−1 and n0 = 2.4.
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Figure 7.18: Underweighting the observations: true σo = 0.1, prescribed variances σ2
o = 0.05, σ2

b = 0.05,
parameter updates for initial estimates A0 = 0.02 ms−1 and n0 = 2.4.
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8 Conclusions

We have been investigating the application of data assimilation techniques to the problem of morphody-
namic model parameter estimation with particular focus on the role of the background error covariance
matrix. This matrix plays an important role in the filtering and spreading of observational data. For pa-
rameter estimation, it is vital that the cross-covariances between the parameters and the state are given a
good a priori specification as it is these covariances that that pass information from the observed variables
to improve the estimates of the unobserved parameters. Our previous work (Smith et al. (2008), Smith
et al. (2009)) found that a flow dependent specification of this matrix is needed for accurate parameter
updating. However, explicitly propagating the error covariances would be computationally expensive and
require the construction of adjoint and tangent linear models. In this report we have proposed a new
hybrid approach. By combining the 3D Var and Kalman filter techniques we have developed a scheme
that provides a flow dependent approximation of the state-parameter cross-covariances but which avoids
the computational complexities associated with implementation of the full Kalman filter method.

This new method has been tested using an idealised, 1D non-linear sediment transport model that has
two uncertain parameters. The results are positive with the scheme able to recover the model parameters
to a good level of accuracy. This has a direct impact on the model; the model becomes a much better
representation of the truth and thus produces more accurate forecasts of the future bathymetry. These
results suggests that there is great potential for the use of data assimilation based morphodynamic model
parameter estimation.

In our model, the number of parameters is small and therefore the increase in the dimension of the
problem caused by the addition of the parameters to the state vector does not have a significant impact
on computational cost. The finite difference calculation used in the approximation of the state-parameter
cross covariance is therefore feasible. This could, however, potentially become an issue if state vector
and/or the number of parameters to be estimated is large.

A particular issue encountered during this work was that, in addition to the state-parameter cross co-
variances being correctly specified, it is also important that that parameter error covariances (as described
by the matrix Bpp) are consistent with the true error statistics. We found that there was a strong cor-
relation between the parameters A and n (caused by the formulation of the model). The values assigned
to the parameter error variances σ2

A and σ2
n and covariance σAn therefore had a significant affect on the

accuracy of the estimates obtained. In particular it was crucial that the sign of σAn was correctly chosen.
This would perhaps be less important for a model whose parameters were less correlated and more easily
identifiable. In practical situations, where the true statistics of the errors are not known, a model sensitiv-
ity analysis could be used to help identify the interdependence of parameters and ascertain whether cross
correlations are needed. In some situations, it may even be prudent to consider a re-parameterisation
of the model equations to improve the identifiability of the parameters. Another possible approach is to
transform the parameters to a set of uncorrelated variables (Sorooshian and Gupta (1995)).

We eventually intend to use data assimilation for parameter estimation in a full morphodynamic
assimilation-forecast system applied to some real coastal study sites. An obvious and useful extension to
the current work would be to confirm our belief that the methodology presented here is transferrable by
testing the approach in a second toy model.

A Tangent Linear Model (TLM)

Definition

If f is a non linear model defined as
zk+1 = f(zk),

then the tangent linear model of f , called F is

δzk+1 = Fkδzk =
∂f(zk)

∂z
δzk
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Tangent Linear of the augmented system model

Starting from an initial state ŵk at time tk we generate a reference state at tk+1 using the model equation
(2.4)

ŵk+1 = f̃(ŵk). (A.1)

We define a perturbation to this state as

δwk+1 = wk+1 − ŵk+1. (A.2)

This perturbation then satisfies
δwk+1 = f̃(wk) − f̃(ŵk). (A.3)

Assuming δwk+1 is small, we can expand (A.3) in a Taylor series about ŵk+1. To first order we have

δwk+1 = f̃(ŵk + δwk) − f̃(ŵk)

= f̃(ŵk) + Fkδwk + . . . − f̃(ŵk)

≈ Fkδwk, (A.4)

where

Fk =
∂ f̃(ŵk)

∂w
, (A.5)

is the Jacobian of the forecast model with respect to w evaluated at ŵk.

Thus we can approximate
f̃k(wk) − f̃k(ŵk) ≈ Fk(wk − ŵk) (A.6)

Note that this approximation is only valid if the perturbations to the model state are small, i.e. small
‖w − ŵk‖2
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