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Abstract

Variational data assimilation �VAR� involves a minimisation of a cost functional

with respect to a set of variables known as control variables� Within numerical

weather prediction �NWP� VAR brings together observations and information from

numerical models representing the atmosphere in a consistent way for a forecast to

be made� It is considered desirable to de�ne a set of control variables which separate

the balanced and unbalanced parts of the �ow� The current set of control variables

used at the UK Met� O�ce represents the balanced control variable in terms of a

streamfunction increment� Although this method is a good approximation to balance

in high Burger regimes� it is not dependent on the Burger number and inadequately

represents the balanced �ow in low Burger regimes where the height increment is

the balanced variable� We consider a new method in which the linearised potential

vorticity increment represents the balanced part of the �ow� The new set of control

variables are dependent on the Burger number and should address the weaknesses

in the current method� We compare the two methods in the context of the shallow

water equations on a hemisphere�

We introduce a general framework to discuss various choices of control variables�

looking at this from a dynamical perspective� In particular we consider various

formulations in which to implement a potential vorticity control variable and propose

a means with which to compare this new method with the current approach by

looking at the divergence tendencies of the unbalanced variables�



Both the current Met O�ce method and the potential�vorticity�based method are

implemented and tested numerically� The current method produces similar results

to the potential vorticity method within high Burger regimes� This is due to the

linearised potential vorticity increment approximating the vorticity in such regimes�

Unlike the current method� however� the potential vorticity method is dependent on

the Burger number and in low Burger regimes includes a substantial contribution

from the height increment� The experiments suggest that the potential�vorticity�

based method may be able to capture the balanced part of the �ow better in low

Burger regimes where the height increment is the balanced variable�
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Chapter �

Introduction

Mankind has attempted to predict the weather for millennia using subjective means�

It is only in the last �� years that independent� objective predictions have been pos�

sible� This is in part due to the increasing power of computers which allow numerical

calculations that would take years to be evaluated by hand to be done within hours

or even minutes� It is also a consequence of great strides in meteorology and in

particular due to the increasing sophistication of numerical models representing of

the atmosphere� the improved understanding of atmospheric and ocean processes

and the development of data assimilation�

Data assimilation involves the bringing together of observations and information

from numerical models in a consistent way� It is used in numerical weather predic�

tion as a means of providing both a representation of the weather and also initial

conditions for atmospheric models to give accurate forecasts �����

There are various di�culties in the application of data assimilation to provide

forecasts� There are both random and systematic errors with real observations as

well as within the numerical models of the atmosphere� The atmosphere� due to its

�



nonlinear behaviour� is increasingly less predictable with time� Within � hrs� the

atmosphere can be accurately approximated by a a linear system� For forecasts of ��

	 days� non�linear interactions are evident and bifurcations in the possible solutions

are much more likely� When we run forecasts of ��	 weeks� the errors propagated

in time are chaotic in nature and we are at the limit of predictability ���� All these

di�culties indicate the need for good data assimilation techniques to be determined

to solve the problem of obtaining good initial conditions�

The general set of equations which describe the evolution of the atmosphere tends

to be in terms of pressure� density� wind� temperature and humidity� Most of these

variables act upon each other in a nonlinear fashion� varying in three�dimensional

space and in time �	��� It is instructive to consider a simpler problem which retains

many of the dynamical properties of the more general problem� We choose the

nonlinear shallow water equations on a rotating sphere for this purpose� This set of

equations describes the atmosphere as a thin layer of incompressible �uid� de�ned

on a two�dimensional surface with varying height and horizontal velocities� It is the

equation set which forms the kernel of many atmospheric models� In Chapter 	 we

derive the shallow water equations from Newton
s Second Law� We do this to show

the limitations inherent with the dynamical system and its revelence to the more

general three�dimensional situation�

The dynamics of the atmosphere is caused by the heating provided by the Sun

and modi�ed by the Earth
s rotation� The atmosphere is continually adjusting itself

towards an equilibrium state� This is never achieved however due to the e�ect

of the rotating Earth which ensures that approximately 	
� of the total energy

remains in the form of potential energy �		�� A consequence of there being so

	



much potential energy present is that the possible motions which the atmosphere

can exhibit are constrained� Large scale features are forced to move slowly with

the quantities involved being in a sense  balanced
 with respect to each other� As

the atmosphere adjusts towards equilibrium� fast waves with short wavelengths are

typically generated� There is little interaction between the fast high frequency waves

and the large slow waves� The fast waves have relatively little energy and are

gradually eliminated through frictional processes� They have little e�ect on the

general �ow� For this reason numerical weather prediction has concerned itself with

the modelling of large scale features as seen on weather maps�

A problem with the data assimilation of the atmosphere is that there are too few

observations to apply in order to provide initial conditions at the required resolution

for an operational forecast� This underdeterminancy is exacerbated by the uneven

spread of observations with very few observations over the oceans� It is eliminated

through using information prior to the moment in which data assimilation is per�

formed� This additional information requires the evaluation of the balanced and

unbalanced parts of the �ow�

The present variables in which data assimilation is performed assumes that the

full rotational part of the wind is balanced from which the remaining balanced

quantities are derived ����� ����� The actual pressure �elds have no bearing on

the balance� This is a good approximation to balance when variations in pressure

contours are relatively small compared to full �eld� However� the approximation is

poorer when the relative pressure variations are larger�

In this thesis� potential vorticity is considered as the variable used in data assim�

ilation to represent the balanced part of the �ow� Potential vorticity is often used

�



as a quantity summarising dynamical information that is present within a �ow �	��

such as frontogenesis� cyclogenesis and key features in general circulation� It has

the distinctive property that it is conserved for inviscid� isentropic �ow and as such

can be used to track parcels of air� It also uses both rotational wind and pressure

in its evaluation and describes better the balanced part of the �ow in regions where

variations in pressure are important�

In Chapter 	 the shallow water equations �SWEs� are derived with corresponding

linearisations needed for an analytical examination needed of the system
s dynamic

properties� In Chapter � we examine the dynamical properties of the atmosphere

within the context of the shallow water equations� In particular the concept of

balance is systematically described� Within this chapter we show a number of issues

already known within the literature but which tend to be forgotten� We show that

the divergence tendency� as de�ned in Section ���� in general does not always �lter

the unbalanced aspects of the �ow� Additional conditions need to be enforced� We

show how a simple potential vorticity inversion model takes contributions from the

height and the rotational wind in a way dependent on the �ow regime�

In Chapter � we systematically present and discuss the choice of variables in

which the data assimilation is performed� These variables are called control variables�

We provide a framework in which di�erent sets of control variables are discussed�

Such a systematic appraisal of control variables is not present within the current

literature� We take the method used presently by the UK Met� O�ce as an example

and discuss the strength and weaknesses of the current change of control variables�

The properties of an  idealised
 set of control variables are considered from a dynam�

ical perspective using the dynamical background presented in the previous chapter�

�



We present various formulations of control variables based on potential vorticity�

discussing their respective advantages and disadvantages and how they vary in dif�

ferent regimes� We �nally develop a means of approximating the balanced parts of

the unbalanced variables�

Chapter � gives the numerical techniques used to calculate the present choice of

control variables used at the UK Met� O�ce� These techniques are used in exper�

iments in Chapter �� The chapter also presents a Fourier�based technique which is

used in Chapter � to develop a means of obtaining the potential vorticity�based set

of control variables� To the author
s knowledge� the coupled system of equations

has not been previously solved in this way� In both chapters validatory tests are

performed� In Chapter �� we present various experiments to compare potential vor�

ticity based set of control variables with current method� which illustrate the theory

given in previous chapters� Finally in Chapter � we summarise the �ndings and

detail possible avenues for future work�

�



Chapter �

Shallow Water Equations

��� Introduction

We �rst derive the shallow water equations �SWEs� on a rotating sphere from New�

ton
s Second Law� This is necessary so as to give an accurate representation of

the approximations made to obtain the equations� so that the results may be com�

pared to other studies which use di�erent approximations to the equations of mo�

tion on a rotating sphere� The discussion draws mainly on the treatments given

by Pedlosky ���� and Randall ���� and includes the derivation of the incompressible

three�dimensional Euler equations as a stepping stone to obtaining the shallow water

equations�

We then present properties of the shallow water equations on a rotating sphere�

linearised about two linearisation states� a resting state and a general time�invariant

state� The former state is useful due to its idyllic simplicity while the latter state

gives a template to derive other SWEs about more restrictive linearisations states

necessary for the development of Chapters � and ��

�



In addition� versions of the SWEs which approximate the spherical geometry

are introduced� These versions� such as the ��plane approximation� are useful as a

means of making analytical studies of the SWEs more tractable�

��� Derivation of Shallow Water Equations on a

Rotating Sphere from Newton�s Second Law

Newton
s Second Law of Motion states that the mass of an object multiplied by

its absolute acceleration is equal to the total actual force acting on the object in a

non�rotating co�ordinate system� When written for a �uid continuum� it is expressed

in terms of density �� a three�dimensional wind u� pressure p� the body force �r�

and non�conservative force F � In particular� � is the potential �eld with which

conservative body forces are represented and F is the frictional force� Newton
s

Second Law takes the form

�
Du

Dt
� �rp � �r� � F �u� � �	���

where

D

Dt
�

�

�t
� u � r �	�	�

is called the total material derivative with respect to time�

As stated� this law applies only on a stationary frame of reference� We wish

to consider the momentum equation �	��� for an observer in a uniformly rotating

co�ordinate frame� We let the subscript I� represent a the non�rotating co�ordinate

frame of reference and R are rotating one� We also denote the velocity under a

rotating reference frame� uR� as the relative velocity and the velocity under a non�

�



rotating reference frame� uI � as the absolute velocity� In this situation�

�
Dr

Dt

�
I

�
�
Dr

Dt

�
R

�� � r� �	���

uI � uR �� � r� �	����
Du

Dt

�
I

�
�
Du

Dt

�
R

�
D�

Dt
� r�� � uR� �	���

where r is a position vector of an arbitrary �uid element and � is the angular

velocity� with all vector quantities de�ned on a three�dimensional space�

The �rst step is to rewrite the acceleration in the non�rotating frame purely in

terms of quantities in a rotating frame� When the material derivative operator �	�	�

is applied to �	���� we obtain

�
DuI
Dt

�
I

�
�
DuI
Dt

�
R

��� uI �

The right hand side is further manipulated using �	���� �	���� with

�
DuI
Dt

�
I

�
�
DuR
Dt

�
R

�
D�

Dt
� r�� � uR ��� �uR �� � r�

�
�
DuR
Dt

�
R

� 	� � uR �� � �� � r� �
D�

Dt
� r� �	���

The three additional terms on the right hand side are the Coriolis acceleration

	� � uR� the centripetal acceleration � � �� � r� and acceleration due to change

in angular velocity� In the present application we assume that the angular velocity

is constant in time� and as such� the D�
Dt
� r term vanishes�

The centripetal acceleration has a direction perpendicular to the rotational axis

which allows it to be rewritten in terms of a perpendicular distance vector r� as

� � �� � r��� We then use the vector identities�

A � �B�C� � �A �C�B� �A �B�C�

�



where A� B� C are generic vectors� Thus�

� � ��� r� � �� �� � r��

� �� � r���� j�j�r�

� ��rj�j
�jr�j�
	

� �rj�� r�j�
	

� �	���

since � and r� are orthogonal�

We now incorporate the centripetal acceleration with the other conservative

terms in �	��� by de�ning the apparent gravitational potential�

! � � �
j�� r�j�

	
� �	���

As the Coriolis acceleration 	��uR cannot be further simpli�ed� the momentum

equation in a rotating co�ordinate frame is given by

�
�
Du

Dt
� 	� � u

�
� �rp � �r! � F �	���

where all uR are written as u�

So far we have not been speci�c as to the three�dimensional space we are con�

sidering� We de�ne r! to de�ne the apparent vertical direction k�� which is per�

pendicular to an oblately spheroidal geopotential surface� However since the cen�

tripetal acceleration is very small compared to the constant body force r�� we let

r! � r� � gk� where k is a unit vector pointing radially away from the centre of

a sphere and g is the acceleration due to gravity� The neglection of the centripetal

acceleration allows the oblate spheroidal surface to be approximated by a spheri�

cal surface with unit vectors i� j denoting longitude and latitude directions� The

spherical latitude�longitude co�ordinate system is shown in Figure 	��� where any

�



Figure 	��� A sphere rotating at a constant angular velocity of magnitude �� The di�

agram also shows the direction of the orthonormal unit vectors �i� j�k� for a spherical

latitude �� longitude � co�ordinate system

O

�

�

i� u

k� w
j� v

�

r

Polar axis

Equator

non�polar point in the three�dimensional space is either represented by �i� �j� rk

or more simply as ��� �� r�� The three�dimensional wind in terms of its components

is given by u � �ui � vj � wk�� Although the co�ordinate system is degenerate at

the poles� it is the natural choice for problems involving a spherical geometry�

Then� ignoring the e�ects of friction� the momentum equation becomes

�
�
Du

Dt
� 	� � u

�
� �rp� �gk� �	����

For the following derivation of the SWEs we need the mass conservation equation�

This equation is written as�

��

�t
�r � ��u� � � or

D�

Dt
� �r � u � �� �	����

��



We now simplify �	����� �	���� to get the shallow water equations on a rotating

sphere� Let us write the pressure and density as

p � p�r� � p���� �� r� t� and � � ��r� � ����� �� r� t�� �	��	�

where p�r� and ��r� are linearisation states which satisfy the hydrostatic equation�

dp

dr
� �g�� �	����

with p�� �� being departures from these linearisation states�

Substituting both �	��	� and �	���� into the momentum equation �	���� we obtain

�
�
Du

Dt
� 	� � u

�
� �rp� � ��gk� �	����

We now assume that the �uid is incompressible with � � � and �� � �� This ap�

proximation discards the conservative body force in the momentum equation �	�����

giving

�
�
Du

Dt
� 	� � u

�
� �rp� �	����

while reducing the mass conservation equation �	���� to

r � u � �� �	����

Equations �	���� and �	���� de�ne the three�dimensional incompressible Euler equa�

tions on a rotating sphere�

To obtain the shallow water equations on a sphere� we need to reduce �	���� and

�	���� onto a two�dimensional spherical surface� We choose to describe the �ow by a

shallow incompressible layer of �uid of height h and horizontal velocity �eld v that

are functions of latitude�longitude and time�

��



Let h��� �� t� be the height at the free surface and hs��� �� represent the bottom

topography� The depth of the �uid is then given by h� � h � hs� The height h is

de�ned so that its material derivative is equal to the vertical velocity w� such that

Dh

Dt
� w ��� �� h� t� �	����

and

Dhs
Dt

� �v � r�hs � ws �	����

since the topographic height is independent of time� The material derivative terms

in equations �	����� �	���� involve advective terms v�r on the spherical surface� Ver�

tical advection is set to zero as no vertical shear is allowed� The material derivative

now de�ned as

D

Dt
�

�

�t
� v � r� �	����

We integrate the mass conservation equation �	���� with respect to r from r � hs

to r � h to give

w��� �� h� t�� w��� �� hs� t� � � �h� hs�r � v� �	�	��

with r � v representing the horizontal divergence� Equations �	����� �	���� are

substituted into �	�	�� to obtain

�h

�t
� v � rh� v � rhs � � �h� hs�r � v� �	�	��

We rearrange this equation to give

� �h� hs�

�t
�r � �v �h� hs�� � � or

�h�

�t
�r �

h
vh�

i
� �� �	�		�

which represents the mass conservation equation for the shallow water equations�

�	



The momentum equation for the shallow water equations is derived by looking

at the Coriolis� pressure gradient and the material derivative terms separately� Since

we are considering a material derivative term on a surface� the material derivative

term is simply Dv
Dt

� As in equations �	����� �	����� the assumption of no vertical

shear requires that there is no vertical advection to the horizontal momentum�

The pressure gradient term on the horizontal surface is obtained by integrating

the hydrostatic equation �	���� from some some arbitrary depth r within the �uid

to the free surface h� giving

p��� �� h� t�� p��� �� r� t� � �g��h� r�� �	�	��

with boundary conditions

p��� �� h� t� � pf and p��� �� r� t� � g� �h� r� � pf � �	�	��

where pf is the pressure at the free surface�

In equation �	��	� p is given in terms of a linearisation state p and perturbation

p�� Integration of the hydrostatic relation splits the pressure similarly� with

p � �g�r and p� � g�h � pf � �	�	��

giving

rp� � g�rh� �	�	��

The k independent horizontal velocity reduces the Coriolis term in the momen�

tum equation �	���� from 	� � u to fk � v� Figure 	�	 shows that the vector �

can be decomposed into j and k components such that 	� � 	� cos �j � 	� sin �k�

where � is the latitude and � is the magnitude of the angular velocity� Hence we

have

��



Figure 	�	� A diagram representing the decomposition of vector � into j and k

components�

�

�

k

j

	�sin�

	�

	�cos�

	� � u � �	� cos �j� 	� sin �k�� u

� �	�w cos � � 	�v sin �� i� �	�u sin �� j� 	�u cos �k

� fk� v � additional terms� �	�	��

The additional terms are ignored� the k term is discarded because it violates the

hydrostatic relation and does not lie on the spherical surface� The 	�w cos �i is

removed for consistent energy conservation to occur� This approximation is called

the traditional approximation �����

We now use �	�	�� write the horizontal momentum equation as

Dv

Dt
� fk� v � �grh� �	�	��

The advective part of the material derivative is not scalar invariant� The vec�

tor transformation �v � r�v � r ��v � v�
	� � �r� v� � v is used to rewrite the

momentum equation as

�v

�t
�r ��v � v� 
	� � �r� v�� v� fk� v � �grh

��



� �v

�t
�r ��v � v�
	� � ��r� v� � k�k� v� fk� v � �grh

� �v

�t
�r ��v � v�
	� � �� � f�k� v � �grh� �	�	��

where � is the relative vorticity de�ned as the k � r � v�

Equations �	�	��� �	�		� are now scalar invariant� The standard vector operators

on the sphere are obtained by introducing the scale factors s� � a� s� � a cos ��

sr � � into the general curvi�linear form of the vector operations on the 	D surface�

r �
�

s�

�

��
i�

�

s�

�

��
j

r � v �
�

s�s�sr

�
�

��
�s�sru� �

�

��
�s�srv�

�

� �
�

s�s�sr

�
�

��
�s�srv�� �

��
�s�sru�

�
� �	����

to give

r �
�

a cos �

�

��
i�

�

a

�

��
j �	����

r � v �
�

a cos �

�
�u

��
�

�

��
�cos �v�

�
�	��	�

� �
�

a cos �

�
�v

��
� �

��
�cos �u�

�
� �	����

Equations �	����� �	��	�� �	���� are substituted into �	�	��� �	�		�� from which we

obtain

�u

�t
�

u

a cos �

�u

��
�

v

a cos �

�v

��

� v

a cos �

�
�v

��
� �

��
�cos �u�

�
� fv � � g

a cos �

�h

��
��	����

�v

�t
�
u

a

�u

��
�
v

a

�v

��
�

u

a cos �

�
�v

��
� �

��
�cos �u�

�
� fu � �g

a

�h

��
� �	����

�h�

�t
�

�

a cos �

�
�uh�

��
�

�

��

�
cos �vh�

��
� � �	����

Equation �	���� is the expanded �nal form of the mass conservation equation

for a shallow water model on a sphere� The momentum equations �	����� �	���� are

��



rearranged� to give

�u

�t
�

u

a cos �

�u

��
�
v

a

�u

��
� �f �

u

a
tan��v �

g

a cos �

�h

��
� ��

�v

�t
�

u

a cos �

�v

��
�
v

a

�v

��
� �f �

u

a
tan��u �

g

a

�h

��
� ��

�	����

where h is the height and ��� �� are the spherical longitude�latitude co�ordinates�

The relative velocities on the sphere� �u� v� are in �i and �j directions with u �

�u� v�T � The acceleration due to gravity is denoted as g with the Coriolis parameter

described as f � 	� sin �� where � is the angular velocity of the earth�

��� Shallow�Water Equations Linearised About a

Resting State on a Rotating Sphere

In this section we present some of the properties of a shallow�water equation model

on a rotating sphere linearised about a resting state� We assume no bottom topog�

raphy so that h� � h and choose perturbations u�� v�� h� such that

u��� �� t� � u���� �� t�

v��� �� t� � v���� �� t�

h��� �� t� � H � h���� �� t� �	����

where H is a constant value across the sphere�

Substituting �	���� into �	����� �	���� and ignoring quadratic perturbation terms�

gives�

�u�

�t
� fv� �

g

a cos �

�h�

��
� �� �	����

��



�v�

�t
� fu� �

g

a

�h�

��
� �� �	����

�h�

�t
� H

�
�

a cos �

�u�

��
�

�

a cos �

�

��
�cos �v��

�
� �� �	����

which are the shallow water equations linearised about a resting state and no bottom

topography� The linearisation state for the height�H� has to be a constant� for the

momentum equations to be consistent with the mass conservation equation�

We may rewrite the momentum equations in terms of vorticity and divergence�

By applying the k component of the curl to the momentum equations we obtain the

vorticity equation� It is given by

���

�t
� f�� �

	�

a
cos �v� � �� �	��	�

where the relative vorticity �� is de�ned to be

�� �
�

a cos �

�v�

��
� �

a cos �

�

��
�cos �u�� � �	����

In vector notation� the vorticity equation is written as

���

�t
�r � �fv�� � �� �	����

where the divergence operator r�� and all subsequent spatial di�erential operators�

lie on a spherical surface� The vector v� denotes the wind on this surface and is

equal to �u�� v���

Application of the divergence operator to the momentum equations gives

���

�t
� f�� � 	� cos �u� � �gr�h�� �	����

where the divergence of the wind �� � r � v� is given by �	��	�� In vector notation

the divergence equation is given by

���

�t
� k � r � fv� � �gr�h�� �	����

��



The divergence equation can be written in terms of two scalar �elds called the

streamfunction �� and velocity potential 
�� which are de�ned through the rela�

tions�

r��� � k � �r� v�� � �	����

r�
� � r � v�� �	����

v� � k�r�� �r
�� �	����

and has the form

���

�t
�rf � �k�r
���r � �fr��� � �gr�h�� �	����

where

rf � �k�r
�� �
�

a� cos �

�f

��

�
�

��
� �	����

����� Potential Vorticity

We now consider the evolution of the potential vorticity q� which we de�ne to be

either equivalent to the Rossby
s quantity ����������

q �
f � �

h � H
� �	��	�

or the linearisation of �	��	� about a linearisation state q��� � f
H

�

q�

q
�

��

f
� h�

H
�	����

where q�� h�� �� are perturbations away from the respective linearisation states q�

H and f �

The evolution of the linearised potential vorticity �	���� is easily deduced by

subtracting the linearised vorticity equation �	���� multiplied by �
H� from f
H�

��



times the linearised mass conservation equation �	����� giving

Dq�

Dt
�

�

H

�
�

�t

�
�� � f

H
h�
�

�r � �fv��� fr � v�
�

� � �	����

and

�q�

�t
� �v� � r� q �

�

H

�

�t

�
�� � f

H
h�
�

�
rf � v�
H

� �� �	����

It is apparent that the linearisation of the potential vorticity is conserved� with

the advective term equal to the product of the gradient of the Coriolis term and the

wind� divided by the constant height H�

��� Linearised SWE on a Rotating Sphere about

a Time�Varying Linearisation State

Let us assume that the wind and the height� denoted by v and h� are each split into

two components� a linearisation state� denoted by an overbar� which is dependent

on latitude and longitude� and a perturbation component� denoted by a star� This

can be written as�

v��� �� t� � v��� �� t� � v���� �� t��

h��� �� t� � h��� �� t� � h���� �� t�� �	����

Since the linearisation states vary with time� they satisfy the nonlinear SWEs�

�v

�t
�r ��v � v� 
	� � ��k � �r� v�� � f� k� v � �grh

�h

�t
� v � rh � hr � v � �� �	����

The linearised shallow�water equations under these linearisation states are given

by substituting �	���� into the nonlinear shallow water equations �	����� �	����� sub�

��



tracting the linearisation state relations �	���� and ignoring the quadratic perturbed

terms� We obtain

�v�

�t
� �v�r�v� � �v��r�v� fk� v� � �grh� �	����

�h�

�t
�r �

�
hv� � h�v

�
� �� �	����

����� Vorticity and Divergence Equations

The vorticity equation and divergence equations are just generalisations of �	��	�

and �	����� The vorticity equation is

���

�t
�r �

��
� � f

�
v� � ��v

�
� �� �	����

while the divergence equation is

���

�t
� k � r �

��
� � f

�
v� � ��v

�
�r� �gh� � v� � v� � �� �	����

In later chapters� we use the divergence equation in terms of perturbations in stream�

function and velocity potential� Using �	����� �	����� the divergence equation �	����

is re�written as

���

�t
�r �

�
f � �

�
r�� � k � r �

��
f � �

�
r
� �r���v

�
�r� �gh� � �k�r�� �r
�� � v� � �� �	��	�

����� Potential Vorticity

The linearisation of Rossby
s potential vorticity �	��	� is similar to �	����� The only

di�erence is that we are linearising about a potential vorticity which is equal to

q �
f � k � r� v

h
� �	����

	�



The potential vorticity increment q� associated with this linearisation state is

q�

q
�

��

� � f
� h�

h
�O��h���� h�r� v�� �r� v����� �	����

where ��� � are de�ned by �	����� using v�� v� respectively�

The evolution of the linearised potential vorticity q� is given by

Dq�

Dt
�

�q�

�t
� �v� � r� q � �v � r� q� � � �	����

��	 Approximations to the Geometry of SWE about

a Rotating Sphere

Throughout the above description a latitude�longitude grid is used to represent the

surface area of the sphere� This representation� with the exception of the poles� is

a conformal mapping of the surface from a �D Cartesian co�ordinate system to a

�at rectangular domain� The spherical geometry manifests itself in a latitudinally

dependent weighting with the introduction of cos � terms�

There are instances where it is convenient to simplify the SWEs by simplifying

the geometry� One choice is to approximate the latitude and longitude co�ordinate

system by a two�dimensional Cartesian grid� which sets the distance r�� perpen�

dicular to the line bisecting the poles� to be constant� This� in e�ect� enforces a

change in the scale factors applied to the generalised curvilinear formulation of the

vector operations �	����� from s� � a� s� � a cos �� sr � � to s� � a� s� � a cos ��

hr � � where � is the central latitude value for the approximation� In addition� if

the rescaling�

x � �a cos ��
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y � a
�
� � �

�
�

�

�x
�

�

a cos �

�

��
�

�

�y
�

�

a

�

��
� �	����

is used� the standard Cartesian formulation is obtained�

However� an additional concern arises in the treatment of the e�ects of the ro�

tating co�ordinate system� As shown in the derivation of the SWE on a rotating

sphere� the e�ects of a rotating� relative co�ordinate system results in the addition

of Coriolis terms into the momentum equations� The approximation for the Coriolis

terms needs to be consistent with the 	D Cartesian surface� Two approximations are

used� the f �plane and the ��plane assumptions� the f �plane assumes that Coriolis

parameter is constant and equal to f� � 	� sin � while the ��plane approximates

the term by f� � �y� where

� �
df

dy

�����
�

� 	� cos �� �	����

Both approximations to f are just truncations of a Taylor series expansion of f

about ��

A typical example of a ��plane Cartesian approximation about a mid�latitude

range of between �� deg��� deg is now presented for vorticity� divergence and mass

conservation equations whose height and wind �elds are linearised about a constant

height H and constant wind u�� where u � �u�� ��� The equations are obtained by

subsituting the linearisation states and ��plane approximation into �	���� � �	����

and �	���� � giving

���

�t
� u�

���

�x
� �f� � �y�

�
�u�

�x
�
�v�

�y

�
� �v� � ���	����

		



���

�t
� u�

���

�x
� �f� � �y�

�
�v�

�x
� �u�

�y

�
� �u� � g

�
��h�

�x�
�
��h�

�y�

�
� ���	����

�h�

�t
� u�

�h�

�x
� H

�
�u�

�x
�
�v�

�y

�
� ���	����

These equations in streamfunction and velocity potential formulation are

�
�

�t
� u�

�

�x

�
r��� � �f� � �y�r�
� � �

�
���

�x
�
�
�

�y

�
� �� �	�����

�

�t
� u�

�

�x

�
r�
� � �f� � �y�r��� � �

�
���

�

�y
�
�
�

�x

�

�g

�
��h�

�x�
�
��h�

�y�

�
� �� �	��	��

�

�t
� u�

�

�x

�
h� � Hr�
� � �� �	����

using the relations �	����� �	����� �	���� and assuming

r� �
��

�x�
�

��

�y�
� �	����

To apply simple analysis methods to the ��plane model� it is bene�cial to apply a

further approximation to the Coriolis terms� so that the partial di�erential equations

have only constant coe�cients� To do this in a energetically consistent way� we

present an argument similar to one given by White ����� If the terms ���

�y
from

�	���� and ���

�y
from �	��	� are omitted� and f is set to f�� we obtain

�
�

�t
� u�

�

�x

�
r��� � f�r�
� � �

�
���

�x

�
� �� �	�����

�

�t
� u�

�

�x

�
r�
� � f�r��� � �

�
�
�

�x

�
� gr�h� � �� �	����

The removal of the two terms are necessary to imply conservation of kinetic energy

which occurs with the non�approximated version of the SWEs �	�	��� �	�		��
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��
 Why Shallow Water Equations�

The SWEs on a rotating sphere are a compromise between simplicity and dynamical

realism invoked by �D models describing the three�dimensional �uid �ow over the

sphere�

In a general three�dimensional situation the lines of constant density and pressure

are not always coincident� The �ow is de�ned to be baroclinic and can exhibit ver�

tical shearing which cause meteorological phenonomena such as fronts� Dynamical

behavior in the upper troposhere can in�uence the �ow at the surface� Temperature

and humidity a�ects the dynamical behavior of the atmosphere�An example is the

vertical shearing of winds that generally occurs in the atmosphere in the presence

of horizontal temperature gradients�

Hydrostatic balance �	���� is assumed in most three�dimensional models of the

atmosphere and is a generally a good approximation for the gross atmospheric fea�

tures within global forecast models� However in SWEs we integrate this assumption

and make the �ow incompressible setting the density to a constant value� In reality�

density does vary within the troposphere and is not incompressible� However for

purely horizontal �ow the atmosphere behaves as if it were an incompressible �uid�

Baroclinity is not supported in the SWEs� Instead� contours of constant pressure

trivially equate to contours of constant density� Models that exhibit such behaviour

are de�ned to be barotropic and are restricted in the type of motions which they can

give� The SWEs are also inviscid and without friction� In reality the atmosphere is

viscous and there is friction occuring with the surface� Realistic atmospheric models

have additional boundary layer mechanisms�
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As shown in the derivation in Section 	�	� the SWEs assume there is no vertical

shear and that the implied vertical velocity is given by equation �	����� Such an

approximation assumes that the �uid is shallow with the range of heights considered

being small compared to wavelengths in the horizontal direction� It also expects the

�uid to have weak vertical motion� The lack of vertical shear is the most serious

limitation of the SWEs as an atmospheric model�

The SWEs are not a viable atmospheric model as it has far too many limitations

to its behaviour� Even so� the SWEs on a rotating sphere have many dynamical

mechanisms which are revelent to the more general problem� The spherical geometry

has in itself made interesting features with quite specialised boundary conditions�

The e�ects of a rotating sphere are considered by a variable Coriolis term f � The

SWEs exhibit non�trivial solutions due their nonlinearity in the advective term and

have slow and fast aspects to the �ow which behave very di�erently from each

other� These properties are examined in the following chapter� where the concepts

of balance and geostrophic adjustment are introduced�
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Chapter �

Dynamical Behaviour of the SWEs

��� Introduction

In Chapter 	 we derived the SWEs� We now present the dynamical heart of the

SWEs� In particular we present the concepts of characteristic scales and regimes in

Section ��	� wave solutions� balance in Section ��� and geostrophic adjustment in

Section ���� We show that divergence tendency� as de�ned in Section ���� in general

does not always �lter the  noise
 aspects of the �ow� additional conditions also

need to be established� We present an example of a wave  in balance
 � the Rossby�

Haurwitz wave in Section ���� We examine the departure from linear balance and the

divergence and show that dynamically� for a simpli�ed problem� they are propagated

by a linear combination of the eigenmodes of the dynamical system� We then �nally

look at in Section ��� the behaviour of perturbations satisfying a linear balance

relationship and linearised potential vorticity under di�erent Burger regimes�
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��� Characteristic Scales� Regimes
 Rossby and

Burger numbers

Atmospheric dynamics typically involve an interaction of waves with various wave�

lengths and amplitudes� A technique to identify the relative importance of one term

in a set of equations over another is to non�dimensionalise the problem and assume

that the �ow is characterised by a typical velocity U and typical height H� We

assume that the height and winds are harmonic and the �ow is identi�ed by a single

typical wavelength �� The characteristic horizontal length scale L is then equal to

L � �
�		� ����� The corresponding time�scale for the height and wind �elds is set

to L
U �

Using the scaling de�ned above the non�dimensional quantities� denoted by "�

are

v � U
v�

h � H"h�

��� �� t� �
�
L"��L"��

L

U
"t
�

�����

where h� v are the height and wind �elds on the spherical surface� de�ned at the end

of Section 	�	� The latitude� longitude co�ordinates are given by �� � and t denotes

the time�

Introducing equations ����� into the momentum equation part of the full non�

linear SWE on the rotating sphere �	�	�� gives

U�

L

�
�
v

�"t
�r ��
v � 
v� 
	� � �r� 
v�� 
v

�
� fUk � 
v � �gH

L
r"h� ���	�

where� for this section� the vector operators are applied to scaled
�
"�� "�� "t

�
�
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Dividing equation ���	� by fU gives

U

fL

�
�
v

�t
�r ��
v � 
v� 
	� � �r� 
v�� 
v

�

�k� 
v � � gH

fUL
r"h�

� U

fL

�
�
v

�t
�r ��
v � 
v� 
	� � �r� 
v�� 
v

�

�k� 
v � �
�
gH

f�L�

��
fL

U

�
r"h� �����

which by setting the non�dimensional numbers

Ro �
U

fL
� �����

Bu �

p
gH

fL
� �����

gives

Ro

�
�
v

�t
�r ��
v � 
v� 
	� � �r� 
v�� 
v

�
� k� 
v � �B

�
u

Ro
r"h� �����

The non�dimensional numbers� Ro and Bu� are called the Rossby number and the

Burger number� respectively� In the situation� where Ro is made large �Ro �� ��

and Bu is arbitrarily �xed �Bu � �� the equation ����� is approximated by

Ro

�
�
v

�t
�r ��
v � 
v� 
	� � �r� 
v�� 
v

�
� �� �����

In contrast� when Ro is made small �Ro �� �� and Bu is arbitrarily �xed� U and

Dv
Dt

are reduced in size with equation ����� approximated by

k� 
v � �B
�
u

Ro
r"h� �����

Thus when Ro �� � and B�
u �� Ro� the size of r"h is larger in magnitude than the

velocity 
v� In contrast� when Ro �� � and B�
u �� Ro� the size of r"h is smaller in

	�



magnitude than the velocity 
v� The consequences of this are examined in Sections

��� and ����

The three�dimensional atmosphere tends to have large horizontal length scales

and relatively small vertical length scales and can be approximated by being consid�

ered as a number of layers of �uid on top of each other� A �uid with this property

is said to be stably strati�ed� The Burger number describes the relative importance

of the e�ects of strati�cation and rotation� When this number is larger than one the

layers are stable with respect to changes in the interfaces between them � for Burger

number much smaller than one the rotation dominates the �ow�

The Burger number is described in numerous ways dependent on the source� Ped�

losky ���� de�nes for two�dimensional horizontal �ow the non�dimensional number

as gH
�f�L��� the square of the quantity described here� Haltiner et al� �	�� de�

�nes the Burger number as the ratio between the the Rossby radius of deformation�

de�ned as

Lr �

p
gH

f
�����

and the characteristic length scale L� which is identical to the de�nition given in

equation ������

As described in Chapter 	� the SWEs are de�ned on a two�dimensional surface

and consist of a single layer of �uid� A non�trivial interface is considered when

topography is included� In this situation� stable strati�cation manifests itself when

the single layer is not a�ected greatly by topography and �ows over obstacles� �com�

pared to going around them�� A pseudo vertical length scale exists which is given

by the Rossby radius ������

	�



��� Wave Solutions and Balance

SWEs are well known for having more than one type of wave solution progressing

at various time�scales� Some of these waves are more important than others� In this

section we distinguish between the various waves where we generalise the treatments

given by Haltiner and Williams �	��� White ����� We also refer to comments given

by Thompson �����

Let us consider an approximation to the ��plane SWE model� linearised about

a steady wind v � �u�� �� under a Cartesian geometry� as described by equations

�	����� �	���� and �	����� Since all three equations are partial di�erental equations

�PDEs� with constant coe�cients� it is easy to reduce the system into a single higher

order PDE with one variable� This is achieved by applying
�
�
�t
r��u� �

�x
r��� �

�x

�
r�

�	���� � f�r� �	���� to eliminate the streamfunction perturbation ��� to give

n�

��
�

�t
� u�

�

�x

�
r� � �

�

�x

��

r�
�

�

��
�

�t
� u�

�

�x

�
r� � �

�

�x

��
�f�r��� � gr�h�

�
�f�r�

��
�

�t
� u�

�

�x

�
r� � �

�

�x

�
�� � f��r�
� � ��

�
�	n�

�
�

�t
r� � u�

�

�x
r� � �

�

�x

��

� f��r�


Ar�
�

�g

�
�

�t
r� � u�

�

�x
r� � �

�

�x

�
r�h� � ��������

with n� being a tracing label� identifying the contribution given by terms��
�
�t

� u� �
�x

�
r� � � �

�x

�
r�
�� from the divergence equation �	�����

We now replace r�
� for � �
H

�
�
�t

� u� �
�x

�
h� in equation ������ using �	����� to
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obtain

���	n�
�
�

�t
r� � u�

�

�x
r� � �

�

�x

��

� f��r�


A� �

�t
� u�

�

�x

�

� gH

�
�

�t
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�x
r� � �

�
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h� � ��������

We assume that the height perturbations have a harmonic structure

h� � #hei	k�x�k�y��t
 ����	�

where #h is a complex coe�cient associated with the both wavenumbers� k� and k��

and the angular frequency �� The symbol i denotes the imaginary number satisfying

i� � ��� Introducing ����	� into ������� produces a cubic polynomial in �

�
f��K

� � n�
�
�K� � u�k�K

� � �k�
��� ��i� � u�ik�

�
�gH

�
i�K� � u�ik�K

� � �ik�
�
K� � �

�
�
f��K

� � n�
�
�K� � u�k�K

� � �k�
��� �

� � u�k�
�

�gH
�
�K� � u�k�K

� � �k�
�
K� � � ������

where K� � k�� � k���

For n� � �� the three roots of the cubic equation give the typical frequencies

of three wave solutions� The two largest roots of the cubic ������� de�ne inertio�

gravity waves� In the non�rotating case� the dispersion relation would just be

just � � k�u
� � �Kpgh� in the rotating case we expect the roots to be in the

neighbourhood of � � k�u
� � �Kpgh� If we consider the f �plane case� we can

ignore the � terms in ������ and rearrange� The dispersion relation is then given by

� � k�u
� � �K

s
gH �

f��
K�

� ������

��



� A dispersion relation for the ��plane can be obtained by retaining the � terms in

������� and solving the resulting cubic using Vieta
s subsitution ����� We leave such

details as they serve as a distraction to the discussion given��

The smallest root is approximated by setting the tracer n� to zero� In this

situation� the cubic polynomial ������ reduces to a linear equation in �� where

� � k�u
� � gH�k�

gHK� � f��
� k�u

� � �k�

K� �
f�
�

gH

� ������

The dispersion relation ������ de�nes the angular frequency of what is identi�ed as

a Rossby wave�

Setting the tracer n� to zero is equivalent to setting the total material time deriva�

tive term and � ��
�x

of the divergence equation �	���� to zero� As observed in �����

the condition that is necessary and su�cient for the elimination of inertio�gravity

waves of the form ������ requires ��K� � u�k�K
� � �k��

�
� �� However it is nec�

essary for the existence of solutions of the type ������ that ��K� � u�k�K
� � �k��

does not vanish� justifying the need to set the tracer to zero� This is called the

generalised filtering approximation� The remaining part of the divergence equa�

tion is given by the linear balance equation�

r � f�r� � gr�h� ������

The main balance relation used in this thesis resembles ������� However� we generally

consider a spherical domain and allow the Coriolis parameter f to vary with latitude�

The resulting equation ������ is described in Section ��� and in Chapter ��

When the inertio�gravity waves are no longer present� the �uid is considered to be

in balance� This occurs when the dispersion relations related to the two largest roots

of the cubic equation ������ are not exhibited by the �ow in question� the motion

�	



of the �uid only is described by the dispersion relation de�ned by the smallest root

of the frequency equation� Models which propagate only Rossby waves are called

balanced models� There are a number of techniques to approximate balance and

produce balanced models� obtained from using semi�geostrophic or quasi�geostrophic

theories �	��� They all share the property that provided we consider linearised SWEs

with constant coe�cients� the dispersion relation de�ned by the smallest root of the

SWEs cubic frequency equation is equivalent to the linear dispersion relation of the

respective balanced model�

Typically� in a mid�latitude region the characteristic height H is approximately

equal to �� km with the inertio�gravity waves and Rossby waves having speeds

around ���ms�� and ��ms��� respectively� This shows the large separation in

timescales between the two types within the mid�latitudes� Pairs of inertio�gravity

waves with same angular frequency and amplitude move in opposite directions to

each other� The Rossby wave propagates westwards which is in the direction per�

pendicular to the potential vorticity gradient relative to the mean �ow�

Given the low angular frequency of the Rossby wave� the wave phase speed is

expected to be slow� This is true for linearised equations� However� when the nonlin�

ear advective term �v � r�v is present� slow Rossby waves interact with each other

to give waves that are slower or faster� Instead of there being a clear distinction

between the timescales of fast inertio�gravity waves and slow Rossby waves� the non�

linear interactions produce Rossby waves with a wide range of angular frequencies�

The amplitude and energy present within these waves diminish with increased angu�

lar frequency� However in a non�linear description of balanced �ow all Rossby waves

need to be considered� Potential vorticity is a good variable to choose in this respect

��



as it can in practice exhibit a wide range of frequencies� The e�ects of Rossby wave

interaction is left to the numerical experiments in Chapter �� the theory presented

in this thesis limits itself to properties present in linearisations of the SWEs�

About the equator there exists additional types of waves localised to the region�

Gill �		� examines these waves by examining a Cartesian equatorial � plane model�

where f � �y� The waves are called equatorial Kelvin waves and mixed Rossby�

gravity waves and have timescales which lie between those of inertio�gravity waves

and Rossby waves� complicating the dynamical situation� Thus� for the purpose

of simplicity� the emphasis of this thesis is concerned with motions away from the

equator�

��� Example of balanced �ow
 Rossby�Haurwitz

Wave

The Rossby Haurwitz wave is an example of a balanced �ow� First identi�ed by

Haurwitz �	��� it is a wave which moves without changing its pro�le for the two�

dimensional Euler equations� Under a Cartesian mid�latitude ��plane assumption�

the two�dimensional Euler equations are given by

�u

�t
� u�

�u

�x
� �f� � �y�v � g

�h

�x
� � ������

�v

�t
� u�

�v

�x
� �f� � �y�u� g

�h

�y
� � ������

�u

�x
�
�v

�y
� �� ������

This system of equations occurs when the SWEs are constrained to have no divergent

wind� which approximately occurs when the variations in the height �eld h� are small
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compared to the magnitude of the height �eld H itself� We now present a derivation

of a Rossby�Haurwitz wave� similar to the treatment given by Dutton �����

If the waves are assumed to propagate only in the x direction� we can let the

solutions take the form

u � #ue	k�x��t
i� ���	��

v � #ve	k�x��t
i� ���	��

h � #he	k�x��t
i� ���		�

and substitute ���	������		� into �������������� to obtain

i
�
�� � k�u

�
�

#u� �f� � �y�#v � igk�#h � � ���	��

i
�
�� � k�u

�
�

#v � �f� � �y�#u� g
�#h

�y
� � ���	��

ik�#u �
�#v

�y
� �� ���	��

Taking k�
�
�y

���	�� � ik�����	��� eliminates #h� giving

�
�� � k�u

�
��

ik�
�#u

�y
� k��#v

�
� k��#v� k��f� � �y�

�
ik�#u �

�#v

�y

�
� �� ���	��

The #u is eliminated using condition ���	�� to produce

�
�� � k�u

�
��
��

�#v

�y�
� k��#v

�
� k��#v � ��

� ��#v

�y�
�

�
�

u� � �
k�

� k��

�
#v � � ���	��

provided �
k�

is not equal to u�� �When �
k�

� u�� #v is equal to zero and the wave

moves at constant speed u� in the x direction��� The general solution of this second

order ODE with constant coe�cients is given by

#v � C� cos

��� �

u� � �
k

� k��

� �
�

y

��� C� sin

��� �

u� � �
k

� k��

� �
�

y

�� � ���	��
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where C�� C� are constants which are �xed by appropriate boundary conditions� If

the boundary conditions are such that the domain considered is a channel of width

D for which j#vj is at a maximum at y � � and zeros at y � �D
	� then

C� � ��
�

u� � �
k�

� k��

� �

� D

	
�

	l

	
for l � ������ � � � � ���	��

The dispersion relation is obtained by rearranging ���	�� into

� � k�u
� � �k�

k�� �
�
l�
D

�� � ������

The relationship between the Rossby wave within the SWEs and the Rossby�

Haurwitz wave under two�dimensional Euler equations are readily seen by letting

H � 	 in ������ and D � 	 in ������� In both situations� the Rossby formula

reduces to

� � k�u
� � �k�

K�
� ������

where� in this case� K� � k���

As de�ned� the Rossby�Haurwitz wave consists of a balanced wind �eld for the

equation set �������������� for it to be used in SWEs context a balanced height also

needs to be calculated that is consistent with the SWEs� For this purpose a Charney

balance condition is used� This balance condition� �rst de�ned by Charney ��� ����

assumes that the balanced wind is de�ned by the rotational part of the �ow� with

v � k�r�� ����	�

Applying the divergence operator to the momentum equations and using ����	��

produces the balance condition

gr�h � r � �f� � �y�r� � 	

�	� ���

�x�y

��

� ���

�x�
���

�y�


A � ������

��



Solving this Monge�Ampere equation provides the appropriate balanced height� It

is important to note that the Rossby�Haurwitz wave in SWEs context does not

produce a balanced �ow that stays balanced when propagated in time� At best�

under a high Burger regime� the Rossby�Haurwitz wave produces SWEs solutions

over �	 hours with relatively little divergence ��� which are close to the balanced

�ow given by the two�dimensional Euler equations� As such� it is used as an initial

solution which produces solutions over a �	hrs � 	�hrs timescale that is close to

balance�

����� The Rossby�Haurwitz wave on a Sphere

In practice� throughout this thesis the initial height and wind �eld relating to a

Rossby�Haurwitz wave is de�ned over a sphere ����� This wave is characterised by

parameters a� g� �� R� h�� � and K� where a is the radius of the sphere� g is the

acceleration due to gravity� R is the wave number and h� is the height at the poles�

The strength of the underlying zonal wind from west to east is given by � and K

controls the amplitude of the wave� As in Chapter 	 the latitude and longitude

co�ordinates are represented by � and ��

The initial velocity �eld is de�ned as�

u � a� cos � � aK cosR�� ��R sin� � � cos� �� cosR��

v � �aKR cosR�� �sin�sinR�� ������

The initial height �eld is de�ned as�

h � h� �
a�

g
�A��� � B��� cosR� � C��� cos�	R���� ������

��



where the variables A���� B���� C��� are given by

A��� �
�

	
�	� � �� cos� � �

�

�
K� cos�R ���R � �� cos� �

��	R� �R � 	�� 	R� cos�� ���

B��� �
	�� � ��K

�R � ���R � 	�
cosR ���R� � 	R � 	�

��R � ��� cos� ���

C��� �
�

�
K� cos�R ���R � �� cos� � � �R � 	��� ������

��	 Linear Balance Equation

In Section ��� we derived the linear balance equation �LBE� by applying the general

�ltering approximation to SWEs de�ned on a Cartesian mid�latitude ��plane �	�����

�	���� and �	����� More generally LBE is de�ned over the sphere� where

gr�h�r � fr� � � ������

and �� the streamfunction is de�ned by �	����� In subsequent chapters this balance

relation is compared with another which conserves potential vorticity� Consequently�

the properties of this balance condition need to be described�

The LBE is viewed in more than one way� Burger ��� considers the LBE as

a simple generalisation of geostrophic balance over the whole sphere for waves of

planetary length scale L � a � By applying scaling arguments with this length scale

to the divergence equation �	���� about mid�latitudes� the terms in ������ are found

to be ten times larger than the other terms in the divergence equation�

It is also a linear non�divergent mass�wind law that naturally takes into account

the latitudinal variation of the Coriolis parameter and is useful when length scales

��



L � ���m are considered ��	�� However� balanced divergent parts to a wind do

exist for the SWEs on a sphere ���� and are  invisible
 to this balance condition�

This is seen when appropriate equations are added to LBE to produce a closed

energically�consistent dynamical system ����� This requires not only a modi�ed

vorticity equation but also a thermodynamic equation� The kinetic energy of this

particular dynamical system comes from only the rotational part of the �ow and no

divergent contribution exists�

Two problems need to be considered� the calculation of a balanced height �eld

from the streamfunction

gr�h � r � fr� ������

and the backward relation

r � fr� � gr�h ������

where the streamfunction is determined by the height�

The calculation of a balanced height �eld from the streamfunction is straight�

forward� the existence� uniqueness and boundary conditions are the same as those

needed to invert a Poisson equation on a sphere and are given in Section ����

The reverse transformation� the transformation from height �eld to a stream�

function� is a little more complex� The majority of the attempts to solve ������ set

the problem in terms of spherical harmonics ����� ���� Daley ���� shows that solutions

to the reverse transformation can become singular about the equator� The problem

is worsened by the sensitivity of the solution to the height �eld localised about the

equator� small errors in the height �eld in this region can trigger the presence of

these singular solutions�

��



In ��	� Daley considers the practical use of ������ with height �elds including

error and shows that the solution tends to be erroneous within 	� degrees latitude

of the equator� A means to get around this di�culty is to modify the linear balance

equation so that these singularities do not exist ���� using an approach that uses the

singular value decomposition method� This procedure has the e�ect of making the

reverse LBE as accurate as the forward LBE outside the tropics as well as removing

possible singularies in the streamfunction around the equator� A consequence of

these considerations is that the reverse transformation is not used�

��
 Geostrophic Balance and Geostrophic Adjust�

ment

In Section ��	� we showed that when Ro is small� the acceleration term Dv
Dt is

negligible compared to the Coriolis term with equation ����� being approximately

satis�ed for non�dimensional #v� #h� If this relationship holds exactly� then the height

and wind �elds are said to be in geostrophic balance� If the height and wind �elds

are de�ned on a sphere of radius a then geostrophic balance is written as�

fk� v� grh � � ������

Similarly the geostrophic wind� vg is de�ned to be

vg �
g

f
k�rh� ������

Most wind and height �elds considered do not satisfy balance conditions unless

enforced to do so� It is bene�cial to de�ne the discrepancy in how far the winds and

��



height �elds depart from such relations� The geostrophic departure rd is given by

rd � fk� v� grh� ����	�

and is a measure of how discrepant the wind and height �elds are from geostrophic

balance� We also de�ne the departure from the linear balance relation ������ as

r � r � fr� �r�h� ������

We notice that the departure r is related to rd� just as the divergence equation is

related to the momentum equations�

The geostrophic balance relationship is intimately linked to the mechanism of

geostrophic adjustment� Haltiner and Williams �	�� and Schoenstadt ���� showed

that for SWEs linearised about a resting state on a f �plane under a Cartesian

geometry� the Rossby wave is stationary� The transient �ow is described by the

inertio�gravity waves which decays as it moves along the x�axis� The Rossby waves

are dependent on whether the characteristic horizontal scale is larger or smaller than

the Rossby radius of deformation Lr�

The stationary Rossby wave has a form highly dependent on the Burger number�

When jBuj �� �� the �nal wind is equal to the initial wind and the �nal height in

geostrophic balance with the initial wind� When jBuj �� �� the �nal height is

determined by the initial height �eld with the �nal wind similarly in geostrophic

balance with the initial height� On a sphere the e�ect of geostrophic adjustment

is similar to the above situation� provided viscous terms are added to SWEs to

eliminate the inertio�gravity waves before they travel the circumference of the sphere

�����

��



��� Divergence Tendency

A justi�cation for using the Charney balance condition to derive a balanced height

�eld as an initial condition for the SWEs is due to the observation that introducing

a purely rotational wind into the divergence equation sets the local change in the

divergent wind� the divergence tendency �r�

�t� to be zero ����

Let us consider SWEs linearised about a resting state on an f �plane� The setting

of the divergence tendency to zero reduces the cubic frequency equation to a linear

one and gives the dispersion relationship for the balanced �elds� In this situation the

inertio�gravity waves are fully �ltered out of the system� The divergence equation

reduces to ������� However when the SWEs are linearised about a constant velocity

u� and a ��plane approximation is used� setting the divergence tendency to zero

only reduces the cubic frequency equation to a quadratic� the di�erent linearisation

state gives a set of perturbed equations which no longer have the symmetry that

exists in the f �plane case and the inertio�gravity waves are no longer fully �ltered�

We can see this again� by considering an f �plane model of the SWEs� linearised

about a resting state

��

�t
� f�� � � ������

��

�t
� f�� � �gr�h ������

�h

�t
� H� � � ������

������

where f� and H are constant values� Setting the partial time derivative ��
�t

to zero�

enforces the divergence � to be constant� If we take the remaining terms of the

�	



divergence equation and apply the partial time derivative operator we get

f�
��

�t
� g

�r�h

�t
� � ������

� gHr�� � f�� � � �� ������

substituting the partial time derivative for the divergence using the vorticity and

continuity equations above� This Helmholz equation is trivally satis�ed as the lapla�

cian of the divergence is zero� making the solution� the divergence� equal also to

zero� The unbalanced part of the SWEs has been �ltered�

We can use a similar technique when SWEs are linearised about a general time�

varying state� but due to the additional terms we need to set not only ��
�t

to zero� but

also a higher local time derivative to be zero� This is because in this more general

situation two time constraints are needed to eliminate the two of the three local

time derivatives dependencies present within the SWEs� The time constraints have

to be chosen such that it is the fast inertio�gravity waves are eliminated� In Section

��� we set both ��
�t

� ���
��t

to �nd balanced parts of our control variables�

��� Relationship Between Potential Vorticity�

Geostrophic Departure and Divergence

Consider a mid�latitude f �plane Cartesian approximation to the SWEs linearised

about a resting state

�u�

�t
� f�v

� � g
�h�

�x
� ��

�v�

�t
� f�u

� � g
�h�

�y
� ��

�h�

�t
� H

�
�u�

�x
�
�v�

�y

�
� �� ������
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We apply the spatial Fourier decomposition

�X �

�BBBBBBBB	

#uk� 	k��t�

#vk�	k��t�

#hk� 	k��t�


CCCCCCCCA
�
Z y��

y���

Z x��

x���

�BBBBBBBB	

u��x� y� t�

v��x� y� t�

h��x� y� t�


CCCCCCCCA
e�i	k�x�k�y
 dxdy� ������

in the xy plane to transform the coupled system of PDE
s into a coupled system of

ODE
s which for each k�� k� is represented by

�X t � L �X � �� ����	�

with

L �

�BBBBBBBB	

� �f� igk�

f� � igk�

iHk� iHk� �


CCCCCCCCA
� ������

We now calculate the eigenvalues and eigenvectors of the system� The determi�

nant of the characteristic equation is given by

det jL� i��Ij � i��
�
��� � ��

�
� ������

where �� � �O���� ���� � �f�� � gHK�
w�

�

� and K�
w � k�� � k��� The eigenvalues i$

and eigenvectors E � �e��e��e�� are related by

LE � iE$ ������

with

E � �e� e� e�� �

�BBBBBBBB	

igk� �igk� � gk�f
�

gk�f
�

igk� �igk� � gk�f
�

�igk� � gk�f
�

f i
�
� � f�

�

�
�i
�
� � f�

�

�


CCCCCCCCA
������

��



and

$ �

�BBBBBBBB	

� � �

� �� �

� � �


CCCCCCCCA
� ������

The inverse of the matrix of eigenvectors� E��� is given by

E�� �

�BBBBBBBB	

f �

f �

f �


CCCCCCCCA
�

g

	i�g�K�
w

�BBBBBBBB	

��gHk�K
�
w

�
�gHk�K

�
w

�
�igfK�

w

�

�k�� � ik�f �k�� � ik�f gKw

�k�� � ik�f �k�� � ik�f �gKw


CCCCCCCCA
������

and is calculated by taking the complex conjugate of the matrix of co�factors of E�

divided by the determinant of E�

Now we are in a position to apply a similarity transformation to uncouple the

system concerned� Let

E �Y � �X� ������

Applying ������ to ����	� gives

�Y t � E��LE �Y � �Y t � i$ �Y � �� ������

using ������� The beauty of this particular similarity transformation is that each

variable of �Y corresponds to an eigenvalue of ����	��

So far� the system has been uncoupled into variables without any physical sig�

ni�cance� We now construct the potential vorticity increment� the departure from

linear balance and the divergence out of the uncoupled variables� This is achieved

by setting �Z � BP �Y � BPE�� �X� with

B �

�BBBBBBBB	

���

H� � �

� gK�
w �

� � i�gK�
w

f


CCCCCCCCA
P �

�BBBBBBBB	

� � �

� � �

� �� �


CCCCCCCCA
� ������

��



Evaluating �Z � BP �Y � BPE�� �X gives

�Z �

�BBBBBBBB	

#qk�	k�

#dk� 	k�

#rk�	k�


CCCCCCCCA
�

�BBBBBBBB	

�
H

��ik�#uk�	k� � ik�#vk�	k��� f
H�

#hk�	k�

ik�#uk�	k� � ik�#vk�	k�

�ik�#uk�	k� � ik�#vk�	k� � gK�
w

f
#hk�	k�


CCCCCCCCA
����	�

The variables #qk�	k�� #dk�	k�� #rk�	k� are the linearised potential vorticity increment� the

divergence and the departure from linear balance� respectively within Fourier space�

Applying the inverse Fourier transform

X �

�BBBBBBBB	

u��x� y� t�

v��x� y� t�

h��x� y� t�


CCCCCCCCA
�

�

�	�

Z y��

y���

Z x��

x���

�BBBBBBBB	

#uk�	k��t�

#vk�	k��t�

#hk�	k��t�


CCCCCCCCA
ei	k�x�k�y
 dxdy�

Z �

�BBBBBBBB	

q��x� y� t�

d��x� y� t�

r��x� y� t�


CCCCCCCCA
�

�

�	�

Z y��

y���

Z x��

x���

�BBBBBBBB	

#qk�	k��t�

#dk� 	k��t�

#rk�	k��t�


CCCCCCCCA
ei	k�x�k�y
 dxdy�������

leaves the linearised potential vorticity q�� the divergence d� and the departure from

linear balance r� perturbations� with�

q� �
�

H

�
�v�

�x
� �u�

�y

�
� f

H�
h�� ������

d� �
�u�

�x
�
�v�

�y
� ������

r� � f�

�
�v�

�x
� �u�

�y

�
� g

�
��h�

�x�
�
��h�

�y�

�
� ������

As the variables in vector �Y are uncoupled with respect to each other� each

quantity evolves in time separately� The solutions in terms of

�Y �t� �

�BBBBBBBB	

#y	�
k�	k�
�t�

#y
	�

k�	k�

�t�

#y
	�

k�	k�

�t�


CCCCCCCCA
� ������

��



are given by

#y	�
k�	k�
�t� � #y	�
k�	k�

����

#y	�
k�	k�
�t� � e�i�t#y	�
k� 	k�

����

#y	�
k�	k�
�t� � ei�t#y	�
k�	k�

���� ������

Since �Z � BP �Y � the solution #qk�	k��t�� #dk�	k��t�� #rk� 	k��t� at time t in terms of

#y�k�	k����� #y	k�	k����� #y�k�	k���� is

#qk� 	k��t� �
���
H�

#y
	�

k�	k�

����

#dk� 	k��t� � gK�
w

�
ei�t#y

	�

k�	k�

��� � e�i�t#y
	�

k�	k�

���
�
�

#rk� 	k��t� �
i�gK�

w

f

�
�ei�t#y	�
k�	k�

��� � e�i�t#y
	�

k� 	k�

���
�
� ������

We see� unsurprisingly� that the linearised potential vorticity increment is un�

coupled from the departure from linear balance and divergence� It is representing a

stationary Rossby wave� In contrast� the departure from linear balance and the di�

vergence are the variables describing the movement of the fast inertio�gravity waves�

These two variables are coupled with respect to each other� each being a linear com�

bination of vectors f� and f �� In the situation where both #y
	�

k�	k�

��� � #y
	�

k�	k�

��� and

the wave is represented by a single wavenumber for k� and k�� the divergence dk�	k��t�

moves as a cosine wave while rk�	k��t� becomes 	�gK�
w

f
#y	�
k�	k�

��� sin �t� We also notice

that both waves are moving with frequency ��

��



��� Relative Contributions to Scaled Potential Vor�

ticity Perturbations

We now consider properties of height� vorticity and potential vorticity perturbations

that satisfy both the linearised potential vorticity relationship ������ and the linear

balance equation ������ when the Coriolis term f� is constant� It is valid to con�

sider relative vorticity perturbations ��rel since the linear balance equation ������ for

constant f� is equal to

f��
�

rel � gr�h�� ������

We describe how the ratio between scaled perturbations in height and absolute

vorticity changes with the Burger number� The change in this ratio is equivalent

to a change in the relative contribution of these terms as needed to produce scaled

potential vorticity peturbations� This is because the scaled potential vorticity per�

turbation is de�ned to be the sum of the scaled perturbations in height and absolute

vorticity� To show this mathematically� we de�ne perturbations of any quantity� as

in Chapter 	� to be the di�erence between the true value and its respective lineari�

sation state� By letting perturbations satisfy both the linearised potential vorticity

equation and the linear balance equation ������� an equation is found that shows

how the potential and absolute vorticity perturbations are inextricably linked to

the Burger number� Next� we present an equation that links the potential vorticity

perturbation to both the height perturbation and the Burger number�

Let us �rst consider the velocity and height to be on a two dimension Cartesian

grid with standard axes �x� y�� Suppose that both the linearisation states and the

perturbations in the velocity and height are known� The relative vorticity linearisa�
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tion state �rel and the relative vorticity ��rel perturbation are calculated using

�rel �
�v

�x
� �u

�y
� ��rel �

�v�

�x
� �u�

�y
� ������

The full nonlinear potential vorticity q and linearisation state q are de�ned as

q �
�

h

�
�v

�x
� �u

�y
� f�

�

 �rel � f�

h
����	�

q �
�

h

�
�v

�x
� �u

�y
� f�

�

 �rel � f�

h
� ������

where ������ is the Cartesian f �plane form of �	����� By linearising the nonlinear

potential vorticity equation ����	�� the perturbations in potential vorticity q�� height

h� and absolute vorticity ��rel are connected by the equation

q�

q
�

��rel
�rel � f�

� h�

h
� ������

We use the relationship ������ between the perturbation in absolute vorticity and

the height to derive a relationship between the potential vorticity perturbation and

the height� We consider perturbations in the height and the velocity that take the

form h� � #hei	k�x�k�y��t
� u� � #uei	k�x�k�y��t
� v� � #vei	k�x�k�y��t
� where k� is the

wave number in the x direction� k� is the wave number in the y direction and �

is the frequency as in previous sections� Also� we assume that the perturbations

satisfy ������� Using these two assumptions�

��rel � ��k�� � k���gh
�

f�
� ������

If the characteristic length scale L is considered to be equal to �k�� �k���
�
�
� � then the

Burger number is equal to �k�� � k���
�

� �gh�
�

� 
f�� where the characteristic height scale

H is considered to be equal to h� By using ������� ������� two separate relationships

��



can be determined� one de�nes scaled perturbations in potential vorticity in terms of

scaled perturbations in height� the other shows how perturbations in scaled relative

vorticity perturbations are related to scaled perturbations in potential vorticity�

These relationships are given by

q�

q
� �Nh�

h

�
� � �

N

�
q�

q
�

��rel
�rel � f�

������

with

N � � �
f� B

�
u

�rel � f�
� ������

As the Burger number is always greater than zero� for any given perturbation� N is

always greater than �� For a �xed q�
q and N �� �� h�
h will not contribute much

to the scaled potential vorticity perturbations� the potential vorticity perturbations

are sensitive to the absolute vorticity perturbations with q�
q � ��rel
��rel � f���

Moreover� the greater the value of N � the more sensitive q�
q will be to ��rel
��rel�f���

The equation ������ shows that a number of conditions can make N large� One

possible way� assuming ��rel � f�� to be constant� is to produce a large Burger

number� A large Burger number will be obtained when h is large or when f� is small�

In summary� it is expected that for large Burger number q�
q will be dominated by

changes in ��rel
��rel � f��� The equations ������ and ������ can also be written as

�
� � �

P

�
q�

q
� �h

�

h

q�

q
� P

��rel
�rel � f�

������

with

P � � �
�rel � f�
f�B�

u

� ������

It is clear that for a small Burger number� P �� � with q�
q �� ��rel
��rel �

f�� and q�
q � h�
h� In this situation it is the scaled height perturbations h�
h

��



which will dominate q�
q� Small Burger number regimes will occur where f� is

not small as in the mid�latitudes and where h is small� It is in these regions that

the height perturbations will most resemble the potential vorticity perturbations�

The linearisation of potential vorticity may not be legitimate� Nonlinear features

of the potential vorticity may suppress the relationships suggested above� Thus

an important question which this study wishes to examine is whether this analysis

transfers to the full non�linear potential vorticity transformation on the sphere�

��



Chapter �

Change in control variables�

Theoretical Aspects

��� Introduction

As mentioned in Chapter�� data assimilation brings together observations and in�

formation from a forecast model in some consistent manner� The current means of

achieving this at the UK Met� O�ce involves a formulation of the problem called

incremental �D Variational Data Assimilation ��DVAR�� In this chapter we wish to

make precise the description of a change of  control variables
 for this formulation of

the data assimilation problem� To this end� we provide in Section ��	 a description

of the incremental �DVAR problem�

In Section ���� we describe the change in  control variables
 in the background

term of the cost functional in �DVAR and describe a general framework for change in

variables in Section ���� We take the method used presently by the UK Met� O�ce

as an example and discuss the strengths and weaknesses of the current change of

�	



control variables in relation to what an  idealised
 set of control variables should be

like�

In Section ���� we discuss the advantages and disadvantages of choosing potential

vorticity as the balanced control variable with the departure from linear balance and

divergence as the two other unbalanced variables� We describe a method to evaluate

control variables with a description of the boundary conditions needed� The method

readily presents �ve variables of which three are needed as control variables� We

discuss the various choices for the three variables�

In Section ���� using the ideas in McIntyre and Norton
s paper on balanced

models that conserve potential vorticity ����� we can evaluate a higher order ap�

proximation to the balanced part of the �ow at a given time� From this higher order

approximation we can �nd an estimate of the balanced parts of the unbalanced vari�

ables� We adapt this theory and propose a method to evaluate balanced corrections

for various sets of control variables� identifying the associated divergence tendency

of each set� This allows a comparision to be made in Chapter � between the present

set of control variables and the new potential vorticity�based set�

As shown in Section ���� the height and wind �elds behave di�erently under

various Burger regimes� This is also true with control variables� In Section ��� we

identify how the potential vorticity control transform behaves under various regimes

and show that the solution given by the current control variable set and the new

control variable sets are the same in high Burger regimes and vary in low Burger

regimes�

��



��� Data Assimilation

The majority of linear data assimilation methods can be considered in terms of

a prototype data assimilation problem� using least squares estimation� We spec�

ify this problem by showing how it relates to the �DVAR formulation� We then

present incremental �DVAR as a technique to deal with operators which are weakly

nonlinear�

Suppose we have a linear operator H which maps variables x from a forecast

into quantities and positions where observations y exist� assuming that any error �

between y and Hx is unbiased� i�e�

y � Hx� � � � �� �� �����

where �� denotes the statistical expectation operator� We leave basic statistical

de�nitions to textbooks such as �����

Let us also assume that the background state xb� produced from a forecast�

is unbiased with a background covariance matrix B� The Best Linear Unbiased

Estimator �BLUE� is de�ned as

xa � xb � K�y �Hx� ���	�

with

K � BHT �HBHT � O���� �����

where K is called the gain matrix and O is a matrix describing the error in the

observations�

The analysis xa is the solution to the data assimilation problem� It is optimal

when its di�erence from the true state is minimised under a L� norm� In practice

��



the covariances B and O are too large to calculate explicitly and data assimilation

methods are needed to curtail this di�culty� The Optimal Interpolation method

assumes that only a few observations are important in calculating each analysis

increment� and so only considers observations in local proximity to model variables�

A typical variational method avoids the calculation of K� This is written as�

Minimise J with respect to x� where

J � �x� xb�
TB���x� xb� � �y �Hx�TO���y �Hx�� �����

� Jb�x� � Jo�x��

The variational method and �BLUE� are equivalent to each other� This is easily

checked by calculating the �rst variation of J and setting this to zero at optimal

xa� To make the BLUE problem optimal� it is assumed that the matrix K is linear�

In practice� the observational operator H tends not be linear� which in turn will

produce a nonlinear K� However� if H is weakly nonlinear� we may linearise about the

background state xb� using Taylor series expansion and ignoring variations greater

than order one� Formally� we need

y �Hx � y �H�x� xb��Hxb �Ojjx� xbjj�� �����

for all values of x used in the analysis procedure and all trial values in the min�

imisation of J �x�� where H is the Jacobian of H at point xb� Thus we need the

di�erence between H�x� � H�xb� and H�x � xb� to be smaller than the observa�

tion errors �de�ned by matrix O� for all model state perturbations x�xb with size

and structure consistent with both typical background errors and amplitudes of the

analysis increments xa � xb� The incremental �DVAR approach presently used at

��



the UK Met� O�ce� applies a low resolution correction to a high resolution back�

ground� The low resolution incremental problem is a inner loop of the minimisation

procedure and is solved for each update of the full high resolution problem ��	�� The

method is described by minimising the objective functional J�w�� where

J �w� � wTB��w � �d �Hw�TO���d �Hw� �����

and

� the variable increment is w � x� xb�

� d � y � H�xb� are the observation increments� y are the full observation

values� The nonlinear function H is being used to interpolate the background

�eld to the position of the data points� The linearisation of H�x� gives H�x� �

H�xb� �Hw�

The variables in which the objective function ����� is minimised are called control

variables� The cornerstone of this thesis is to examine  di�erent changes between

control variables
 in light of dynamical theory established in Chapters 	 and �� In

the following section we describe this phrase within the context of data assimilation�

��� Change between Control Variables

�DVAR incremental formulation involves the variational minimisation of a functional

������ We wish to consider a transformation of the original variable increments into

control variables � by applying a linear operator on w � i�e� � � T �w�� We assume

that T can be represented by a nonsingular matrix with an inverse U � T��� Under

��



this control transform a new objective function is minimised�

J �� � � � TB��

 � � �d�H�U� ��TO��


 �d �H�U� ��� �����

with d � y �H�xb� and B��

 � UTBU �

The error covariance matrices� B and O� are not readily known in real life situ�

ations� The background term � TB��

 � is the dominant term in equation ������ The

matrix B��

 greatly a�ects the solution of ������

The change to a new set of control variables is intended to precondition the prob�

lem by a similarity transformation so that the control variables become uncorrelated

with each other with B��

 and B
 being turned into diagonal matrices� �For this

linear problem the diagonalisation can be achieved by applying a Cholesky decom�

position to the symmetric positive de�nite matrix B�� to obtain a lower triangular

matrix L such that B�� � LLT � The diagonalisation of B��

 is given by a singular

value decomposition of L� This is not done because this technique is prohibitively

expensive to achieve for the resolution needed� In practice we need to choose control

variables that approximate this diagonalisation��

The present statistical method assumes that the control variables are uncorre�

lated with one another� In practice they are not� In making them more uncorrelated�

an iterative minimisation procedure applied to ����� will take fewer iterations to get

an approximation to the solution of required tolerance�

In this thesis we take an dynamical approach to the problem and consider the

dynamical properties that control variables should have� One such property is to

separate the unbalanced and balanced parts of the �ow� In unpublished work ��	�

Tim Payne� by assuming that the balanced and unbalanced parts of the �ow move on

��



di�erent time�scales� shows that the balanced and unbalanced parts of the �ow are

uncorrelated with one another� We attempt to �nd a set of control variables which

distinguishes between balanced and unbalanced parts more e�ciently� In order to

do this we establish in the next section a general framework for describing changes

between sets of control variables�

��� A General Framework to Examine the Change

in Control Variables

Consider the transform T as a series of matrix operations T�� T�� � � �Tm� which when

applied to the original variables stored in a vector x� of size n�� � produces a vector

y� of size n� � which contains the control variables� This is given by

y� � Tm � � �T�T�x�� �����

We denote the reverse transformation U by a series of operations U�� U�� � � �Um

from y� to x�� with

x� � Um � � �U�U�y
�� �����

Unlike the full transforms U and T � the matrix operations need not be non�singular

and are allowed to project or restrict the variables concerned�

We can consider each operation in turn setting

xi � Tix
i���

yi � Uiy
i��� for i � �� � � � �m� ������

with

y� � xm�

��



x� � ym� ������

Thus we can relate any xi with any vector yj by

xi �

�
l�iY
l��

Tl

��	 k�mY
k�j��

Uk


Ayj� ����	�

for i � �� � � � �m and j � �� � � � �m� ��

In particular

x� � T�x
� � T�Umy

m��� ������

and if x� � ym����ym�� � then T� is the inverse of Um�

We now formalise our de�nitions T�� Um in a way similar to a treatment of control

variables given by unpublished work of Tim Payne ��	�� His description is in terms

of general in�nite dimensional operators� We present the change between control

variables as a �nite dimensional problem� Thus the linear di�erential operators

presented in the control variable transforms in Sections ������ ���� ���� are �nite

dimensional approximations to the true analytic di�erential operators�

Let us denote the model variable increments as

x� �

�BBBBBBBB	

u�

v�

h�


CCCCCCCCA
� ������

with the new set of control variables denoted as

x� � ym�� �

�BBBBBBBB	

y��

y��

y��


CCCCCCCCA
� ������

Each of the model variables� u�� v�� h�� and control variables y��� y
�

�� y
�

� are considered

to be discrete and represented by vectors of size s� ��

��



We set three projections from the control variable space to the model space which

we de�ne as

U i
m � 
s � 
�s for i � �� � � � � � ������

such that

x� � U�
my

�

� � U�
my

�

� � U�
my

�

�� ������

The balance part of the �ow is spanned by U�
m�

To obtain the control variables yi a dual basis is needed� de�ned as

T i
� � 
�s � 
s for i � �� 	� �� ������

such that

T i
�U

j
m � � if i �� j�

T i
�U

j
m � I if i � j�

Thus� the full matrix di�erential operators T�� Um are given by

T� �

�BBBBBBBB	

T �
�

T �
�

T �
�


CCCCCCCCA
Um �

�
U�
m� U

�
m� U

�
m

�
� ������

Our interest lies in the choice of T� and Um within the setting of a nonlinear

SWE model on a rotating sphere� At this point it is instructive to consider what

properties an ideal set of control variables should have from a dynamical perspec�

tive� Let us consider data assimilation that is applied to only the balanced part

of the �ow� This would be most easily applicable for �ows where the predominant

balanced part of the �ow is notably slower that the inertio�gravity waves� If the data

assimilation is applied so that the resulting full adjusted �elds are on the part of

��



the phase space of the SWEs that evolves on a slow timescale� we would no longer

need an initialisation step between the data assimilation and the running of the

forecast model� An initialisation step� such as normal mode initialisation� typically

adjusts the �elds so that the �rst and second local derivatives of the divergence are

zero ���������� limiting the generation of spurious inertio�gravity waves in the subse�

quent forecast� Also having to deal with fewer variables would substantially reduce

the computational demands that data assimilation poses� The underlying theory

describing balance needs to be developed before this becomes a viable option� In

particular the treatment of boundary conditions �A�White� personal communica�

tion� and understanding the balance in situations where balanced and unbalanced

parts of the �ow have similar timescales needs to be improved�

Because our understanding of balance is limited we consider the total number

of control variables equal to the number of dynamical variables of our atmospheric

model� For our SWE model this means that we have � control variables� one that

represents the balanced part of the �ow and the other two representing the unbal�

anced contributions consistent with the dynamical nature of the SWE model� In the

following example we describe a choice of Um� T� transforms which are analogous to

those used by the UK Met� O�ce� where the rotating wind is used to describe the

balanced part of the �ow�

����� Example

The transform T� changes the height and wind increments� h� u�� into a di�erent

set of physical variables in which the data assimilation is performed� In addition

to having a set of full �elds in h� u we also have a set of background �base� �elds

��



denoted by hbase� ubase� We subtract the same linearisation state from both sets of

full �elds to give the respective perturbed �elds u�p� h
�

p� u�base� h
�

base where

u�p � u � u�

h�p � h � h�

u�base � u � u�

h�base � hbase � hbase� ���	��

The height and wind increments are de�ned by the di�erence between base height

and wind perturbations h�base� u�base� and the full height and wind perturbations hp�

up� They are given by

u� � u�p � u�base�

h� � h�p � h�base� ���	��

The properties of these linearisation states is given in Section 	�� while the means

in which they are calcluated is left to Section ����	�

The change in control variables transforms the height and wind increments into

the streamfunction ��� velocity potential 
� and unbalanced height h�ub� The full

streamfunction increment is considered balanced� The unbalanced height is the

di�erence between the full height increment and the balanced height increment�

obtained from the streamfunction using the linear balance equation�

We set u� � u�i � v�j with i� j being orthonormal vectors on the surface of the

sphere and k being a unit vector pointing radially away from the centre of the sphere�

We write

T �
� � �� � r�� �k � r� u�� � ���		�

�	



T �
� � h�ub � h� � �

g
r��r � fr���

� h� � �

g
r��r � fr

�
r�� �k � r� u��

�
T �
� � 
� � r��r � u�� ���	��

with r�� being a discrete approximation to the inverse laplacian operator� For

T �
� � the inverse laplacian r�� as used to represent the Poisson problem� r��� �

�k � r� u��� The appropriate boundary conditions to the Poisson equation are

described in Section ������

The inverse transform Um is

U�
m � �u�T� � h

�

�� � ��k�r�� �
�

g
r��r � fr��� ���	��

U�
m � �u�T� � h

�

�� � ��� h�ub�

U�
m � �u�T� � h

�

�� � �r
�� ��

with �BBB	 u�

h�


CCCA �

�BBB	 u��

h��


CCCA �

�BBB	 u��

h��


CCCA �

�BBB	 u��

h��


CCCA ���	��

The symbol r is representing a discrete approximation to the gradient operator�

The American National Meteorological Centre ���� was the �rst to use a change

of physical control variables which approximates the balanced part of the �ow as

rotational and the unbalanced �ow as divergent and a departure from linear bal�

ance� Their set of control variables are slightly di�erent� instead of choosing the

streamfunction and velocity potential they use the vorticity and divergence instead�

It is clear that the change in control variable is kinematic in nature where the

	D Helmholtz decomposition is being used to separate the rotational and divergent

aspects of the wind and represent them as the scalar potential �elds �� and 
�� The

��



evaluation of the balanced height h�� is dependent purely on the rotational part of

the �ow with the unbalanced height h�� holding the rest of the height� Thus h�� is

zero� we assume that the velocity potential increment does not contribute to the

unbalanced height�

The choice of control variables which are constrained by � are not unique� we

could be perverse and choose y� � hb� by calculating the streamfunction and then

applying the linear balance equation� Thus�

T �
� � h�b �

�

g
r��r � frr�� �k � r � u�� ���	��

and

U�
m � �u��� h�� �

�
k�r

�
�r � fr���r�g hb

�
� hb

�
� ���	��

with the other variables and operators the same as before�

There are two reasons why this is not used� In data assimilation the U transform

is applied every time during the minimisation procedure� The procedure to calculate

the winds from the balanced height is computationally more costly taking more

cpu time to evaluate� Also� as noted in Section ���� it is noticeably less accurate

compared to using just the streamfunction because we need to use the reverse linear

balance equation�

There are additional issues to consider when using LBE in a data assimilation

context� The dynamical behaviour of the winds in the tropics is not captured by

the LBE� Thus observations in the tropics are going to be inconsistent with the

dynamical behaviour of LBE� The observations for the winds are also comprehensive

on horizontal surfaces� while their vertical structure is less well known� Meanwhile�

��



height� pressure observations are more comprehensive in the vertical direction� This

is a secondary reason why ���		� is prefered to ���	���

��	 Transformations to and from Control Vari�

ables Based on Potential vorticity

In meteorology potential vorticity is considered to be a balanced quantity due to

being able to capture key dynamical features in the atmospheric �ow such as fron�

togenesis� cyclogenesis and the general circulation � Cullen ���� proposes a potential

vorticity based change in control variables for the three�dimensional incompressible

Navier Stokes equations on an f�plane� This �rst variable involves an inversion of

potential vorticity to produce a balanced height� The second variable describes the

ageostrophic part of the horizontally non�divergent wind and pressure and is de�ned

in terms of a streamfunction variable� The third variable� the horizontal divergence�

completes the description� This change in variables requires a constant f and a

linearisation state in potential temperature that does not vary in the vertical�

In this thesis we consider the equivalent change in variable for the shallow water

equations on a sphere� We represent the potential vorticity with a linearisation

of potential vorticity �	���� about time�varying height and wind �elds that are a

function of latitude only� We choose the linearisation state as a compromise between

accuracy and numerical complexity� A constant linearisation state would be far too

inaccurate� a linearisation state dependent on both longitude and latitude is too

complex for an initial investigation�

In order to use potential vorticity to de�ne the balanced part of the �ow� we

��



need an additional balance constraint� We choose this to be the LBE� This potential

vorticity inversion is a somewhat cruder version of McIntyre and Norton
s ���� �rst�

order direct inversion� which uses a Charney balance condition instead of the LBE�

The LBE is used in the inversion� because this allows a direct comparison to be

made between using the rotational wind to de�ne the balance and using potential

vorticity� We do this by solving the equations representing the linear balance and

linear potential vorticity increments simultaneously for �b and hb� as

r � fr�b � gr�hb � �� ���	��

r��b � qhb � k � �r� u��� qh�� ���	��

The height increment and wind increments and the potential vorticity linearisa�

tion state are known before application of this potential vorticity inversion� The

height and winds increments� h�� u�� are de�ned in equation ���	�� and the potential

vorticity linearisation state q is given by �	�����

From this coupled system we obtain a  balanced
 height hb and a  balanced
 wind�

de�ned by ub � k � r�b � The  balanced
 wind increment is non�divergent� and

approximates the full rotational wind increment for high Burger number regimes�

The rest of the rotational wind is described as having no potential vorticity increment

and conserving a departure from linear balance� This can be obtained in one of two

ways� either by subtracting the balanced wind and height from the full rotational

wind and height� or by explicitly solving the simultaneous system

r � fr�ub � gr�hub � r � fr�� �r�h� ������

r��ub � qhub � �� ������

where the unbalanced rotational wind is de�ned to be urub � k � r�ub and the

��



unbalanced height is denoted by hub� The equivalence of the two methods to calculate

the unbalanced height and unbalanced rotational wind is readily seen by adding

equation ���	�� to ������ and ���	�� to ������� to give

r � fr ��b � �ub�� gr� �hb � hub� � r � fr�� �r�h� ����	�

r� ��b � �ub�� q �hb � hub� � k � �r� u��� qh�� ������

The third variable contains the remaining information� namely the divergent part

of the wind and is stored in the velocity potential�

The above description produces �ve di�erent variables� ��b� �
�

ub� 

�� h�b� h

�

ub� which

together give the original height and wind �elds� From these �ve variables we choose

three control variables� from which the ignored part of the height and wind �elds is

easily recovered� To mimic the dynamic behaviour of the shallow water equations we

choose the control variables so that one is balanced and two others are unbalanced�

There are four possible choices to obtain such a control set� Each method we

now discuss�

����� Method �� ��

b	 �
�

ub	 �
�

T �
� � ��b �

�
r � fr� gr�

�
�

q
r�

�

��

�
�gr�

�
�

q
�k � r � u��

�
� gr�h�

�
������

T �
� � ��ub �

�
r � fr� gr�

�
�

q
r�

�
��
�
r � frr�� �k � r � u��� gr�h�

�
������

T �
� � 
� � r��r � u� ������

The transformation T �
� into ��b is obtained simply by multiplying ���	�� by �gr� �

q

��



and substituting gr�hb from ���	�� with r � fr�b� Likewise T �
� is given by substi�

tuting into ������ �
q
r�� using ������ for hb�

U�
m � �u�T� � h�� � �k�r��b�

�

g
r��r � fr��b� ������

U�
m � �u�T� � h�� � �k�r��ub�

�

q
r���ub� ������

U�
m � �u�T� � h�� � �r
�� �� ������

The Um transform is self�evident and recovers the full height and wind with

�u�T � h�� � �u�T� � h�� � �u�T� � h�� � �u�T� � h��� ������

The winds are obtained by a generalisation of Helmholtz decomposition with h�

de�ned by the linear balance relation applied to �b and h� de�ned by a zero potential

vorticity increment�

There are various forms in which the projections T �
� � T �

� can be written� The

equations ������� ������ are the simplest versions� They are di�cult to solve as they

have singularities around the equator due to q � � as � � �� This is overcome by

assuming fr�b � grhb instead of ���	��� and fr�b � grhb � fr�� � grh� such

that k � �r� fr�b� � �� k � �r� fr��� � � instead of ������ to give

T �
� � ��b �

�
qr� �

�
r�q �

q�f

g



r� �r

�
q�f

g

�
� r


��
�h
qr� �

�
r�q

�i
�k � �r� u����

h
q�r� �rq� � r

i
h�
�

������

T �
� � ��ub �

�
qr� �

�
r�q �

q�f

g



r� �r

�
q�f

g

�
� r


��
��

q�f

g
�r

�
q�f

g

�
� rr��



�k � �r� u��� �

h
rq� � r� q�r�

i
h�
�
� ����	�

Equation ������ is given by �rst applying the gradient operator to ���	��� The terms

��



r �qhb� and r �qh�� are expanded to qrhb � hbrq and qrh� � h�rq such that

rr��b � hbrq � qrhb � rr��� � h�rq � qrh�� ������

The terms rhb and hb in equation ������ are substituted for f
g
r�b and ��r��b�

r��� � qh�� 
q� respectively� separating the unknown terms �b to the left side of the

equation and the known terms h�� �� to the right� We apply r � �q to the the result

to give

r �
�
qrr��b

�
�r �

�
rq

�
r��b

��
�r �

�
qf

g
r�b

�
�

r �
�
qrr���

�
�r �

�
h�qrq�

�
�r �

�
q�rh�

�
�r �

��
�r��� � qh�

�
rq
�
� ������

We now use the vector identity for generic vector A and generic scalar ��

r � �A � r� �A � �r �A� ������

to expand ������ to

qr��b �rq � rr��b �rq � rr��b �r�qr��b �r
�
q�f

g

�
� r�b � q�f

g
r��b �

qr��� �rq � rr��� �r � �qrq� h� � qrq � rh� �rq� � rh� � q�r�h�

�rq � rr��� �r�qr��� �r � �qrq� h� � qrq � rh� ������

which reduces to ������� Equation ����	� is obtained through a similar procedure�

����� Method �� h�

b
	 h�

ub
	 ��

The transformation into velocity potential and back is the same as in Choice � and

is given by ������� ������� Also� the following expressions for T �
� � T �

� are not unique�

��



A di�culty lies in the calculation of the balanced height� Within equations ���	���

���	�� not only the second order derivatives in �b need to be substituted but also

the �rst order derivatives as well� We present an approach to alleviate this problem�

We calculate the balanced streamfunction and then use the linear balance relation

to obtain the balanced height�

T �
� � h�b �

�

g
r��r � fr��b ������

where ��b is given by either �������

Similarly� we may obtain hub from �ub� using the fact that the linearised potential

vorticity increment conserved by these two variables is zero� giving

h�ub �
�

q
r���ub ������

where ��ub is given by �������

The associated U�
m transformation uses reverse linear balance to derive the bal�

anced part of the rotational wind�

U�
m � �u�T� � h�� � �k�r �r � fr���r�gh�b� h

�

b� ������

U�
m � �u�T� � h�� � �k�r

�
r�� �qh�ub�

�
� h�ub� ������

Equation ������ shows that in order to calculate the balanced wind from the

balanced height� the balanced streamfunction needs to be evaluated using the reverse

linear balance equation� In Section ��� we described a number of studies in which

showed that the solution to the reverse linear balance equation is very sensitive to

the height �elds about the equator� A similar problem exists for equations �������

�������

��



The two remaining methods are the control variables sets h�b� �
�

ub� 

� and ��b� h

�

ub�


�� The equations relating to these control variables are given above�

In a shallow water context on a doubly periodic f �plane we showed in Section

��� that the slow mode relating to the zero eigenvalue is in geostrophic balance and

is described by a linearised potential vorticity increment� The other two variables�

the divergence and departure from geostrophic balance� are linear combinations of

the unbalanced eigenvalues of the system� On this f �plane the balanced variable

is independent from the unbalanced part� Ideally� we would wish the unbalanced

components to represent the eigenvalues of the unbalanced part� Unfortunately this

in not the case�

In summary� the changes in control variable described in this section do have cer�

tain di�culties� namely the problem with the linearisation of the potential vorticity

going to zero at the equator and the problem of constraining the control transforms

������ by k � r � fr�b � � and ����	� by k � r � fr�ub � �� Balanced and un�

balanced � variables seem better than the corresponding balanced and unbalanced

height� due to the need to solve the reverse LBE equation in the corresponding U

transform� For these reasons we solve for the balanced variables in their original

formulation given in ���	��� ���	���

����� Conditions for Solving the Potential Vorticity
based

Change in Control Variables

The boundary conditions for solving the simultaneous system ���	��� ���	�� comes

from the consideration of the solution of the linear balance equation and the existence

��



and uniqueness conditions� necessary for the solution of a Poisson equation on a

sphere� We are considering solutions over the hemisphere� This is done by solving

over the sphere and making the right�hand side of ���	�� anti�symmetric about the

equator� This enforces �b to be antisymmetric and hb to be symmetric about the

equator� This is equivalent to setting

�hb
��

��� �� � ��

�b��� �� � �� ������

The standard boundary conditions used to solve Poisson equations on the sphere

apply at the poles� We set Neumann boundary conditions there to make the �b� hb

single valued at these points�

The �nal condition needed is for the balanced height to conserve the mass present

in the height increment� In each of our datasets the total mass� represented by the

summation of hf � is the same� Since we subtract the same linearisation state h

from all the full heights� the perturbation �elds� all have the same mass� Similarly�

since we are dealing with di�erences to these perturbations� the total mass of these

increments should be zero� with

Z
hbdS � �� ����	�

��
 Divergence tendency within control variables

We wish to identify the divergence tendency of the control variables to ascertain

how well the balanced and unbalanced parts are represented by the balanced and

unbalanced control variables� A good representation of balance gives divergence

�	



tendencies that are small�

Let us �rst consider control variable increments with linearisation states u � �

and h � H� where H is constant� If we consider the linearisation of the shallow

water equations about such states and introduce only the balanced variables� from

whatever method� into the respective divergence equation �	����� we get a divergence

tendency of zero� This is due to the divergence of advective term in the SWEs mo�

mentum equation �	���� being comprised of squared perturbations� If we� however�

consider the linearised divergence equation linearised about a time�varying state and

apply the balanced variables� the divergence of advective terms of �	���� remains�

The divergence tendency of the balanced control variable is then given by

��r
�t

� �r� ��vr
� � v��� � k � r �

�
�vr

� � � �v
�
� LB method ������

��p
�t

� �r� ��vpv
� � v��� � k � r �

�
�vpv

� � � �v
�

PV method ������

where the LB method is the standard change in control variables described by ���		�

and the PV method is the name we give to the change in control variables based of

potential vorticity inversion described by ���	��� ���	�� in Section ���� vr is the rota�

tional wind and vpv is the balanced rotational wind derived using the PV method�

The advective term is not accounted for due to both control variable transforms

using a linear balance relationship intrinsic in their de�nitions� In some data as�

similation systems which use the LBE� the balanced advective parts of the �ow are

presented in some data assimilation schemes by using approximations to the diver�

gence tendency as an additional observation ����� Another way to account for the

advective term is to consider a higher order potential vorticity inversion scheme� In

McIntyre and Norton
s paper ���� the 	nd order direct potential vorticity inversion

��



by de�nition sets both the divergence tendency of the nonlinear divergence equation

and the second order partial time derivative of the divergence to zero� By using a

similar concept we derive in the next subsection a correction to the balanced wind

and heights given by the LB and PV methods which sets the divergence tendency

of the divergence equation linearised about a time�varying state to be zero� This

method has the added bene�t that the correction identi�es balanced parts in unbal�

anced variables�

����� Approximation of Divergence Tendencies of Balanced

Corrections to Unbalanced Variables

In the direct second�order potential vorticity inversion model in McIntyre and Nor�

ton
s paper ����� one of the equations which close their dynamical system enforces

the second partial time derivative of the divergence to be set to zero� We derive a

similar equation which uses a balanced correction to �nd the divergent wind� This

is done by �rst applying the local partial time operator to the divergence equation

�	���� linearised about time�varying linearisation states h�v� � as de�ned in Section

	��� giving

����

��t
� k � r �

�	�� � f
� �v�
�t

�
�
�
� � f

�
�t

v� �
�� �

�t
v� � �

�v

�t


A
�r�

�
g
�h�

�t
�
�v�

�t
� v �

�v

�t
� v�

�
� �� ������

where

�v�

�t
� �r �v � v���

�
� � f

�
k� v� � � �k� v � grh�� ������

�� �

�t
� �r �

��
� � f

�
v� � � �v

�
� ������

��



�h�

�t
� �v � rh� � v� � rh� h�r � v � hr � v�� ������

�v

�t
� �r

�
v � v

	

�
�
�
� � f

�
k� v� grh� ������

��

�t
� �r �

��
� � f

�
v
�
� ������

�h

�t
� �v � rh� hr � v� ������

Incorporating ������ � ������ into ������ and setting the second partial time

derivative of the divergence to zero leaves on simplifying

k � r �
��
� � f

�
�r �v � v���

�
�
�
� � f

��r � v� �r �
� � f

�� � v�
�k � r�

h�
� � f

�
�� �k� v�

i
� gk � r�

h�
� � f

�
rh�

i
�k � r �

��
r �

��
� � f

�
v
��
v�
�

�k � r �
��
r �

��
� � f

�
v� � � �v

��
v
�

�k � r�
�
� �
�
r �

��
� � f

�
v
���

�gr�
�
v � rh� � v� � rh � h�r � v � hr � v�

�
�r�

��
r �v � v�� �

�
� � f

�
k� v� � � �k� v � grh�

�
� v
�

�r�
��
r
�
v � v

	

�
�
�
� � f

�
k� v� grh

�
� v�

�
� ������	�

We now apply a scale analysis to equation ����	� and assume that the �ow is

characterised in the mid�latitudes with� the characteristic length scales L � ���m�

the characteristic height linearisation state H � ���m� the characteristic velocity

linearisation state U � ���ms��� the height increments H � ���m� the wind incre�

ments U � ���ms�� � f � ����s�� and g � ��� In this scaling the characteristic

vorticity state is approximately ����ms�� and is smaller than the Coriolis parame�

ter at ����� The results from the scale analysis are presented in Table ������ Two

of the terms of the greatest order of magnitude�
�
� � f

��r � v�� gr�
�
hr � v�

�
are
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increments involving divergence and are rewritten as
�
� � f

��
��� gr�

�
h��
�

� We

wish to make the divergence increment the variable to be solved for� so we keep

those two terms on the left and place the rest on the right hand side�

This gives a modi�ed Helmholtz equation to be solved of the form

r�
�
gh�b

�
� �

�
gh�b

�
� � ������

where � is given by

� �
�� � f��

gh
������

and � is equal to

� � k � r �
��
� � f

�
�r �v � v���

�
�r

�
� � f

�� � v�
�k � r �

�
� � f

�
�� �k� v� � gk � r �

�
� � f

�
rh�

�k � r �
��
r �

��
� � f

�
v
��
v�
�

�k � r �
��
r �

��
� � f

�
v� � � �v

��
v
�

�k � r �
�
� �
�
r �

��
� � f

�
v
���

�gr�
�
v � rh� � v� � rh� h�r � v

�
�r�

��
r �v � v�� �

�
� � f

�
k� v� � � �k� v� grh�

�
� v
�

�r�
��
r
�
v � v

	

�
�
�
� � f

�
k� v� grh

�
� v�

�
� ������

The terms hb�vb� �b are obtained either from the LB or PV method� The linearisation

states are set to be in geostrophic balance� The solution of the modi�ed Helmholtz

equation gives gh�b� Since we know the value of gh� the balanced divergence is easily

obtained�

The PV or LB method give balanced height and balanced rotational winds� The

modi�ed Helmholtz equation gives a balanced divergence� The remaining balanced

��



Table ���� The scaling of various terms in equation ����	� �with the characteristic

length scales L � ���m� the characteristic height linearisation state H � ���m�

the characteristic velocity linearisation state U � ���ms��� the height increments

H � ���m� the wind increments U � ���ms�� � f � ����s�� and g � ��

Terms considered Dimensional scaling Size of term

�
� � f

��r � v�� r �
� � f

�� � v� f�U
L

�����

gr�
�
v� � rh

�
� gr�

�
hr � v�

�
gHU
L�

�����

k � r �
h�
� � f

�
�grh��

i
gfH
L�

�����

k � r �
��
� � f

�
�r �v � v���

�
fUU
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�����

k � r �
��
r �
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� � f

�
v
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�

fUU
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�����
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���
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�
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�
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fUU
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�����
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�
�� �k� v�

i
fUU
L�

�����
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r �
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�
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v
�

fUU
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�����

r� ��grh�� � v� gHU
L�

�����

gr� �v � rh��� gr� �h�r � v� gHU
L�

�����

k � r� ��r � �� �v��v� UU
�

L�
�����

r� ��r �v � v��� � v� UU
�

L�
�����

r� ��r �v � v�� � v�� UU
�

L�
�����

r� ��� �k� v� � v� UU
�
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�����

r�
���

� � f
�
k� v
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�
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L�

�����

k � r �
�
� �
�
r �
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� � f

�
v
���

fUU
L�

�����
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part of the �ow lies in the departure from linear balance� Suppose we consider the

divergence equation� linearised about a time�varying linearisation state �	����� We

presume that the total balanced parts of the �ow satis�es this equation and has a

divergence tendency of zero�

Since we are considering a linearisation of the divergence equation� it is possible

to separate the balanced part of the divergence equation that we know� from those

parts that we do not� Thus the balanced contribution to the divergence equation is

given by

�k � r �
��
� � f

�
v� � ��v

�
�r� �gh� � v� � v� � k � r�

��
� � f

�
v� � ��v

�
�r� �gh� � v� � v� ������

where v�� h� is the balanced velocity and height contribution the variable describing

a departure from linear balance� The wind v� is de�ned as

v� � vpv � vbd� h� � hpv ������

or

v� � vlb � vbd� h� � hlb� ������

where vbd is the balanced divergent wind given by r �r���b��

Equation ������ has two unknowns� a balanced height and a balanced velocity�

An additional equation is needed to produce a closed system in which the two un�

knowns are able to be determined� As we have determined the balanced divergence�

we assume that the balanced velocity obtained form a departure from linear balance

is non�divergent and expressible in terms of a streamfunction ��� In Section ���� in

equations ������� ������ we assume that the departure from linear balance also lies

��



in the kernel of the linearised potential vorticity increment� as we assumed in the

control variables that unbalanced �ow contained no linearised potential vorticity�

Thus the closed dynamical system is given by

�r �
�
f � �

�
r�� � k � r �

�
r���v

�
�gr�h� �r� �v � �k�r���� � k � r �

��
� � f

�
v� � ��v

�
�r� �gh� � v� � v� ������

r��� � qh� � �� ������

where ������ is ������ with the wind on the left hand side written in terms of a

streamfunction and ������ is a restatement of �������

We are now in a position to evaluate the divergence tendency of the balanced

corrections� The divergence tendency ��bd
�t

is given by the balanced divergence

��bd
�t

� �k � r�
��
� � f

�
vbd � �k� vbd�v

�
�r� �vbd � v� ������

where vbd � r �r���b��

Similarly� the balanced correction from the departure from linear balance ��blb
�t

�

takes the form

��blb
�t

� �r� ���k � r��� � v�� �

k � r �
��
� � f

� �
�k � r��� �

�
r���

�
v
��

� gr�h�� ����	�

In principle the balanced corrections could be incorporated into the transfor�

mation to and from control variables and give a more accurate balanced variable

which would include a balanced divergence� However in a data assimilation context

the additional numerical cost needed to implement this scheme would outweigh the

��



bene�t of increased accuracy in the balanced variable� For this reason the above

procedure is used only for comparisons between the PV and LB methods�

��� Control Variables and Burger Regimes

The PV method approximates the LB method under high Burger regimes since the

majority of the linearised potential vorticity is held in the rotational wind in such

regimes� For very small Burger number regimes for which the linearised potential

vorticity is predominantly composed of a weighted height increment� qh�� the PV

method approximates the control variables set in which the height increment is

considered to be the balanced variable� This is written as

T �
� � h� � h��

T �
� � ��ub � r�� �k � �r� u���� �r � �fr���r�gh��

T �
� � 
� � r�� �r � u�� � ������

The inverse transform Um is

U�
m � �u�T� � h�� � �r � �fr���r�gh�� h��

U�
m � �u�T� � h�� � �k�r�ub� ��

U�
m � �u�T� � h�� � �r
�� �� ������

The above change in control variables involves solving the reverse LBE which we have

already mentioned as being problematic� Though the PV method is approximating

this change in control variables� it may not have the same problems around the

equator� This is because around the equator� due to f � �� the Burger number gets

��



increasingly large and the PV method is going to approximate the LB method in

these regions�

We need to examine the performance of LB and PV methods for a wide range

of Burger numbers� Though it seems that there should be better results using the

PV method� compared to the LB method for low Burger number� it is unclear as

to the cuto� value in the Burger number when these improvements are noticable�

The cuto� value should be close to �� but this is to be checked in the experiments

in Chapter ��

��� Conclusion

In this chapter we have de�ned a change in control variables in terms of the data

assimilation problem� A framework is proposed in which control variables can be

examined� It is used to view the current change in control variables at the UK

Met� O�ce when applied to SWEs on a sphere� A change in control variables is

de�ned which conserves a potential vorticity increment� The dynamical properties

of an ideal set of control variables are discussed� We then consider the relationship

between control variables and divergence tendency and present a means to establish

the respective performance� by �nding a way to evaluate the divergence tendency in

the unbalanced variables� The chapter concludes with an examination of how the

control variables from the PV method vary in behaviour with Burger number�

��



Chapter �

Numerical Background

	�� Introduction

In this chapter we present the numerical details of the algorithms used in Chapter

�� The �rst part of this chapter relates to the shallow water equations� Section ��	

gives some of the numerical details of the UK Met� O�ce
s shallow water equation

model on a sphere� In Section ��� we describe two di�erent initial conditions� one

described by the Rossby�Haurwitz wave on the sphere ������ � � ����� and the other

representing a realistic atmospheric situation�

Throughout Chapters 	� � we use linearisation states h� u� q� In Section ��� the

experimental details of various types of linearisation states are presented that are

used in the experiments in Chapter �� The third part of this chapter considers the

Poisson equation� Understanding the numerical properties of the Poisson equation

not only gives the tools to solve the linear balance equation �LBE� and obtain the

streamfunction and velocity potential from the vorticity and divergence � it also

presents a method of solution which we use later in Chapter � to solve a control

�	



Figure ���� Arakawa C grid

hi	j ui	j hi	j��

vi	j vi	j��

hi��	j ui��	j hi��	j��

variable transform based on conserving potential vorticity ���	��� The numerical

evaluation of the Poisson equation is discussed in Section ��� while in Section �����

we consider the question of existence and uniqueness of solutions to this problem�

In the last two Sections� various �nite di�erence approximations are presented�

for which we give validatory evidence of their correct evaluation�

	�� Shallow Water Equations
 General Experi�

mental Details

The numerical model approximating the shallow water equations calculates the

height and wind �elds on a staggered mesh called an Arakawa C grid� The rel�

ative positions of h� u� v are given in Figure ����

The code which solves the SWEs is that used within the UK
s Met� O�ce

numerical weather prediction model �Uni�ed Model�� It is a semi�Lagrangian� semi�

implicit� predictor�corrector scheme� The wind �eld is predicted for the next time

��



step and the di�erence between the present time step and the next is calculated and

stored� The continuity equation is used to de�ne a variable coe�cient Helmholtz

equation for height di�erences between the two time levels� Once the Helmholtz

equation is solved using a multigrid procedure� the height �eld at the new time level

is known and the winds are corrected giving the �nal values for all the variables�

Further details concerning its performance are presented in �����

	�� Some Initial Conditions for the Shallow�Water

Equations

The initial conditions used in this thesis are constructed from standard tests that

are normally used to compare the performance of various SWEs models� We use

test cases � and � as de�ned in ����� ����� �	��� Case � uses the Rossby�Haurwitz

wave on the sphere� Test case �c uses observed ���mb height and wind �elds from

���� GMT January �� ����� Each case we now describe�

����� The Rossby
Haurwitz wave on a Sphere

As shown in Section ���� the Rossby�Haurwitz wave is a solution to the nonlinear

non�divergent barotropic vorticity equation�

��

�t
�r � �f � �� � �� �����

which propagates a non�divergent solution� The Rossby�Haurwitz wave on the

sphere� as presented in Section ������ is initially in Charney balance� In a shal�

low water model the unbalanced parts of the �ow are created as time progresses�

��



Provided we consider a high Burger regime� the unbalanced parts remain small

compared to the balanced parts�

Since Philips ����� investigators have been using this wave to provide initial

conditions for the SWEs� Throughout this thesis we choose the wavenumber to be

equal to �� as we want the �eld to be stable� Following Hoskins �	��� Rossby�Haurwitz

waves with zonal wavenumbers less than or equal to � are commonly considered to

be stable while those greater than � are considered unstable� Recently in papers ����

����� the stability of the Rossby�Haurwitz wave for zonal wavenumber R � � has

been put into question� due to signi�cant di�erences between between various ��day

model simulations using di�erent numerical models� Also certain numerical models

provide solutions which disrupt both the basic symmetry of the U � H �elds about the

equator and also the antisymmetry of the V �eld� The numerical techniques we use

to evaluate the change in control variables rely on these symmetries� Fortunately�

the Met O�ce Semi�Lagrangian SWE model which we use preserves the symmetries

needed�

����� Real initial conditions

Case �c was used originally by Baumhefner and Bettge ���� It involves a strong

zonal �ow� The observed height and �u� v� wind �elds come from an FGGE analysis

which was initialised using normal mode initialisation ���� at the UK Met� O�ce�

The mean height �eld was set to �� km� The balanced data is unformatted and

represents the height and winds on a Arawaka C grid at a medium resolution with

%� � 	
�� and %� � 	
�� and gives an adequately detailed representation of

the original observations� We also use the uninitialised �elds held in �le called

��



V DG�����cdf found in ftp � ��ftp�cgd�ucar�edu�pub�jet�shallow�nminit� with mean

depth ���� km and T��� spectral resolution�

From the initialised and uninitialised data �elds we construct the �elds for use

in the numerical experiments of Chapter � by making the height h and u component

of the wind symmetric about the equator while setting the v component of the wind

to be anti�symmetric about the equator� This is done by taking the height and wind

�elds on the North Hemisphere and copying them onto the Southern Hemisphere�

To enforce antisymmetry to the v component of the wind� we apply a sign change

to the modi�ed v �eld in the Southern Hemisphere� Since the original mass is not

equally split between the hemispheres� we need to adjust the mean height level so

that the total mass of new height �eld is the same as the original height �eld�

An additional set of height and wind �elds are obtained similarly by taking the

data values in the Southern Hemisphere� overwriting them onto the Northern Hemi�

sphere� applying the sign change in the v �eld and adjust the mean height� Taking

the average of the two sets of height and wind �elds produces sensible base states�

Appropriate latitudinally dependent linearisation states that are in geostrophic bal�

ance are constructed using the base states� following the procedure in Section ����

	�� Linearisation States

Whether we are dealing with perturbations or increments� linearisation states need

to be de�ned� We look at two linearisation states� one set about a resting state

as in Section 	�� and another about a balanced latitudinally varying linearisation

state� Both are used in the experiments in Chapter �� In this section we present

��



linearisation states in terms of perturbations� mentioning any di�erences to using

increments along the way�

When a linearisation state about a resting state is used� the linearisation state

H is a constant� We choose H and the perturbation h� so that

h � H � h�Z
h�dS � � ���	�

This is a unique choice due to h� being symmetric about the equator� For height

increments the surface integral is automatically true�

Since the wind perturbations are de�ned about a state of rest �	���� � is equal

to a constant and the full streamfunction perturbation is given by

r��� � k � �r� v� � �����

Given �	����� ���	�� ������ we see that full increments can be de�ned in a similar way

for use in various changes in control variables�

We de�ne a balanced latitudinally dependent linearisation state using the PV

method� We apply the linearisations about a resting state as a �rst approximation

using �	����� ���	�� ����� and q � f
H

� The coupled system�

r � fr�l � gr�hl � �� �����

r��l � qhl �
Z ��

�
r��� � qh�d�� �����

is then solved for �l and hl� The new latitudinally varying linearisation states are

de�ned as

u��� � ��

a

��l

��
�����

��



h��� � hl �����

v � �� �����

Since hq� � r��� � qh� to order O��h���� h�r����� the linearised potential vor�

ticity perturbation is only accurate provided hq� �� O�q�h���
h� h�r����� When h

is small� as for low Burger regimes� there is a greater opportunity for this criterion

to be violated� especially when q�� h� and �� involve relatively large departures from

respective linearisation states� This is why a latitudinally�varying linearisation state

is considered� as the departures from the linearisation states are going to be much

smaller compared to when u � �� v � � and h � H�

The e�ect of choosing latitudinally varying states that satisfy the PV method

gives linearisation states that are in geostrophic balance� A linearisation state that

satis�es a balance condition is necessary in Section ��� to identify correctly the

divergence tendency in the unbalanced variables�

	�	 Poisson Equation

The Poisson equation on the sphere is given by

�

a� cos� �

���

���
�

�

a� cos �

�

��

�
cos �

��

��



� F ��� ��� �����

where a is the radius of the sphere� � and � are the longitude and latitude� � is the

solution and F is a known forcing term�

The solution of the Poisson equation over a sphere is required for the calculation

of the streamfunction� velocity potential and the calculation of balanced height from

the streamfunction using the Linear Balance equation� The �rst step to solving

��



the Poisson equation is to apply discrete fast Fourier transforms �DFFTs� in the

longitudinal direction� This provides second order ordinary di�erential equations

�ODEs� for each zonal wavenumber� These ODEs are discretised using a �nite

volume approach that is equivalent to a 	nd order centered �nite di�erence method�

They are solved by applying a standard tri�diagonal solver� The solution to the

Poisson equation is obtained by applying an inverse fast Fourier transform at every

value of latitude considered� As the method of solution is similar to that given

by Moorthi ���� we present only the key implementational details and leave the

de�nition of the DFFT and its inverse to that paper�

Consider a regular latitude�longitude grid over a sphere� with the grid spacing

in the latitude and longitude denoted respectively by

%� �
	

N � �
and %� �

		

M
� ������

where N is the number of points in the co�latitudinal direction� indexed as i� going

from the north pole to the south pole� Similarly� M is the number of grid points in

the longitudinal direction� The longitudinal dimension to the grid points� denoted

by index j� are numbered positively in an anti�clockwise direction around the north

pole� We stipulate that M � 	n�n where m� n are integers� This choice makes the

Fourier transform and its inverse e�cient to use� We also set N to be odd� This

allows grid values with index i � N��
� to lie on the zero latitude�

We are solving the discrete problem on a sphere where � � ���
� �

�
� �� � � ��� 		�

and �� � are the latitude and the longitude� Periodic boundary conditions are

assumed for the longitude� The problem is scaled onto the surface of a sphere of

unit radius to eliminate unneccesary rounding error� Once the solution to the scaled

��



problem is known� the rescaling back onto a spherical Earth is performed� Thus�

for the following discussion� we consider the Poisson equation on a sphere of unit

radius�

Application of the DFFT gives a tridiagonal system to be solved for each wavenum�

ber considered� For i � 	� � � � � N � � and generic wavenumber k� the tridiagonal

system takes the form

�k�	� &�i
cos��i�

� ������

cos��i������&�i�� � &�i� � cos��i������&�i�� � &�i�

%��
� cos��i� &fi�

where &�i� &fi are the complex coe�cients of the solution and right�hand side for

latitude circle i� The grid and half grid values of the latitude are de�ned as�

�i �
	

	
� �i� ��%�� for i � �� � � � � N�

�i���� �
	

	
� �i� �

	
�%�� for i � �� � � � � N � �� ����	�

To complete the description of the tridiagonal system� we need equations for the

polar values� The equation at each pole is derived using the integral� �nite volume

approach as presented by Barros �	�� The equation is derived as follows�

Z ��

�

Z �

�

�

�
�
��

�

r�� cos �d�d� �
MX
l��

Z l
�

	l��

�

Z �

�

�

�
�
��

�

r�� cos �d�d�

�
MX
l��

Z l
�

	l��

�
�r� � #�

�����
�

�
�
��

�

d�

�
MX
l��

%� cos�� �
�
�
��	l � ��	l

%�

�
Z ��

�

Z �

�

�

�
�
��

�

F cos �%�%�

� F �PN�VN � F �PN�	
%�

	
cos�� �

�
�� ������

The two�dimensional divergence theorem and the midpoint rule are used to evaluate

��



������ where F is the scaled right�hand side value at the north pole PN with the

associated surface area VN � The surface area VN is the surface area of the spherical

cap above latitude � � �	 �%��
	�

We observe that in ������� a longitudinal mean is taken for both the grid points

at the north pole and for i � 	� Since &�� and &�� represent longitudinal means when

k � �� equation ������ can be rewritten as

� �

%��
&�� �

�

%��
&�� � &f����� ������

For non�zero values of k we stipulate Dirichlet boundary conditions e�� � ��

e�N � � and solve over the whole sphere� These boundary conditions enforce single

values at the poles and give tridiagonal systems of full rank�

When k � � additional conditions are needed for a unique solution� We consider

the problem when the right hand side is either symmetric or anti�symmetric about

the equator� When the right hand side is anti�symmetric about the equator there

is no di�culty in obtaining a solution� We solve over the upper hemisphere setting

a zero Dirichlet boundary condition at the equator� The solution is copied onto the

other hemisphere and a sign change is applied�

When k � � and the right hand side is symmetric about the equator a uniqueness

condition needs to be satis�ed� Such a problem occurs in this thesis when velocity

potential &
i needs to be evaluated from the divergence� This condition is

Z ���

�

����

�

e
��� cos �d� � �� ������

We solve over a hemisphere� where the equation at the equator is overwritten by

�

a�

N��

�X
i��

Vi e
i � � ������

��



where Vi is given by

V� � 		a�
%�

	
cos � �

�
�

Vi � �	a�%� cos �i for i � 	� � � � �
N � �

	
�

VN��

�

� 		a�%� ������

The solution to the tri�diagonal sytem is then copied to the other hemisphere before

IDFFT
s are used to get the solution to the Poisson equation�

A few additional notes have to be made� The computational procedure for the

numerical solution of the Poisson equation is written in the Matlab language� It uses

subroutines from the FFTW library ������	�� that are well known and reliable� The

right hand side of the Poisson equation has to satisfy the compatibility condition

for the solution to exist� Further details are given in Section ������

����� Compatibility condition

The compatibility condition is a necessary and su�cient constraint ��	� that needs to

be applied to the Poisson equation on the surface of a sphere in order for a solution

to exist� It states that the right�hand side f has to satisfy

Z
�
f � �� ������

Then the solution is unique up to the value of a constant�

The discrete problem preserves this property� A solution exists to the discrete

problem provided that the right hand side is orthogonal� under the Euclidean inner

product� to the kernel of the adjoint of the discretisation matrix� By multiplying

both sides of the equation ����� by cos��� the Poisson problem is rewritten in a

self�adjoint form for which the constant function spans the kernel�

�	



The self�adjointness manifests itself in the discretisation of cos��� times ������

When a uniform grid and centered �nite di�erences are used the associated discreti�

sation matrix is symmetric�

Suppose that the i � 	� � � � � N � � rows of this matrix� A� are given by equation

������� The �rst row is equal to �
� cos�� �

�
� times ������� The last row representing

the equation at the south pole is de�ned in a similar fashion�

The discrete problem needs to satisfy a discrete version of ������� This discrete

condition is equivalent to setting the sum of all the entries of the new right�hand

side to zero�

If the discrete new right�hand side does not satisfy this discrete version of �������

then it needs to be perturbed so that the solution to the resulting consistent system

is a least squares solution to the unperturbed one� This is achieved by

Let e � ��� � � � � ��T � fi � &f���i for i � �� � � � � N �

hT � �
�

�
cos������� h

T
� �

�

�
cos�� �N��

�

�� ������

and

hT� � �cos����� cos����� � � � � cos��N���� ���	��

We de�ne the discretisation matrix B by �
�cos��i�� times equation ������ for rows

i � 	� � � � � N � � with the �rst row given by �
� times ������� The last row represents

the equation at the south pole and is de�ned in a similar fashion to the north pole�

We de�ne an inner product between two vectors f and g

�f� g�H � fTHg� ���	��

where H � diag�h� and

jjujjh � uTHu� ���		�

��



If we adjust the right�hand side to g� such that

g � f � �e� f�H
�e� e�H

e� ���	��

the solution to the system Bx � g is consistent� Also x minimises jjBx� f jjH �

In fact� any matrix norm can be used to perturb the right�hand side� However

it is better to perturb f by a vector e that has no functional dependence as the

functional dependence of the errors in f will not normally be known� If the L�

norm is used� then the perturbation is no longer constant but equal to h� It also

approximates a function which is not regular at the poles�

����� Right hand sides

As mentioned at the beginning of this section� a Poisson equation needs to be solved

to obtain streamfunction� velocity potential and balanced height� Each of the neces�

sary right hand sides are approximated using a second�order centered �nite di�erence

discretisation� Due to the periodicity of the sphere�

fi	M�� � fi	� ���	��

fi	� � fi	M i � �� � � � � N

The polar values� denoted as fN and fS� are taken as the mean average of the values

of f on the latitudinal rings i � 	 and i � N � ��

The streamfunction � is calculated by solving

r�� � k � �r� v� ���	��

where k � �r� v� is the relative vorticity� The winds are evaluated on an Arakawa

C grid and the relative vorticity given at grid points coincident with height values�

��



The relative vorticity is evaluated to O�%���%��� by

fi	j � �k� �r� v��i	j ���	��

�
�

a cos �

�
�v

��
�

�

��
�cos �u�

�
i	j

�
�

a cos �i

�
vi	j�� � vi	j�� � vi��	j�� � vi��	j��

�%�

�cos �i�� �ui��	j � ui��	j���� cos �i�� �ui��	j � ui��	j���

�%�

�
�

for i � 	� � � � � N � �� j � �� � � � �M � The Poisson equation is �rst solved over the

unit sphere� To do this the right�hand side is multiplied by the radius of the earth�

The solution is multiplied by a to give the value on the surface on the Earth�

The velocity potential 
 is calculated by solving

r�
 � r � v ���	��

wherer�v is the horizontal divergence of the wind��eld� It is evaluated toO�%���%���

at points coincident with the height on an Arakawa C grid� The divergence is given

by

fi	j � �r � v�i	j ���	��

�
�

a cos �

�
�u

��
�

�

��
�cos �v�

�
i	j

�
�

a cos �i

�
ui	j � ui	j��

%�
�

cos �i��vi��	j � cos �ivi	j
%�

�
�

for i � 	 � � � N��� j � �� � � �M � The same scaling is used as with the streamfunction�

The right�hand side to the LBE ������ is approximated to O�%���%���� using

fi	j � �r � fr��i	j ���	��

�
�

a� cos �i

�
fi ��i	j�� � 	�i	j � �i	j���

cos �%��
�

��



fi� �

�
cos�i� �

�
�i��	j �

�
fi� �

�
cos �i� �

�
� fi� �

�
cos �i� �

�

�
�i	j � fi� �

�
cos �i� �

�
�i��	j

%��


A �

for i � 	 � � � N � �� j � �� � � � �M � For this approximation� the right�hand side is

multiplied by a� to produce the correct scaling� The solution obtained on the unit

sphere is the same as on the surface of the Earth�

	�
 Additional Numerical Schemes and Numeri�

cal Tests

Since Poisson inversion is used throughout this thesis� it is expedient to present val�

idation tests for the right hand sides within Section ����	 and the Poisson inversion

used to calculate the streamfunction� velocity potential from the vorticity and di�

vergence� We also validate the LBE where balanced height �elds are obtained from

the streamfunction�

The winds we use in the tests are

U � a� cos � � aK
�
cosR�� �

�
R sin� � � cos� �

�
cosR�

�
�aKR cosR�� � sinR�� ������

V � �aKR sin � cosR�� � sinR�

�	a� sin � cos � � aKR
�
sin � cosR�� � cosR�

�
� ������

where R � �� K � � � ������ ���� s��� a � ����		�m� The rotational part of the

winds are equivalent to a Rossby Haurwitz wave� The streamfunction and velocity

potential of these winds are

� � �a�� sin � � a�K cosR � sin � cosR�� ����	�

��




 � a�� cos� � � a�K cosR � cosR� ������

and the vorticity and streamfunction are given by

� � 	� sin � �K sin � cosR �
�
R� � �R � 	

�
cosR�� ������

� � �	�
�
cos� � � 	 sin� �

�
�K cosR�� �

�
�R� �R cos� � � R� sin� �

�
cosR�� ������

The right hand side of LBE is

r � fr� � �	�R�K cosR�� � sin� � cosR�

�	�
h
	� sin� � � � cos� �

�K cosR�
�
R� cosR�� � sin� � � ��R � 	� cosR � sin� �

� cosR�� �
�i
� ������

We use a normalised L� vector norm to get estimates of the error between the

numerical approximations and the true analytic solutions� The error estimate � is

of the form

� �

�PN
i��

PM
j��

�
�ti	j � �ai	j

��� �

�

�PN
i��

PM
j��

�
�ti	j

��� �

�

������

for a generic true �eld �t and generic approximation �a�

The third and fourth columns of Table ��� show the L� error in �� � between

the analytic solutions ������� ������ and the the numerical approximations ���	���

���	�� applied to the analytic winds ������� ������ � The far right column of Table

��� shows the L� error between analytically de�ned r � fr� given by ������ and

the numerical approximated value given by the numerical discretisation ������ using

values de�ned by ������� In all three cases� a doubling of the resolution results in

��



Table ���� L� error between numerically and analytically de�ned �� � and r � fr�

using equation ������

M N L� error L� error L� error

in � in � in r � fr�

�� �� ������ ������ ������

�� �� ����	� ����	� ������

��	 �	� �����	 ���	 � ���� �����	

a four�fold reduction in the relative error� as expected for second order accurate

schemes�

The third and fourth columns of Table ��	 shows the decrease the relative L�

error with increased resolution of �� 
 � This is a test of the Poisson inverter

where the right hand sides have been evaluated using second order �nite di�erence

schemes ���	��� ���	�� applied to the analytically de�ned wind ������� ������� The

�nal column shows the decrease the relative L� error of the laplacian of balanced

height hb� The laplacian of the balanced height is calculated by �rst solving a

Poisson equation to obtain a streamfunction using the analytically derived winds

������� ������� Then we solve the LBE using the �nite di�erence approximation

������ to retrieve the balanced height hb� Then we apply a discretised second order

centered �nite di�erence approximation of the laplacian to the balanced height of

the form

r�hb i	j �
hb i	j�� � 	hb i	j � hb i	j��

a cos� �i�%���
�

cos �i� �
�
hb i��	j �

�
cos �i� �

�
� cos �i� �

�

�
hb i	j � cos �i� �

�
hb i��	j

a cos �i�%���
������

��



Table ��	� L� error between analytical de�ned streamfunction � ������� velocity

potential 
 ������ and r � fr� ���� and the respective numerically approximated

�elds� given by solving a Poisson equation with the respective right hand sides and

evaluated using schemes ���	��� ���	��� ������ applied to winds ������� ������

M N L� error L� error L� error

in � in 
 in r�hb

�� �� ������ ������ ������

�� �� ������ �����	 ������

��	 �	� 	���� ���� ���� � ���� ������

and compare with the analytically de�nedr�fr�� ������� This is done to show that

the error overall after repeated Poisson inversion remains second order accurate� In

each situation the relative L� error decreases with O��%���� �%���� as expected�

The other test that is applied to the Poisson solver is to compare an analyti�

cally de�ned wind �eld ������� ������ with a numerically approximated one� The

numerically approximated wind is obtained by �rst converting the original wind

�elds ������� ������ into vorticity and divergence using ���	��� ���	��� The Poisson

inverter is used to obtain both the velocity potential and streamfunction� The wind

�elds are recalculated using the Helmholtz relations

u � ur � ud

� ��

a

��

��
�

�

a cos �

�


��
������

v � vr � vd

�
�

a cos �

��

��
�

�

a

�


��
������

��



where �ur� ud� is the rotational part of the wind and �vr� vd� is the divergent part�

Second order centered �nite di�erence approximations are used� where the �

and 
 �elds coincident with the height positions of the Arakawa C grid� giving wind

�elds consistent with the considered staggered grid�

ur�i� j� � ��

a

�i��	j � �i��	j � �i��	j�� � �i��	j��

�%�

vr�i� j� �
�

a cos �i� �

�

�i	j�� � �i	j�� � �i��	j�� � �i��	j��

�%�

ud�i� j� �
�

a cos �i


i	j�� � 
i	j
%�

vd�i� j� �
�

a


i	j � 
i��	j
%�

������

for i � �� � � � � N and j � �� � � � �M with ghost points �i� j� indexed as

�i� �� � �i�M�� �i�M � �� � �i� �� for i � �� � � � � N�

due to periodicity in longitudinal direction� In addition� for i � �� N � the stencil of

the discretisation goes over the pole such that ghosts point are�

��� j� � ��� j � M
	� if j �M
	� ��� j �M
	� if j � M
	�

�N � �� j� � �N� j � M
	� if j �M
	� �N� j �M
	� if j � M
	�

remembering that M is chosen to be an even integer� Since the spherical co�ordinate

system is degenerate at the poles the values of the u �eld at such points are set to

zero�

Table ��� shows the di�erence in the error between the original and the numeri�

cally approximated wind �elds using grid�points that do not reside at the pole� The

relative error decreases as the resolution is increased consistent with an accuracy

���



Table ���� Relative L� error in the �u�v� components of the wind �eld at various

resolutions

N M Relative L�error Relative L�error

in u component in v component

of wind �eld of wind �eld

�� �� ������ ������

�� �� ������ ������

�	� ��	 �����	 ������

just under the formal 	nd order of the numerical schemes� The original wind �eld

�left� are compared with the derived wind �elds �centre� in Figure ��	 for N � ���

M � �� and � � ��� �� �� � � ��� �� �� Even at this low resolution the wind �elds are

visually very similar to each other� The di�erence between the two �elds is shown on

the right multiplied by 	�� The greatest error is at the pole� This is due to di�culty

in evaluating the winds from the streamfunction and velocity potential where the

co�ordinate system is degenerate�

The validation tests above show that the numerical technique used to solve the

Poisson equation on the sphere produces overall good results� We have presented

results that show that we can solve the LBE� By being able to solve LBE� we are

not only in a position to reproduce the current change in control variables as it

relates to the SWEs but also ready to describe the subject of the following chapter �

the numerical implementation of a new change in control variables whose balanced

variable conserves potential vorticity�

���



Figure ��	� Original wind �eld �left� and calculated wind �eld �centre� and di�rence

between them �	� for N � ��� M � �� and � � ��� �� �� � � ��� �� �
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Chapter �

A potential vorticity control

variable transform


�� Introduction

In Chapter �� we derive balanced height and balanced rotational wind increments

from a potential vorticity increment� We show how these height and wind di�erences

are consistent with the process of geostrophic adjustment� In this chapter we present

the numerical details for solving the coupled system of equations ���	��� ���	��� The

method we use is an extension of the procedure used in Chapter � to solve the

Poisson equation� In Section ��	� as in the previous chapter� we describe the problem

from a continuous standpoint� In this way the essence of the method is revealed�

Then the numerical details are presented� �rst by showing appropriate rescaling

of the problem in Section ��� and then� in Section ���� displaying the numerical

discretisation used�

The overall procedure to obtain the new control variables is shown in Section

���



���� where we brie�y describe how the height and wind �elds are transformed into

control variables of increments� We �nish the chapter with a description of a number

of experiments to verify the implementation of the method�

The original proposal� as suggested by Mike Cullen� solves the coupled system

of PDE
s� by eliminating the height variable from the equations to produce a fourth

order boundary value problem with a leading biharmonic term� Di�culties have

arisen however in the numerical implementation of the appropriate boundary condi�

tions� Thus� we solve instead the coupled system directly� The advantage of solving

the problem directly is that the associated boundary conditions are analogous to

boundary conditions of problems that are well researched in the literature� namely

the solution of the Poisson equation on the sphere and the solution of the forward

and reverse linear balance equation�


�� The Continuous Problem

Consider the coupled system of partial di�erential equations over a sphere ���	���

���	�� where h and q are known linearisation �elds dependent on latitude only and

hb� �b are increments in height and streamfunction to be found over a sphere�

By stipulating that the linearisation states h� q� � are functions of latitude only�

we make the coupled system of PDE
s separable� We can solve the system by �rst

applying a Fourier transformation to the RHS of ���	�� for each latitude circle� to

produce an ODE for each wavenumber from the north pole to the south across

latitudes� An inverse Fourier transform is used to obtain balanced streamfunction

and height�

���



The assumption that the potential vorticity linearisation state is a function of

latitude only is a reasonable assumption when the data is coming from a global

shallow water model� Except for around the equator� the major contributor to the

absolute vorticity is the Coriolis parameter� which is a function of the latitude only�

Also the change in height �eld at any given latitude seems to vary between � ' and

	� ' of its average value�

This method has a number of advantages� Since the ODE
s to be solved for each

wavenumber are independent of each other� they can be solved in parallel� making

this method quite e�cient� Memory requirements are relatively low� Obtaining

correct boundary conditions at the poles is well documented in the literature �	��

The equation should be less sensitive to error as we are solving coupled systems of

ODEs� instead of a highly sensitive fourth order PDE�

Let us assume that the �elds hb� �b� hq� can be described by a discrete inverse

fast Fourier transform �DIFFT� in the longitudinal direction� such that

Q���� �� �
�

I

k�I��X
k��I��

eQ�k���eik�� �����

hb��� �� �
�

I

k�I��X
k��I��

ehk���eik��
�b��� �� �

�

I

k�I��X
k��I��

e�k���eik��

where I is an integer setting a truncation limit to the Fourier approximation� k is

the wavenumber� i is equal to i �
p�� and

Q� � hq� ���	�

eQ� � g
hq� � Q�r � iQ�i�

���



eh � hr � ihi�

e� � �r � i�i�

with hr� hi� �r� �i� Q�r� Q�i being real� Subsitution of ����� into ���	�� and ���	���

produces a coupled system of second order ODE
s in � to be solved for variables eh�

e�� The system for a generic value of k is given by

� k�

a� cos� �
��geh � f e�� �

�

a� cos �

�

��
�� cos �

�geh
��

� f cos �
� e�
��

� � � �����

� k�

a� cos� �
� e�� �

�

a� cos �

�

��
�cos �

� e�
��

�� qeh � eQ�� �����

To solve this system we obtain fQ� using a discrete fast Fourier transform �DFFT��

Once the system ����������� is solved� we use DIFFTs to recover the required �elds

hb� �b�

To solve ����� we need boundary conditions� As with the Poisson equation� the

coe�cients eh and e� are set to zero at the poles for all non�zero wavenumbers in

order to enforce single�values at these points�

For k � � we solve ����� over the sphere and enforce a zero value at the equator

for the anti�symmetric balanced streamfunction increment� A global uniqueness

condition is used of the form�

Z ���

�

����

�

eh��� cos �d� � �� �����

The global uniqueness condition applied to e��

Z ���

�

����

�

e���� cos �d� � �� �����

is automatically satis�ed due to the imposed anti�symmetric nature of the right

hand side�

���




�� Scaling

The actual numerical procedure used to solve ������ ����� is slightly di�erent to

the simpli�ed explanation given in the previous section� A scaling is introduced

to make terms in the discretised operator of approximately the same size� Scaling

of equations is important so as to eliminate unnecessary sensitivity in the problem

due to numerical error� We wish to choose a scaling which will produce a coupled

system of ODE
s that can be represented by a positive de�nite matrix� Such a

matrix guarantees a unique solution to the discrete problem�

We look at the scaling of the problem by �rst examining the e�ect of a control

volume approach and then apply an additional scaling to weigh the terms appro�

priately� To consider the control volume technique the discrete problem has to be

considered in so far as de�ning the grid points and surface areas used� The grid

spacing %�� %� is the same as ������ as well as the indexing� with �i� �i� �

�
� �i� �

�

de�ned by ����	�� M and N denote the number of grid points in the longitudinal

and latitudinal directions� The Discrete Fourier transformation applied on latitude

rings produces a partially discretised version of both ������ ������ giving for a general

wavenumber k

� k�

a� cos� �i
��gehi � fi e�i�� g

a� cos �i

�
�

��
�cos �

�

��
�

�
i

ehi
�

�

a� cos �i

�
�

��
�f cos �

�

��
�

�
i

f�i � � �����

� k�

a� cos� �i
f�i �

�

a� cos �i

�
�

��
�cos �

�

��
�

�
i

e�i � qi
ehi � eQ�

i� �����

with i � �� � � � � N � representing the position in latitude� k � �M
� � � � �

M
� representing

the Fourier coe�cient and the operators at each point i not yet discretised� When

���



the control volume approach is used� both equations are multiplied by the surface

area of the segment Vi represented by

V� � 		a�
%�

	
cos � �

�
� VN � 		a�

%�

	
cos �N� �

�
�

Vi � 		a�%� cos �i for i � 	� � � � � N � �� �����

This is an %�� approximation to the true surface area of a spherical segment whose

value is equal to �	a� cos �i sin %� for i � 	� � � � � N � ��

The e�ect of this eliminates a� explicitly from the left hand side of the coupled

system of equations

		%�

�
� k�

cos �i
��gehi � fi e�i�� g

�
�

��
�cos �

�

��
�

�
i

fhi
�

�
�

��
�f cos �

�

��
�

�
i

f�i

�
� � ������

		%�

��
�

��
�cos �

�

��
�

�
i

f�i � k�

cos �i
f�i � a� cos �iqi

ehi
�

� �	a�%� cos �i eQ�

i�

The scaling at the poles is similar but involves both the discretisation of the operators

concerned and the boundary conditions considered and as such is left to Section ����

The proposed additional scaling is

fHi � gehi� ������

e(i � 	� e�i�

where � is the Earth
s angular velocity� When ������ is introduced into both �������

	�� ����	�� the following ODE system is obtained�

�k
�%�

cos �i
��fHi � sin �i e(i��%�

�
�

��
cos �

�

��

�
i

fHi

�%�

�
�

��
sin � cos �

�

��

�
i

e(i � � ����	�

�k
�%�

cos �i
e(i � %�

�
�

��
�cos �i

�

��
�

�
i

e(i �Qi
fHi � Ri ������

���



where Qi � 	%��Qi
g and Ri � 	�a�%� cos �i eQ�

i� The constant 		� present in

all terms of equations ������� is ignored in ����	� and ������� Since 	� � f the H

terms will be slightly greater than the ( terms in ������� Also Q is smaller than the

matrix coe�cients representing r�� making ( dominate over H in ������� However�

the size of these di�erences are not too large to make the equations  numerically

unbalanced
� the solutions ( and H are roughly of the same magnitude�


�� Numerical Implementation of Coupled ODE

System

We are �nally in a position to describe the numerical discretisation of the coupled

ODE system� As with the Poisson equation� we use the same staggered grid� eval�

uating the solution and the right hand side of ����	�� ������ on a Arakawa C grid

�Figure ���� coincident with the height values� As before� we apply discrete fast

Fourier transforms and the inverse fast Fourier transforms longitudinally� All that

remains is the description of the numerical solution to the second order latitudinally�

dependent coupled ODE which we now describe�

Let

xi �

�BBB	
fHi

e(i


CCCA � for i � �� � � � � N ������

bi �

�BBB	 �

	�a�%� cos �i eQ�

i


CCCA � for i � �� � � � � N� � ������

where the superscript k is dropped for clarity purposes and it is assumed as before

that xi and bi are chosen for some generic value of k�

���



The systems of ODE
s for wavenumbers k �� � are solved over the whole sphere

and are approximated by a second order centred �nite di�erence approximation�

Since e( and fH are scalar values at the poles� they have no longitudinal de�

pendency� Thus e(� fH� xk� and xkN are zero at these points for jkj � � and act as

Dirichlet boundary conditions� The system has a block tridiagonal structure and

can be represented in the form Ax � b with A being a �	N � ��� �	N � �� block

tri�diagonal nonsingular matrix and is solved using the QR method� The tridiagonal

system that is solved has the form�

S�	�x� � S�	�x� � b��

Si	i��xi�� � Si	ixi � Si	i��xi�� � bi for i � �� � � � � N � 	�

SN��	N��xN�� � SN��	N��xN�� � bN��� ������

Each block S is a 	� 	 matrix de�ned as

Si	i �

�BBB	
k�
�
cos �i

�
	cos �

i�
�
�

�cos �
i� �

�





� �k�
�
cos �i

fi
�� �

	f
i�

�
�

cos �
i�

�
�

�f
i� �

�

cos �
i� �

�




��
�

�%� Qi �k�
�
cos �i

� 	cos �
i�

�
�
�cos �

i� �
�




�


CCCA �������

Si	i�� �

�BBB	 � cos �
i�

�
�


�

f
i�

�
�

cos �
i�

�
�

��
�

�
cos �

i�
�
�


�


CCCA � ������

Si	i�� �

�BBB	 � cos �
i� �

�


�

f
i��

�

cos �
i��

�

��
�

�
cos �

i� �
�


�


CCCA � ������

It is clear that the matrix operator representing the discretisation of the coupled

ODE is de�ned by ������������� for i � 	� � � � � N � � with S�	� and SN��	N ignored�

For k � � the situation is a little more complex� At the poles we set Neumann

boundary conditions

�(

��
� �

�H

��
� �� ���	��

���



which �x the ( and H �elds to the addition of a constant� Additional boundary

conditions are applied to both ( and H� The value of ( must be zero at the equator

as the balanced streamfunction is anti�symmetric about this value and is assumed

to be a continuous smooth function� This additional piece of information is achieved

by removing the e(N��

�

from the system considered� by extracting the N � �th row

and column of the system� A consequence of doing this� is that it removes one of

the equations that need to be satis�ed at the equator� speci�cally

��(

��� i�N��

�

� �� ���	��

and is resolved by adding the coupled equations at the equator together to give

��
�H
��� i�N��

�

�
�(

�� i�N��

�

�
��(

��� i�N��

�

� �� ���		�

The simplicity of the equations ���	��� ���		� is due to q � q� � � at this value

of latitude and that the spherical scaling in the equations approximate those on a

Cartesian co�ordinate system�

As stated previously� an antisymmetric solution in �b enforces a symmetric so�

lution in hb and there is no need to enforce �hb
��

� �� Instead mass conservation

is enforced� so that the balanced height �eld represents the same mass as the full

height increment� This is achieved by adding an additional equation to the system�

namely

�

a�

NX
i��

ViHi �
�

a�

NX
i��

MX
j��

Vih
�

i	j

M
���	��

which enforces the discrete approximation to the mass consevation where Vi as before

by ������ A discrete approximation to the mass and not the exact continuous value

is used for reasons of consistency� In fact� the total mass of the increment h� is set

to zero� leaving the right hand side of equation ���	�� equal to zero�

���



The coupled system is solved using 	nd order centered di�erences and �th order

centered di�erences for the equation at the equator� If 	nd order di�erences are used

throughout� spurious linear solutions are obtained about the equator� The coupled

system is described by

S�	�x� � S�	�x� � b��

for i � 	� � � � �
N � �

	
� Si	i��xi�� � Si	ixi � Si	i��xi�� � bi�

SN��

�
	N��

�

xi�� � SN��

�
	N��

�

xN��

�

� AN��

�
	N��

�

y � bN��

�

��B	i�N��

�X
i��

DN��

�
	ixi


CA� DN��

�
	N��

�

xN��

�
	N��

�

�

�B	 i�NX
i�N��

�

DN��

�
	ixi


CA � o�

AN��

�
	N��

�

y� SN��

�
	N��

�

xN��

�

� SN��

�
	N��

�

xN��

�

� bN��

�

�

for i �
N � �

	
� � � � � N � �� Si	i��xi�� � Si	ixi � Si	i��xi�� � bi�

SN	N��xN�� � SN	NxN � bN � ���	��

where each block Si	i��� Si	i� Si	i�� is a 	 � 	 matrix de�ned by ������������� for

i � 	� � � � � N � ��

The discretisation at the poles is given using the integral method �rst used by

Barros �	�� resulting in at the north pole

S�	� �

�BBB	
cos	�

�
�
��

�




� � sin	�
�
�
��

�
cos	�

�
�
��

�




�


�
� Q�
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�
�
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�
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�
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�
�
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�




�
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�
�
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�


CCCA ���	��

with

b� �

�BBB	 �

�a�%� cos
�
�
�
� 
�

�

�

CCCA � ���	��
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At the south pole

SN	N �

�BBB	
cos	��

�
���

�




� � sin	��

�
���

�

 cos	��

�
���

�
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�
�
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�
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�




�

sin	��
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���

�
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���

�




�
�

� � cos	��
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���

�




�


CCCA � ���	��

bN �

�BBB	 �

�a�%� cos
�
��
�

� 
�
�

�

CCCA � ������

The discretisation at the equator is given by

xN��

�
	N��

�

�

�BBB	
fHN��

�e(N��

�


CCCA o �

�BBB	 �

�


CCCA ������

with the 	 � 	 matrix blocks DN��

�
	i equal to

DN��

�
	i �

�BBB	 � �

Vi
a�

�


CCCA for i � �� � � � �
N � �

	

for i �
N � �

	
� � � � � N ����	�

and

DN��

�
	N��

�

�

�BBB	 � � �
��
�

� �
��

VN��
�

a�
�


CCCA DN��

�
	N��

�

�

�BBB	
�

�

� ��
��
�

� �
��

VN��
�

a�
�


CCCA

DN��

�
	N��

�

�

�BBB	 � �
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��
�

VN��

�

�


CCCA ������

DN��

�
	N��

�

�

�BBB	
�

� � ��

��
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��

VN��
�

a�
�


CCCA DN��

�
	N��

�

�

�BBB	 � � �
��
� � �

��

VN��
�

a�
�


CCCA �

The entries Vi are given by equations ����� which together with Hi enforce mass

conservation� The ��� �� entries of submatrices DN��

�
	N��

�

� DN��

�
	N��

�

� DN��

�
	N��

�

holds
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a 	nd order di�erence approximation of H term in equation ���		�� In contrast� the

��� 	� entries contain coe�cients of a fourth order centred discretisation of the (

terms for equation ���		��

The boundary condition ( � � is enforced by the submatrices A� where

AN��

�
	N��

�

�

�BBB	
cos �N��

�
��
�


�
�

� �


CCCA AN��

�
	N��

�

�

�BBB	
cos �N��

�
�
�
�


�
�

� �


CCCA � ������


�	 Overall Procedure to obtain balanced � un�

balanced streamfunction using Coupled Sys�

tem Method

We now give a summary of the overall procedure to obtain the new set of control

variables�

Given full height and wind �elds on a Arakawa C grid� we calculate the height�

winds and potential vorticity linearisation states �h�v � �u� v�� q� on grid positions

coincident with the full height �eld� The linearisation states are calculated by taking

the mean average of the full height and wind �elds for each latitudinal ring� averaged

again over all D datasets considered� This is written as

hi �
�

D

d�DX
d��

�
�

M

j�MX
j��

hf i	j	d� ������

ui �
�

D

d�DX
d��

�
�

M

j�MX
j��

uf i	j	d�

vi �
�

D

d�DX
d��

�
�

M

j�MX
j��

vf i	j	d�

where hf i	j	d� uf i	j	d� vf i	j	d are the full height and wind �elds hf � uf � vf evaluated

���



at grid position i� j for the dth dataset� Since the Arawaka C grid is staggered� the

position of vi will be %�
	 away from hi and ui�

Calculation of the potential vorticity linearisation state qi involves the evaluation

of the relative vorticity for positions coincident with hi� We achieve this using the

discretisation ���	�� applied to the full wind �elds for all the datasets� followed by

the same averaging process as in ������� The Corolis parameter f that is needed is

simply fi � 	�sin�i with qi given by the ratio of the absolute vorticity fi��k�r�u�i

to the height linearisation state hi�

Perturbations from the height and wind linearisation states are calculated �hp�

up� vp� for a number of datasets using

vp i	j	d � vf i	j	d � vi

hp i	j	d � hf i	j	d � hi ������

for each grid point �i� j� and every dataset d� The potential vorticity perturbation

needs the evaluation of the relative vorticity perturbations using the discretisation

���	�� with perturbation wind �elds �up� vp�� All subsequent quantities are calculated

on the Arakawa C grid where the height grid points are located� The product of the

potential vorticity perturbations and the height linearisation state are evaluated by

Qp i	j	d � hiqp i	j	d � k � �r� vp i	j	d�� qihp i	j	d ������

with

qi �
fi � k � �r� vi�

hi
������

where ������ and ������ are the discrete versions of �	���� and �	����� One of these

datasets de�ne a base state� The potential vorticity perturbations de�ning the base

���



state is subtracted from the perturbations de�ned by the other datasets to give

increments and are denoted using a dash�

The change in control variables needs Q� and q in order to formulate the ap�

propriate right hand side and variable coe�cient needed to solve ����	�� ������� We

apply the DFFT to Q� to produce the complex coe�cients eQ�� We rescale the right

hand side and q to give 	�a�cos�i%� eQ�� Q and solve the second order ODE for all

wavenumbers using the discretisation presented in Section ���� We apply the DIFFT

algorithm to e(i and fHi and rescale to give hb and �b�

Three control variables are either chosen from or derived from �b� �ub� hb� hub

and the velocity potential 
� The calculation of the velocity potential of the wind

increments �u�� v�� is described comprehensively in Section ��� and Section ����	�

The unbalanced height hub is de�ned as the di�erence between h� and hb�


�
 Validation Tests

We �rst apply a � dimensional problem to test this coupled system� The base states

are chosen to be

h �
�

g

� � �

q � 	g� sin � ������

with the scaled potential vorticity increment being�

q� � �	g� sin �

a�
� g��� sin �

�
cos 	� � �

�

�
������

���



so that the analytic balanced streamfunction �b and balanced height are given by

�b � g sin �

hb � �� cos 	�

	
�
�

�
� ������

This is a good problem which examines the longitudinally independent part of a

general solution to the 	 dimensional problem� for the Fourier coe�cents relating to

k � ��

In Figure ��� we show the error pro�le between the analytic solutions and the

experimental results� when �N � ��� ��� �	�� across latitudes� The error in the

balanced height is slightly larger at the equator than elsewhere� This is expected

due to the need to solve equation ���		� with �nite di�erencing ������� In contrast�

the error in the streamfunction is the most at the poles� The decrease in error with

increasing resolution moves to 	nd order accuracy as the resolution is increased� as

shown in Tables ���� ��	� Table ��� shows the decrease in error in the balanced

height and streamfunction� where the error for each M considered� is taken as the

L� vector norm of the error at each latitudinal point� divided by M � The order of

accuracy is given in Table ��	�

The  coupled system
 method is tested using full height and wind �elds� h�v�

which satisfy a Rossby Haurwitz wave ������� ������ with parameters R � �� K �

� � ����� � ����s�� and h� � ����m� The linearisation states are de�ned to be

about a resting state v � � and a constant height �eld h � ����m� The base

state perturbation is also de�ned to be stationary with a constant height �eld hbase

chosen such that the surface integral of this quantity is equal to the surface integral

of h�h� Thus the full increment is de�ned by R � �� K � � � ����������s�� and

���



Figure ���� Error in balanced streamfunction and height across various latitudes

and resolutions
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N normalised L� error of normalised L� error of

�b� hb

coupled system

�� 	��� � ���� 	��� � ����

�	� ���� � ���� ���� � ����

	�� ���� � ���� ���� � ����

Table ���� The averaged L� error in hb and �b at di�erent resolutions
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Comparision of Order of convergence of �b Order of convergence of hb

resolution

�	� � �� ���� ����

	�� � �	� 	��� 	���

Table ��	� Order of convergence for hb and �b at di�erent resolutions

h� � �hbase and always chosen so that the surface intergal over the sphere is zero�

Figure ��	 shows the full height and streamfunction increments� for the high

Burger regime de�ned by h� � ���� m� In contrast� the balanced streamfunction

and balanced height obtained from the  coupled system
 are given in Figure ��� for

N � �� and M � ��� The full and balanced streamfunction increments are very

similar as expected in a high Burger regime�

When h� � �� m is chosen the increments are in a low Burger regime with

Bu � ��	 and Ro � ���� around ��� latitude� The balanced height increments

presented in Figure ��� is similar to the full height increments shown in Figure ����

where h � h� � �� m for the full �eld h� and h� � �hbase for the increment in height�

h�� This is also consistent with theory present in Chapter �� Further experimental

results concerning geostrophic adjustment are presented in Chapter ��

A number of experiments are needed to verify the methods that have been out�

lined�

The �rst of these is to compare a balanced height �eld� produced by applying

the linear balance equation to the coupled system
s balanced streamfunction� with

a balanced height �eld derived directly from coupled system� A Poisson equation

���



Figure ��	� Full height increment �left� and full streamfunction increment �right� in

a Rossby Haurwitz increment K � ����� � ����s��� h� � �hbase and R � � with

linearisation and base states h � ���� m� u � �� v � �

0 2 4 6

−1.5

−1

−0.5

0

0.5

1

1.5

−150

−150

−100

−100

−50

−50

0

0

50

50

longitude λ

la
tit

ud
e 
θ

full increment difference in height

0 2 4 6

−1.5

−1

−0.5

0

0.5

1

1.5

−3e+07

−2e+0

−1e+07

0

1e+07

2e+07

3e+07

longitude λ

la
tit

ud
e 
θ

full increment difference in ψ

Figure ���� Balanced height increment �left� and balanced streamfunction increment

�right� for Rossby Haurwitz increment de�ned by K � ����������s��� h� � �hbase

and R � � with linearisation and base states h � ���� m� u � � ms��� v � � ms��
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Figure ���� Full height increment �left� and full streamfunction increment �right�

for Rossby Haurwitz increment de�ned by K � ����� � ����s��� h� � �hbase and

R � � with linearisation and base states h � �� m� u � � ms��� v � � ms��
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Figure ���� Balanced height increment �left� and balanced streamfunction increment

�right� for Rossby Haurwitz increment de�ned by K � ����������s��� h� � �hbase

and R � � with linearisation and base states h � �� m� u � � ms��� v � � ms��
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Figure ���� Error between balanced height increments derived from LBE using �b

from Figure ��� and from the coupled system for M��� and N���
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is needed to be solved to get the balanced height from the balanced streamfunction

and is achieved using the method described in Section ���� Figure ��� shows the

error between the two height �elds when the streamfunction �eld� shown in Figure

���� is chosen�

Table ��� shows the L� di�erence between the two balanced heights at di�erent

resolutions� We see a 	nd order decrease in the di�erence with increased resolution�

The  coupled system
 method can be further checked by computing hq� from

the balanced streamfunction and height and compare it to the original hq� under

di�erent grid resolutions� This will con�rm that the linearised potential vorticity is

being conserved by the balanced streamfunction and height�

Figure ��� shows the Q� calculated from the full increments shown in Figure ��	

�		



Table ���� �top�L� error in hb� divided by M�N �	��	� under di�erent resolutions�

�bottom� order of convergence of hb under di�erent resolutions

N M L� di�erence in

balanced height using

coupled system

�� �� 	��� � ����

�� �� ��	� � ����

�	� ��	 ��	� � ����

N M

�� � �� �� � �� ����

�	� � �� ��	 � �� 	���

and the di�erence between this �eld and Q� obtained by applying a second order

discrete Laplacian operator to �b and subtracting qhb� We see that at this resolution

the computed error is approximately a hundredth of the value of the original �eld�

Table ��� shows a similar decrease in the di�erence of these �elds with increasing

grid resolution� In this table� the discrete integral L� norm is used� whose form is

given by

Q�

err �
q

�
i�NX
i��

j�MX
j��

�
ViQ�

diff i	j

M

��

� ����	�

where Vi is de�ned in equation ������ Q�

diff is the di�erence between the the full

increment and balanced increment evaluations of Q� at grid position i� j�
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Figure ���� �left� Q� as calculated from the full increments� �right� error in Q��

derived from full increments and from balanced increments
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Table ���� Integral L� error in Q� under di�erent resolutions

N M Q�

err

�� �� ����	� � ����

�� �� 	�	��� � ����

�	� ��	 	����� � �����
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�� The inverse transform

In this section we describe the opposite transformation from old and new control

variables to the associated wind and height �elds� In Chapter �� various changes

into and out of control variables are discussed� The changes out of control variables

into height and wind �elds use at some point variants of a simple Helmholtz de�

composition ������� The numerical details of the decomposition are already given

in Section ����

A test of internal consistency of the T and U transforms is to calculate �b �ub and


� as de�ned in Section ��� and reconstruct the full wind increments� comparing them

to the original values using ������� Figure ��� shows the approximated component

of the winds and the di�erence between them and the full wind increments� This

error decreases with resolution as shown in Table ���� and has overall third order

accuracy which is surprising as second order accuracy is expected� This increase in

accuracy may be consequence of the smoothness of �elds being used�

In this chapter we have presented a numerical method to solve a coupled system

of equations which gives the balanced variable of the PV method� We have provided

tests which validate this numerical technique and are in a position to compare in

the following chapter the properties of the LB and PV methods�

�	�



Figure ���� �upper� Approximated U and V components of the wind calculated by

applying the T and P transforms for M � ��� N � �� � �lower� the di�erence in the

approximated and the true U and V components for M � ��� n � ��
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Table ���� Discrete L� integral error in U and V under di�erent resolutions

N M L� error in U L� error in V

�� �� 	��� � ���� ���	 � ����

�� �� ���� � ���� ���� � ����

�	� ��	 ���� � ���� ���� � ����

N M Order accuracy in U Order accuracy in V

�� � �� �� � �� 	��� 	���

�	� � �� ��	 � �� 	��� 	���
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Chapter �

Numerical Results

��� Introduction

In this chapter� we provide various experiments for testing the PV method as de�

scribed in Chapter �� comparing the results to the LB method� Before this is done we

examine the relative sensitivity of potential vorticity� height and absolute vorticity

perturbations at di�erent Burger regimes� This is to con�rm that for a low Burger

regime� the height variable represents the �ow� At high Burger regimes the winds

dominate and the vorticity is the appropriate variable� For this purpose we consider

perturbations to a Rossby�Haurwitz wave in Section ��	 and subjectively compare

the height� potential vorticity and vorticity �elds in Section ��	��� Section ��� shows

that the PV method behaves in the way suggested in Sections ��� and ���� In high

Burger regimes it is approximating the solution given by using the LB method�

At low Burger number it is acting as if the full height increment�perturbation is

determining the balanced �ow�

In the �nal section we examine the divergence tendencies of control variables

�	�



for both LB and PV methods� We use divergence tendency as an indicator as to

how  balanced
 the balanced control variables are� A small value indicates good

performance� Two experiments are performed� one with the balanced Rossby Hau�

rwitz wave and the other with unbalanced increments� The experiment with the

Rossby�Haurwitz wave shows slightly worse results in the low Burger number� The

experiment using unbalanced increments shows that the PV method produces the

lowest divergence tendency when applied to the original Burger regime from which

the increments originate� In this regime it is doing better than the LB method�

However the PV method is performing slightly worse in low Burger regimes� This

may be due to the method trying to approximate full unbalanced height increments�

��� Experiment �� Relative Contribution of Height

and Absolute Vorticity to Potential Vorticity

We want to show the linearised potential vorticity perturbation captures the dy�

namical �ow over di�erent regimes�

In Section ��� we show that the scaled height

� � �
h�

h
�����

and scaled vorticity

� �
��

�
���	�

contribute to the scaled potential vorticity

� �
q�

q
�����

�	�



in such a way that is dependent on the Burger number ����� � for a high Burger

regime� � contributes most towards �� while for low Burger regimes the � is the

dominant part of �� Since the theory is carried out on an f �plane� it is prudent to

perform an experiment to see whether the theory is satis�ed in practice within a

more general setting where the Coriolis parameter that varies with latitude�

In order the evaluate �� � and �� the linearisation states and the respective per�

turbations need to be de�ned� The linearisation states� h� � are de�ned to be the

respective mean average values of the Rossby�Haurwitz wave at a given latitude�

They are given by

hi �
�

M

j�MX

j��

hi j �

� i �
�

M

j�MX

j��

�i j� for i � �� � � � � N� j � �� � � � �M� �����

For balanced �elds this longitudinal averaging is a reasonable approximation to

geostrophic balance and is su�cient for the experiment in this section� The absolute

vorticity �i j is de�ned spatially on grid points coincident with the height values and

is calculated using equation ���	��� As in Chapter �� the height and wind �elds are

de�ned on a Arakawa C grid� The potential vorticity linearisation state is equal to

qi �
� i � fi

hi
� for i � �� � � � � N� �����

The perturbations h�� �� and q� are taken to be equal to the maximum departure

of the full �elds from the respective linearisation states at a given latitude�

The Burger number� as de�ned by equation ������ needs known values for a

characteristic height scale and characteristic length scale� At a given latitude the

linearisation state h is used as the characteristic depth while the characteristic length

scale L is de�ned as half the distance from a peak to a trough�

���



The full velocity and height �elds satisfy the Rossby�Haurwitz wave over a sphere

������� ������� ������� Throughout the experiment� the radius of the sphere a� the

acceleration due to gravity g� the angular rotation rate � and wave number R are

kept constant� with a � ����km� g � ����ms��� � � ��	�	 � ���	s��� R � ��This

gives the wave a characteristic length L � �		 a cos��
��R��

As described in Section ������ the remaining parameters which de�ne the wave

over the sphere are given by h�� K and �� We choose these parameters such that

we have a wide range of Burger regimes� some that are predominately described by

Burger numbers lower than one� others that are completely identi�ed with Burger

numbers larger than one and the rest that are described by a mixture of high and

low Burger numbers� A high Burger regime is always present around the equator�

As one approaches the equator the Coriolis parameter tends to zero and the Burger

number tends to in�nity� Meanwhile Burger numbers lower than � may occur away

from the equator as f is larger� provided h is small�

We choose K to be either equal to ����� � ���� s�� or ������ ��� s�� and

arbitrarily set � � K� When K � � � ����� � ���� s�� the height at the equa�

tor is approximately 	��� m higher than at the poles� while when K � � �

����� � ���� s�� the di�erence in height between the equator and the poles is

approximately ��� m� The height �eld at the poles� h�� is varied greatly from

�� m to ���� m� The various Burger regimes for latitudes � � ���� ���� ���� ����

h� � ���� m� ��� m� ��� m� ��� m� 	�� m� �� m and K � ����� � ���� s�� are

given in Figure ���� We see that for the latitudes considered the Burger number

stays beneath � only when h� is equal to ��� at all other values of h�� the Burger

number is larger than � for � � ���� Conversely when h� is equal to ���� m� the

���



Burger number is larger than � for all latitudes considered� Thus we identify� the

wave with parameters h� � ��m� K � � � ����� � ���� s�� as representing a low

Burger regime� the wave with parameters h� � ���� m� K � � � ����� � ���� s��

representing a high Burger regime� and the rest in between representing a mixture

of high and low Burger regimes dependent on latitude�

Figure ��� also shows the Burger values at di�erent latitudes when K � � �

����� � ���� s��� As for K � � � ����� � ���� s��� the Burger number increases

with increasing height h� and decreasing latitude� The Burger number at � � ���

is much larger than at the other latitudes considered� This is due to the Coriolis

parameter tending to zero as it approaches the equator� When h� � ���� m� K �

� � ���������� s�� the Burger number is greater than � and a high Burger regime

is said to be present� However� for other values of h� that we consider there are

regions described by Burger numbers larger and smaller than �� The waves in such

cases are said to have a mixture of high and low Burger regimes� Compared to the

�elds where K � � � ����� � ���� s��� these �elds have larger regions for which

the Burger number is greater than ��

The scaled perturbations were calculated for all values of K and h� and all

latitudes considered in the examination of the Burger number in Figures ���� In

Section ��� it is predicted that the in�uence of the scaled height perturbation on

the scaled potential vorticity perturbation decreases with increasing Burger number�

This is con�rmed with Figures ��	� ���� which compare the relative contributions

of scaled absolute vorticity � and height � to the potential vorticity � for K �

���������� s��� ���������� s�� for di�erent latitudes and h�� When h� � ���� m

and the latitude is � � ���� the Burger number is large and the absolute vorticity

��	



Figure ���� Burger values at di�erent latitudes and h� when K � ����� � ���� s��
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Figure ��	� Relative contributions of scaled absolute vorticity � and height � to

the potential vorticity � for K � ����� � ���� s�� with di�erent latitudes and h��

Sensitivity is de�ned by the magnitude of the scaled perturbation in question
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contribution � is similar in size to the scaled potential vorticity perturbation ��

Conversely� the height contributes most for low Burger numbers� This is seen when

h� � �� and � � ����

Also� for the most part� the size of the scaled perturbation in the absolute vor�

ticity � does not change greatly when h� is changed� unlike the scaled perturbation

in height � which increases in size with smaller h��

����� Experiment �� Visual Comparison of Fields

We wish to visually compare the potential vorticity� absolute vorticity and height

�elds produced from di�erent time integrations of the shallow�water equations over

a rotating sphere �	����� �	����� with the Rossby�Haurwitz wave acting as an ini�

tial condition� We expect that the trends seen in the relative contributions to the

potential vorticity for di�erent Burger regimes will also exist in the full �elds� For

high Burger number� the potential vorticity �elds should be similar to the absolute

vorticity while at low Burger number the potential vorticity �eld should resemble

the height �eld� We use the same selection of parameters� h�� K and �� as in the

previous study� However� only � choices of h�� K and � are described� the other

studied values of h�� K and � give results which lie between the three extreme cases

picked� The �rst example� with h� � ���� m� � � K � ����� � ���� s��� produces

a high Burger regime within this region� The second example� with h� � �� m�

� � K � ����� � ���� s��� gives a low Burger regime in the mid�latitudes�

The �nal example shows a number of vortices that appear when h� � ���� m�

� � K � ����� � ���� s��� High Burger regimes will exist within these vortices�

���



Example �� h� � ���� m
 � � K � ����� � ���� s�� �Figure 
���

In this high Burger regime the height �eld for the most part keeps the shape

of its initial condition� the whole wave just moves at a common angular velocity�

The contours of constant potential vorticity vary far less latitudinally than the

respective height contours� The phase relationship between the potential vorticity�

the absolute vorticity and the height remains approximately constant� The potential

vorticity and the absolute vorticity �elds are far more similar to each other than

the corresponding height �eld� This is shown explicitly in Figure ��� with height�

absolute and potential vorticity �elds produced by integrating the shallow water

equations for 	 days�

Example �� h� � �� m
 � � K � ����� � ���� s�� �Figure 
���

A low Burger regime is produced in the mid�latitude region� In Figure ���� the

absolute vorticity� height and potential vorticity �elds are presented after the model

has run for 	 days� We can see that in the mid�latitudes� where the Burger number

is low� the potential vorticity has a similar structure to the height� In the equatorial

region� where the Burger number is high� the potential vorticity closely resembles

the absolute vorticity �eld�

Example �� h� � ���� m
 � � K � ����� � ���� s�� �Figure 
���

When the value of K is increased� the speed of propagation of the Rossby Hau�

rwitz wave is more in�uenced by the average zonal height at each latitude� the

shallower waves in the mid�latitudes and in the polar regions are moving more

slowly than the deeper waves in the equatorial region� This is seen when K �
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����� � ���� s��� Over the �rst �ve days the wave shape becomes increasingly

asymmetrical� especially between � � ��� and � � ��� latitude� At � � ��� latitude�

the height drops far more steeply to the east of local maxima� On going west from

these maxima� the height decreases more gradually� The di�erences in the propaga�

tion in the wave are so acute that lobes are formed in potential and absolute vorticity

�elds� As the wind shear increases� vortices are created� The steepest gradients are

seen to exist around these vorticies in the absolute vorticity �elds� The potential

vorticity is the next most sensitive �eld to this vortex� The height �eld is the least

sensitive in that it shows little change in these regions� This is analogous to a shear

instability� The production of vortices seems to occur quickly when the base height

h� is small compared to the height at the equator� it is an e�ect of an interaction of

Burger regimes which are both greater and less than �� Figure ��� shows the vortices

that are produced in the mid�latitudes after running the shallow water equations

with h� � ���� m� � � K � ����� � ���� s�� for � days� Within these vortices

the Burger number is high as the characteristic length scale is signi�cantly reduced�

The potential vorticity more closely resembles the absolute vorticity �eld than the

height �eld�

����� Discussion

We have shown that if the potential vorticity perturbation satis�es both the f �plane

linear balance equation and the linearised potential vorticity equation� then for high

Burger number the scaled absolute vorticity perturbations are similar in magnitude

to scaled potential vorticity perturbations� Similarly if the Burger number is small�

scaled height perturbations are roughly equal in size to scaled potential vorticity

���



perturbations� Experiment � also concurs with this �nding� In Experiment 	 we

have shown that for small Burger numbers� the height �elds contribute more strongly

to the potential vorticity� For Burger numbers larger than �� the greater contribution

to the potential vorticity comes from the absolute vorticity� an example of which

occurs when h� � ���� m� In this region the potential vorticity mirrors the absolute

vorticity �eld� However there is a loss in detail in these regions� When vortices

are produced in the mid�latitudes� they involve sharp changes in velocity and a

substantial decrease in the characteristic length scale� The smaller characteristic

length scale results in the formation of a high Burger number regime� Again� the

absolute vorticity resembles the potential vorticity more accurately than the height�

However� the potential vorticity �eld is less detailed than the absolute vorticity�

Hence the theory developed in Section ��� for the f �plane appears to hold on the

sphere�

��� Comparsion of balanced with full �elds at high

and low Burger number

In order to investigate whether the coupled system of equations provides a bet�

ter representation of balanced and unbalanced control variables it is necessary to

check whether this system has the properties that we expect it to have� We have

shown that scaled absolute vorticity perturbations contribute more to potential vor�

ticity perturbations than height perturbations when the Burger number is large

and both the linearised potential vorticity equation and geostrophic balance equa�

tions are being satis�ed� Similarly� we have seen that at low Burger number� scaled

���



Figure ���� Relative contributions of the absolute vorticity � and height � to the

potential vorticity � for K � ����� � ���� s�� with di�erent latitudes and h��

Sensitivity is de�ned by the magnitude of the scaled perturbation in question
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Figure ���� Potential vorticity� Absolute vorticity and height �elds when K � ������

����s�� and h� � ���� m after 	 days
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Figure ���� Potential vorticity� Absolute vorticity and height �elds when K � ������

����s�� and h� � �� m after 	 days

Figure ���� Potential vorticity� Absolute vorticity and height �elds when K � ������

����s�� and h� � ���� m after � days
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height perturbations contribute more to the potential vorticity perturbations� If

the coupled system is behaving properly� then in high Burger regimes the stream�

function � should be similar to the balanced streamfunction �b� Similarly� at

low Burger regimes the balanced height should resemble the full height �eld� A

Rossby Haurwitz wave ������� ������� ������ �RH wave� is used as an initial con�

dition to a global SWE �	����� �	���� model� The de�ning parameters are R � ��

K � � � �����e��s��� h� � ����m� Such values produce a high Burger regime

across the whole globe� with the Burger number� Bu � ���� at ����� Bu � ���� at

���� and Bu � ���� at ����� The global SWE model was run for 	� hrs� with a

timestep of ��� hr at medium spatial resolution with grid spacing !� � 	
��� and

!� � 	
�� � The coupled balanced method was used to produce balanced height

and streamfunction by applying the procedure detailed in Section ��� and excluding

the �nal calculation of increments� Figure ��� compares the balanced streamfunction

to the respective full �eld over the area ��� � �	
	��	
	��� �� � ��� 	
	����

Figure ���� Balanced � �left� and full � �right� for RH wave propagated � day at

high Burger number� for �� � �	
	��	
	����� � ��� 	
	�� �scale denotes grid points�
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The two �elds are qualitatively similar in shape� The balanced streamfunction

has an amplitude approximately ��" of the full � �eld� Also the balanced �eld

���



Figure ���� Balanced height perturbations �left� and full height perturbations �right�

for RH wave propagated � day at high Burger number� with �� � �	
	��	
	����� �

��� 	
	�� �scale denotes grid points�
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Figure ���� Balanced � �left� and full � �right�for RH wave propagated � day at low

Burger number� with �� � �	
	��	
	��� �� � ��� 	
	�� �scale denotes grid points�
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is slightly more di�use� In comparision� the balanced height and the full height

perturbations in Figure ��� are notably di�erent in shape�

The above experiment was repeated with RH wave parameters set to� R � ��

K � w � ����� � ���� s�� and h� � �� m� This produces a low Burger regime in

the mid�latitudes� The value for a Burger number at � � ��� is ��	� with Bu � ��		

at � � ��� and Bu � ���� at � � ���� A high spatial resolution is used with

!� � 	
�	�� !� � 	
��	� Other model parameters were kept the same� As seen in

Figure ����� regions such as the mid�latitudes where Bu is low the balanced height

���



Figure ����� Balanced height �left� and full height �right� for RH wave propagated

� day at low Burger number� with �� � �	
	��	
	��� �� � ��� 	
	�� �scale denotes

grid points�
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perturbations resemble the full height perturbations� The full streamfunction and

its respective balanced �eld are far less similar to each other� This is seen in Figure

����

The Rossby�Haurwitz wave is an idealistic wave to consider� the wave is smooth

and is analytically de�ned� We now consider a more realistic situation by applying

the methods to increments derived from a real data set INI�C� These are produced

by taking the initialised �elds used at the UK Met� O�ce and subtracting them

from the corresponding uninitialised �eld� The uninitialised �eld is obtained from

a spherical harmonic description of the observed �elds at T��� resolution from a

NETCDF �le V DG�����cdf kept at NCAR� This experiment shows the strengths

and weaknesses of the control variables that we have developed�

Figure ���� shows the height and wind increments used to test the control trans�

forms� A stereographic projection is used centred on the North Pole� The increments

are composed of many di�erent waves on a wide range of length scales� The wind

increments are typically between ��ms�� and �ms�� and the height increments

��	



vary between ���m and ��m� It is also clear from the �gure that there is great

variability in the �ow with waves of both short and long wavelengths present�

If the initialisation is perfect then the increments consist of just the unbalanced

�ow� A perfect set of control variables would apportion the �ow into the two un�

balanced variables� In practice this will not occur� Since the balanced condition

used by both sets of control variables holds for the f �plane SWEs linearised about a

state of rest� it only can approximate the true balanced and unbalanced parts of the

nonlinear �ow� In fact� provided that the normal mode initialisation is perfect� the

performance of the balanced control variables is determined by their relative size�

the balanced control variable that corresponds to the smallest balanced height and

wind increments identi�es the better set�

The linearisation states are determined using the technique described in Section

����	 under a medium resolution with !� � 	
�� and !� � 	
��� The U lineari�

sation state is shown in the bottom right corner of Figure ����� It is calculated by

applying the PV method to longitudinally averaged uninitialised �elds� This method

also calculates a height �eld which is used as a latitudinally varying linearisation

state� The linearisation states for low and high Burger regimes are shown in Figure

���	� The high Burger regime has a Bu � ���� at ����� The mean height of the

linearisation state is ��km� The low Burger regime is given by reducing the mean

height of the linearisation state to ��m at the poles� This gives a Burger number

less than � above � � ��� and makes the sum of the increment and the linearisation

states non�negative� The linearisation state of the winds are unchanged�

Figures ���� and ���� show the balanced height and wind increments produced

by the LB and PV methods in the high Burger regime� At a �rst glance they are

���



Figure ����� �Top� U and V wind increments produced using test case INI�C�

�bottom right� height increment using test case INI�C� �bottom left� U �eld lin�

earisation state
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somewhat surprising� The balanced winds from the two methods are dissimilar�

The balanced winds from the PV method are much smaller� This is because the

scaled potential vorticity incrementhq� does not resemble the full vorticity increment

� �� There is cancellation between � � and qh as they are of the small magnitude

throughout the �elds� This makes the scaled linearised potential vorticity increments

hq� a factor of ten smaller than the vorticity increment � �� This also shows that the

PV method is performing better than the LB method at producing balanced �elds�

To check that the balanced wind produced by the PV method moves towards the

balanced wind from the LB method when Burger number is increased� we choose a

mean height of ���km� We see that in Figure ���� the balanced winds from the two

methods are quantitively similar� the U component of the balanced wind is positive

about the pole and swaps direction in the mid�latitudes� In the low Burger regime

the balanced wind increments produced by the PV method are more pronounced

due to the balanced height increment approaching the full height increment� This

is readily seen in Figures ���� and �����

The theory presented in Sections ���� ��� concur with these �ndings� However

they presume that for low Burger regimes the full height increments represents the

balance in the system and that the vorticity is the key balanced variable when the

Burger number is large� However in this experiment both the full height and wind

increments are unbalanced� When the PV method is at very high Burger number�

the scaled potential vorticity increment represents the full unbalanced vorticity in�

crement� Conversely� at low Burger regimes the scaled potential vorticity increment

resembles the full unbalanced height increment�

It is interesting to note that around the equator� the LB and PV methods are
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not producing similar results even though a high Burger regime is always present

within this region� This is due to the unbalanced height increment still contributing

to the scaled potential vorticity within these regions�

In Section ��� we propose a means of obtaining balanced corrections to the

unbalanced variables� This involves solving a modi�eld Helmholtz problem given in

equation ������ to obtain the balanced divergence� It also involves solving a coupled

system to obtain the balanced contribution to the departure from linear balance�

This coupled system is given by equations ������ ������ simultaneously� Both are

numerically evaluated using a similar technique to those used to solve the Poisson

equation� the LBE and the PV method� An Inverse Fourier transform is used zonally

and second order centered �nite di�erences are applied to the Fourier components�

An Fourier transform is used reconstitute the solutions� The linearisation states are

those used as before and are in geostrophic balance� The same grid resolution is

used as before� This may not provide a particularly accurate solution as in some

regions the linearisation states have the same order of magnitude as the increments�

Nevertheless it is good enough to give rough estimates�

We take the L� vector norm of the balanced divergence� We see that the LB

method produces a value of ���times���
s�� � The PV method has a smaller value

of ���� ����s�� at high Burger number� This is due to the much smaller balanced

rotational wind in the balanced control variable� In contrast� at low Burger number

the PV method produces a slightly larger balanced divergence of ���� ���
s�� that

is of the same order of magnitude as the LB method� This is due to the balanced

control variable approximating the full height increment and producing relatively

larger winds�
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Similar �ndings are found in the balanced correction to the departure from linear

balance� The L� vector norm is also used to compare the di�erent increments� We

describe this correction in terms of a streamfunction and see that the LB method

gives a value of ��� � ��� m�s�� � Again the PV method has a smaller value of

	��� ��	 m�s�� at high Burger number� In contrast� at low Burger number the PV

method produces a larger value of ���� ��� m�s���

This section supports much of the theory given in Sections ���� ���� The experi�

ments with RH wave have shown that the balanced height and wind produced by the

PV method vary with Burger number as expected� The application of unbalanced

increments to both methods shows the importance in how increments are generated�

The PV method at low Burger number produces  balanced
 increments that are sim�

ilar to the full increments� even when the full increments are  unbalanced
� We have

shown that at high Burger number the PV method is performing better than the LB

method� with there being far less balanced �ow found in the control variables� At

low Burger number the balanced divergence obtained from the PV and LB method

are of the same order of magnitude�

��	 Divergence Tendency

The divergence tendency is a good measure with which to compare di�erent sets of

control variables� Ideally� we wish the divergence tendency of a set of variables to

be small� The �rst series of experiments we present considers only the divergence

tendency of the balanced variables from di�erent control sets� We want to show

that the divergence tendencies from new choices of control variables are comparable

���



in magnitude to the present version�

We choose extreme examples of the RH wave at high and low Burger regimes

to provide the full �elds� The high Burger regime is determined by choosing the

de�ning parameters to be �h� � ���� m� K � � � ����� � ���� s��� and giving

a Burger number of approximately ���� at � � ���� The low Burger regime uses

�h� � � m� K � � � ���������� s��� and has Bu � ���� at � � ���� The RH wave

is by de�nition in Charney balance and has a divergence tendency of zero� When

the LB and PV methods are applied to the RH wave� the divergence tendency from

the balanced variables is no longer zero but given by ������� ������� As the winds of

the RH wave are rotational the LB method considers the full wind perturbation as

balanced� The divergence tendency in this case is just equal to minus the divergence

of the advective term of the shallow water momentum equations�

We apply the PV method to calculate perturbations about a resting state and

a constant height H using the full height and winds from the high Burger regime

which we describe in Section ��� and equations ���	�� ������ The corresponding low

Burger regime is produced by only changing the value of the constant height H�

The height and wind perturbations are kept the same as in the high Burger regime�

The value of H in the low Burger regime is chosen such that the sum of the height

perturbation and H gives a value of zero about the poles� This is done so that

the full height �eld is non�negative� Also keeping the perturbations and the other

linearisation states the same allows comparisons to be made easily�

In the high Burger regime the balanced wind perturbations from the PV method

approximate the full perturbations� Since the divergence tendency is determined

solely from the balanced winds� we expect the divergence tendencies to be similar�
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This is clearly seen in Figure ���� where the L� norm of the divergence tendencies

about each latitude ring is given� The results from the LB and PV methods at high

Burger number are denoted by circles and crosses� respectively�

In the low Burger regime the divergence tendency from the LB method remains

unchanged as the rotational wind perturbation is not varied with Burger number�

The results from the PV method do change� The norm of the divergence tenden�

cies of the PV method are noticably worse around the equator in between � � ��

and � � ���� This may be due to a possible inconsistency between the linearised

potential vorticity perturbation and its associated balance condition� This could be

recti�ed by using a balance condition which is more applicable to the tropics� In the

mid�latitudes the results from the PV method are mixed� There are regions within

the mid�latitudes in which the PV method is performing better� Likewise there are

regions where LB method is superior� Overall the PV method may be perform�

ing slightly worse than the LB method� However the di�erences between the two

methods are small with the divergence tendencies being of comparable magnitude�

Figure ���� presents the L� norm of the full height and winds and balanced

height and wind �elds for the PV method for high Bu and low regimes about each

latitude ring� The �gure shows that for a low Burger number the balanced height

perturbation obtained from the PV method approaches the full height perturbation�

At high Burger number the balanced wind perturbations approach full wind per�

turbations� This is interesting as the PV method uses a linear balance condition

while the full height and wind perturbations satisfy the nonlinear Charney balance�

the dependence on Burger number of the PV method compensates in part for the

simple balance condition used�
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So far we have considered only the divergence tendency of balanced variables

from LB and PV methods when the initial �eld �eld is in Charney balance� We wish

to consider increments derived from subtracting the uninitialised �elds in data set

V DG�����cdf from the respective initialised �elds and calculate overall divergence

tendencies for high and low Burger number� In particular we present the L� norm

of the linearised divergence tendency increments for not only the balanced control

variables but also the balanced corrections to the control variables� The linearised

divergence tendencies are as de�ned in equations �������������� ������� ����	�� They

are approximated using second order centered �nite di�erences� The remaining

experimental details are the same as in Section ����

Table ��� shows the L� vector norm of the linearised divergence tendencies in�

crement of the balanced control variable increments and balanced corrections to

unbalanced control variables� We see that the PV method at high Burger number

performs the best for balanced control variable increments and balanced corrections

to unbalanced control variables� If the PV method is set at even higher Burger

numbers� the divergence tendencies would move to those given by the LB method�

For low Burger number the PV method gives the divergence tendencies that are

signi�cantly worse� This is due to the method approximating the full unbalanced

height increments�

In conclusion� we see that a regime dependent set of control variables given by

the PV method gives overall results that are promising� Sections ��	� ��	�� show the

relationship between scaled potential vorticity� height and absolute vorticity pertur�

bations at di�erent Burger regimes for a Rossby�Haurwitz wave� Section ��� has

shown that the PV method behaves as expected when a Rossby�Haurwitz wave is
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Table ���� L� vector norm of the linearised divergence tendencies increment of bal�

anced control variable increments and balanced corrections to unbalanced control

variables� �a� L� norm of linearised divergence tendency increment from the bal�

anced control variable �m�s���� �b�L� norm of linearised divergence tendency incre�

ment from the balanced divergence increment �m�s���� �c� L� norm of linearised

divergence tendency increment from the balanced correction to the control variable

increment describing departure from linear balance �m�s���

�a� �b� �c�

LB method 	�� � ����� ��	� ����� ���� �����

PV method ��� � ����� ���� ����� ���� �����

high Bu

PV method 	�� � ���
 ���� ����� ��� � ���


low Bu
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used� in high Burger regimes it is approximating the solution given by using the LB

method and at low Burger number the balanced height is determined by the height

perturbation� When unbalanced increments are used in a high Burger regime the

PV method performs better than the LB method� We then perform two experiments

considering the divergence tendencies of the control variables� The experiment with

the RH wave shows slightly worse results in the low Burger number� The experi�

ment using unbalanced increments� shows that the PV method produces the lowest

divergence tendency when applied to the original Burger regime from which the

increments originate� The PV method is better in this situation at capturing the

unbalanced part of the �ow� However the PV method works slightly worse than

expected when the same increments are introduced into di�erent regime� However

it still remains to be seen whether the PV method will perform better with height

and wind increments that are mainly balanced and also have a small unbalanced

part�
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Figure ���	� H �eld linearisation states for low Burger regime �left� and high Burger

regime �right�
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Figure ����� �Top left� Height increment produced using test case INI�C � �Top

right� balanced height increment produced by LB method� �Bottom left� Balanced

height increment using PV method at low Bu� �Bottom right� Balanced height

increment using PV method at high Bu
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Figure ����� Balanced wind increments produced by using the LB and PV methods

at high Bu �mean height H � ��km�
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Figure ����� Balanced wind increments produced by using the LB and PV methods

at low Bu �mean height H � �km�
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Figure ����� Balanced wind increments produced by using the LB and PV methods

at very hi Bu �mean height H � ���km�� � latitudinally varying linearisation states�
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Figure ����� L� norm of divergence tendencies RH waves at high and low Bu using

PV and LB methods
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Figure ����� L� di�erence between balanced height and winds perturbations from

the PV method and full perturbations from RH wave for high and low Bu
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Chapter �

Conclusion

Throughout this thesis we have considered the use of potential vorticity as a control

variable� To this end in Chapter � we have given a clear mathematical description

of balance� A number of issues have come to light that tend to get forgotten�

Setting the divergence tendency to zero eliminates the unbalanced inertio�gravity

waves only when we consider the f �plane SWEs linearised about a resting state�

For more general SWEs an additional condition is needed� Also balance is not just

represented by the full rotational wind� At low Burger numbers the height �eld

becomes the balanced variable� Using potential vorticity as the control variable

allows the balanced �ow to be more accurately portrayed for a wider range of Burger

regimes than is done with the present method�

There is only a small body of literature that speci�cally deals with the problem

of control variables in the context of data assimilation within numerical weather pre�

diction� There is no published framework to examine a change of control variables�

We present such a framework in Chapter � and describe from a dynamical perspec�

tive the ideal set of properties that control variables should have� The balanced and
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unbalanced control variables should mirror the dynamical structure present within

the the model concerned� This is a problem in choosing potential vorticity� depar�

ture from linear balance and divergence as control variables� Even when the SWEs

are considered linearised about a state of rest and on a f �plane� the inertio�gravity

waves are coupled in being a linear combination of the eigenmodes of the system�

Andy White �personal communication� has suggested that the unbalanced wind

components could be chosen to represent the unbalanced control variables� This

would represent the the eigenmodes of the system better but would mean that each

control variable no longer contributes a portion of the model variables on their own�

Nevertheless this choice for the unbalanced variable should still be examined�

The means of identifying approximations of balanced corrections to unbalanced

variables presented in Section ��� is new� Although Mike Cullen proposed the origi�

nal idea������ ����� the �ne detail needed to implement the idea had to be established�

The same is true for the PV method� In Chapter � we propose various formulations

of the idea and then conclude that solving a coupled system simultaneously is the

best way to obtain the balanced control variable� We notice in Chapter � that pro�

vided a latitudinally varying linearisation states are used� the method we adopt is

ideal for the task� We use a Fourier method to decompose the zonal component into

wavenumber contributions and then apply second order �nite di�erences to each

wavenumber component� This numerical technique is a fast� relatively cheap and

accurate way to obtain a solution�

In Chapter � we also have shown how the control variables produced by the PV

method are in�uenced by Burger number� At high Burger number the LB method

and PV method should be similar� In Section ��� we have shown that the PV
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method will approximate a height constrained set of control variables described by

������ and �������

The experiments in Chapter � for the most part substantiate the theory in the

previous chapters� The PV method at high Burger number produce control variables

that are similar to those produced by the streamfunction constrained LB method�

Similarly at low Burger number the PV method produces control variables in which

the full height increments�perturbations dictate the balanced height and wind �elds�

A di�culty arises in using a linearised potential vorticity increment at very low

Burger number� The smaller the height linearisation state� the less accurate the

linearisation to the potential vorticity increment becomes� For this reason very low

Burger regimes cannot be examined by this technique�

The experiment applying the LB and PV methods to unbalanced increments

give interesting results as they complement the studies produced with balanced per�

turbations� It shows that in low Burger regimes the PV method gives a balanced

control variable which is predominantly determined by the full height increment�

This occurs even when the height increment is unbalanced� The PV is unable to

distinguish between a full balanced increment and a full unbalanced one� From the

experiments presented in Section ��	 we observe that the height perturbations and

potential vorticity perturbations hold the most of the information about the bal�

anced �ow at low Burger regimes� Similarly wind perturbations and the potential

vorticity perturbations represent the balanced part of the �ow for high Burger num�

ber� The improved performance at high Burger regime for unbalanced increments

shows a level of consistency between the PV method and the initialisation procedure

used�

���



��� Further Work

More experiments need to be performed in order to be certain that the potential

vorticity�based set of control variables is better than the current method� One way

would be to apply the method to height and wind increments generated using the

NMC method ������� ��	��� from a multi�layered barotropic model approximating

the atmosphere� As the full increments should be predominantly balanced� the

PV method should produce smaller divergence tendencies in the balanced control

variable than the LB method�

Obtaining the balanced control variable of the PV method is essentially a  poor

man
s
 version of the �st order direct potential vorticity inverter described by McIn�

tyre ����� Instead of using a Charney balance condition� the LBE is used instead� It

would be interesting to use the Charney balance condition instead and compare the

results� This should be not di�cult to achieve as it would need minor changes to

be applied to the code used to produce balanced corrections to the departure from

linear balance� A linearisation of the Charney balance equation about latitudinally

varying states would be used� The coupled system to be solved on a hemisphere is

�r �
�
f � �

�
r�b � k � r �

�
r��bv

�
�gr�hb �r� �v � �k�r�b�� � ��

r��b � qhb � r��� � qh�� �����

where the boundary conditions are the same as those used in the PV method�

So far we have considered the control variable transformations on a hemisphere�

To consider the control variable transformations in a more realistic context we need

to generalise the work for �ows whose variables are neither symmetric nor antisym�
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metric about the equator� If we use the same technique as before� we would need

four equations and four variables� In addition to solving for only symmetric height

and an antisymmetric streamfunction we would need to evaluate an antisymmetric

height �eld and a symmetric streamfunction� In principle this can be achieved by

solving the system

r � fr�a � gr�hs � � ���	�

r��a � qahs � qsha � r���a � qah
�

s � qsh
�

a �����

r � fr�s � gr�ha � � �����

�qahs �r��s � qsha � r���s � qsh
�

s � qah
�

a �����

simultaneously� where �a and ha are the balanced height and streamfunction parts

which are antisymmetric about the equator� �s and hs are the balanced symmetric

contributions� The variables h�s� �
�

s� h
�

a� h
�

s are the symmetric and antisymmetric

parts of the full height and streamfunction increments such that

h� � h�a � h�s

r��� � r���a �r���s �����

Similarly� the balanced streamfunction increment ��b and balanced height increment

h� are equal to the sum of symmetric and antisymmetric balanced parts� with

h�b � ha � hs�

k�r��b � k�r�a � k�r�s� �����

The scaled potential vorticity increment hq� and linearisation state q are similarly

split into symmetric and antisymetric parts� with

hq� �
�
r���a � qah

�

s � qsh
�

a

�
�
�
r���s � qsh

�

s � qah
�

a

�
�
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q � qa � qs� �����

We set the surface integral of the symmetric part of the scaled potential vorticity

increment over the sphere to sum to zero� In addition to Neumann boundary con�

ditions at the poles� and the respective symmmetric and antisymmetric conditions

implicitly set by the right hand sides of ����� and������ we need two additional con�

ditions� We assume that the total mass of the system held in the increments is

equal to the balanced mass of the system� Also we take the total momentum of the

rotational part of the balanced �ow to be equal to the total momentum held by the

rotational part of the full wind and height increments�

The above formulation allows there to be non�zero potential vorticity increments

and non�zero values for the balanced streamfunction about the equator� Since we are

using a linear balance condition� the solutions will not give realistic results about

the equator� Using a linearised Charney balance condition about a latitudinally

varying state is an option� The above formulation given in equations ���	������� is

easily adapted to include this balance condition� However around the equator the

linearisation states in the wind are frequently of the same order of magnitude as

the increments and the approximation given by linearisation of the Charney balance

condition will be poor� A means around this problem would be to use linearisation

states that are a function of latitude and longitude� For this to be done either an

iterative method or a spherical harmonic method would be more appropriate�

Around the tropics balanced divergence is an important quantity to diagnose� A

means by which this can be achieved is through using a higher order direct potential

vorticity inversion� The second order direct potential vorticity inversion sets the
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divergence tendency and the second order partial time derivative of the balanced

divergence to zero� This method gives a time invariant balanced divergence� In the

third order direct inversion the second and third order partial time derivatives of

the balanced divergence are set to zero� This would allow a time varying balanced

divergence to be obtained� The use of this third order inversion would accurately

represent key dynamical features present in the tropics� It would also be the limit

in which potential vorticity inversion is useful �����
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