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Abstract

Data assimilation is a means of estimating the true state of a dynamical
system by combining the output from a numerical model with the available
observations. Most data assimilation methods assume that the model error
is serially uncorrelated. We describe a method for taking systematic model
errors into account by augmenting the state vector with a vector of model
error variables. The stability and convergence of this augmented state are
discussed with respect to a general sequential data assimilation method.

Systematic model error correction is examined in a simple model of the
tropical Pacific ocean in the context of the two-dimensional Shallow Water
equations. A new method is proposed which can account for systematic
errors in the wind forcing of the model by correcting the pressure field, using
differences between the observations and the model fields. An analysis of this
pressure correction method shows that the pressure and vertical velocities will
converge with time to their true values.

We apply the pressure correction method to a three-dimensional Primitive
equation model of the ocean. Experiments performed with the operational
system used at the Met. Office, FOAM, show a much improved balance at the
end of a two year integration with the pressure correction method included in
comparison to the original data assimilation scheme. These results show that
the method produces better initial conditions for a forecast. Also, diagnostics

from the method may help to indicate how to improve the model.
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Chapter 1

Introduction

Data assimilation is a means of estimating the true state of a system by com-
bining observations with a numerical model of a dynamical system. These
techniques provide initial conditions for forecasts and can also be used for di-
agnosing past events and for model verification. However, systematic errors
in the numerical model can cause the data assimilation to produce spuri-
ous results which will affect our ability to obtain good initial conditions for
forecasts. An aim of this thesis is to investigate methods for assimilation of
observations into models which contain systematic errors.

A motivation for the work in this thesis is an example of where systematic
model errors can significantly affect our ability to estimate the state of a
system using data assimilation. An example is presented in Figure 1.0.1
which shows large vertical velocities in the tropical Pacific ocean due to the
assimilation of temperature observations into a biased model of the ocean.
This region is shown in the example because the problem of model biases

is worst here. The tropical Pacific is an important area because a large



fraction of the variation in the energy of the world’s oceans occurs in this
region. Also, exchanges between the atmosphere and ocean in the tropical
Pacific are important for seasonal prediction and climate research. These
interactions are especially important when predicting El Nino, a period of
anomalously warm sea surface temperature (SST) in the eastern equatorial

Pacific associated with ceasing trade winds in the atmosphere.
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Figure 1.0.1: Spurious vertical velocities (cm/s) associated with assimilation

of temperature observations into a biased ocean model.

Many geophysical modelling centres around the world have computer
models of the ocean and use these to simulate the state of the ocean, i.e.
currents, temperature, salinity and density. In Chapter 2, we describe the
basic equations used in these models. The types of observations which are
available for use in the estimation of the state of the ocean are discussed.
We also give some background information on the types of flow expected in

the tropical Pacific and the problems associated with predicting them. One



of the main topics of interest is the way in which the atmosphere forces the
ocean circulation in equatorial oceans, so some background on this topic is
given.

When attempting to predict the state of the ocean and/or atmosphere,
an accurate estimate of the initial conditions is essential. To obtain the best
possible estimate, the output from a numerical model should be combined
with the available observations. This data assimilation can be done in many
different ways. The more common methods are very similar to the observers
of Control Theory. In Chapter 3, we describe some relevant results from the
Control Theory literature and show what they imply about the convergence
and stability of sequential data assimilation methods.

In Chapter 4, the objective function used in most of the sequential data
assimilation methods is derived in a statistical framework. The more common
ways to estimate the solution of this objective function are also described,
together with other popular sequential data assimilation methods. Some
examples of how these methods perform are shown using two simple ordinary
differential equation (ODE) models. An overview of the four-dimensional
data assimilation methods is also given for completeness.

A problem with these methods is that it is assumed that no systematic
errors are present in the model or observations. Observational bias is not
usually a problem as it is reasonably easy to detect and correct. In ocean
models however, there are often systematic errors, mainly due to the number
of parameterisations required. A general method for accounting for system-
atic model error is given in Chapter 5. Some of the important advantages

and disadvantages of this bias correction are illustrated using some simple



examples. These include experiments performed with the two ODE models
introduced in Chapter 4, and also experiments with a simple partial differ-
ential equation (PDE) model.

In Chapter 6, we begin to explore how the bias correction method ac-
counts for a specific type of model error. This is done using a simplified
model of the equatorial Pacific ocean. Using the results of some analysis
of the linear two-dimensional shallow water equations, a modification of the
bias correction method is proposed. Some experiments are described which
compare the results of using normal data assimilation to the results obtained
when the bias correction method and the new pressure correction method
are used.

To test the effectiveness of the pressure correction method in a full prim-
itive equation global ocean model, we implement it in the Forecasting Ocean
Atmosphere Model (FOAM) used operationally at the Met. Office. These
experiments are described in Chapter 7. Results are presented which show
improvements in the balance of the system in the tropical Pacific and hence
in the estimate of the state of the ocean there.

In Chapter 8, some conclusions are given, together with some possible

extensions of the work.



Chapter 2

Oceanography

2.1 Introduction

As we are dealing with data assimilation in ocean circulation models, we
devote a chapter to describing the equations of motion, the numerical solution
of these equations, the observations available to oceanographers and the types
of circulation we will be dealing with later in the thesis.

The main area of interest for the purposes of this study is the prediction
of the state of the equatorial Pacific over seasonal time scales. This involves
using an ocean circulation model, with forcing from the atmosphere coming
from wind stresses, evaporation and precipitation. We will begin by describ-
ing the approximations made to the Navier-Stokes equations to obtain the
so-called Primitive equations. The discretisations used in a numerical model
will then be discussed. The types of observations which are available for use
by oceanographers will also be described. To examine the types of motion we

expect to find in the tropical Pacific ocean, the linear shallow water equations



are derived and some wave solutions are found on the g-plane. The effects

of wind forcing are then described.

2.2 Ocean general circulation models

2.2.1 Equations of motion

The equations of motion for large-scale ocean dynamics are obtained from
the Navier-Stokes equations, [19]. A number of approximations are made
however which simplify these equations. The first of these is the Boussinesq
approximation, where the density is taken to be constant in computing rates
of change of momentum, and density variations are taken into account only
when they give rise to buoyancy forces, [13]. This is a valid approximation
since changes in the density of the ocean with time are much smaller than
the average magnitudes of density. As the velocity of a fluid element and the
phase speed of disturbances are much less than the speed of sound, we can
assume that the flow is incompressible. This means that changes in density
with pressure are negligible. We also assume the turbulent mixing hypothesis,
where stresses exerted by scales of motion too small to be resolved by the
computational grid are represented as an enhanced molecular mixing.

The momentum equations are then given by

Ju Ju Ju Ju _,0p "
dv 6v av av B _lap Y
ow 6w aw ow B _lap
N —I—Ua——l—va——l—wa—l—Q(Q v—Quu) = —pg P _,0 9(223)



where z, y and z are the local cartesian coordinates, p is the pressure of a
fluid element, p is the density of a fluid element, u = (u, v, w) is the velocity
vector, 2 = (£, 9y, Q,) is the angular momentum, ¢ is the acceleration due
to gravity and F'* and F"Y represent forcing terms. The angular momentum
of the earth is taken to be Q = (0,0, 3 f), where f = 2Qsin¢ is the Coriolis
parameter, {) is the earth’s angular velocity and ¢ is the latitude.

A scale analysis shows that, in the ocean, local acceleration and terms
of equal order can be eliminated from the equation of vertical momentum.
This is a valid approximation if the vertical scale of motion is much less than
the scale height, which is always true in the ocean, [13]. This results in the

hydrostatic equation

dp
— = —pg. 2.2.4
5, = P9 (2.2.4)
The continuity equation
Ju Jv Jw
—+—4+ =0 2.2.5
Jx + Jy + 0z ’ ( )

shows that the velocity field is nondivergent. Conservative tracers such as the

potential temperature, § and the salinity S satisfy the advection equations

a0 a0 a0 a0

95 95 95 95
a—l—u%—l-va—y—l-wa = 0. (2:2.7)

The last equation needed is the equation of state which relates salinity,

potential temperature and pressure to the density, i.e.

p=p(p,S,0). (2.2.8)

We therefore have seven equations (2.2.1), (2.2.2), (2.2.4), (2.2.5), (2.2.6),

(2.2.7) and (2.2.8), in seven unknowns u = (u, v, w), p, p, § and S.
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2.2.2 Numerical solution

There are many possibilities for the representation of the oceanic circulation
using computers. Quasi-geostrophic models, which discretise a simplified
version of the equations presented in the previous section, have been used
to model the mesoscale eddy fields in the ocean, [43]. However, most of the
major oceanographic institutions now use primitive equation models which
discretise the equations in the previous section. The most common of these
models is the Bryan-Cox model, [9], [10], [19], which uses a finite difference
approximation to the equations. More detail on this model is given in Section
7.2, as it is used in the Forecasting Ocean Atmosphere Model (FOAM) system
at the Met. Office. Other methods for the discretisation of the equations
include more sophisticated finite difference schemes, finite element methods
and spectral models, although these are rarely used in operational models at

present, [51].

2.3 Observations

As well as having a computer model, an important source of information on
the state of the ocean is from observations. These observations are available
from both in situ and satellite instruments. The number of observations
available to oceanographers has increased dramatically over the last decade
due to the introduction of satellite observing instruments. There are also
plans to increase the number of in situ data through the deployment of a
large number of drifters.

The in situ instruments which provide information about the state of the



ocean come from various sources. Sea surface temperature (SST) data is rou-
tinely available and is observed from ships, drifting buoys and moored buoys.
Observations of the temperature structure beneath the surface are more
sparse. These come mainly from expendable bathythermographs (XBTs)
which measure the temperature structure of the top few hundred metres of
the ocean, together with conductivity temperature and depth (CTD) instru-
ments. Some information is also available about the ocean currents from a
number of buoys and also ships, which use acoustic Doppler current profilers
(ADCPs) to measure velocities. The salinity of the oceans is not currently
well observed but some information is available and there are plans to in-
crease the number of these observations.

An important source of observations of the tropical Pacific ocean is the
tropical atmosphere ocean (TAO) array which is a number of moored buoys
spread over this region, [41]. There are nearly 70 buoys in this array which
measure winds, SST, relative humidity, air temperature and subsurface tem-
perature down to about 500m. Some of these buoys also measure the velocity
of the ocean.

Various satellites are in orbit with instruments which observe the state
of the ocean. These include instruments which give information about the
height of the sea surface and also instruments which measure SST. The sea
surface height (SSH) data comes from altimeters which are accurate to about
4cm rms. SSTs are available from advanced very high resolution radiometers
(AVHRR) which have an accuracy of about 0.5°C and give the information
at a high resolution of about 8km.

There are plans to significantly increase the number of drifters as part of



the ARGO proposal. Here the aim is to deploy approximately 3000 floats
globally by 2003. These floats will stay at depth for most of the time but
periodically (about every 10 days) rise to the surface, measuring temperature
and salinity profiles. It is hoped that these floats will be spread evenly
over the global ocean which will provide very useful information about the

dynamics of the ocean.

2.4 Tropical dynamics

The rotation of the earth has an important effect on the way the ocean
responds to imposed changes. The Coriolis parameter, f = 2{)sin¢®, depends
on the latitude ¢, and is close to zero in the tropics. This has important
consequences on the ocean circulation near the equator, as will be discussed
in this section.

To study the type of motions we would expect to see near the equator,
we will examine the linear shallow water equations on an equatorial S-plane.
These can be derived from the horizontal momentum equations (2.2.1-2.2.2),
the hydrostatic equation (2.2.4), the continuity equation (2.2.5) and a mass
conservation equation based on equations (2.2.6)-(2.2.8), given by

dp dp dp dp
a+ua—x+va—y+w$ = 0. (2'4'1)

If we linearise these about a vertically stratified state of rest po(z) where
ug =0, vg = 0, wy = 0, we obtain

Ju dp

PO(g—t — fv) = —g—xa (2.4.2)
v - %
polm, +fu) = By’ (2.4.3)
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Ip

5. = P9 (2.4.4)

z

Ju OJv Jw

6_:1; + a—y + @ = 0, (2.4.5)
dp dpo

Since these equations are linear, we can split the solution into a depth
dependent part and a part which varies in the horizontal and with time, so

that

A A
u(x,y,z,t) = gfoz)ﬁ(x,y,t), v(x,y,z,t) = gl(oz)ﬁ(x,y,t), (2.4.7)

ple,y,z,t) = A(z)plx,y,t), w(x,y,z,t) = B(Z)%(m,y,t). (2.4.8)

The horizontal structure then satisfies the equations

ou . p
a0 . p
— = —g= 2.4.10
5 T 10 95y (2.4.10)
p ou 00
— A=+=) = 0, 2.4.11
ot + (6:1; + ay) ( )
and the vertical structure is given by
d (dB dpo
— | —po | H. — B— =0, 2.4.12
dz ( dz ,00) dz 0 ( )

where H. is the separation constant, often referred to as the equivalent depth.

The equatorial S-plane approximation says that the Coriolis parameter
can be written as some constant, 5, multiplied by the northward distance
away from the equator, i.e. f = By, where 8 = 2.3 x 107"m~1s71, With

this approximation, we can write equations (2.4.9-2.4.11) as one equation in

terms of 0,

d . 1 0% - 0% 0*v
—+f U)—(@—Fa—yz)

00
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where ¢? = gH,.

2.4.1 Equatorial waves

We look for equatorially trapped waves by finding solutions of equation
(2.4.13) of the form o(x,y,t) = v(y)exp(ikx — iwt). This yields the ordi-

nary differential equation

2o w2 2 @ - B2y

d—y2 (02 w c?

o = 0. (2.4.14)

If we transform variable to ¢ = (8/c¢)"/?y, equation (2.4.14) becomes

1 v = 6(%’2 —k* - i—k)v. (2.4.15)

This has solutions of the form v = vgexp(—(?/2)H,((), n = 0,1,2, ..., where

d*v ) c

H,, is an nth order Hermite polynomial, as described in Appendix B. These
solutions vanish as y — oo which is what we require for equatorially trapped

waves. The dispersion relation is then given by

w_z_kZ_@ p

2

(2n +1), n=012,.... (2.4.16)

C w C

There are three main types of waves arising from this expression, [51]:

1. Planetary waves
For these waves, w?/c? is negligible, giving w = —8k/(k* + §(2n +1)).
Long planetary waves are fairly slowly propagating westward waves, the
first baroclinic mode having a wave speed of approximately 0.9ms™!.
For shorter waves, the group velocity is eastward but they only carry

information at an eighth of the speed at which the long waves carry

information westwards.
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2. Gravity waves
Here, 8k /w is negligible, giving w? = k*c* 4+ B¢(2n + 1). These waves

can propagate energy eastward or westward.

3. Kelvin waves
The Kelvin wave satisfies the dispersion relation (2.4.16) when n =
—1, but can also be obtained by setting v = 0 in the shallow water
equations. It has dispersion relation w = kc. This wave therefore
propagates eastward along the equator without dispersion at speed c.

For the first baroclinic mode, ¢ is approximately 2.8ms™!.

For more information on these waves, see [35].

2.4.2 Wind forcing

If the wind forcing is included in the nonlinear model, the linear shallow

water equations (2.4.9-2.4.11) become

au . ap "
o . o,
ap o4 96
BN + He(@_x + a_y) = 0, (2.4.19)

where 7 = (7%, 7Y) is the wind stress. We can then write this as one equation

in © to obtain

o.1,0% ., 9% 0% . 06 10 0 _ . 9 9rv or
ailalor Ot gt a2 175, = e o~ "8 o oy
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The response to a uniform wind, parallel to the equator, should be inde-

pendent of x. In this case, the steady state equation for v is
— Byt = 77, (2.4.21)

Easterly winds (7% < 0) will therefore produce transport away from the
equator to the North and South. This implies that upwelling must occur
at the equator. This upwelling raises the thermocline, which is a region
of strong vertical temperature gradient at the bottom of the mixed layer,
and a current develops in the direction of the wind. Boundary effects then
become important because of the east-west pressure gradient associated with
the eastward propagation of the Kelvin waves. There is a westward current
at the surface but an eastward undercurrent in the thermocline, [81]. This
current is called the Equatorial Undercurrent (EUC) and is an important
feature of the equatorial ocean circulation, [82].

This discussion is meant to give a broad outline of the response of the
tropical ocean to wind forcing. It is also meant to indicate the complexity of
this response to a given forcing. In [48] the large number of currents which
are present in the tropical Pacific are described and [36] shows that it is in
fact very difficult to estimate the wind stresses themselves very accurately as
there is a large amount of time and space variability in the tropical Pacific.
The inaccuracy in the supplied winds together with the complexity of the
response to these winds makes the prediction, and even the estimation, of

flow in the tropical Pacific a hard task.
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2.5 Conclusions

This chapter has given a brief description of the equations of motion which
are used in computer models of the global ocean. These equations contain
a number of approximations which, whilst being justifiable, will reduce the
accuracy of these models. Of more significance is the resolution of the model
grid, which in the Met. Office’s FOAM model is 1° x 1° in the horizon-
tal. The problem with having such a coarse resolution is that important
mesoscale motions are not resolved by the grid. These therefore have to be
parameterised which reduces the accuracy of the model.

An outline of the dynamics in the tropical oceans has been given. The
wind stresses are an important driving force in this region. The way these
stresses are distributed in the vertical in an ocean model has to be param-
eterised and it is thought, at least in the FOAM model, that this parame-
terisation is not always accurate. This fact, together with the idea that the
supplied surface wind stresses are not always accurate, leads to uncertainties
in the resulting circulation.

When attempting to predict the state of the tropical Pacific ocean over
seasonal time scales, especially in the presence of El Nino, the coupling be-
tween the atmosphere and ocean is very important. The manner in which
the ocean responds to atmospheric forcing is therefore also important. An
advantage of the tropical Pacific is that we have a fairly good observational
coverage, [12]. The TAO array is a number of fixed buoys which take ob-
servations of temperature with depth, [41]. There are also observations of
sea surface temperature (SST) and temperature profiles made available from

ships. These observations should therefore be used to keep the model close

15



to the true state of the ocean, as will be discussed in the next few chapters.
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Chapter 3

Control Theory and Data

Assimilation

3.1 Introduction

Systems such as the ocean and atmosphere are complicated, infinite dimen-
sional systems. Much work has been done on understanding the underlying
physical laws which govern these fluids. The equations that are thought to
describe the evolution of the ocean state, and the methods used to approxi-
mate these equations so as to enable computational modelling of the ocean,
are described in the previous chapter. These approximations, both in the
equations themselves and in the numerical scheme used to solve them, will
necessarily produce uncertainties in the model that we use to forecast the
ocean state, [33]. We do, however, have observations that we can use to
constrain the model. We would therefore like to combine the available obser-

vations with our model to produce the best initial conditions for a forecast.

17



In Section 3.2, we introduce some statistical concepts and notation which
we will use throughout this thesis. We then introduce the general data as-
similation problem in Section 3.3, together with some of the assumptions
which are usually made when trying to solve the problem. In Section 3.4,
we investigate the solution of the linear data assimilation problem and give
conditions on the stability and convergence of the data assimilation process
using some 1deas and theorems from the Control Theory literature. The ex-
tension of these ideas to the nonlinear case is investigated in Section 3.5 with

conclusions given in Section 3.6.

3.2 Statistical concepts

We begin by defining some statistical concepts which we will use in this and

subsequent chapters.

Definition 3.1 The expected value (or mean) of a random variable x,

denoted E{x}, which has probability density function (PDF) p,, is defined as

E{xz} :/ rpgdr. (3.2.1)
The ezpected value of a random n-vector x € IR", where z = [x1, 9, ..., 2,]7,
s defined as
E{x}

E{xy}

E{z} = (3.2.2)

| E{ea} |

18



Definition 3.2 The variance of a random variable x is defined as
Var{z} = E{(x — E{z})*}. (3.2.3)

Definition 3.3 The covariance of two random variables v and y is defined

Cov{e,y} = B{(x — E{e})(y — E{y})}. (3.2.4)

The covariance matrix of a random n-vector x, is written as

Cov{z} = Cov{z, z}

| Var{z:}  Cov{zy, 22} ... Cov{wxi,x,} ]
_ Cov{afq, T} Var.{xz} . COU{J.}Q, Tn} (3.2.5)
| Cov{zy,z,} Cov{wy,z,} ... Var{z,}

which is symmetric.

Definition 3.4 The correlation between two random variables x and y is
defined as
Cor{z,y} = E{zy}. (3.2.6)

The correlation coefficient of z and y is defined as

Wy = oot
’ (Var{z}Var{y})V/?*

Definition 3.5 The Gaussian (or Normal) PDF for a random n-vector x

(3.2.7)

with nonsingular covariance matriz is

-1

pale) = [(27)"(det(Cov{e}) ]
erp {_1/2(£— E{i})TCOU_l{i}(i_ E{&})} . (3.2.8)

where Cov™'{x} denotes the matriz inverse of the covariance matriz.

19



3.3 The data assimilation problem

In this section, we state the general data assimilation problem, together with

the assumptions that are usually made to enable its solution.

3.3.1 True system equation

We assume that the true state of the system to be studied can be represented

on a model grid by the solution to the stochastic vector difference equation
2y = (@ w) + ¢, k=0,1,....N—1, (3.3.1)

with given initial conditions, E{z}}. Here, 2! € IR" is the true state vector
at time #, ul € IR™ is the true input vector, f, t R" x R" — R" is
assumed to be continuously differentiable and g € IR" is a vector of random
disturbances. We suppose that g is a white Gaussian sequence.

If the random disturbances {g, k=0,1,...,N—1} are absent from equa-
tion (3.3.1), then we have a deterministic system with solution zf,k = 0,1,..., N.
When the random disturbances are present, however, we are interested in the
PDF of z!, from which E{zi}, Cov{zl} and other useful information can
be obtained. We therefore require Cov{z{} to be given to determine the
PDF at the initial and subsequent times. The vector of random disturbances
is included in equation (3.3.1) due to the fact that, in the ocean context,
we are representing a continuous, infinite dimensional system on a discrete,

finite model grid.
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3.3.2 Model system equations

We now write the model equations which consist of a stochastic vector dif-

ference equation approximating the true system equation, given by
Lh41 :gk(ikvﬂk)—l_gk? k:()v]-v"'vN_lv (332)
a set of observations given by

and initial conditions, E{z,}. We also require Cov{z,} to be given. Here,
z; € IR" is the model state vector at time t, u, € IR™ is the model input
vector, g, : R"XIR™ — IR" is assumed to be continuously differentiable, ¢, €
IR" is a vector of random model disturbances, y, € IR”* is the observation
vector at time tg, h; : IR"™ — IRP* is the observation operator which is
assumed to be continuously differentiable and §; € IRP* is a vector of random
observation errors. We suppose that {¢,,k = 0,1,..., N — 1} and {J;,k =
0,1,..., N} are white Gaussian sequences.

The observation errors, d;, include contributions from the error in the
observations themselves, but also from errors arising from the interpolation
from the model grid to the observational grid and from conversion from state
to observed variables. The following assumptions are made about the errors

in the model system equations:
1.

0, ift; #ty,
Cov{gk,gj} = o i t] t (3.3.5)
ke 1 =1,
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where Q) € IR™*" is the known non-singular error covariance matrix of

the model at time #j.

E{é} = 0, Vi, (3.3.6)
0, ift;#,

R, ift; =t

where Ry € IRP**P* is the known non-singular error covariance matrix

of the observations at time #j.
3. COU{gk,ék} == 0, Vtk,t]‘.
4. Cov{(,,z0} = Cov{dy, 20} =0, V.

We now state the general data assimilation problem.

General data assimilation problem

Given the model system equations, (3.3.2), (5.8.3), with initial
conditions E{xzy}, produce some estimate of the true state of the
system at the final time, tyn, which is determined by the solution

to the true system equation, (3.5.1), with true initial conditions,

E{ah}.

The model system equations include an operator g, which is different
from the operator f, used in the true system equations. This is included
due to the fact that we will not usually know the exact representation of the

true state of the system on the model grid, and approximations to the true
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operator are often made when modelling systems such as the ocean. The fact
that these two operators are different makes it difficult to say anything about
the solution to the data assimilation problem. Also, the inputs to the model
system equations, wuy, are not the true inputs ul as these are not always
known accurately. To make the data assimilation problem more tractable, it
is often assumed that the operator f, and the true inputs ul are used in the
model system equations. In this case, the model errors ¢, are still assumed
to form a white Gaussian sequence. This case, which we call the correct

stochastic model case, is summarised below.

Definition 3.6 Correct Stochastic Model Case

1. The model system equations are given by

2y = flzew) + ¢, k=0,1,....N—1, (3.3.8)

with E{x,} given.

2. The assumptions about the statistics of ¢, , o and x, are the same as

for the previous case.

With the correct stochastic model case, the data assimilation problem
involves the estimation of the PDF of x5 from which we can extract infor-
mation about the expected value and covariance of the state at the final
time. We now make the further assumption that the stochastic forcing is
omitted from the equation evolving the state variables in the model system.
Observational error is still included in the model system. We call this the

perfect deterministic model case which is summarised below.
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Definition 3.7 Perfect Deterministic Model Case

1. The model system equations are given by

2o = fo(zu), E=0,1,...,N —1, (3.3.10)

y, = lyleh) + 4, k=0,1,...,N, (3.3.11)

with x, given.

2.
E{%}; = 0, Vi, (3.3.12)
0, ift; %t
ot sy - it # 5515
Ry, ift; =,
Cov{dy,zo} = 0, V. (3.3.14)

Note that we do not know the true initial conditions in either the correct
stochastic or perfect deterministic cases. The data assimilation problem in
both situations therefore involves accounting for these errors, as well as other
errors in the system.

There are two main types of method which are used to solve the data
assimilation problem. Sequential or three-dimensional methods combine a
forecast and observational data at one time to produce an analysis. Starting
from this analysis, the model is used to produce a forecast at the next anal-
ysis time when the forecast and observations are again combined, and so on
throughout the time period. In four-dimensional data assimilation methods,
the model trajectory is compared with the observations over a period of time

to produce some kind of best fit over the entire time period. In this chap-
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ter, we concentrate on sequential data assimilation, but the four-dimensional

methods will be briefly discussed in the following chapter.

3.4 Linear systems

There is much theory for solving the data assimilation problem in the cor-
rect stochastic and perfect deterministic model cases, when the system to be
estimated is described by linear equations. When we are dealing with nonlin-
ear systems, it is often possible to linearise the system about some reference
state, as will be described in the following section. It is possible to apply
results from linear systems to these linearisations of nonlinear systems, after
making certain assumptions. We therefore examine the linear data assimila-
tion problem here and leave its extension to nonlinear systems to the next

section.

3.4.1 Time invariant system

Much of the basic theory associated with control theory and data assimilation
is based on the assumption that the forecast model and the observation
operator are linear, [45], [49]. The further assumption that the model is
time invariant is also useful when developing the theory, [2]. In the perfect
deterministic model case, we write the linear, time-invariant true system

equation as

2., = Az + By, E=0,1,...,N —1, (3.4.1)
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with E{zl} given, and the model system equations as

241 = Az + Bul, k=0,1,....,N—1, (3.4.2)

Y, = Hzx! + &, E=0,1,..., N, (3.4.3)

with z, given. Here, z;, u}, and §; have the same dimensions and assump-
tions as in Definition 3.7, y, € R”, A € R™", B e R™™ and H € IRP*",
We now define the concept of complete observability, which is an impor-

tant one when trying to solve a problem of the type given.

Definition 3.8 The model system (3.4.2), (3.4.3) is completely observable
if there exists a finite time, tn > to such that knowledge of uy and y, for

tr € [to, tn] suffices to determine z, uniquely.

As will be shown, complete observability often implies that the time in-
variant problem can be solved using methods from control theory. We there-
fore give an important condition on the complete observability of linear, time

invariant systems, [2].

Theorem 3.1 The model system (3.4.2), (3.4.3) is completely observable if

and only if the observability matriz, C, has rank n, where

H
HA
C = . . (3.4.4)

HA™!

We now look at a general sequential data assimilation method, otherwise

known as an observer or filter, which attempts to reconstruct the true state
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of the system using some form of feedback. The usual form of feedback used

for discrete systems of the type given, [45], is

1. Starting from some guess at the true state of the system at time #,
z¢, evolve the state variables to the next time step using the forecast

model to obtain a forecast, 1,’;_1, at time .y,

al,, = Az} + Bu. (3.4.5)

2. Combine the observations and the forecast to produce an analysis at

time 41 as follows:
@ =zl + Ky —Hzl ] (3.4.6)
L1 = L1 T LY Lyl S
where K € IRP*" is some gain matrix, also known as a weighting matrix.

Combining these two steps into one equation for the evolution of the analysis,

we obtain

2y = (I — KH)(Az + Buy) + Ky, |, (3.4.7)

where z§ is our estimate of the initial conditions. The difference between our
estimate of the state and the expected value of the true state at time #54 1s

given as

where &, = 2 — z¢ and fi, denotes E{yu, }. This last equation shows that,
as long as we can choose the gain matrix K correctly, we should be able to
ensure that the error will tend to zero as time increases, i.e. our analysis will
converge to the true solution. We now give a condition under which this is

possible.
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Let A, = {A1,A2,..., A} be an arbitrary set of n complex numbers such
that any which are not purely real occur in conjugate pairs. Then, from [2],

[68], we have the following theorem.

Theorem 3.2 The time invariant model system (3.4.2), (5.4.3) is com-
pletely observable if and only if there exists a real matrix K such that the

characteristic roots of (I — KH)A are the set A,,, for any set A,.

This theorem implies that we can choose the roots of (I — K H)A to lie
inside the unit circle, therefore ensuring that z¢ — 2% as #; — 0o, provided
the model system (3.4.2), (3.4.3) is completely observable. In fact, it may be
possible to stabilise the feedback system even if complete observability does

not hold. In this case, the poles of the system which cannot be moved must

already be stable, [52].

3.4.2 Time varying system

We write the time varying linear system, in the perfect deterministic model

case as
iy = Arzy + B + ¢, E=0,1,...,N —1, (3.4.9)
with E{z!} given for the true system equations, and

L1 — Ak&k + Bkﬂfm k= 07 17 .. '7N - 17 (3410)

y, = Hal+ 4, k=0,1,...,N, (3.4.11)

with z, given for the model system equations. Here, z;, u}, and ¢, have the

same dimensions and assumptions as in Definition 3.7, y, € IR™*, Ay € R™*",

B, € R™™ and H, € IRPxX",
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The following definition gives an equivalent expression to Definition 3.8

for complete observability in the time varying case, [83].

Definition 3.9 The model system (5.4.10), (3.4.11) is completely N-step
observable at time tp if and only if there exist a positive integer N such

that knowledge of y, , and Wy, Ul ... U, y_q 05 sufficient

Ypt17 o Ypen_a
to determine the state xy.
If the system is completely N-step observable for any time fj, it is com-
pletely N-step observable. Furthermore, if the system is completely N-step
observable for some N, then we say that it is completely observable, [83],
[74].

We now introduce some notation to keep equations as simple as possible

and define the state transition matrix, ®, as follows:

This matrix relates the state at time #; to the state at some earlier time ¢;

and is given for the unforced model as
k-1
o(k,7) =[] 4 (3.4.13)
=3

It has the following properties, [2]:

o(j.j) = I. Vi (3.4.14)
O(j.k) = ®Mkj). Yk, (3.4.15)
o(l,5) = (k) j), Vi<k<lL (3.4.16)

It is assumed in the above properties that the state transition matrix has an

inverse which is not always true for irreversible processes.
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It is now possible to write the model system (3.4.10), (3.4.11) in terms of

one equation at each time as

¥, = Hay,

Y Hi1®(k +1,k)2y, + Hiy1 Bruy,

k+N-2
gk+N—1 = Hin1®(E+ N — 1 k)2, + Hepnv-1( z;c PE+N-—-1,7+ 1)3]@]4)‘
]:

If we put the known terms of these equations, i.e. those involving gj, u;, on

the left hand side, then we can write this as

Hy,
v, = Hkﬂ@(% tLA) & = Chity, (3.4.17)
| Hpnoa®(k+ N —1,k) |
where
Yy, = gk+1 - I:‘rk+1BkMk (3.4.18)

| Dpony — Hen (SN e(k+ N = 1,5+ 1)Bju;) |
We can see from equation (3.4.17) that the system can be solved uniquely

to determine Z;, provided the matrix Cy has certain properties.

Theorem 3.3 The model system (3.4.10), (3.4.11) is completely N -step ob-
servable at time ty, if and only if Rank(Cy) = n.

For a proof of this result see [83]. Note that the matrix Cy only involves

A; and H; and that the condition on the rank of C} therefore implies some
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restriction on the relationship between the number of model variables and the
number of observations. If we can show that a particular system is completely
N-step observable, then we know it is possible to determine the state vector
from a knowledge of the observations and inputs.

We now construct an observer of the same form as that for the time

invariant system, that is

oy = Awp+ Buj, (3.4.19)

gy = 2l + Kealy,,, — Henzl,), (3.4.20)

where H € IRP**". This leads to an equation for the evolution of our analysis
as

124-1 = (_[ — I(k-l—l Hk+1)(Ak£z + Bkﬁi) + IX’k+1gk+1, (3421)

where 2f 1s our estimate of the initial conditions. The error in our estimate

of the true state at time t;4; is then given by
b = (1 — Kipr B ) Asde, (3.4.22)
where ¢, = iz — x¢. Writing this as

0
ék = ( H (I — IX’i+1Hi+1)Ai)§0 = Ské()a (3423)
i

2 1
we see that a condition on the convergence of our observer is that S — 0 as
k — 0o. We therefore have that a necessary condition for convergence, [79],

[40], is that
p(Sk) — 0 as ty, — 00, (3.4.24)

where p denotes the spectral radius of a matrix.
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The theory described so far for the time invariant and time varying cases
has been for the perfect deterministic model case. The conditions on the
stability and convergence of the observers also apply in the correct stochastic
model case. This can be seen by taking the expectation of the true and

model equations in the time varying case, say. This implies that the mean

2 = BE{zl} satisfies
Epoq = Apdy, + Brug, E=0,1,...,N —1, (3.4.25)
with 2 given, and the mean model state 2 = E{x{} satisfies

ik-l—l = Akik + Bkﬂfm k= 07 17 cey N — 17 (3426)

9, Hity, kE=0,1,..., N, (3.4.27)
with Z, given. Applying the observer to this system and finding the equation

for the evolution of the error gives
€xy1 = (I — Kygp1 Hi1) Aiéy, (3.4.28)

where ¢, = iz — 2. This means that the expectation of our analysis is the
quantity which will converge to the expectation of the true system as time
increases, provided the conditions given previously on the matrix S; hold.
Much of the theory of observers for the time varying system was developed
by Kalman, [49], [50]. A discussion of the Kalman filter will be given in
the following chapter but we include some of the theory and results here.
Kalman, [49], derives a method for choosing K,k = 0,1,..., N, based on
statistical arguments for the correct stochastic model case, such that the
resulting observer is optimal in the least squares sense. Conditions on the

stability of the filter are also given.
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Definition 3.10 The observer (3.4.21) is said to be uniformly asymptot-
ically stable if
[1Sk]] < crem2 )t > g, (3.4.29)

where ¢1, ¢y are positive constants and ||.|| denotes the 2-norm, say.
This definition is taken from [45] and [14].

Theorem 3.4 If the model system (3.4.10), (3.4.11) is uniformly completely
observable and uniformly completely controllable and P§ > 0, then the Kalman

filter is uniformly asymptotically stable.

Here, P§ = Cov{e,}. For definitions of uniform complete observability and
controllability, and a proof of this theorem, see [45], [75].

We have shown that, in the linear case, it is possible to construct an
observer, under certain conditions, such that the feedback will ensure the
stability and convergence of both the correct stochastic and perfect deter-

ministic data assimilation problems. We now look at the nonlinear case.

3.5 Nonlinear systems

The model system equations in the correct stochastic model case are

L1 — ik<£k7g2)+§k’ k:()v]-v"'vN_lv (351)

We suppose that we generate some reference state at time t; using the equa-
tion

ik-l-l = ik(ilmQZ) (353)
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We also define a perturbation to this reference state as
AZpiy = Ty — Ty (3.5.4)
These perturbations then satisfy the equation
Ay = [ w) = [ (2 w) + G- (3.5.5)

Assuming the perturbations are small in some sense, we can expand using a

Taylor series to obtain

Az ~ FrAz, + ¢, (3.5.6)

where Fj, = aik/agﬂzk% is the Jacobian of the forecast model, sometimes
known as the tangent linear model.

We define a reference observation as

Y, = hi(zy), (3.5.7)

and a perturbation to this as
Ay =Yy — Yy (3.5.8)
These perturbations then satisfy the equation
Ay, = hy(zy) = hy(2y) + & (3.5.9)
Expanding hy(z;) about the reference state using a Taylor series, we obtain
Ay, ~ HpAzy + 9y, (3.5.10)

where Hy = ahk/@g”zk% is the Jacobian of the observation operator.
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We now have a linearised system given by

It is possible to apply the observers of the previous section to this linearised
system but it is important to recognise that the system is only valid for small

perturbations to the reference state.

The method usually used in the nonlinear case, [45], is as follows:

1. Starting from some estimate of the state zf at time #, produce some

reference state, now written as 1,’;_1, at time fj4; using the equation
ol = £ (25 uh). (3.5.13)

2. Produce an analysis at time 54y using the linear filter on the pertur-

bations to this reference state,

Aziyy = Allj:.u + K [A - Hk+1A££+1]- (3.5.14)

Yo
The quantity Ag,’:_l_l = 0, [45], and so this equation can be written,
using equations (3.5.4) and (3.5.8), as

Tpyy — QIJ:-H = Kk+1[gk+1 - hk+1(§£+1)]. (3.5.15)

It is difficult to say anything about the stability or convergence of this
process, especially in the stochastic model case. In the deterministic model

case, we can write an equation for the evolution of the error as

Ery1 = {ik(127M2) - Kk-l—lﬁk+1(£2+1)}

{ik(£27Q2) - I(k—l—lhk—l—l(ilj:—l—l)} —I_ ék—l—lv (3516)
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where ¢, = z! — z¢. We now expand the function ik(gz,gi) about the

analysed state to obtain

1 = U (20 e uy) — Keprhya[f, (28 + &, up)]}

— (e w) — Kb [f (2, w1} + g (3.5.17)
of of,

~ 6—Z;§k — I(k+1hk+1[ik<£z7£2) + a—gkgk]
+ Kiphys[f, (28, 60)] + 6pn (3.5.18)

where the Jacobians are evaluated at zf, uj. Expanding Ay, about I (28, ub),

we obtaln
af i .
€1 N a—;;ﬁk - Ak+1ﬁk+1[ik(£k7ﬂ2)]
- ahk-l-l aik < a .t
— Ky of, o, % + K byt [f (25, wi)] + dqr (3.5.19)
J g Zk

. af,
= (I — Kpp1Hi1) 5=€ + dgyas (3.5.20)

dzy,

where Hjyq 1s the Jacobian of the observation operator we defined previously.

Taking the expectation operator gives

. . f, .
€epr ~ (1 = Kipr Hir) 54 (3.5.21)
Lk

This equation is of the same form as that for the error evolution of the
linear time varying case in equation (3.4.22). We can therefore say that,
provided the Taylor series expansions are valid and the linearised system has
the required properties, the data assimilation process should converge in the
nonlinear perfect deterministic model case. The same method is also often

applied to the correct stochastic model case.
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3.6 Conclusions

In this chapter we have described the general data assimilation problem
whereby some estimate of the state is required using the available obser-
vations and inputs. Theory and methods from control theory were discussed
which showed that, under certain conditions, it is possible to reconstruct the
state variables from a model and observations using some form of feedback.
These observers, both in the time invariant and time varying cases, can be
used to estimate the evolution of the state variables as long as conditions on
the complete observability of the system hold.

The nonlinearity of most practical applications of the data assimilation
problem is a problematic issue. It has been shown that under certain condi-
tions, the data assimilation method will provide useful results in the nonlinear
context, but the optimality of data assimilation methods is lost, as will be
discussed in the next chapter. The size of the problem in the ocean or at-
mospheric context has not been discussed here but is a major issue when
implementing data assimilation methods, as the computational cost of some
of the methods is too high for existing computers. Also, the best model pos-
sible is often required to resolve flows adequately, so the data assimilation
has to be computationally inexpensive. The effects this has on the type of

methods used in practice will be seen in the next chapter.
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Chapter 4

Data Assimilation Methods

4.1 Introduction

Many types of data assimilation have been proposed since the need to in-
clude observations to constrain a numerical model was first identified. To
begin with subjective methods were used. These then progressed to simple
empirical objective methods such as the Successive Corrections method, [7].
More recently, statistical methods have been derived where the errors in the
observations and in the model are explicitly taken into account. These more
recent methods, such as the Kalman filter, [49], [50], and variational meth-
ods, [71], were derived so that the optimal state of the system should be
obtained, given certain assumptions.

One of the problems of using data assimilation in ocean models is that
the size of the system is very large and there are large numbers of observa-
tions. This is also true of the numerical weather prediction problem, which

is the field in which most of the data assimilation methods were originally
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developed. However, the types of methods used in operational oceanography
are not as sophisticated as those in some atmospheric models at present.
We therefore include some of the more simple data assimilation methods
in Section 4.2 and compare them with the statistically optimal method of
the Kalman filter. In Section 4.3 we include an overview of the so-called
four-dimensional data assimilation methods for completeness. The results
of some experiments which intercompare some of the sequential data assim-
ilation methods are given in Section 4.4. Conclusions are given in Section

4.5.

4.2 Sequential data assimilation methods

In this section, a derivation of the objective function which is used in most
of the sequential data assimilation methods is given. We then give a review
of some of those methods.

At time t;, we assume that we have some prior estimate of the random

n-vector Xy, given by 1,’:, and that this estimate contains errors,
Xy = zf + &, (4.2.1)

where ¢ 1s assumed to be a white Gaussian vector of errors with covariance
matrix P, = Cov{e,} € IR™". From Definition 3.5 in the previous chapter,
we have that the PDF of X is given by

Py (2x) = creapl=1/2(zx — )" (P 2y — )], (4.2.2)

where ¢; is a positive constant. We also assume that the random pg-vector
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Y, is related to X} by the equation
Y, = H X} + &, (4.2.3)

where d;, is assumed to be a white Gaussian vector of errors with covariance
matrix Ry = Cov{d;} € IRP**P%. The conditional PDF for Y, given that

Xk = Xk, is

Py 1x,—s, (W) = c2cap=1/2(Hizy =y, ) R (Hizy — )], (4.24)

where ¢; 1s a positive constant.
We would like to find the most likely estimate of X, denoted zf, given
that ¥, = y, where y, is a particular realisation of Y;. From Bayes’ theorem,

[31], this conditional probability can be given as

B&”Zk:gk(ik) = p (y) (425)
- %exp[—l/wm —y ) R (Hizy, — y,)
— 12z — )T (P) (g — )], (4.2.6)

h =c3b is given.
where py. (y,) = c3 because y, is given

The most likely estimate could be either the minimum variance or max-
imum likelihood estimates (mean or mode) which, in this linear case, are

identical, [59]. For the maximum likelihood estimate, we maximise equation

Cli?}—?ﬁklﬁfgk (&k)) There-
fore, given that ¥, = y, and the prior estimate X = %J:’ the most likely

(4.2.6), which is equivalent to minimising —In <

estimate of X} is given by the value 2§ which minimises the variational ob-

jective function
1 T 1 1 T phy—1 f
J = g(Hty —y,)" B (Heay = y) + gl —2)” (P) ™ (2 — ). (4.2.7)
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If we minimise this cost function directly, we obtain what is known as the
3D-Var solution. The Physical-space Statistical Analysis System (PSAS) is
another way of minimising this objective function but differs from 3D-Var in

that the minimisation is done in ‘observation space’, [18].

4.2.1 The Successive Corrections method

The Successive Corrections method (SCM) was one of the first data assimila-
tion techniques to be implemented in practical problems. Bergthorsson and
Doos [7] were the first to introduce the method in 1955, followed shortly after
by Cressman [20]. This method assumes that we have a perfect deterministic
model and that there are no errors in the observations. Corrections are made
to a first guess or background state by adding a weighted difference between
the observations and the background. This background state can be an out-
put from a model or the climatology of the system. The SCM algorithm can
be written as

o = 2 + KUy, — hy(2})], (4.2.8)

where 20 = 2% is the background state, z! = z¢ is the analysis after i

corrections and K is a weighting matrix.

The main point of the method, as discussed in the previous chapter, is how
we choose the weighting matrix. At first, this matrix was chosen empirically.
However, over the years since the method was introduced there have been
many suggestions as to the best and most efficient choices. In [20] the weights
are chosen to smooth the observations into the analysis so that there are no
sharp jumps in the solution.

In [21], Daley shows that if the weighting matrix is chosen so that the SCM
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converges, then it will always converge to the observations as the number
of corrections increases. In reality, observational errors exist and so the

corrections are usually stopped after only a few iterations in practice.

4.2.2 Optimal Interpolation

Optimal Interpolation, sometimes known as Statistical Interpolation, [58],
was first introduced in [70] and is also derived in [59], [60]. It is assumed
that the observations are related to the model states by a linear operator
Hy. Differentiating equation (4.2.7) with respect to the components of x,

and setting to zero gives
0= H{R;'(y, — Hiaf) + Pl 7' (2] — ). (4.2.9)

We can rearrange this equation to give an explicit expression for the analysis

in terms of the observations and forecast, [59], as
zf = i + P (HP{H{ + Ri)™'(y, — Hyxt). (4.2.10)

which is in the same form as the usual sequential data assimilation with the
gain matrix specified in terms of the error covariance matrices and observa-

tion operator as

Kp = PTHF(H P/H + Ry)™". (4.2.11)

The error covariance matrix of the analysis can also be obtained, [59], and is

given by

P¢ = (I- P/HI(H.P/H} + Ry)""Hy)P{ (4.2.12)

= (I— K H,)P/, (4.2.13)
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where P¢ = Cov{zl — 2§} € IR™". At the next assimilation time, the
forecast is obtained using the model equations.

In the Optimal Interpolation method, the underlying assumptions are
those for the perfect deterministic model. The difficulty with this method is
that the forecast error covariance matrix is not known accurately in practice.
This matrix is usually estimated once and then held constant. The OI method
is therefore not optimal over a period of time because the error covariance
matrix Pkf is not updated, or at least is not updated in a way which takes
into account the observations already assimilated. This is one of the main
differences between this method and the Kalman filter. If the observation
operator is nonlinear, then it is still possible to use this method by linearising

h;, about the forecast state, as described in Section 3.5.

4.2.3 The Analysis Correction scheme

The Analysis Correction (AC) scheme is a modified SCM. Here, corrections
are made to the observations as well as the background state to take into
account the error in the observations. In [8] a particular weighting matrix is
derived using the method of Ol as a reference to obtain the optimal weight-
ings. Lorenc, Bell and MacPherson [61] also give a derivation of the method
and show that it converges to the OI solution as the number of iterations
increases. The assumptions for the AC scheme are the same as those for OI,
1.e. perfect deterministic model. The AC algorithm can be written in the

case of a linear observation operator, as

M = g+ WiVily] — i), (4.2.14)
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yi' =y - Valyl - Hi), (4.2.15)

where gz is the vector of observations, Wy = PkakTR,;l, Vi = (kWi + 1)t
and 127&2 — ¢, Hiaf as 1 — oo. If the observation operator is nonlinear,
then it should be linearised about a background state. This matrix is then
used in the formulation of Wy and V. The matrix V} is usually denoted Q)

but we alter this to avoid confusion with the model error covariance matrix.

4.2.4 The Kalman filter

The Kalman filter is the optimal method over a period of time for time
varying linear systems satisfying the assumptions of the correct stochastic
model, [32], [33], [50]. The main distinctions between this and the other
sequential methods is that the error covariance matrices are evolved with the
analysis and random model error is taken into account. In other words, we
are solving a minimisation similar to equation (4.2.7) but with time as an
additional dimension.

With the assumptions of Section 3.3.2, and the error covariance matrix
of our initial estimate of the state 2 given by P/ = Cov{e,} € IR™", the

Kalman filter algorithm can be written as:

1. Combine the forecast and observations at time t; as follows
g = 1,’: + Kk[gk — Hkg,’:], (4.2.16)

where the gain matrix is given by K} = PgHg[HkPgHg + Ri]™'. The

error covariance of this analysis is
Pt =[I— K Hy)P/. (4.2.17)
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2. Evolve the state variables to the next time step using the forecast model
af., = Azl + Byl (4.2.18)
The error covariance of the forecast is

Pl = A PPAT + Qryr. (4.2.19)

Note that the cost of propagating the error covariance in equation (4.2.19)is
very expensive when compared to the other steps in the Kalman filter pro-

cedure.

The Extended Kalman Filter

For a nonlinear problem, the Kalman filter can be altered to give the extended
Kalman filter (EKF). To do this, the forecast model and observation operator
must be linearised in some way, so that the error covariance matrices can be
evolved from one time step to the next. These linearisations are done in the
manner described in Section 3.5 to produce the tangent linear model, F} =
aik/agk@«%, and the linearised observation operator Hy = a@k/ag,ﬂzm.
The only changes that are made to the algorithm for the usual Kalman
filter are that the tangent linear model is now used to evolve the error co-
variance matrices rather than the full model as before and the linearised
observation operator must be used when computing the gain matrix and
analysis error covariance matrix. These approximations have the effect of

destroying the optimality of the EKF, [11].
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Simplified Kalman filtering

Both the Kalman filter and its nonlinear extension are very expensive data
assimilation methods. Practical implementation of these methods on a global
ocean or atmospheric model is not possible because of the size of the problem,
[16]. It has therefore been an active area of research recently to produce some
suboptimal approximations to the Kalman filter, [80]. The main computa-
tional cost of the Kalman filter is the propagation of the error covariance ma-
trices at each time step. The simplifications usually made therefore attempt
to reduce the size of these error covariance matrices by various methods.

One method for reducing the cost of propagating the error covariance
matrices is by using a coarser grid for the calculation of these matrices. A
second method, used by some weather centres, is to reduce the order of the
covariance matrices by choosing those modes of the flow which move fastest.
There are two main ways of doing this. One is by performing a singular value
decomposition on the tangent linear model, ;. and choosing some number,
L, of the leading singular values, [16]. The part of the tangent linear model
associated with these leading singular values is then used to evolve the error
covariance matrices. The second method is done by decomposing the matrix
F, P¢FT into its eigenvalues and eigenvectors and approximating it by the
part which contains the L largest eigenvalues, [16]. The cost of both of these
methods is proportional to L/n of the cost of the standard Kalman filter,
[16].

Another method which reduces the cost of the full Kalman filter is the
ensemble Kalman filter, [26]. Here, a large number of forecasts are made

at each time step. This is done by perturbing the initial conditions of the
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forecasts according to the analysis error covariance calculated there. The dis-
tribution of the forecasts then gives information about the errors associated
with the forecast. An alternative is to assimilate into each ensemble member.
The need to propagate the error covariance matrices is therefore eliminated,
although a large ensemble, of the order of 100 members, is needed to produce

statistically meaningful results.

4.3 Four-dimensional data assimilation meth-

ods

4.3.1 Four-dimensional variational assimilation

In four-dimensional variational data assimilation methods, we want to min-
imise some variational objective function over a period of time in order to
fit the data over the entire period, subject to certain constraints. This idea
is different from the sequential data assimilation in that the resulting tra-
jectory will be smooth in some sense, due to the fact that we minimise an
approximation of an integral over time, [38]. The variational methods were
first introduced to meteorology in [71] and to physical oceanography in [69].
In the discrete case, the objective function to be minimised is

N-1

1 _ 1 _
J =5z - z))" P May — zf) + 5 ;(@k(lk) —y, ) R (i) — y,)s
(4.3.1)
with respect to z,,...,x5, subject to certain constraints. There are two

main approaches to this minimisation problem, [72].
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Strong constraint

The strong constraint approach ensures the model equations, given by
Tpyt :ik(gk,g@, E=0,...,N—1, (4.3.2)

are satisfied exactly by the analysis, 2. The assumptions here are therefore
those of the perfect deterministic model. In this case, the problem can be
reduced to finding the initial conditions only, for which the objective function
is minimised subject to the model equations, [54], [56], [59].

The constrained minimisation of the objective function (4.3.1) is equiva-
lent to the unconstrained optimisation of the Lagrange function

N-1

T
L£L=J+ Z Ak+1(£k+1 - ik(zk,ui))a (4-3-3)
k=0
with respect to zg,...,zyN,Ay,..., Ay, where A, € IR", 5 =1,..., N, are vec-
tors of Lagrange multipliers. A necessary condition for finding the extremal
of £ is that its gradient with respect to z;,A;, 7 =0,..., N —1 vanishes. Tt

is therefore possible to write a set of equations for the adjoint vectors, A,

which ensures that this condition is met. The equations are given by

Av = 0, (4.3.4)

A= Fih — HER (hi(z) — y,), k=1,...,N —1,43.5)

where F} is the Jacobian of ik(gk,gi) with respect to z; and Hy is the
Jacobian of hy(z;) with respect to x;. A derivation of these equations is

given in [38].
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Weak constraint

In the weak constraint method, the model equations are satisfied approxi-
mately, allowing for random model error, [25]. The correct stochastic model
assumptions are therefore made in this method. In this case, the objective
function changes, and we now want to minimise

N-1

1 _ 1
T = g — )P Mg —a) 4 5 3 () — )" B (al) — )
k=0
1 70
+ 5 Z ¢ Qr (4.3.6)
with respect to xg,...,2y,(, - -,y Subject to

2y = fo (e, u) + ¢, k=0,....,N—1. (4.3.7)

In the linear case, the estimate of the state at the final time ty, z, 1s the
same as the estimate given by the Kalman filter at that time.

In the variational methods, it is possible to estimate the errors in the
analysis by calculating the Hessian or second derivative of the cost function

with respect to x;. This is given by
P =7y (4.3.8)

The computational cost of performing four-dimensional variational assimila-
tion is less than implementing the full Kalman filter. Calculating the analysis
error covariance matrix from the Hessian, however, significantly increases the

cost of the method to be similar to that of the Kalman filter.
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4.3.2 Kalman smoother

The Kalman smoother is a data assimilation method which uses future obser-
vations as well as those past and present. For this reason, it is thought of as
a four-dimensional method. There are various types of smoothers, [45], but
here we discuss briefly the fixed-lag Kalman smoother (FLKS). In this case,
the problem is to estimate the state of a system at all times, ¢, k =0,1,...,
using observations available from time #y to time t;, 7, where L is the fixed
lag, [15]. The FLKS gives the optimal solution to the fixed-lag smoothing
problem for linear problems with known model and observational error co-
variances. A derivation and discussion of the FLKS is given in [15]. The
objective is similar to that of 4D-Var, but the perfect model assumption is
not made and extensions to nonlinear dynamics and observation operators
can be made in similar ways to the nonlinear extensions of the Kalman filter.

As was discussed in Section 4.2.4, the Kalman filter is too expensive to
be fully implemented in oceanographic problems at present. The FLKS is
(M +2)/2 times as expensive as the Kalman filter, where M is the number of
analyses calculated at each observation time, [15]. However, approximations
similar to those for the Kalman filter discussed in Section 4.2.4 could be

applied to the FLKS to reduce its cost.

4.4 Experiments and results

To investigate the similarities and differences between the four sequential
data assimilation techniques described in Section 4.2, we carry out some nu-

merical experiments on two models described by ordinary differential equa-

30



tions. The first is a simple linear oscillating system for which we expect
the data assimilation methods to perform well. The second is the chaotic,
nonlinear Lorenz equations which will provide an insight into how well these
methods are likely to perform when applied to more complicated models.
We describe the methods for the numerical solution of the two systems.
A description of the experiments is also given, with the relevant results pre-
sented. The figures displayed in this section show the true solution (dashed
lines), the solution given by the data assimilation scheme (solid lines) and
the observations (crosses). The error in the data assimilation solution when

compared to the true solution is also displayed.

4.4.1 Damped oscillating system

The damped oscillating system is given by the ordinary differential equation

d*y dy

where the damping, [, and the square of the frequency, n, are given values of
0.1 and 1.0 respectively. The differential equation (4.4.1) can be expressed

as the first order system

d
a " Py (4.4.2)
de -n —I T

We discretise this system using a second order Runge-Kutta method

which results in the following set of discrete equations,
Yes1 = (1 —n(A)?)2)yr + (At — 1(At)?)2)y, (4.4.3)
Ter1 = (RU(A1)?/2 — nAt)y,

(1 — IAL+ P(A1)? )2 — n(A)?)2)ay, (4.4.4)
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where At = 0.1 and t, = kAt, £ = 0,1,...,500. We define the ‘true solu-
tion’ to be given by the solution of these discretised equations with initial
conditions of yo = 1 and z¢ = 0. We also define a background solution which
is obtained using initial conditions which are equal to those for the true solu-
tion but with some random noise added. This noise has a variance of 0.1 and
zero mean. This is the solution we would obtain, starting from the incorrect
initial conditions, if no data assimilation was performed. The true solution

is shown for the variable y in Figure 4.4.1.
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Figure 4.4.1: The damped oscillating system: true solution

In the experiments presented in this section, observations of both y and
@ are taken from the true solution at regular intervals over the first 25 time
units. In one set of experiments the observations are taken every time unit

and in the other they are taken every 2.5 time units. In both experiments,
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noise was added to the observations which had a Gaussian distribution with
variance of 0.1 and zero mean. The data assimilation is performed over the
first 25 time units and the analysis at the end of this period is used as initial
conditions for a forecast which lasts for another 25 time units.

When implementing the Successive Corrections method, we set the weight-
ing matrix to be of a very simple form, i.e. W = 0.5 x I. We only perform
two iterations at each assimilation step. The results for the two experiments
are shown in Figures 4.4.2 and 4.4.3. As has been said before, the SCM con-
verges to the observations as the number of iterations increases so alteration
of the number of corrections gives different results. After two corrections,
both experiments give fairly poor results both during the assimilation period
and for the forecast. The results for the experiment with observations every
time unit shows a similar amount of error in the analysis to the one with
observations every 2.5 time units.

For the Optimal Interpolation and Analysis Correction methods, the fore-
cast error covariance matrix was calculated by averaging the statistics of
differences in the background and true solutions and the observation error
covariance matrix was calculated by averaging statistics of differences be-
tween the observations and the true solution over the assimilation interval.
The results of these experiments are shown in Figures 4.4.4, 4.4.5, 4.4.6 and
4.4.7. Both these methods seem to do quite poorly both during the assimila-
tion and in the forecast, the results being similar to those of the SCM. The
AC scheme converges to the OI solution after only two iterations.

For the implementation of the Kalman filter, the model error covariance

matrix, (Jr, was set to be zero. The KF performed the best out of all the
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schemes as can be seen in Figures 4.4.8 and 4.4.9. When observations are
available every time unit, the KF converges to the true solution after only 5
time units and follows the true solution throughout the rest of the assimila-
tion and forecast. With observations every 2.5 time units, it takes the KF 7.5
time units to get close to the true solution but from then on tracks it well.
These simple experiments have shown that in a linear system, the KF does
indeed perform the best out of all the methods, as we would expect from the
theory. We would now like to observe how well the methods perform when

used on a nonlinear system.
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Key for Figures 4.4.2 - 4.4.9: true solution (dashed line), analysed

solution (solid line) and observations (crosses).
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Figure 4.4.2: SCM on the oscillating system with observations every time

unit after 2 iterations: (i) y variable. (ii) Error in y variable.
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Figure 4.4.3: SCM on the oscillating system with observations every 2.5 time

units after 2 iterations: (i) y variable. (ii) Error in y variable.
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Figure 4.4.4: AC on the oscillating system with observations every time unit

after 2 iterations: (i) y variable. (ii) Error in y variable.
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Figure 4.4.5: AC on the oscillating system with observations every 2.5 time

units after 2 iterations: (i) y variable. (ii) Error in y variable.
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Figure 4.4.6: OI on the oscillating system with observations every time unit:

(1) y variable. (ii) Error in y variable.

50

error

0151

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45
time time

Figure 4.4.7: OI on the oscillating system with observations every 2.5 time

units: (i) y variable. (ii) Error in y variable.
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Figure 4.4.8: KF on the oscillating system with observations every time unit:

(1) y variable. (ii) Error in y variable.
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Figure 4.4.9: KF on the oscillating system with observations every 2.5 time

units: (i) y variable. (ii) Error in y variable.
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4.4.2 Lorenz equations

The Lorenz equations are a nonlinear system of three ordinary differential
equations. They were originally obtained from the first terms in a Fourier
truncation of the flow equations governing thermal convection, [65], and are

often used in the testing of data assimilation methods, [30], [65], [27]. We

write them as

r = —o(x—y), (4.4.5)
Yy = pr—1y—z2, (4.4.6)
z = axy-— Bz (4.4.7)

where the parameters o, p and 3 are chosen to have the values first used by
Lorenz, [62], that is 10, 28 and 8/3 respectively. This set of parameter values
gives chaotic solutions to the system, [76]. The system has three equilibrium

points, one at the origin and two at the coordinates

(£y/Blp— 1), £/B(p—1).p — 1), (4.4.8)

All these equilibrium points are unstable for the choice of parameters given.
The origin is an unstable saddle point and the other two equilibria are un-
stable spiral points.

We discretise this system using a second order Runge-Kutta method

which gives us the following discrete equations,

Trp1 = Tp + oA 2[2(yr — xk) + At(par — Yk — TrYk)
— oAt(yr — x1)], (4.4.9)
Uit = Uk + At 20pxe — yr — wezk + plak + oA (yk — 21)) — Ui
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N 251

— At(prr — yr — xxzi) — (v + o At(yp — x1))
(21 + At(zpyr — Bai))l, (4.4.10)
k1 = 2k + A 2xrye — Bk + (ar + Ato(yr — 1))

(yr + At(prr — yr — 2x21)) — Bar — At(zrye — Bai)], (4.4.11)

where we choose At = 0.01, with ¢, = EA¢, £ = 0,1,...,3000. Here, we
define the ‘true solution’ to be the solution to these discrete equations with
initial conditions given by z¢ = yo = z9 = 1.5. The background solution is
obtained using initial conditions which are equal to those for the true solution
but with some random noise added. This noise has a variance of two and a

mean of zero. The solutions for variables x and z are shown in Figures 4.4.10

and 4.4.11.
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Figure 4.4.10: Lorenz equations: true solution

In the following experiments, we obtain observations of x, y and z from

the true solution at regular intervals. In one set of experiments we have
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Figure 4.4.11: Lorenz equations: background solution

observations every 0.25 time units and in the other we have them every 0.5
time units. In both experiments we add random noise to the observations
which has a Gaussian distribution with variance of two and a mean of zero.
The assimilation is performed over the first 20 time units and the analysis at
the end of this period is used as initial conditions for a forecast which lasts
for another 10 time units.

The results of performing the SCM on the Lorenz equations are shown
in Figures 4.4.12 and 4.4.13. When observations are available every 0.25
time units, the SCM performs reasonably well during the assimilation but
the errors increase rapidly as soon as the forecast begins. With observations
every 0.5 time units, the errors in the SCM begin to be significant after 12
time units of assimilation and continue to be large during the rest of the time
interval.

For the Optimal Interpolation and Analysis Correction methods, the fore-
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cast error covariance matrix was calculated by averaging the statistics of
differences in the background and true solutions and the observation error
covariance matrix was calculated by averaging statistics of differences be-
tween the observations and the true solution over the assimilation interval.
The AC scheme performs well when observations are available every 0.25
time units and the forecast follows the true solution for about 5 time units,
as can be seen in Figure 4.4.14. When observations are only available every
0.5 time units, large errors appear in the solution during the assimilation and
are present throughout the rest of the assimilation and forecast as shown in
Figure 4.4.15. The OI solution in both of these experiments is shown in Fig-
ures 4.4.16 and 4.4.17. These give qualitatively the same results as the AC
scheme although there are slight differences in the magnitudes of the errors.

The extended Kalman filter has also been implemented on the Lorenz
equations and the results are shown in Figures 4.4.18 and 4.4.19. Here we

specify the model error covariance matrix, as suggested in [27], to be

0.1491 0.1505 0.0007
Qr = 0.1505 0.9048 0.0014 | . (4.4.12)
0.0007 0.0014 0.9180

The results here are not as good as the results when using the KF on the
linear system and the effects of the loss of optimality when using it on a
nonlinear system are clearly seen. However, the results are still at least as
good as the other methods when there are observations every 0.25 time units.
With observations every 0.5 time units, the EKF performs the best out of all
the methods as it keeps close to the true solution for most of the assimilation

period and tracks the forecast for about 5 time units.
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Key for Figures 4.4.12 - 4.4.19: true solution (dashed line), anal-

ysed solution (solid line) and observations (crosses).
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Figure 4.4.12: SCM on Lorenz equations with observations every 0.25 time
units after 2 iterations: (i) x variable (ii) z variable (iii) error in a variable

(iv) error in z variable.
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Figure 4.4.13: SCM on Lorenz equations with observations every 0.5 time
units after 2 iterations: (i) x variable (ii) z variable (iii) error in a variable

(iv) error in z variable.
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Figure 4.4.14: AC on Lorenz equations with observations every 0.25 time

units after 2 iterations: (i) x variable (ii) z variable (iii) error in a variable

(iv) error in z variable.
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Figure 4.4.15: AC on Lorenz equations with observations every 0.5 time units

after 2 iterations: (i) x variable (ii) z variable (iii) error in x variable (iv)

error in 2 variable.

64



error

error

20 T 50 T T
ki ‘\\t I 1\ I r
| [ A 0 40 3 I
‘ - {/ VI XY, T g LRI LAk g L U\H\‘ i ‘u‘w b
JUo R i JH it T M‘jw‘cjr" Ll IH\ il \'1"|‘\']‘H‘ i
i . Bt Ww‘ i \ofr) ML %‘JQ%M}% WU [PV ‘VMJ\%JL““"/“'\”“‘"’
\x { o P | ‘\\\m‘\\h\\‘, N \ \“ § Y \;\w“
i LR I T 6 B e
' Ty | 9§< \
20 é 1‘0 1‘5 2‘0 2‘5 30 00 é 1‘0 1‘5 2‘0 2‘5 30
time time
40
20 *
0 8
—20 B
4% é 1‘0 1‘5 éo és 30 40 é 1‘0 1‘5 éo és 30
time time
Figure 4.4.16: OI on Lorenz equations with observations every 0.25 time
units: (i) « variable (ii) z variable (iii) error in x variable (iv) error in z
variable.
20 T
il
1 il
| : b THINER
10‘7“‘ ‘ v‘ f‘gﬁlﬁ %l i A“. [ \(\ \J’,ﬂ‘\‘l“‘” i ’u“ \‘ "\(‘,“\ M “r ‘h\ “‘ ﬁ‘ ““ |
| | I/ vl Y “‘ r‘u“\ Mux
0,'* f\//j‘(\z lé‘\/(( ) \f\ l| \\ \‘f \ v\\n‘ N ‘\“‘«7 \\:'v‘v“lt“\\‘” ‘\‘\\J‘\‘ “ “\
o \ | \l iy | | ‘_
of ety T I B R iy
I [
20 é 1‘0 1‘5 éo és 30 és 30
time
40
20
of 8
—20 B
4% é 1‘0 1‘5 éo és 30
time time
Figure 4.4.17: Ol on Lorenz equations with observations every 0.5 time units:

(i) « variable

(i) z variable (iii) error in @ variable (iv) error in z variable.

65



error

error

1o
i Nl ‘\\IA \‘I I I
| Nl ITEEE o 40 3 I 4
107 }\ ﬂfﬁj{ph /t/'4Q|‘\|J“\‘)‘\‘ “‘\ | | A il v \\ ‘ “ ‘
| ‘!%&M“l*ﬁ t\/\fv\/?{;;‘wl;,‘,t I P A “ \ T lf EERE | ‘H“n HH
o WY A L R R 1 Q‘MWM ikl ‘\ | "Efy it ?%r\ﬂa'\n“u'\"“”hl‘ “{f‘\\“v‘u\“uﬂ"*\
1 A “ﬂ\“rﬂ(' \\ﬂ“ Ji‘ \\m\v"“\uw \r 20 QQ M\< | i \\ \\ \JMH"“VI\‘M‘JU‘ i
7 i Al \/ ¥ Y ‘j‘
—107?“%#1%% %#ﬁ#bﬁmﬁlvu | \h \‘ w‘“\“‘ I ‘H‘“* 1ol *‘ﬁ ZJJ 1{. H\j‘\’ W:\‘\ H _
1 [
7200 é 1‘0 1‘5 2‘0 2‘5 30 00 é 1‘0 1‘5 2‘0 2‘5 30
time time
40
20 *
0 s
—20
o ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 0 5 10 15 20 25 30
time time
Figure 4.4.18: EKF on Lorenz equations with observations every 0.25 time
units: (i) « variable (ii) z variable (iii) error in x variable (iv) error in z
variable.
20 T T 50 T
mw‘ﬂ "\' i ”’T\ i \'\rf\‘ i n‘f\‘ﬁl"“\”\ 4oj‘ ) \)f rl \ 1' "ﬁ
I | ] v\” H q‘\ “H\‘\H ) (M\T At ’n\‘ ,M‘nft“u“\ih\h
”‘l J“V“\**‘J' { VI [V oo M A Mﬂg[ﬁ’@\ij\ ‘\1 ’x | f\MMJ\ IM;\‘ N ‘H I “ i U‘\
o VA i u, i N VJ M“Q\H%HMI[ x| \*}\‘\y\ \‘ \W}H\‘] il |
AR /’qum‘ I il H\'\‘\‘ oo “ “ ’”\‘*}‘JW‘"\M U W“ o \“"W\"“rysf\\ ‘\‘ i
AR \ \l [ RV | \ B A RN
et 1] ] ER - AU A A (]
% i e v M
7200 é 1‘0 1‘5 2‘0 2‘5 30 00 é 1‘0 1‘5 20 25 30
time time
40

error

5 10 15 20 25 30
time time

Figure 4.4.19: EKF on Lorenz equations with observations every 0.5 time
units: (i) « variable (ii) z variable (iii) error in x variable (iv) error in z

variable.

66



4.5 Conclusions

In this chapter, we first of all derived the objective function which most of
the sequential data assimilation methods attempt to minimise. We then gave
some information about the most common of the data assimilation methods,
including the optimal method, known as the Kalman filter. We also gave
a brief description of some of the four-dimensional methods for comparison.
The size of the problem in most oceanographical settings will be too large for
the Kalman filter to be implemented, even on the most powerful computers
available today. Most operational centres therefore use some approximation,
whether it is by using a different method or by using some simplification of
the KF.

The last section in this chapter contained some experiments applying
some of the sequential data assimilation methods to two ordinary differential
equation models. One was a linear oscillating system on which most of
the methods performed well. This illustrated that the KF is indeed the best
method when applied to linear systems. The second model was the nonlinear,
chaotic Lorenz equations. The EKF produced slightly better results than the
other methods but the difference was not as great as in the linear system.

For further examples of experiments on these models, see [63].
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Chapter 5

Systematic Errors

5.1 Introduction

The data assimilation schemes described in the previous chapter assume that
errors in the observations and model are random and Gaussian with zero
mean. In operational forecasting of the ocean or atmosphere however, there
will often be errors which are correlated in time. For instance, observing
instruments may have a bias which would cause systematic errors in their
data, [22]. Ocean models are also likely to contain some form of systematic
error, [28]. These could arise from many different sources, such as incorrect
specification of model parameters, truncation errors due to the numerical
scheme used, and inaccurate forcing fields and boundary conditions. These
violations of the assumptions made by the data assimilation schemes are
likely to make the resulting analyses suboptimal, or worse. It is therefore
desirable to examine methods which will account for these types of systematic

CIrTOors.
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In the engineering literature, a method for accounting for a constant
model bias in a linear system is described in [29] with respect to the Kalman
filter. Here, a vector of bias variables, which are specified to be constant in
time, is added to the model forecast equation and the state vector is aug-
mented with these bias variables. The matrices of the filter are transformed
to give it a decoupled structure. This method has been extended to the
cases where the bias contains noise, [44], and where the bias is time-varying,
[78]. It has also been extended for use in nonlinear systems, [64], [85]. A
similar method has also been proposed for use in meteorological data assimi-
lation, [24]. The augmentation of the state vector by a vector of model error
variables has also been developed in the variational assimilation framework,
[25],[37], [38], [39].

A method for accounting for systematic model errors using data assim-
ilation, based on [29], is described in Section 5.2. The application of this
method to various data assimilation procedures is then described in Section
5.3. In Section 5.4, the problem of how to evolve the systematic model error
variables is discussed. Some experiments applying the method to some mod-
els with different types of systematic model errors and the results of these

experiments are described in Section 5.5, with conclusions given in Section

5.6.
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5.2 Systematic errors

We assume that the true system equation is given, as in Chapter 3, by the

stochastic vector difference equation
iz-l—l :ik(£27Q2)+§27 kZO,l,...,N—l, (521)

with E{zl} given, where {g,k =0,1,...,N — 1} is a white Gaussian se-

quence. We also assume that we have observations of the form

where {0;,k=0,1,..., N} is a white Gaussian sequence.

In Chapter 3 we gave the general model system equation as
Lrt1 :gk(ikvﬂk)—l_gk? k:()v]-v"'vN_lv (523)

with E{zq} given, where {¢,,k = 0,1,..., N — 1} is a white Gaussian se-
quence. Here, the model g, is not the same as the true model f , and the
inputs to the model system are not necessarily the true inputs. In Chapter
3 we assumed that the model and inputs were correct, which ensured that
the results on the convergence and stability of the data assimilation process
held. We now relax this assumption.

We assume that the inputs to the model system are correct, but that the
model we use to propagate the state variables and inputs contains systematic

errors which we denote b, € IRY. We write this assumption as
gk(ikvﬂk) :ik(ikvﬂk)—l_kakv k= 0717"'7N_ 17 (524)

where T}, € IR"*? is some operator which is known. This operator relates the

systematic model error vector to the state vector, and is included because
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it is possible that only certain parts of the model will contain systematic
errors. In this case we will have ¢ < n. We also assume that the evolution
of the systematic model errors is governed by the stochastic vector difference
equation

bty = my(bg, zp) + 11y E=0,1,...,N—1, (5.2.5)
with E{by} given, where m;, : IR? x R" — IR? is assumed to be continuously
differentiable and {y, € R*,k = 0,1,..., N — 1} is a white Gaussian se-
quence. The following assumptions are made about the errors in the model

system equations:

1.
E{¢,} = 0, Vi, (5.2.6)
0 ift;#t¢
Cov{(, ¢} = i 7t (5.2.7)
B Qi if tj:tkv
where Q)f is the known non-singular error covariance matrix of the
model at time #.
2.
E{p,} = 0, Vi, (5.2.8)
0 ift; #t
Cov{ﬁk,ﬁ]} = ‘ ’ (5.2.9)
Qz if t]‘ = tk,
where Q% is the known non-singular error covariance matrix of the
stochastic errors in the systematic model error variables at time ¢y.
3.
0 ift; £t
Cov{¢,p,} = 17 M (5.2.10)

if =t
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where Q% is the known non-singular cross-covariance matrix of errors

in the state and systematic model error variables at time #.

4.
Cov{¢,,0;} = Cov{p,, 8, } =0, Vi, t;. (5.2.11)

5.
Cov{¢,,zp} = Cov{(, by} =0, Virt;,  (5212)
Cov{ﬂk,%} = Cov{ﬂk,l_)o}z()7 Vit (5.2.13)
Cov{d, 20} = Cov{dy, by} =0, Vit (5.2.14)

Under these assumptions, the true system is given by
Ty = [ (zhou) + ¢, k=01,....N—1, (5.2.15)
with E{zl} given. The model system is given by
Tryr :gk(gk,g@—l—gk, E=0,1,...,N -1, (5.2.16)

with E{z,} given, where g, and f, are given by equation (5.2.4) and the

systematic errors evolve according to
bk-l—l :mk(bkvik)—l_ﬂk? k:()v]-v"'vN_lv (5217)

with E{b,} given.
We now examine the effects of this serially correlated model error in the

linear deterministic case, where we write the true system as
T = Avzp + By, k=0,1,...,N—1, (5.2.18)
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with zf given. The observations are available from the true state of the
system,

gk:HkQZ—I—ék, kE=0,1,..., N, (5.2.19)
and the model system equation is given by
Tey1 = Ak&k + Bkﬂz + kaka k= 07 17 SRR N — 17 (5220)

with z, given. This form of bias correction is quite general in that it is
possible to choose T = Ay if the systematic error is on the state variables,
T, = By if the systematic error is in the inputs or T = [ if the model
equations contain systematic errors.

If we now perform the normal data assimilation procedure, as described

in Chapter 3, on this system, that is
2l = Arzf+ B + Tiby. (5.2.21)
Thyr = &lj:-u + Kk+1[gk+1 - Hk+1££+1], (5.2.22)

then we obtain an equation for the evolution of the analysis, given by
124-1 = (_[ — I(k-l—l Hk+1)(Ak£z + Bkﬂi + kak) + IX’k+1gk+1. (5223)

The expected value of the difference between this analysed state and the true

state is determined by

A _ ~t A
Chr1 = Lpyr — Lpp

— (_[ - IX’k+1Hk+1)Akék - (_[ - IX’k+1Hk+1)kak7 (5224)

where ¢, = E{¢,}. This shows that if our model contains systematic errors,
then the difference between the analysed and true states will be forced by

the systematic errors and so will not converge to zero as we would like.
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5.2.1 State augmentation

We now return to the nonlinear stochastic case, where we augment the state

vector with the systematic model error vector, that is
(5.2.25)

where z, € IR"9,
We now write the model system equations in terms of the augmented

state vector as
(5.2.26)

Zk+1 :gk(§k7Q2)+§k7 k:()v]-v"'v

:IR™Ix R™ — IR" is continuously

with E{zy} given, where g, =
9 -
S c R,k =0,1,...,N — 1} is a white

differentiable and {§ =
Hy

Gaussian sequence.
The observations can be written in terms of the augmented state vector

as
y, = hi(2h) + &, k=0.1,....N, (5.2.27)

where ﬁk = (hy(zt),0) : R" — IRP* is continuously differentiable.

In the linear deterministic case, we write the true system equations as
N -1, (5.2.28)

2t = Agah + Bk, k=0,1,...,

with zf given. The observations are obtained from
(5.2.29)

gk:ﬁk§2—|—§k, E=0,1,..., N,
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where Hj, = (Hy,0) € IRPE*("+9)  The augmented model equations are writ-

ten as
Zip = Arzp + Bk, k=0,1,...,N—1, (5.2.30)
. Ay T, N B
with z, given, where Ay = B e RmFax(n+9) and By, = : €
Ny My 0

IR™*("+9) which we can write separately as
Tpyr = Agxp + Brup 4+ Ty, k=0,1,....N -1, (5.2.31)
bpyw = Mpby + Nezy,, k=0,1,...,N—1, (5.2.32)
with x4, by given.

We can now perform the normal data assimilation process on this aug-

mented state to obtain

Ay = Az + By, (5.2.33)
Z = 2l + Benly,, — Hoazly), (5.2.34)
Ky

where K}, = e RP*("*9) i some gain matrix to be determined by

K?
a particular data assimilation method.

If we assume that the model used to evolve the systematic model error

variables is the correct model, that is
by = Mybl + Nyzh, k=0,1,...,N—1, (5.2.35)
then the expected value of the difference between the analysed state and

the true state, and between the analysed and true systematic model error

variables is determined by

I — K Hy1)A I — K} Hp)T
§k+1 _ ( k+1 k-l—l) k ( k+1 k-l—l) k §k7 (5.2.36)
N — IX’£+1Hk+1Ak My — IX’£+1Hk+1Tk
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~t ~a
Ly, Ly,

where &, = | | | —

by by

In this case, provided we can choose the gain matrix so that

p(Sk) >0 as t — oo, (5.2.37)

where Sy = I, (I — Ii’,'_H I:I,'H)A,', the analysis will converge to the true

solution as time increases, that is
N n ~a at
B = R by — by, as = oo (5.2.38)

This is an important result as it shows that we can account for systematic
model errors by augmenting the state vector with a vector of systematic
model error variables and performing the data assimilation process on this
augmented state. This also shows that as well as converging to the true state
of the system, we will obtain an estimate of the systematic model errors
themselves. This could be very useful information when trying to improve
the model.

It may be that we do not know exactly how the systematic model errors
evolve. If we can make a reasonable estimate, however, the analysis of the
augmented state should provide a better analysis than without the systematic

model error correction.

5.2.2 Observability of the augmented state

In Section 3.4 we showed that complete observability of the system implies
that we can choose the eigenvalues of the matrix evolving the error to ensure

that the analysis will converge. We therefore look for similar conditions for
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the augmented state. The conditions on the complete observability of time
invariant systems, found in Section 3.4, follow directly for the augmented
state. We concentrate here on time varying systems.

To keep the following simple, we assume that the evolution of the bias
variables does not depend on the state variables, i.e. Ny = 0, VEk. The state

transition matrix for the augmented system can now be written as

bk, §) = | : (5.2.39)
0 U(k,7)

where U(k,j) = Hf:_jl M; is the transition matrix for the systematic model
error variables and @ is the transition matrix for the state variables, as
introduced in Section 3.4. We can now write the augmented system in terms

of one equation at each time as,

¥, = Hiz,

Yppr = Hy 1 ®(k +1,k)2, + Hep Bry,,

= Hin®(k + N, k)2,
N k+N-1 N N

7=k

Yren

Again, we put the known terms on the left hand side and write this as

- i -

He1®(k+ 1,k .
k“(‘ ) 2, = Cuis, (5.2.40)

| Hin®(k+ NE) |

7



where
Yi

- Ypyr — Hit1 Bruy,

| Yy — Hin (S ®(k + N, j + 1) Bjuy)

=

So, from Theorem 3.3, we get the following theorem.

(5.2.41)

Theorem 5.1 The augmented system is completely N-step observable at time

tr if and only if Rank(ék) =n+gq.

It is possible to expand the matrix Cy as

Cy = (Cy, Dy),
where i i
H;,
H.®(k+ 1,k
c, — kD ( | ) |
I Hin®(k+ NE) |
and
_ . i
H. T,

| Hin (S5 (R + N+ DT85, k) |

(5.2.42)

(5.2.43)

(5.2.44)

Note that the matrix Cy is the same as the observability matrix obtained in

Section 3.4 for the system without systematic model errors. This leads us to

the following theorem.
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Theorem 5.2 Necessary conditions for the augmented system to be com-
pletely N-step observable at time t), are:

(1) the original system is completely N-step observable

(i) Rank(Dy) = q.

A proof of this result can be obtained by an extension of the proof for The-
orem 5.7 in [38].

It 1s possible to apply the Kalman filter to the augmented state directly
because the assumptions made about the augmented system are the same as
those for the original system. Theorem 3.4 therefore gives us conditions on
the stability of the filter.

We have shown that, in the linear deterministic case, it is possible to con-
struct an observer so that the feedback will ensure the augmented system is
stable and the analysed state will converge to the true state as time increases.
This is also true for the linear stochastic case, which can be seen by taking
the expectation of the true and model equations, as done in Section 3.4. The
application of the linear observers to nonlinear systems for the augmented
state follows from the arguments given in Section 3.5. We will not elaborate
on this here.

The theory of this section has concentrated on the case where the model
contains systematic errors. This applies equally to the part of the model
which evolves the state variables as for the part which includes the model
inputs. A method which allows for systematic errors in the model inputs

themselves can be obtained by similar arguments.
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5.3 Choosing the gain matrix

We now look at the implications of augmenting the state vector on the vari-
ous ways of determining the gain matrices, Ky, k=0,1,...,N. The Kalman
filter is the optimal solution to the state estimation problem so we first of
all show how this relates to the augmented state. This method has been de-
scribed in [29] in the engineering literature, and in [24] in the meteorological
literature. The ideas have been extended here to a more general case with a
less specific model for the evolution of the systematic model errors, which al-
low the error to depend on the state variables and may contain random model
error itself. The application of the simpler cases of Optimal Interpolation and
Analysis Correction to the augmented state are described subsequently.

We partition the forecast and analysis error covariance matrices as follows

Bl = ) o, (5.3.1)
befT be
k k
N an bea
By = § o, (5.3.2)

zbaTl ba
Pk Pk

a/f

where P, “/’ are the analysis/forecast error covariance matrices for the state

b . . )
vector xy, P /1 are the analysis/forecast error covariance matrices for the

P]jb alf

systematic model error vector b, and are the analysis/forecast er-

ror covariance matrices for the cross-correlations between errors in the state
and systematic model error vectors. We split the analysis into state and

systematic model error parts as
of =zl + K{ly, — Hl, (5.3.3)

b= b+ Kby, — Hizl). (5.3.4)
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5.3.1 The Kalman filter

The gain matrices for the Kalman filter are given by

K¢ = pPYHIH.PTHE + R,

- ab fT x —
Ky = PV HIHPYH! + R,
where the forecast error covariances are given by

P = APPeAl 4 TP Ay 4 AP T
+TW P T + Qf ),

Pl = APPMI + AP ONT + TP M
TP N 4 QP

Pl = MyPPMT 4+ NyPENT + Ny P2e" My,

baT ArT b
+M P Ny + Qs
and the analysis error covariances are

Pt = [I-KpHiP/,
pte = [I— KPH P/,

pte = P _ KPH, P

(5.3.5)
(5.3.6)

(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)
(5.3.11)

(5.3.12)

The expressions for the forecast error covariance matrices appear to be

very complicated here. The cost is significantly reduced, however, if the

model for the evolution of the systematic errors does not depend on the

states, i.e. Ny =0, Viy.
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5.3.2 Optimal Interpolation

In the Optimal Interpolation data assimilation method, the gain matrices for
the augmented state are similar to those of the Kalman filter. However, the
cost of the method is much smaller due to the fact that the error covariance
matrices do not have to be propagated at each time step. The Optimal

Interpolation gain matrices are given by

Ky = PHI(H.PTH] + R (5.3.13)

Kp = PV HIHPITHT + R (5.3.14)

Note that the matrix inside the inverse is the same for both gain matrices.
Inverting this matrix is one of the major costs of the method and so the
systematic model error correction does not impose significant extra cost on
the computing time of the data assimilation process. Also, we only need
to specify the error covariance matrix for the cross-correlation between the
state variables and the systematic model error variables, not the systematic
model error covariance matrix itself. However, these cross-correlations might
be difficult to specify in practice as statistics of the errors in the systematic

model error variables might be difficult to ascertain.

5.3.3 Analysis Correction

The gain matrices for the AC scheme are similar to those of OI, as is to be

expected due to the similarity of the two schemes. They can be written as:
we = PITHFR:!, (5.3.15)
wp = PPYHER!, (5.3.16)
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Vi = [WF+1™". (5.3.17)

Here again, the only new covariance matrix required is the one for the cross-
correlation between the state variables and the systematic model error vari-

ables. Also, the V;, matrix remains the same as before.

5.4 Systematic model error evolution

An important part of the method of systematic model error correction is
the choice of model for the propagation of the systematic model errors from
one time step to the next. There are many possible choices for our estimate
of the operator, my, which evolves the systematic model errors, and it is
useful if something is known about the nature of the systematic model errors
a priori. Here, we give a number of possible models for certain types of
systematic model error but the eventual choice will depend on the situation
for which it is to be applied.

Perhaps the simplest situation is when the systematic model errors are
constant in time. This type of systematic model error might arise if the
errors are due to incorrect forcing or boundary conditions. In this constant
bias case, it would be sensible to specify that the systematic model errors
are not altered from one time step to the next, unless the data assimilation
changes them. We would then write the model for the systematic model error

variables as

beyy = by, k=0,1,....N —1. (5.4.1)

Another case is when the systematic model errors are due to truncation

errors in the model, or mis-specification of model parameters. The systematic
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model errors are now likely to evolve in a similar way to the model variables
themselves. It would therefore be a good idea to use the model g, for the

evolution of the systematic model errors, i.e.
bk—l—l :gk(bk,ﬂk), kZO,l,,N—l (542)

If we are dealing with a nonlinear system, the tangent linear model, Gy =
%Ei’%, might be used instead of the full nonlinear model.

In Section 5.2, it was noted that we could decrease the number of sys-
tematic model error variables by including the matrix T, € IR™*?, g < n. It
might also be useful in some cases to allow ¢ > n so that we have more choice
in the specification of m;. One example of where this might be a good idea

is where the model error is varying in time. We could then specify a spectral

form of the model error, so that

(5.4.3)

T = (00,7 sin(k/N7), T cos(k/NT)) , (5.4.4)

where b, € IR*", T, € IR™**" and 7 is some constant to be specified, depend-
ing on the timescale of the variations in the systematic model error.
There are many other possible models for the evolution of the systematic

model error variables, including combinations of those given above, [37], [38].
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5.5 Experiments

Experiments using systematic model error correction on the damped oscillat-
ing system and the Lorenz equations have been carried out with the Optimal
Interpolation and Kalman filter assimilation schemes. The results are pre-
sented in Sections 5.5.1 and 5.5.2 respectively. The numerical methods used
for discretising both the oscillating system and the Lorenz equations, as well
as the step sizes used, are the same as those in Sections 4.4.1 and 4.4.2.
We also keep the same length of assimilation period and forecast period. In
the figures shown, we display three plots for each experiment. One of these
contains the true solution (dashed lines), the solution given by the data as-
similation scheme (solid lines) and the observations (crosses) for one of the
variables, the second shows the error between the data assimilation solu-
tion and the true solution for that variable, and the third plot displays the
estimate of the systematic model error.

We also present the results of some experiments on the Heat equation.

We describe the set-up and results of these experiments in Section 5.5.3.

5.5.1 Oscillating system

In the following experiments we take the true model system, f,, to be the
same as the model that was used in Section 4.4.1, that is equations (4.4.3)
and (4.4.4). The observations are taken to be of the same frequency, in one
experiment they are taken of y and x every time unit and in the other they
are taken every 2.5 time units. Noise was also added to the observations

which had a Gaussian distribution with variance of 0.1 and zero mean.
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Bias was added to the true model system to obtain the forecast model
system, g, , by including a constant forcing term in the discrete equations.

Equations (4.4.3) and (4.4.4) are now changed to

Yer1 = (1 —n(A)?*/2)yx + (At — (A1) /2)zy, + a, (5.5.1)
Ter1 = (RU(A1)?/2 — nAt)y,
+(1 — IAE+ P(A)?)2 — n(AH)?)2) s + 5, (5.5.2)

where the systematic error terms are chosen to be o = g = 0.1. For the
OI data assimilation method, the covariance matrices were calculated by
averaging the statistics over the assimilation interval using knowledge of the
truth and of the background solution. The model error covariance matrices
for use in the Kalman filter were taken to be zero. We only show figures of
the y variable here, but the results for the & variable are qualitatively similar.

The effect this change has on the OI and KF data assimilation schemes
when no special treatment of the bias is made is shown in Figures 5.5.1
and 5.5.2. In these experiments, there are large oscillations in the analyses
during the assimilation period because the forecast model is trying to move
to a different position from the true state, but the observations bring the
analyses back to near the true solution. Once the forecast is started, the
error increases as there is nothing to constrain the solution to the unbiased
true solution.

The OI solution, with constant bias correction included, is shown in Fig-
ures 5.5.3 and 5.5.4 where observations are available at every time unit and
at every 2.5 time units respectively. Here we can see that the bias correction

has much improved the analysis of the state for both experiments, although
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the solution takes longer to approach the true solution than in Section 4.4.1.
The estimate of the bias is fluctuating about the true bias due to the noise in
the observations. This makes the forecast less accurate because the estimate
of the bias at the end of the assimilation period is included in the model for
the forecast. To try to overcome this problem, the same experiments were
performed but the bias estimate is averaged over a moving time window of
5 assimilation steps. The results are shown in Figures 5.5.5 and 5.5.6. The
bias estimate is now slightly more accurate for the case where observations
are available every time unit but not for the case where observations are
available every 2.5 time units. We have performed this method on the same
model in [63] and the results seem to indicate that better results are obtained
when the observations are more frequent.

Experiments were also performed with constant bias correction using the
KF, the results of which are shown in Figures 5.5.7 and 5.5.8. In both cases,
the KF produces the exact value for the bias and therefore gives the perfect
forecast. Less frequent observations lead to a longer convergence time but the
forecast is the same in both cases. In all of the above experiments, the initial
estimate of the bias was quite poor. This has led to large fluctuations in the
state variables at the beginning of the assimilation interval. A better estimate
of the bias at the initial time would reduce the size of these fluctuations.

To see how the bias correction performs when a different type of system-
atic model error is introduced, the parameters [ and n are altered to 0.3 and
1.2 respectively in the forecast model system. This means that the model
system is oscillating at a different frequency and is damped at a different

rate to the true system. The true system equations remain the same and so,
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therefore, do the observations. However, for these experiments, the noise on
the observations is eliminated. For the first of these experiments, the model
for the evolution of the systematic model errors is taken to be constant, i.e.
by = b,. With this constant bias correction, the KF produces a good anal-
ysis during the assimilation but the forecast error is large, as shown in Figure
5.5.9. This is due to the fact that the bias estimate is kept constant during
the forecast. The forecast can be improved if we use a different model for
the evolution of the bias. In Figure 5.5.10, we use the state model to prop-
agate the bias, i.e. by = g,(b;). This gives a much better estimate of the
true solution, although there is a phase difference which leads to fairly large

CIrTOors.
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Key for Figures 5.5.1-5.5.10: true solution (dashed line), analysed

solution (solid line) and observations (crosses).
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Figure 5.5.1: OI on the oscillating system with observations every time unit.
Constant forcing is added to the model and no bias correction is performed.

(1) y variable. (ii) Error in y variable.

eror

time

Figure 5.5.2: KF on the oscillating system with observations every time unit.
Constant forcing is added to the model and no bias correction is performed.

(1) y variable. (ii) Error in y variable.
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Figure 5.5.3: OI on the oscillating system with observations every time unit.
Constant forcing is added to the model and bias correction is performed. (i)

y variable. (ii) Error in y variable. (iii) Analysed estimate of bias in equation

(5.5.1).
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Figure 5.5.4: OI on the oscillating system with observations every 2.5 time
units. Constant forcing is added to the model and bias correction is per-
formed. (i) y variable. (ii) Error in y variable. (iii) Analysed estimate of

bias in equation (5.5.1).
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Figure 5.5.5: OI on the oscillating system with observations every time unit.
Constant forcing is added to the model and bias correction is performed.
Averaging of the bias is done over 5 assimilation steps. (i) y variable. (ii)

Error in y variable. (iii) Analysed estimate of bias in equation (5.5.1).

Figure 5.5.6: OI on the oscillating system with observations every 2.5 time

units. Constant forcing is added to the model and bias correction is per-
formed. Averaging of the bias is done over 5 assimilation steps. (i) y variable.

(ii) Error in y variable. (iii) Analysed estimate of bias in equation (5.5.1).
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Figure 5.5.7: KF on the oscillating system with observations every time unit.
Constant forcing is added to the model and bias correction is performed. (i)

y variable. (ii) Error in y variable. (iii) Analysed estimate of bias in equation

(5.5.1).
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Figure 5.5.8: KF on the oscillating system with observations every 2.5 time
units. Constant forcing is added to the model and bias correction is per-

formed. (i) y variable. (ii) Error in y variable. (iii) Analysed estimate of

bias in equation (5.5.1).
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Figure 5.5.9: KF on the oscillating system with observations every time unit.
The parameters in the model are altered and a constant bias correction is
performed. (i) y variable. (ii) Error in y variable. (iii) Analysed estimate of
bias in equation (5.5.1).
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Figure 5.5.10: KF on the oscillating system with observations every time
unit. The parameters in the model are altered and the system model is used
to forecast the systematic model error. (i) y variable. (ii) Error in y variable.

(iii) Analysed estimate of bias in equation (5.5.1).
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5.5.2 The Lorenz equations

The method of bias correction has also been applied to the Lorenz system.

Here, we take the true system model, f, to be given by the model used in

Section 4.4.2, that is equations (4.4.9), (4.4.10) and (4.4.11). The observa-

tions are taken of all the variables at every 0.25 time units in one experiment

and at every 0.5 time units in the other. Noise was added to the observations

which had a Gaussian distribution with variance of two and zero mean. The

assimilation is performed over the first 20 time units and the analysis at the

end of this period is used as initial conditions for a forecast which lasts for

another 10 time units.

A constant bias has been added to each of the discrete equations (4.4.9-

4.4.11), to obtain the forecast model system, g, This is given by

Tl41

Yk+1

Zk+1

xy + o AL2[2(yr — xx) + At(prr — Yy — TeYk)

o At(yr — k)] + @, (5.5.3)
Uk + At/2)pxy — yr — w2k + plar + o At(yr — 21)) — Yk
At(pxy — yr — xrzr) — (2 + oAty — x))

(zi + At(zrye — Bzr))]) + 5, (5.5.4)
2k + At 2[epyr — Bar + (xr + Ato(yr — )

(yr + At(pzr — yr — Tr2k))

Bz — At(zryr — Bzr)] + 7, (5.5.5)

where a = 0.05, = 0.1 and v = 0.15. The covariance matrices for the

OI method were calculated by averaging the statistics over the assimilation

period. The model error covariance matrix for the state variables was taken
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to be the same as that of Section 4.4.2. The bias model error covariance,
Q% and bias-state cross covariances, Q¥ were taken to be zero. We only
show figures for the x variable but the results for the y and z variables are
qualitatively similar.

With just the normal OI and EKF data assimilation methods, the analy-
ses during the assimilation period when systematic model errors are present
are comparable to those when there were no systematic errors, as shown in
Figures 5.5.11 and 5.5.12. However, as soon as the forecast is begun, the
solutions converge to a stable equilibrium point which is incorrect, due to
the fact that the model is incorrect.

The constant bias correction method was implemented using the OI scheme
and the results are shown in Figures 5.5.13 and 5.5.14 for the cases when ob-
servations were taken every 0.25 and 0.5 time units respectively. Both these
cases show improvements in the forecast. The estimate for the bias in the
x variable is quite accurate although there are still large oscillations in both
experiments due to the noise on the observations. To try to eliminate these
oscillations, similar experiments were performed but with the bias estimate
averaged over a 5 assimilation step period, the results of which are shown
in Figures 5.5.15 and 5.5.16. The estimates of the bias at the end of the
assimilation period improved in both experiments, most noticeably when ob-
servations were taken every 0.5 time units. However, due to the chaotic
nature of the system, this does not necessarily improve the accuracy of the
forecast over a significant time period.

The results of using the constant bias correction with the EKF are shown

in Figures 5.5.17 and 5.5.18 for the experiments with the two different ob-
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serving frequencies. With observations every 0.25 time units, the analysis is
good and the forecast agrees with the true solution for about 5 time units.
When observations were available every 0.5 time units however, the solution
1s worse than that given by OI, due to large variations in the estimate of the
bias. The averaging of the bias was again performed but the results were not
improved, as can be seen in Figures 5.5.19 and 5.5.20. This could be due to
the length of the assimilation interval and the frequency of the observations.
We show additional experiments in [63], where observations were taken more

frequently and the results were improved.
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Key for Figures 5.5.11-5.5.20: true solution (dashed line), analysed

solution (solid line) and observations (crosses).

time

Figure 5.5.11: OI on the Lorenz equations with observations every 0.25 time
units. Constant forcing is contained in the model and no bias correction is

performed. (i)  variable. (ii) Error in « variable.

time

Figure 5.5.12: EKF on the Lorenz equations with observations every 0.25
time units. Constant forcing is contained in the model and no bias correction

is performed. (i) « variable. (ii) error in « variable.
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Figure 5.5.14: OI on the Lorenz equations with observations every 0.5 time
units. Constant forcing is contained in the model and bias correction is

performed. (i) @ variable. (ii) Error in x variable. (iii) Analysis bias in

equation (5.5.3).
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Figure 5.5.15: OI on the Lorenz equations with observations every 0.25 time

units. Constant forcing is contained in the model and bias correction is

performed. Averaging of the bias is done over 5 assimilation steps. (i) =

variable. (ii) Error in x variable. (iii) Analysis of bias in equation (5.5.3).
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Figure 5.5.16: OI on the Lorenz equations with observations every 0.5 time

units. Constant forcing is contained in the model and bias correction is

performed. Averaging of the bias is done over 5 assimilation steps. (i) =

variable. (ii) Error in x variable. (iii) Analysis of bias in equation (5.5.3).
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Figure 5.5.17: EKF on the Lorenz equations with observations every 0.25
time units. Constant forcing is contained in the model and bias correction
is performed. (i) « variable. (ii) Error in a variable. (iii) Analysis of bias in

equation (5.5.3).
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Figure 5.5.18: EKF on the Lorenz equations with observations every 0.5
time units. Constant forcing is contained in the model and bias correction
is performed. (i) « variable. (ii) Error in a variable. (iii) Analysis of bias in

equation (5.5.3).
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Figure 5.5.20: EKF on the Lorenz equations with observations every 0.5
time units. Constant forcing is contained in the model and bias correction
is performed. Averaging of the bias is done over 5 assimilation steps. (i)

variable. (ii) Error in x variable. (iii) Analysis of bias in equation (5.5.3).
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5.5.3 Heat equation

In this section, the Heat equation is used to demonstrate how the bias cor-
rection method can be used with partial differential equations. The Heat
equation is used because it is of a very simple form which is useful when
determining which mechanisms are responsible for certain features.

The Heat equation with boundary conditions and initial condition can be

written as

Uy = ozzum, O<ax< L, 0<t
u(0,t) = a, u(L,t)=0,
u(z,0) = f(x). (5.5.6)

The boundary conditions a and b are both given values of 0.5 for the true
solution. For the incorrect model solution, @ = 0.5 and b = 1.0. The initial

conditions for both solutions are given by

1 fl<cap<3L
flz) = ! !

(0 otherwise.

The steady state solutions are u(x,t) = % for the true solution and u(z,t) =
% + % for the background solution.
The Heat equation has been discretised using an explicit method which

gives the discrete equations as

Uppy = Ay, +1 (5.5.7)
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where

1—-2v v 0
v 1—-2v v
A = ,

0 v 1-—2v
va
0

E prnd
vb

and
At
o 5.5.8
V=a A0 ( )

We set Az = 0.2 and At = 0.005 which, with @ = 1, gives a value for v
of 0.125, resulting in a stable numerical scheme. Figures 5.5.21 and 5.5.22
show the true solution and background solution with & = 1 and L = 4 which
are the values these parameters take throughout this section.

Observations are obtained from the true solution and are given every-
where in space and at all times between ¢ = 0 and ¢ = 1. These observations
contain noise, which has a Gaussian distribution with a mean of zero and a
variance of 0.1. The data assimilation scheme used in these experiments is
the OI method. The assimilation is performed from time t = 0 to ¢ = 1 and
a forecast 1s then made for a further time unit. The covariance matrices used
in the OI scheme were obtained by averaging the statistics over the time of
the assimilation. The gain matrix was then calculated using these covariance

matrices.
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Figure 5.5.21: True solution of the Heat equation.
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Figure 5.5.22: Background solution of the Heat equation with incorrect

boundary condition.
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By giving the model solution a different boundary value from the true
solution, we are introducing a bias in the model. Therefore, when the analysis
at the end of the assimilation period is propagated forward in time, this bias
influences the resulting forecast. It is hoped that by using the bias correction
term in the assimilation, the forecast will be improved.

The results of four experiments are presented here. The first performs
OI on the Heat equation but without any bias correction. Figure 5.5.23
shows that the OI method produces a good analysis during the assimilation
period. However, the subsequent forecast is poor because the model contains
an incorrect boundary condition. The forecast skews to account for this
changed boundary condition and converges to the steady state solution for
the model solution. The second experiment implements the bias correction
method, where the model for the propagation of the systematic model error
is constant, which is the correct model for the bias evolution. When this
method is implemented with the correct statistics used in the covariance
matrices, the analysis during the assimilation period is good, as shown in
Figure 5.5.24. Also, because the correct value was calculated for the bias in
the incorrect boundary condition, when this is included in the forecast, we
get a very good forecast.

To test the sensitivity of the method with respect to the bias gain matrix,
a random perturbation is made to this matrix which has a normal distribu-
tion with a mean of zero and variance of 0.03. Here, we obtain the correct
boundary condition, but the interior solution is corrupted by noise, as shown
in Figure 5.5.25. To account for this, we use the method described in the

previous experiments and average the bias over a moving time window of 50
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time steps. Figure 5.5.26 shows this solution, which seems to account well
for the noise in the bias estimate.

The systematic errors in these experiments only affect one boundary,
yet we are performing bias correction over the entire domain. It would be
possible to include a matrix, Ty, as in Section 5.2, which would allow us to
compute a bias only on the boundary. This would dramatically reduce the

computational cost of the method.
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Figure 5.5.23: Ol assimilation on the Heat equation without any bias correc-

tion.
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Figure 5.5.24: OI assimilation on the Heat equation with bias correction.
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Figure 5.5.25: Same as Figure 5.5.24 but random noise is added to the bias
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Figure 5.5.26: Same as Figure 5.5.25 except the bias is averaged over a

moving window of observations.
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5.6 Conclusions

In this chapter, a method for accounting for systematic model error is de-
scribed. We have shown, in the linear case, that if the correct model for the
propagation of the systematic model error is used then both the state and
the systematic model error variables should converge to their true values as
time increases. The main difficulty with the method is that the model for the
propagation of the systematic model error needs to be known a priori. Some
examples of the types of models which could be used are given. Another
difficulty when using the KF is that the covariance matrices for the errors
in the systematic model error variables and the cross-correlations between
these variables and the state variables need to be known at the initial time.
The extra cost of implementing the method in the KF is large, although this
could be reduced by using one of the methods described in Section 4.2.4.
The extra cost of using the method with the OI and AC schemes is minimal
as the matrix inversion involved in computing the gain matrices will have
already been performed for the state variables. The only extra information
required in these methods is the cross-correlation error covariance matrix,
although this might be difficult to ascertain in practice.

Some experiments are presented which perform the systematic model er-
ror correction method on two ODEs and one PDE. The experiments with the
damped oscillating system show that the bias correction method accounts
well for incorrect forcing with a constant bias error. Averaging the bias over
a moving time window is shown to produce better initial conditions for a
forecast. In these experiments, the KF outperformed OI, as would be ex-

pected. When the parameters of the model are altered, the method is shown
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to be more accurate if the state model is used to propagate the systematic
model error variables. This shows that it would be possible to get an idea
of what model should be used for the propagation of the systematic model
error variables by implementing the method first of all with a constant bias
and observing how the bias evolves in time. It could then be run again with
a better guess at the model.

The results for the Lorenz equations are similar to those of the oscillating
system for the incorrect forcing, although their chaotic nature leads to a
short forecast period for most of the experiments, and the difference between
the EKF and OI schemes is diminished. The frequency of the observations
appears to be an important factor in the accuracy of the assimilation in these
experiments.

The Heat equation experiments show that another type of systematic
model error can also be accounted for using a constant bias correction, that
is incorrect boundary conditions. In this case, the correct model for the
evolution of the bias variables was used. An accurate estimate for the bias
gain matrix is shown to be needed here, although averaging of the bias does
help when the statistics are incorrect.

The experiments have given us some valuable insight into the advantages
and disadvantages of the systematic model error correction method. The
main advantage is that systematic model error can be accounted for given
certain information. Also, we have an estimate of the systematic model error
itself. This could be very important as it would enable a better understanding
of the deficiencies in the model, so as to allow some improvements in the

modelling of the system under consideration. The main disadvantage, or
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difficulty, is that the error covariances need to be known fairly accurately
and the information required is not readily available unless a good estimate
of the true state of the system exists, which is not necessarily the case in the

context of the ocean.
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Chapter 6

Applying Bias Correction to
Shallow Water Equations

6.1 Introduction

We have seen in the previous chapter that it is possible to account for certain
types of systematic model error by using the data. Some simple examples
were shown. In reality, the type of model error we are dealing with will vary
according to the situation we are in. Here, we concentrate on the equatorial
Pacific ocean and try to deal with a particular type of systematic error.

It is known that the forcing of ocean models plays an important role in
the types of circulations we observe. As was discussed in Chapter 2, wind
forcing near the equator explains much of the structure of the ocean there.
Systematic errors in the winds supplied to an ocean model can therefore
prove to be problematic when assimilating data.

In this chapter, we compare some different methods for accounting for
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incorrect wind forcing and produce a method which will be appropriate for
use in a full Primitive equation model, i.e. computationally inexpensive.
To analyse the effects of these methods, a linear two-dimensional model is
derived in Section 6.2 which retains some of the significant characteristics
of the real ocean. Steady state and transient solutions of these equations
are discussed. We would also like to examine the effects of our methods
using a numerical model. The numerical method and assimilation scheme
are therefore described in Sections 6.4.1 and 6.4.2. Experiments and results

are given in Section 6.5 with some conclusions in Section 6.6.

6.2 Correcting for incorrect wind forcing

To examine, in a continuous framework, the effects of different methods for
accounting for systematic errors in wind forcing, we return to the set of linear
equations given in Section 2.4, i.e. equations (2.4.2 - 2.4.6). Throughout this
section we assume that the true state of the ocean is given by a reference
state ug, vo, wo, po with some perturbations, denoted by superscript ¢, which

are given by

po(aa—f—fvt) = —Z—Zt+a§:t, (6.2.1)
po(aa—vtt—l-fut) = _aé)_;;ua;i (6.2.2)
aa_fj — (6.2.3)

%_i %t %_it _—y (6.2.4)
%_/fwt% ~ 0. (6.2.5)



where 7t = (7%, 7Y") is the true wind forcing. As we are dealing with the
circulation near the equator, we make the [-plane approximation, where
f = By. These equations allow planetary, gravity and Kelvin waves, as

described in Section 2.4.1, which occur in the real ocean.

6.2.1 Data assimilation in the presence of incorrect

wind forcing

We now write down the equations for the evolution of our model variables.
These model variables are assumed to consist of the same reference solution
as the true model, but with different perturbations, denoted by superscript

m. The model equations are then written as

ou™ . ap™  or*"™
pol—g = f") = —o—+ ——. (6.2.6)
Jvo™ . ap™  orvm™
pol— + fu™) = oy "o (6.2.7)
ap™
&z _ _,m 2.
P P9, (6.2.8)
gu™  Jv™  Juw™
= 0 6.2.9
Jx + Jy + 0z ’ ( )
where 7 = (7™ 7Y™) is the incorrect model wind forcing. We modify

equation (6.2.5) by introducing a forcing term which represents the data
assimilation. For simplicity, we assume that we have complete coverage of

observations of the true density field, p’, so that

ap™ mIpo
o T T

where € > 0 1is some coefficient corresponding to the weight given to the

b, (6.2.10)

observations. This form of data assimilation is known as dynamic relaxation,
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[21], [23]. In the discrete version of this equation, this form of the data
assimilation corresponds to a gain matrix in the data assimilation which is e
multiplied by the identity matrix, i.e. K” = el. The observation operator,
H?_ is now equal to the identity matrix, i.e. H? = I.

To examine the effects this assimilation has on the error in our model
in the presence of incorrect wind forcing, we take the difference between
equations (6.2.1-6.2.5) and (6.2.6-6.2.10). We denote the difference between

the model and true variables with a prime and obtain

(681; ) = _%Jﬁmv (6.2.11)
(a;; L) = _(Z‘_ZHW’ (6.2.12)

% — (6.2.13)
%JF%JFZZI . (6.2.14)
6@/; b %Zo — (6.2.15)

assuming the true and model variables have the same reference state. We
then split the solution into a depth dependent part and a part which varies in
the horizontal and with time, as in equations (2.4.7-2.4.8), and concentrate on

the solution of this latter component. The horizontal structure then satisfies

U . dp
00
_ y
n + fu = ga + 7Y, (6.2.17)
dp ot 0v
Ers ep+ H. (6 6y) = 0, (6.2.18)

where 7 = (7%, 7Y) is the difference between the true and model wind forc-

ing and the hat over the variables indicates the horizontal structure of the
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differences between the true and model solutions.

We now look at the steady state solution of these equations, where we
set the time derivatives to zero. It is obvious that with the incorrect wind
forcing present, none of the variables needs to be zero, which is one of the
requirements for our model to converge to the true solution. This shows
that, even in this simple model, the normal data assimilation method will
not produce realistic results when systematic errors are present in the wind

forcing. We therefore need to modify the data assimilation in some way.

6.2.2 Bias correction

The method we propose to use to account for incorrect forcing is similar to
the methods described in the previous chapter. Here, we only have incorrect
forcing on two of the equations and so add some bias variables on these

equations only, so that equations (6.2.16) and (6.2.17) become

oo .. o . .
ov . dp —
a + fu = gay + 7Y+ b, (6.2.20)

In the discrete version of these equations, this would be equivalent to in-
cluding a matrix, T', as in Section 5.2.1, which enables the systematic model
error variables to act only on certain model equations. The biases b* and bY
therefore correspond to entries in the single model error vector, b.

We now want to calculate b and bY so that the perturbation pressure
and velocities are zero in the steady state. We also require that the transient
solutions will decay in time so that the model variables will tend towards

the true solution as time increases. If we substitute equations (6.2.19) and
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(6.2.20) into (6.2.18), and set the time derivatives to zero, we obtain

A_|_£ (_ 62}3 +%+%)+( 62}3 _E_@_ﬁ» —
v I g@x@y Jdv Oz g@y@x Jy Jy R e
(6.2.21)
where € > 0. So for p = 0, we require that
ary  odbYy  9r*  Ob" .
% + % = 2y + oy + [o. (6.2.22)

Differentiating and combining equations (6.2.19) and (6.2.20) and using
relationship (6.2.22), we obtain an equation for the steady solution for ¢ and

v,

ﬁy(g—z + 2—2) + BH = 0. (6.2.23)

From equation (6.2.18) with p = 0, we can see that the horizontal diver-
gence of the velocity field must be zero, i.e. % + g—z = 0. Equation (6.2.23)
therefore tells us that o = 0 which in turn implies that % = 0. If we have
suitable boundary conditions, we then obtain @ = 0. So, if we choose * and
bY so that (6.2.22) holds, the steady state solutions for p, @ and ¢ will be
zero, as required.

We now have the choice of how to choose the form of b* and Y. An
important consideration for any method that is to be used in a full Primitive
equation model is that it is easy to implement and is not computationally ex-
pensive. We would therefore like to find an expression for these bias variables
so that these conditions are met. Also, we do not want to add unrealistic cir-
culations when performing the bias correction. A scale analysis shows that
the acceleration and coriolis terms in the momentum equations are much

smaller than the pressure gradients and wind stresses in the zonal direction
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in the equatorial Pacific. The main balance close to the equator is there-
fore between these latter two terms although this is not true away from the
equator. We therefore choose to correct for inaccuracies in the wind stresses
near the equator by adding a correction of the same form as the pressure

gradients, that is

. Opf
b= —g > (6.2.24)
ap°
W= — 2.2
T oy (6.2.25)

where p° is some 'pressure correction’ field. This form of correction cor-
responds to assuming that the differences between the true and incorrect
model wind forcings have zero curl, as can be seen from equation (6.2.22).

The horizontal momentum equations now become

au . a(p + p°) "
5 fo = B A + 77, (6.2.26)
g .. 9p+p)
T +fu = —g 3y + 7Y (6.2.27)

Once we have calculated our pressure correction field, we can add it to the
pressure field when calculating the momentum of 4 and ¢ and so do not
have to alter the computer code for these equations. We also only have to
calculate and store one field, p°, when accounting for inaccuracies in both 7%
and 7Y. This choice of b* and &Y is therefore cheap and easy to implement,
but does have the drawback that it does not ensure that 4 and ¢ are zero in

the steady state unless the curl of the errors in the wind stress is zero, 1.e.

orY _ or®
oz dy

= 0. This is a drawback since the wind stress near the equator is
much stronger in the = direction and so the curl of the wind stess is unlikely

to be close to zero here. Away from the equator, the form of the pressure
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correction is more likely to account for errors in the wind stress as it has a
more rotational field in higher latitudes.

In the steady state, the solution with the pressure correction is given by

p =0, (6.2.28)
ou 00
—+ = =0 6.2.29

which shows, from equation (6.2.14), that % = 0.
To examine the time dependent solutions, we require an equation for the
evolution of the pressure correction term. We model this in a similar way to

the augmented data assimilation as

apc _ mo_ ot
5 = 1" =), (6.2.30)

where v > 0 is some weighting coefficient and p' are observed values of the
true pressure field. This model for the evolution of the pressure correction
term is equivalent to keeping it constant in time, except when the difference
between the model solution and the observed true solution is non-zero, in
which case the pressure correction will be forced by a weighting of that dif-
ference. When the model’s pressure field has a larger magnitude than that
of the true pressure field, the pressure correction term will be postitive and
so the total pressure will be even larger to compensate for the wind stress
errors. This form should therefore restore the balance between the pressure
gradient and the incorrect wind stress and therefore reduce the magnitude

of the velocity fields.
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6.3 Analysis of pressure correction method

In this section we have two main aims. One is to show the types of structure
which the pressure correction method, as described above, will introduce into
the solution of our linear equations. The second is to show that the method
is stable, and to find the timescales at which the solution will converge.
The time dependent solutions for the errors in our model in the horizontal,

when the pressure correction is included, satisfy

a_u_fv = —QW—FHE, (6.3.1)

66:+fu _ _ga(ﬁTZfC)JrTy, (6.3.2)

Z;+6p+ (gu+g_z) _ (6.3.3)
%ptc . (6.3.4)

We want to combine these equations to obtain one equation in ¢ so that
we can derive the solution, from which the solution for @, p and p° can be

inferred. We obtain

0 0 0v 0,0 %0

cz(a + ’Y)(a(vzﬁ)-l-ﬁa—x)—a(aﬁ' )(atz + f*0 )
,, 0 g orY or° g 0 arY
=c (a + V)a—x(%_a—y)_a(a )(—_fT ), (6.3.5)

where ¢ = gH,. The derivation of this equation is described in Appendix A.
To investigate the stability of the system described above, we examine the
homogeneous equations, where the wind forcing is omitted. This leads to an

equation for ¢ similar to equation (6.3.5) where the right hand side is zero,

0 0v 0,0 %0

L M5 (Vi) +85-) = 2(5 + )(6t2 + /%) =0.  (6.3.6)

2 —_
gt
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We now follow the same strategy as in Section 2.4.1 and look for solutions of
the form,

0 = v(y)exp(itke — iwt). (6.3.7)

As we are dealing with the errors between the true and analysed solutions,
we would like the transient solutions to decay to zero as time increases. This
will only happen if the imaginary part of w is negative; the real part gives us
information about the structure of the solutions. Substituting this expression

for © into equation (6.3.6) yields the following ordinary differential equation

for v(y)
d*v wtie  w?— [y?

)

o G2

)_M_%%m:o (6.3.9)

We now rescale by introducing a new variable, y = Q(, where

_I_Z,Y 1/2
=S (2 3,
B \w+ e ’ (6:3.9)

which leads to a familiar form of equation,

d*v )
The dispersion relation is now more complicated than in Section 2.4.1 and is
given by,
w? Bk
A= — (K + —). 3.11
o — O+ ) (6.3.11)

To show that the system is stable, we need to show that Im(w) < 0. To
do this, we first need to find the values of A for which the differential equation
(6.3.10) has bounded solutions. This is done in the next section. We then
need to find the imaginary values of w which satisfy equation (6.3.11) for
these values of A\. We would also like to find the types of structure of the

solution of v, which depend on the real part of Q2.
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Solving the differential equation

We first of all solve equation (6.3.10) for v(¢). To do this, we look for solutions
of the form,

2

v = voe:z:p(:l:%)J((), (6.3.12)

where J(() is some polynomial. When we use the plus sign in this expression,
the solution will be bounded as y — foo as long as the real part of 2
1s negative. Similarly, the expression with the minus signs gives bounded
solutions as y — Foo as long as the real part of Q2 is positive. Substituting

the above expression in equation (6.3.10) gives,

d*J dJ
@ QCd_C +(A=1)J =0, (6.3.13)
d*J dJ
el + 2§% +(A+1)J=0. (6.3.14)

We try a solution for both of these equations of the form,
J()=C(co+ el +el?+...), c0#0, s >0. (6.3.15)

For equation (6.3.13) we substitute this expression for J and relate the co-
efficients in powers of (. From the first of these equations, s = 0 or s = 1.
The second gives us s = 0, ¢; = 0 or both. Then we can obtain the higher

terms by using the recursion relation

(2s4+2v+1—-X) _
¢, = co.
v+2 (s+v+2)(s+v+1)"”

(6.3.16)

The polynomial J(({) can be chosen to be either even or odd. In both cases,
this corresponds to choosing ¢; = ¢ = ... = 0. The polynomial is then even

or odd depending on whether s = 0 or s = 1. It can be seen by looking at the
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asymptotic behaviour of this series that it must terminate for the solution to
be bounded as ( — £oo. This means that A = 2s + 2v + 1 and v must be

an even integer. We can express the cases s =0, s =1 as
A=2n+1,n=0,1,2,... (6.3.17)

The polynomials which satisfy the recursion relation, (6.3.16), are known as
the Hermite polynomials, H,,, [73], and can be defined by
H,(¢) = (—1)neé2£(e—¢2). (6.3.18)
d¢n
Some properties of the Hermite polynomials are given in Appendix B.
We now look for the solutions of the second expression, (6.3.14) by sub-
stituting in equation (6.3.15) and relate coefficients in powers of (. Again
s =0or s =1 from the first equation. The second gives us s =0, ¢f = 0 or

both and the recursion relation is

v (2s+2v+14A) o
(s+v+2)(s+v+1)"

(6.3.19)

CV—I—Z -

The same argument for the series terminating applies in this case, in which

case A must satisfy
A=—-2n+1),n=0,1,2,... (6.3.20)

It is shown in Appendix B that the polynomials which satisfy the differential
equation with A = —(2n + 1) are [,,(¢), which can be defined by

o d
L(C) = e —(e*). (6.3.21)
Therefore, if Re(Q?) > 0 then the solution of (6.3.10) is given by
v=roe PHL(C), A=2n+1, n=0,1,2,... (6.3.22)
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and if Re(0?) < 0 then the solution is given by
v=00e P (C), A=—2n+1), n=012,... (6.3.23)

These last two expressions show that, when Re(Q?) > 0, the values of
A which give bounded solutions to the differential equation (6.3.10) are A =
2n + 1, n = 0,1,2,..., and when Re(Q?) < 0, the values of A which give
bounded solutions are A = —(2n + 1), n =10,1,2,....

Solving the dispersion relation

We now find the solutions of the dispersion relation (6.3.11) for w so that we
can demonstrate the stability of the pressure correction method and deter-
mine the structure of the types of waves we expect to observe. Substituting

0% in this equation and rearranging, we get

w? , c , , Pk
—(w +1€) — =(w +1v)(k
i) = S+ i)k +

We cannot find the roots of this expression explicitly, so we try to determine

)= AMw + i’y)l/z(w + ie)l/z. (6.3.24)

w

the significant characteristics of w by expanding it in terms of order €, y. We
therefore let w = wp + wy + ..., where wy contains the first order terms, w;
contains terms of order €, v and so on. To find the first order terms we set

€ = v = 0 and obtain,
wy — wo(ABe+ (ck)?) — 2kPwy = 0, (6.3.25)
which gives solutions

wy — wo(ABc+ (ck)?) — kB =0, (6.3.26)
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We therefore have four roots, three of which are given by equation (6.3.26)
and the fourth by equation (6.3.27). Equation (6.3.26) is the same as equa-
tion (2.4.16) in Section 2.4.1 and results in the same gravity and planetary
wave solutions as we would obtain without any data assimilation or pres-
sure correction. Equation (6.3.27) is an extra root due to the inclusion of
the pressure correction term. We also have Kelvin wave solutions as before,
which are described by setting © = 0 in equations (6.3.1-6.3.4). This satisfies

the dispersion relation,
(€ — 1w)w? = (y — 1w)(ck)?, (6.3.28)
which, when € = v = 0, gives
wo(wg — (ck)?) = 0. (6.3.29)
This has three solutions, one of which is wg = 0 which we already have. The
other two are given by wg = (ck)?. The root wy = —ck is not allowed because

of the requirement that the solution be bounded as y — +oo.

So, to first order, we have the following roots:

1. Gravity wave solutions obtained by neglecting the i—k term in equation
(6.3.24):
Wi = (ck)* + B (6.3.30)

2. Planetary wave solution obtained by neglecting the “B’—i term in equation

(6.3.24):
— ke
= . .3.31
Wo ERE (6.3.31)
3. Kelvin wave solution:
wo = ck. (6.3.32)



4. Additional wave solution:

wo = 0. (6.3.33)

We now need to find the higher order terms in the expansion of w to
ensure that the imaginary parts of w are negative, i.e. the waves decay to
zZero.

Before we begin, we expand the quantity ? as a series in terms of order

€ and . We write

2 _ ¢ i(’Y - 6) 2 2
0 = 3 (1 + 7200 o) + O(e”,y ,e’y)) ) (6.3.34)
So to order e, v,
0 = %(1 +6), (6.3.35)
where
_ iy —¢
0= Mot ie) (6.3.36)

Gravity waves

Here, the standard approximation is that the term fk/w in equation (6.3.11)

1s small and so can be neglected. We then have to deal with the equation
w? = VP2 4 2BR. (6.3.37)
We write the first order expression (6.3.30) as,
wi = (ck)? + cBA = (ck)*(1 + ), (6.3.38)

where r = ABc/(kc)®. We now substitute w = wp + w; in equation (6.3.37),
where w; = O(¢,7v) and use relationship (6.3.35) to obtain an equation for

Wi,

wf + 2wy + wg = (ck)2(1 +26 + 6%+ r(l+9)). (6.3.39)
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We now ignore the w?, 6 terms as they are of order €2, 4% and obtain
2wowy = 6(ck)*(2 + 7). (6.3.40)

We now want to show that the imaginary part of w; is negative, in which
case the gravity wave solutions will decay in time. To do this we substitute
equation (6.3.36) into equation (6.3.40) and write § = dp+ids, w = wot+wir+
iwy1 where subscript R indicates real part, subscript I indicates imaginary
part, and wy is real. This gives us the equation

1(e = 7)(wo + wir — i(wis +€))
2((wo + wir)? + (wir + €)?) '

2wo(wip + 1wiy) = (ck)*(2 + 1) (6.3.41)

Taking the imaginary part of this equation and only retaining terms of order

€, v leads to the relationship

1247
WHZ——( )

4(1+4r)

(e — ). (6.3.42)

Taking typical magnitudes for the constants in r, we obtain r ~ 6A. If
Re(Q*) > 0, we have A = 2n + 1, n = 0,1,2,..., in which case the bounds

on wyy are given by

_%(6 ) < < —%(e — ). (6.3.43)

in which case the

If Re(2*) < 0, we have A = —(2n + 1), n = 0,1,2,..

)

bounds on wy; are given by

~He—y) e < —x(e-7). (6.3.44)

We can therefore say that, to order €, v, provided € — v > 0, the gravity

waves will decay towards zero as time increases.
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Planetary waves

For planetary waves, the standard approximation is to neglect the term
w?/(92%6?) in equation (6.3.11). This gives us the equation
0232
= 6.3.45
“ T k(e + 028) (6.3.45)

We write the first order terms as

W (6.3.46)

E(1+r)
We now substitute w = wp+w; in equation (6.3.45), where again w; = O(€, v),
and use relationship (6.3.35) to obtain

’
147

W =

Using equation (6.3.36) and splitting w and ¢ into real and imaginary parts

as before, we get

v ife =)o +win — i + )
1+7r 2((wo+wir)? + (wir+€)?)

Taking the imaginary parts of this equation and retaining terms of order e,

(6.3.48)

WIR twiy = w

v, gives

ro(e—7)
- . 3.4
Wit s (6.3.49)

Taking typical values for the constants in r, we can now find bounds on w;;.

If Re(Q?) > 0, then the bounds are given by

1 3
—5(6—’}/) <wir < —?(e—’y). (6.3.50)
If Re(Q?) < 0, then the bounds are given by
3 1
—g(e—’y) <wir < —5(6—’)/). (6.3.51)

This shows that, provided € — v > 0, the planetary waves will also decay

towards zero as time increases.
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Kelvin waves

We now look for the imaginary parts of the Kelvin wave solution by setting
w = wp+w; where w; = O(e, 7). For the root wy = ¢k, we find wy = —%(e—’y)

so the solution for this root is

w=ck — %(e — ) + O(€*,7%, e7). (6.3.52)

The fact that this root has negative imaginary parts shows that the Kelvin

waves will also decay towards zero as time increases.

Additional wave

We return to the original dispersion relation, (6.3.11), square and rearrange

to obtain

wG(w + ie)2 — 202w2(k2w + k) (w + iv)(w + i€) + c4(w + i’y)z(kzw + ﬁk)z
= NBF0H(w +ie)(w + 7). (6.3.53)

We now substitute w = wg + w; where w; = O(v) and wy = 0. We assume
to be the only small quantity here because it turns out that the first term in

the expansion is of order v. We obtain
wy = —17. (6.3.54)

So the leading term in the imaginary part of w is negative which shows that
this additional wave solution will decay in time.

The pressure correction is inducing this additional wave and so we would
like to find its structure. The meridional structure of the solution depends on

Re(?) as can be seen from equations (6.3.22) or (6.3.23) and the relationship
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y = (. We therefore look for the next terms in the expansion of w for which
Re(Q?) is non-zero.

Setting w & wy + wy + wy = wy — 17, where wy = O(ey?), we get

Ney?
= —1—F. 6.3.55
w2 (2 (ck)2 ( )
If we now put this into the expression for Q* we obtain
¢ wtiy, A

Q4

zﬁz( ) = o (6.3.56)

where the term e only appears on the bottom because ~ is assumed to be
smaller than e here. This result shows that, to this order, Q? is a purely
imaginary number and so the solution for v will not decay away from the
equator. We therefore look for the solution to the next order by setting

W = wp + wy + wy + w3y where w3 = O(7%). To order 7 we obtain
2¢*BkeyPwy +  NBPRPw] + 2wpws B2k — 208k yw3)
= N3P (2eqwi + iy (y — €)wy —ieyws), (6.3.57)

which when rearranged gives

= S =0 =i (6.3.58)

Apart from the case when n = 0, the additional wave solution will therefore
have a non-zero real part to order ey>. The meridional structure of the

solution depends on Q2. Substituting w to order ev* into the expression for

0%, we obtain

4 ¢ (wHiy i vy
e @( -~ > = 3201 =) (6.3.59)
o[ N Ae v oA (A1)
- (ﬁzkz(l - (ck)z) - 62;{(@ — 2 3 )) (6.3.60)

—piv (1 = ipay), (6.3.61)

%
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where p? = x (1-— >‘—2E) and py = —(Ck)2(k6()‘2_1)+“‘26). So, to this order,

B2k? (ck)? N2e (ck)Z—AZe
0% = —ip1y(1 4 ip;3), and splitting p, into real and imaginary parts as
P2 = p2r + 1pag gives us 2
Re(’) % pipary (6.3.62)

Summary

In this section, we first of all showed that the horizontal structure of the
differences between the true and model solutions of the forced shallow water
equations, when the pressure correction method is included, can be written
in terms of one equation for . We then assumed that ¢ could be written as
v = v(y)exp(tkr — iwt) and found an equation for v(y) in the homogeneous
case. We then rescaled the y variable to put the equation for v in the same
form as it would be without any assimilation or pressure correction. We
then found the values of A for which the solution is bounded as y — 400
and found the structures of these solutions, which depend on Re(Q?).

To show that the solution of the equation for © will tend to zero as time
increases, that is the model solution will tend toward the true solution, we
next showed that the imaginary part of w is negative by solving the dispersion
relation (6.3.11). This was done by expanding the various wave types in terms
of order €, v to find the largest imaginary part of w. In the four types of
waves, gravity, planetary, Kelvin and the additional wave, we found that the
leading imaginary term in the expansion of w was in fact negative, provided
€ —~ > 0. This therefore showed that, if we have observations of the true
density field and perform data assimilation of the type given in equation

(6.2.10) with the pressure correction method included, the model solution
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will tend toward the true solution as time increases. It also shows that the
weighting for the pressure correction, v, must be smaller than the weighting
for the data assimilation, €, for the method to be stable. It would be useful,
for a more realistic analysis, to determine the effects of time varying forcing
on the system. This is not discussed here however.

The leading real terms obtained in the expansions of w for the gravity,
planetary and Kelvin waves show the same structure for these waves as we
would obtain without any data assimilation or pressure correction, as in
Section 2.4.1. The structure of the additional wave solution was found for
the first term in the expansion of w for which Re(?) is non-zero. These waves
will have much smaller magnitudes than the other types of waves away from
the equator, due to the fact that Re(2?) is of order % in this case, and so

should not significantly affect the overall structure.

6.4 Experimental set-up

6.4.1 Numerical model

In this section, we would like to verify some of the theoretical results of
the previous two sections in an experimental setting. One of the results to
be examined is that normal data assimilation will not account for incorrect
wind forcing in the forecast model. We would also like to examine the im-
provements, or otherwise, made by the normal bias correction method and
the pressure correction method in the presence of incorrect wind forcing. To
do this we use a simple numerical model which still produces some of the

important features we wish to study. The model equations we use are the
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linear two-dimensional shallow water equations, given by

Ju dp .

Jv B dp v

n + fu = —gay + 7Y (6.4.2)
dp Ju  OJv

—+ ) = 0, (6.4.3)

where H, is a separation constant and ¢ is the gravitational constant. We
study the flow near the equator and so make the f-plane approximation,
f = Py. The true solution will be given by the above equations forced by the
true wind forcing. The model equations will be given by the same equations

but forced by some incorrect wind forcing.

Spatial discretisation

A staggered grid has been chosen for the spatial discretisation. This is the
B-grid which holds values of u and v at points i, 7 and values of p at points
i+ 1.7+ 1, (9], as shown in Figure 6.4.1.

We would like the domain of the model to be similar to the size of the

equatorial Pacific. We therefore use the following size grid:
e Az =222x10°m =2°4=0,1,...,50 so that z' = Az =0,2°,...,100°.

e Ay =222 x 10°m = 2°, 5 = —10,-9,...,10 so that v/ = jAy =
—20°, —18°,...,20°.

We approximate gradients of p at v and v points by

g_];z,] _ 221; {pi+1/2,j+1/2 + pi+1/2,j_1/2 . pi—l/z,j+1/2 _ pi—l/z,j—l/Z}7
op™? 1

ay — m{pi—l—l/Z,j—l—l/Z + pi—1/2,j+1/2 o pi—|—1/2,j—1/2 o pi—1/2,j—1/2}‘
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Figure 6.4.1: The B grid: u and v are held at the points indicated by the

circles and p is held at points indicated by the crosses.

Gradients of v and v are approximated at p points by
aui+1/2,j+1/2

da

avi+1/2,j+1/2

_ L g g it iy
2Ax

_ {UZ-I-LJ-I-I + Uw+1 _ Uw+1 _ Uw}‘

dy 2Ay
Artificial dissipation of momentum is included in the momentum equations
by adding a term of the form
kY, (6.4.4)

where x 1s kept as small as possible whilst keeping the model numerically

stable. The scheme is second order accurate in space.

Time discretisation
The leap-frog scheme is used as the time discretisation, [67]. Here, the time
derivatives are approximated as

N e R
Oty 2At

(6.4.5)
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The scheme is second order accurate in time. To avoid producing different
solutions at even and odd time steps, a time filter is used, whereby the new

value of each variable is given as

fik = pk + o fir — 20 + pr-1)- (6.4.6)

The first time step is calculated using forward time differencing. We choose
a time step of At = 8.64 x 10s so that the model is numerically stable. The
time steps are given by k = 0,1,...,500, giving us a time period of 50 days.
The speed of disturbances will be of the order of ¢? = gH = (2.8ms™!)2.

Initial and boundary conditions

At the initial time we will choose all the variables to be zero, i.e.
u(z,y,0) =0, ov(x,y,0)=0, p(x,y,0)=0. (6.4.7)

The wind stress should then start up a circulation. The form of the wind

stress will be

Aexp(—iyNecos(rx/2L) for x| < L
e pl=qy’Jeos(ma/2L) for fa| < L (6.4.8)
0 for |x| > L

where A is a chosen amplitude and L is a length scale for the extent of the
forcing in the z direction. This is shown in Figure 6.4.2 for L = 1 x 10%m,
A =2 x 107°m?sec™!, which is the amplitude used by [81]. We set ¢ = 0
everywhere for simplicity.

The boundary conditions are that v and v have no slip boundaries at the

north and south of the domain and p is periodic in the x direction, i.e.
u(x,—20,t) = u(x,20,t)=0 (6.4.9)
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Figure 6.4.2: Wind stress 7%, A =2 x 107°m?s™!, L = 1 x 10°m.

v(x,—20,t) = v(x,20,t)=0 (6.4.10)

p(0,y,t) = p(100,y,t) (6.4.11)

6.4.2 Data assimilation scheme

To retain some similarities with the methods used in oceanography, only
observations of p will be available. These will be at similar locations to
that of the TAO array in the equatorial Pacific and will be available for
assimilation every time step. The exact location of the observations is given
in Figure 6.4.3.

The method which we will use to assimilate these observations is a uni-
variate Optimal Interpolation. Here we will only make increments to the p
variable based on the differences between the observed and forecast values of
that variable. The velocities u and v will not be altered in the assimilation

step. The OI formula is

pe = pl + K7[p* — Hp]], (6.4.12)
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Figure 6.4.3: Position of observations of p at each time step

where p, contains the values of p at all the grid points at time step k, K?
is the usual OI weighting matrix given by K? = BPHPT[HPBPHPT 4 R]™!,
H? is the linear observation operator that interpolates from model grid to
the observation grid, BP is the forecast error covariance matrix and R is
the observation error covariance matrix. The method used to solve equation

(6.4.12) at each time step is:
1. Let sz_inc = }_726 — Hp}_vi be the observation increments.
2. Calculate the LU decomposition of HPBPHPT + R.

3. Solve wy, = [HPBPHP" + R]~'p?*~" using back and forward substitu-

tion.

4. Calculate the analysis increments, an_inc = BPHP T,

an_inc

5. Then the analysis is }_72 = }_7]/: + pi
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Background error covariance matrix

The specification of the forecast error covariance matrix, BP, is a very im-
portant part of the method. BP is rarely known accurately in practice and is
approximated using various techniques. The one used in these experiments is
to specify the variances of the forecast error, o;, which appear on the diagonal
of the matrix. The off diagonal terms are then calculated using a correlation
function which shows how much correlation one point in the domain has with
another. The correlation function y used here, as suggested by [21], relates

point (2%, y') to a point (z7,4’) using the formula

e (o) = e ey U e
where A, and A, are given length scales. To determine what values these
length scales should take, a simple experiment was performed with a given
set of observations of value 1. The effects the weighting matrix K? has on
these observations for different values of length scales was studied. The choice
for the rest of the experiments is A, = 6 x 10°m, A, = 1.5 x 10°m as this

spreads the observations out so that most of the region is covered.

Observation error covariance matrix

For simplicity, we set the observation error covariance matrix, R, to be a
diagonal matrix. The diagonal entries are equal to the variance of the noise

on the observations.
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Bias correction methods

We would like to test the effectiveness of the systematic model error correc-
tion technique described in the previous chapter and the special case of this,
the pressure correction method described in this chapter, in accounting for
systematic errors in the wind forcing of the linear shallow water equations.
Here we describe how we implement these methods.

For the normal bias correction method, we introduce two new variables,
b" and b", which are added to the v and v momentum equations respectively
and have the same dimensions as those variables. These are kept constant in

the forecast step, but are altered in the data assimilation by the formulae

bza — bz.f _I_ IX’b[BZb _ HPB£]7 (6414)

bza — bz.f _I_ IX’b[BZb _ HPB£]7 (6415)

where the bias weighting matrix is given by K* = BP*THPT[HPBrHPT 1 R]~!
and BP’ is the cross-correlation between the errors in the variables }_7]/: with
the errors in the bias variables. It is difficult to obtain an accurate estimate
of this covariance matrix. Here, we use a very simple estimate, whereby
BP* = aBP, and we leave the choice of a for the next section. This form
of the covariance matrix is not necessarily a good choice because the bias
variables are biases on the velocities rather than the pressure variable. We
choose this form so that the intercomparison with the pressure correction
method is made using the same assumptions.

For the pressure correction method, the new variable p; is added onto
the variable p, when calculating the pressure gradients in the horizontal

momentum equations. The forecast of p, is left unaltered. Again, the update
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of the pressure correction term is left unchanged in the forecast model, so

that

Pipr = By (6.4.16)

These variables are calculated in the assimilation by
pt = pi! + Kp? — Hpll, (6.4.17)

where K¢ = BreTHPT[HPBPHPT 4+ R]~! and BP is the cross-correlation
between the errors in the variable }_7]/: with the errors in the pressure correction
variable. To keep this method comparable to the bias correction method, we
approximate the BP® matrix by BP® = vBP. This choice is more reasonable
than that for the bias correction covariance matrix as we are approximating

B¢ using a covariance matrix which is calculated for the pressure variable.

6.5 Results of experiments

To test the numerical code used in this section, an experiment was performed
with forcing on equation (6.4.3) rather than on the momentum equations.
This experiment corresponds to some theoretical results given by [34]. The
results of this experiment were qualitatively similar to the theoretical results
and verified that the programming of the numerical code was correct. The
results of this are not shown here.

For all the following experiments, we set the gravitational constant, g, to
be 9.8ms™% and the separation constant, H., to be 0.8m to give a value for
¢ =+/gH. of 2.8ms™'. As we are dealing with a linear model, it is convenient

to set the forcing for the true solution to be zero. The initial conditions are
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zero everywhere and so the true solution is also zero for all time. We obtain
observations from this solution at the points indicated previously at every
time step and for simplicity do not introduce any noise. We therefore set the
observation error covariance matrix, R, to be zero.

We introduce systematic errors in the wind forcing by altering its ampli-

tude and length scale to those given in the previous section, that is

2 x 10 %exp(—Ly?)cos(-L25) for |z| < L
. Pt eos(s) forlel <D
0 for |x| > L

The errors in the wind stresses will not have zero curl, which is an assumption
of the pressure correction method, so this form of the wind stress should
provide a tough test for the method.

A run has been performed for 50 days using this model which gives us the
background solution, i.e. the one we obtain without any data assimilation.
The results of this integration are displayed in Figures 6.5.1, 6.5.2, 6.5.3 and
6.5.4. These show a wave travelling eastwards along the equator from the
region of the wind forcing with a circulation set up in the area of the wind
forcing. All the disturbances are contained within about £10° of the equator,

as we would expect.

6.5.1 Optimal Interpolation in the presence of incor-

rect wind forcing

We now perform OI on this system at every time step, as described in the
previous section. Here we set the value for the variance of the background

error covariance matrix for p to be ¢ = 1. The results after 50 days are
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Figure 6.5.1: Errors in p without any data assimilation after 50 days
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Figure 6.5.2: Errors in u velocity without any data assimilation after 50 days
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Figure 6.5.3: Errors in v velocity without any data assimilation after 50 days
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Figure 6.5.4: Errors in p (contours) and currents (arrows) without any data

assimilation after 50 days
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shown in Figures 6.5.5, 6.5.6, 6.5.7 and 6.5.8. It is clear from these figures
that the structure of the solution is completely altered. If there were no
systematic errors present, we would expect OI to reduce the errors in the
system significantly. The pressure has only slightly smaller errors however,
with the largest errors occurring to the west of the domain and in the region
of wind forcing. The solution is also rather noisy. Errors in the u velocity
are larger after performing OI than without data assimilation, especially in
the region of the wind forcing, with wavy features elsewhere. The v velocity
has slightly smaller errors, although there is a large peak in the west. The
problem we would like to correct for is the larger errors in the u velocity as
the v momentum equation is the one containing the errors in the wind stress.

We would also like to keep the reduction of the errors in the p variable.

6.5.2 Accounting for the incorrect wind forcing
Normal Bias Correction

We now perform the same experiments but with the bias correction method
included. If we select the value of «, the weighting of the bias background
covariance matrix, above o = 1 x 1073, there is divergence. For values of
a=1x10"%and o = 1 x 1073, the Ly norm of p, u and v are shown in
Figures 6.5.9, 6.5.10 and 6.5.11 respectively, together with the values when
there is no bias correction, i.e. o = 0. These figures show that there is
little improvement in any of the errors, although the results obtained with
a = 1 x 107* produce slightly smaller errors in the pressure and v velocity at

the end of the period. However, the bias correction method does not seem
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Figure 6.5.5: Errors in p after performing OI for 50 days

100

y (degrees N/S) X (degrees E/W)

Figure 6.5.6: Errors in u velocity after performing OI for 50 days
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Figure 6.5.7: Errors in v velocity after performing OI for 50 days
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Figure 6.5.8: Errors in p (contours) and currents (arrows) after performing

OI for 50 days
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able to reduce errors in the u velocity, perhaps due to the simple choice of
gain matrix used for the bias variables. If we were to choose the gain matrix
based on statistics of the velocity field and its correlation with the pressure
variable, this form of bias correction should provide better results. These
statistics are difficult to obtain in practice.

From these results we choose a value of a = 1 x 10™* for comparison with
other experiments as this appears to be the value for which the results are
the best. We now plot the pressure, the u velocity and the v velocity for a
run with this value of a in Figures 6.5.12, 6.5.13, 6.5.14 and 6.5.15. These
show the structure of the solution to be similar to the one obtained using the

normal data assimilation scheme.

Pressure Correction Method

To determine the best value of v for the pressure correction method, some
runs have been performed with various different magnitudes for this variable.
The L, norm of the pressure, u velocity and v velocity are shown in Figures
6.5.16, 6.5.17 and 6.5.18 respectively. These results show that the errors in
the pressure and u velocity have been reduced when compared to the run with
normal data assimilation. Errors in the v velocity appear to be of similar
magnitude to the run with normal data assimilation. This is surprising as the
dynamics of the shallow water equations should mean that any reduction in
u leads to a reduction in v. We choose a value of v = —0.1 for the remainder
of the experiments.

For the run with v = —0.1 the pressure, u velocity and v velocity fields
are shown after 50 days of integration in Figures 6.5.19, 6.5.20, 6.5.21 and
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Key to Figures 6.5.9 - 6.5.11: normal OI (solid line), bias correction; o =
1 x 10~* (dashed line), bias correction; o = 1 x 107 (dotted line).
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Figure 6.5.9: Ly norm of the errors in the pressure field for runs with different

values of a.
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Figure 6.5.10: Ly norm of the errors in the u velocity field for runs with

different values of a.
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Figure 6.5.11: Ly norm of the errors in the v velocity field for runs with

different values of a.
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Figure 6.5.12: Error in p after performing OI with bias correction for 50 days
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Figure 6.5.13: Error in u velocity after performing OI with bias correction

for 50 days
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Figure 6.5.14: Error in v velocity after performing OI with bias correction

for 50 days
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Figure 6.5.15: Error in p (contours) and currents (arrows) after performing

OI with bias correction for 50 days
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6.5.22. These figures reinforce the results described above. The errors in the
pressure are slightly smaller, there is a significant reduction in the errors of
the u velocity, and the v velocity has errors of similar magnitude but they

are concentrated in the region of the wind forcing now.
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Key to Figures 6.5.16 - 6.5.18: normal OI (solid line), pressure correction;
v = —0.1 (dashed line), pressure correction; v = —0.3 (dash-dot line), pres-

sure correction; ¥ = —0.5 (dotted line).
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Figure 6.5.16: Ly norm of the errors in the pressure field for runs with dif-

ferent values of ~.
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Figure 6.5.17: Ly norm of the errors in the u velocity field for runs with

different values of ~.
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Figure 6.5.18: Ly norm of the errors in the v velocity field for runs with

different values of ~.

152



0.05

y (degrees N/S) x (degrees E/W)

Figure 6.5.19: Errors in p after performing OI with pressure correction for

50 days
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Figure 6.5.20: Errors in u velocity after performing OI with pressure correc-

tion for 50 days
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Figure 6.5.21: Errors in v velocity after performing OI with pressure correc-

tion for 50 days
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Figure 6.5.22: Errors in p (contours) and currents (arrows) after performing

OI with pressure correction for 50 days
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6.5.3 Summary

Figures 6.5.23, 6.5.24 and 6.5.25 show the Ly norm of the p, u and v variables
respectively for the four experiments described. All the experiments assimi-
lating data show a marked improvement in the errors in the variable p over
the solution without assimilation, as is to be expected when the observations
are of the variable p. The pressure correction method produced slightly more
accurate estimates of the variable p than all the other experiments.

The u variable shows very different results. All the runs with data assim-
ilation included have higher errors than the run without assimilation. This
is due to the fact that the data assimilation excites stronger velocities in
the presence of systematic errors in the wind forcing. The method with a
simple bias correction does no better than the normal OI data assimilation
here. The pressure correction does reduce the errors in u as it was designed
to do, although it still does not do as well as was expected. This could be
due to the fact that the data is sparse compared to the size of the domain
and so there is not enough information in the observations for the pressure
correction field to be very accurate. Also, a multivariate data assimilation
scheme might produce better results if knowledge of how u and p are related
is used.

The results for the v variable show that for the first 40 days of integra-
tion, the experiments with assimilation included again do worse than without
assimilation. Towards the end of the period however, all of the experiments
have approximately the same amount of error, although there is more vari-
ability in the assimilation experiments.

It would be possible to make many improvements on the results of the
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data assimilation experiments. As has already been said, a scheme which
updated u and v based on the pressure observations would produce better
results. Also, more observations spread throughout the domain would reduce
the errors. In reality, there are more observations than the number used in
these experiments, as data is obtained from ships and satellite altimeters, as
well as the TAO array. However, the pressure correction method has certainly
improved the results over the normal data assimilation and bias correction

experiments here.
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Key to Figures 6.5.23 - 6.5.25: no assimilation (solid line), normal OI (dashed
line), bias correction; a = 1 x 107" (dash-dot line), pressure correction;

v = —0.1 (dotted line).
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Figure 6.5.25: Time series of the Ly norm of the errors in the v velocity field.
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6.6 Conclusions

In the first part of this chapter, the linear, two-dimensional shallow water
equations were derived on a f-plane. We assumed that we had the correct
continuous forecast model apart from incorrectly specified wind stresses. A
simple form of continuous data assimilation, where the density was assumed
to be known everywhere, was shown not to account for the incorrect wind
stresses. The bias correction method of the previous chapter was then used
to attempt to correct for these incorrect wind stresses. A special form of
this bias correction was also put forward as a simple and easy to implement
method which could account for errors in the wind stresses. An attempt to
analyse this pressure correction method was then made. This analysis on
the transient solutions of the homogeneous equations was done to determine
the stability requirements of the method. It was shown that the errors in
the solution would converge to zero for the types of waves expected in the
tropical Pacific Ocean, as long as the weighting coefficient for the pressure
correction method is less than that for the data assimilation, i.e. € — v > 0.

To verify these theoretical results, a numerical model of the linear, two-
dimensional shallow water equations on a f-plane was used with systematic
errors in the wind forcing. Observations of one variable only were available at
the approximate locations of the TAO array in the tropical Pacific, which are
sparse compared to the size of the domain. The errors in the pressure variable
were reduced for all the runs which included data assimilation. However,
normal data assimilation produced large errors in v and v, as did the normal
bias correction method with a simple form of weighting matrix. The pressure

correction method reduced the errors in u and v, although the sparseness of
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the observations and the simple form of the weighting matrix meant that the
reduction of errors was not as significant as was hoped.

Systematic errors in the wind forcing and its parameterisation was de-
scribed in Chapter 2 to be a major source of error in the tropical Pacific
when assimilating data. We would therefore like to test the pressure correc-

tion method in a three-dimensional Primitive equation model of the ocean.
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Chapter 7

Experiments with FOAM
System

7.1 Introduction

One of the main aims of this thesis is to produce a method which will ac-
count for systematic errors in the wind forcing and its parameterisation in
a Primitive equation ocean model, using data assimilation. In the previous
chapter, the pressure correction method was described in terms of a simple
two dimensional shallow water model and was shown, both theoretically and
numerically, to produce more accurate analyses than normal data assimila-
tion when systematic errors were present in the wind forcing of the model.
We now test this method in a Primitive equation, three dimensional model.
To do this we use the Forecasting Ocean-Atmosphere Model (FOAM) de-
veloped and used operationally at the Met. Office. In [4], it is shown that

the FOAM system and forcing fluxes contain systematic errors. A compar-
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ison between another three ocean general circulation models (OGCMs) and
their response to wind forcing in the tropical Pacific is given in [28]. One of
their conclusions is that some of the physics is incorrectly represented in the
OGCMs which leads to unreliable responses to a given wind forcing. Some
attempts to account for model biases have been made in [77] and [84] for
instance. In the first paper, a type of ensemble approach is used to estimate
the climate drift of a coupled ocean-atmosphere model whilst in the second,
variational assimilation is used to estimate some of the important parameters
which affect the impact of the wind forcing. In [66], it is suggested that the
assumption of serially uncorrelated model errors should be relaxed when as-
similating data. The pressure correction method attempts to account for the
serially correlated errors in the wind forcing and the way it is parameterised
by the ocean model.

In Section 7.2, we describe the relevant components of the Bryan-Cox
model used in the FOAM model and the discretisation of these equations.
The Analysis Correction scheme, briefly described in Chapter 4, is rewrit-
ten in Section 7.3 for the approximations used in the FOAM system. A
summary of the FOAM system is also given. A physical explanation of the
reasons systematic errors in the wind forcing cause problems is given in Sec-
tion 7.3.2, together with the results of some experiments with and without
data assimilation. The way in which we implement the pressure correction
method to tackle these problems is described in Section 7.4. In Section 7.4.2,
we describe the results of the experiments. Conclusions are given in Section

7.5.
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7.2 The FOAM model

The FOAM model is based on the Bryan-Cox code for a Primitive equation,
three dimensional ocean. The model is described in [5], but a summary is
given here. The equations are based on those given in Section 2.2.1 but are
written in terms of spherical coordinates ¢ and A which are the latitude and

longitude respectively. The vertical coordinate is depth, z.

Basic equations

The equations of motion are

du mad  p

- _ _ (= A

5 + (u) — fo - a)\(/)o) + F7, (7.2.1)

Jv 19 p é

E—I—F(v)—l—fu = aaqb(po)+F , (7.2.2)
where m = seco, f = 20sind, u = (a/m)%, v = a%, a is the radius of

the earth and pg is the density of sea water at surface pressure and standard

temperature and salinity. The advective operator I' is defined by

m| 0 g, u 0
Plp) = — | g5 (ur) + %(Uﬁ) + 5 (wn) (7.2.3)
The hydrostatic equation is
dp
5, = P9 (7.2.4)

and the continuity equation is

Jw m Ju Jd v
g + ;[— + = 0. (7.2.5)

Tracers such as potential temperature, 8, and salinity S are modelled by

the conservation equations

08 L
5 FIO) = F'. (7.2.6)
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S HI(S) = F¥ (7.2.7)

The equation of state has the form
p=p,>5S,z2), (7.2.8)

where the function is described by a polynomial fit to the Knudsen formula.

More details of this expression are given in [35].

Forcing terms

The terms F*, F'?, F? and F? represent the effects of surface forcing, turbu-

lent mixing and diffusion, and are given by
0’u  Aypg 0%y 0 1 du
F* = A ?
woaat T g e as)
+ (1- mznz)u — 2nm? %] (7.2.9)
0*v  Auyp 0*v 0 1 Jv
F? = Ayy— S
wozt T e taslas)

+ (1 — m?*n? )U—|—2nm %] (7.2.10)
Agy 020 A %6 g ,1 06
Y — :;Vaz + ;;I[mZWJFm_qb(__gb)]’ (7.2.11)
A 0%S A 0%S 9% 1 9%S
S SV SH
= ==t e [m26A2+ aqb(m 99 )], (7.2.12)
where
1 if 2 <0
=4 (7.2.13)
0 if % >0,

and p” is the density which a parcel of water would have if the in situ pressure
is reduced to surface pressure. Having %LZH > 0 implies that the fluid is
unstable so setting 6 = 0 means that there is infinite mixing. The mixing

coefficients Ayrv, Anrmr, Agv, Agr, Asy and Agy are assumed to be given.
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Boundary conditions

Boundary conditions at lateral walls are given by

u = v=0, (7.2.14)
06 aS
oo Do, (7.2.15)

where % denotes a local derivative with respect to the coordinate normal to
the wall. At the surface, the rigid-lid approximation is made, where w = 0.
This has the advantage of filtering out high speed external gravity waves,
and so allows the time-step of the numerical integration to be larger, [10].

Also at the surface, we set

poduvo- = (7.2.16)
,OOAMV% = 7 (7.2.17)
Aev% = 7’ (7.2.18)
ASVZ—‘Z = 5, (7.2.19)

where 7% and 7% are the zonal and meridional components of the surface
wind stress and 7’ and n° are the fluxes through the surface of temperature
and salinity respectively. For the lower boundary, the condition is set to take

bottom friction into account.

Splitting the velocities

In the model, the horizontal momentum equations are combined with the

hydrostatic equation. This enables the horizontal velocities to be split into
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a baroclinic component, which varies with depth, and a barotropic stream-
function. Using the continuity equation (7.2.5), and the boundary conditions

for w at the surface and bottom, it is possible to define a streamfunction as

0 0

a—f = %/_H povdz, (7.2.20)
0

Z—z = —a/_H poudz. (7.2.21)

To obtain a predictive equation for this streamfunction, the horizontal mo-

mentum equations, (7.2.1) and (7.2.2) are integrated with respect to height,

z, and multiplied by ~2% and “% respectively. They can then be combined
into one equation,
9% m oY 0? 1 oy 0 0 FU
—— — FVv
ol may) T ot mmas) ~ o V) T a5
oY 0 oy 0
— 20n/H) + ——(2On/H 7.2.22
oM H) + 50 S H), (1222)
where
FU 400 [° 1y = Ty g O a’od Ndz, (7.2.23)
= —— u) — —uv — = z
H J-m a a,oo oA
apo [° mn o, / dp
FV = ——— r — —dz'|d 2.24
V Vi _H[ (v) + p Cl,Oo 96 z. (7.2.24)
We write the horizontal velocities as
uw = u+u, (7.2.25)
v = v+, (7.2.26)

where the overbar indicates a vertical average over a water column and the

hat indicates the deviation from this average. The vertically averaged terms

166



can be written as

i 1 /o H 9
- 1 /0 Hm 0

To calculate the deviation from this average we set

u = u —u, (7.2.29)

', (7.2.30)

>
Il
4

|
<

where u/, v' denote the vertical average of the deviations and w’/, v’ are ob-
tained from the horizontal momentum equations and the hydrostatic equa-

tion, giving

ou' mg 0  [© , A
o = —F(u)—l—fv—poaa)\(/z pd') + P, (7.2.31)
o' g 0, [0 , $

Numerical procedure

The procedure for the numerical integration of these equations is summarised

as follows:

1. Predict the temperature,  and salinity, S at the new time step from a

discretisation of equations (7.2.6) and (7.2.7).

2. Predict v/ and v’ from discretisations of equations (7.2.31) and (7.2.32)
and use these to find the new values of & and ¢ from equations (7.2.29)

and (7.2.30).
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3. Predict the new value of the streamfunction, ¥, from a discretisation
of equation (7.2.22) and use this in equations (7.2.27) and (7.2.28) to
calculate v and v. The full velocity field is then given by equations
(7.2.25) and (7.2.26).

4. Use the continuity equation (7.2.5) and the equation of state (7.2.8) to

find w and p at the new time level.

The horizontal grid used for the discretisation of these equations is a B-
grid, [10], where the baroclinic velocities u and v are held at points 7, j, and
variables 6, S and the barotropic streamfunction ¢ are held at points 1+1/2,
J+1/2. In the vertical, model levels are close together near the surface with
the resolution decreasing with depth. Spatial derivatives are approximated
by centred differences. The time differencing is done by using the leap-frog

scheme, [67], where
Ok flkg1 — M-
ot 2At

(7.2.33)

for a variable p, where k denotes time step t; and At is the length of the
time step. The horizontal resolution of the model is 1° x 1° and there are 20
vertical layers. A time step of one hour is used. More details of the numerical
scheme are given in [5].

The resolution of the model means that eddies, which are an important
mechanism for the transfer of energy, are not resolved. Mixing in the vertical
is also not well resolved by the model. Much of the accuracy of the model
is therefore dependent on the parameterisations of these sub-grid scale pro-
cesses. This is especially important in the mixed layer, the region above the

thermocline which is approximately 100m deep, where most of the vertical
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mixing takes place. The details of these parameterisations can be found in

[5] and references therein.

Supplied forcings

The surface forcing fluxes used to drive the model are available from the
Numerical Weather Prediction (NWP) model. In the operational version,
FOAM is forced using 6-hourly mean fluxes derived from the global NWP
model analyses. Monthly mean climatological fluxes are also available.

The wind forcing enters the model through equations (7.2.16), (7.2.17)
and (7.2.9), (7.2.10). This process involves parameterisations which approxi-
mate the vertical mixing of momentum. An important part of these parame-
terisations is the choice of the mixing coefficients Ap;y. Systematic errors in
the supplied wind forcing and errors in the parameterisations will therefore

both contribute to the systematic errors in the forcing of the model.

7.3 Assimilation of temperature data

7.3.1 Assimilation scheme

The data assimilation scheme used in FOAM is an approximation to the
Analysis Correction scheme described in Section 4.2.3 where corrections are
only made to the model state, not the observations. We can therefore write

the scheme as

et = o AWVAY — ()]s (7.3.1)
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where A is a relaxation factor which controls the step size of the iterations,
Wi = BLHI R, Vi = (HiW, + I)~" and By, Hy, Ry are as before.

A number of approximations are made to this scheme, [3]:

o V} is approximated by a diagonal matrix of normalisation factors. This

affects the rate of convergence of the scheme, but not the final limit,

[61].

e The relaxation factor, A and the number of iterations are chosen so

that a single observation would give results close to the OI solution.

e The background error covariance matrix By is approximated. It now
depends on the distance between observation and model grid points

and on a correlation scale which varies with location and direction.

There are four main types of data assimilated into FOAM, sea surface
temperature (SST), temperature profile data, salinity and surface height.
These different data groups are assimilated sequentially. The first group is
the SST data, which are used to form analysis increments which are applied
within the mixed layer. The temperature profile data is used next, where
increments are applied down to 1000m, below which there are very few ob-
servations. Velocity increments are calculated which balance the temperature
increments through the hydrostatic balance and a modified geostrophic re-
lation. SST observations are assimilated into the model five days either side
of their validity time, while temperature profile data are nudged in over a
longer period of ten days. The other two data groups are not used in the

experiments of this chapter and so details of their assimilation are omitted
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here. For more details of the practical implementation of this assimilation

scheme, see [5].

Summary

A summary of the forecast/analysis procedure used by FOAM is written here

for comparison with the modified method which is described in Section 7.4.

1. Starting from a forecast 1,’: = a9 at time #j, use observations of tem-

perature to produce an analysis using the following equation:
o™ = 2 + AWVily, — Hezl, (7.3.2)

where 2§ = 2 1s the analysis after 7 iterations. This can be written as

B! A WiV A
ﬁj-l-l ﬁj WSvVS ﬁj
o= T e R e 0.0 | 2
g i W i
wt*! v} WiV v}

(7.3.3)
where WPV} is the weighting for the temperature observation incre-
ments, WEVE, WPV convert the temperature observation increments
into velocity increments, W = V;° = 0 and Y, = 65 = Hyzl + 6, =

HY6;, + 6.

2. Calculate wy, p, from the continuity equation and the equation of state

respectively, written here as:

we = g, (ug,vf), (7.3.4)
p, = 985 55). (7.3.5)



3. Forecast the state variables onto time t514:

QIJ:-H = ik(iz) + Fy. (7.3.6)
This can be written as
01, £o65, ug ) Fy
EIj:-l—l i:(—27_zvﬂzvyz) —Z
v Fo(65, S5, ug, o) Fy

7.3.2 Response of the model to assimilation of temper-

ature

In this section, we give a physical explanation of the effects of systematic
errors in the wind stresses and their parameterisation in the vertical. We
reinforce these arguments using results obtained from two integrations of the
FOAM system, which show the impacts of using normal data assimilation
in the equatorial Pacific when compared with not assimilating data. These
results are given at the end of this chapter to enable comparison with the
experiments described in Section 7.4.2.

We first describe the set-up of the experiments performed in this section
and in Section 7.4.2. The integrations start from initial conditions derived
from the Levitus (1994) climatology, [55], for 1st May. They are driven
by climatological monthly mean fluxes including the surface wind stresses
of Hellerman and Rosenstein, [42]. It is generally accepted that these wind
stresses are too strong in the equatorial region, [47]. These experiments there-

fore contain larger systematic errors than would be present operationally, but
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the same problems exist in operational runs. The assimilation integrations
use observations of SST and temperature profiles taken from 1st May 1995 to
30th April 1996, a period in which there were no El Nino or La Nina events.
All of the integrations are run for two years.

The dominant balance in the zonal direction in ocean models of the equa-
torial Pacific is between the wind forcing and a pressure gradient. The nor-
mal direction of winds in this region are towards the west. The stresses
are mixed down over the top 100m of the ocean and result in an east-west
pressure gradient. A schematic diagram of this balance is shown in Figure
7.3.1(a). When no observations are assimilated into the model, a balance
between these forces is found. However, the temperature structure of the
model is inaccurate, the vertical gradient of temperature in the thermocline
being too weak. This can be seen in Figure 7.4.4(a) for the FOAM system.
The vertical velocities for this control run are presented in Figures 7.4.8(a)
and 7.4.10(a), which show that there is little upwelling or downwelling. The
u velocities are shown in Figure 7.4.12(a) where the eastward flowing Equa-
torial Undercurrent (EUC) can be clearly seen extending right across the
region with a maximum in the region of the thermocline. The EUC is quite
diffuse here, due to the weak temperature gradients of the thermocline. The
westward surface currents can also be seen between 160°E and 80°W.

We would now like to assimilate temperature observations to produce a
better estimate of the temperature structure. When observations of temper-
ature are assimilated into the model, the thermocline is tighter, as can be
seen in Figure 7.4.4(b). The assimilation of these observations also gives the

model a good estimate of the pressure gradients. However, systematic errors
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in the wind stress and its parameterisation in the vertical lead to an imbal-
ance between these forces and the pressure gradient, a schematic of which
is given in Figure 7.3.1(b). This imbalance manifests itself as large tem-
perature increments put in by the assimilation and large vertical velocities.
These fields can be seen in Figures 7.4.6 and 7.4.8(b) for the integration us-
ing normal data assimilation. The u velocities are shown in Figure 7.4.12(b)
for this run. The EUC is now much stronger than without data assimilation
due to the tighter thermocline, but does not extend as far to the east as it
should. This is due to the stronger vertical velocities in the region of 100°W.
The surface currents are mainly flowing to the west, as we would expect, but
there is an eastward flowing section at about 160°W.

We now give an explanation for the large vertical velocities and temper-
ature increments. The incorrect wind stresses attempt to drive the model’s
temperature field to a different equilibrium than that given by the tem-
perature observations. This means that the assimilation has to change the
temperature substantially. Altering the temperature at some depth will lead
to a density change through the equation of state. Hydrostatic balance then
implies that the pressure above and below this level will be changed. This
results in a divergent/convergent horizontal flow in the North-South direc-
tion above the region and a convergent/divergent flow below. The ocean
model has non-divergent 3D flow and so these horizontal velocities pro-
duce upwelling/downwelling. These vertical velocities will then act to in-
crease/decrease the density at the level in question, and so produce a dy-
namical change to the density which is of the opposite sign to the one which

produced the circulation in the first place. At the next assimilation step,
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the observations will lead to another large increment and so the process will

begin again.

7.4 Pressure correction method

The method for systematic model error correction described in Chapter 5
was applied in Chapter 6 to the two dimensional shallow water equations. A
special case of the method was also described, whereby a correction to the
pressure field was used to account for errors in the forcing of the equations.
The application of this pressure correction method was shown in Chapter 6
for systematic errors in the forcing of the linear, two-dimensional equations.
Here, we describe an implementation of the method for the nonlinear, three-
dimensional Primitive equation model together with the Analysis Correction
data assimilation scheme described in Sections 7.2 and 7.3.

The problems of using the normal AC data assimilation scheme described
in the previous section arise from an imbalance between incorrect wind
stresses and the pressure gradient, which is altered by the assimilation of
temperature data. The schematic in Figure 7.3.1(c) shows how the pressure
correction method should restore the balance between these two forces. This
is done, as before, by calculating a corrected pressure field which alters the

effective wind forcing in the horizontal momentum equations.

7.4.1 Implementation of the pressure correction method

In FOAM, the pressure is not a state variable as it was in Chapter 6. Also,

we are only dealing with observations of temperature, so the correction to the
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Wind stress

Pressure gradient

(b) DATA ASSIMILATION
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Pressure gradient

(c) PRESSURE CORRECTION

Wind stress

Pressure gradient

Balance between wind stress

and pressure gradient
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imply correct pressure gradient
counteracted by incorrect

wind stress
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a correction which will
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Figure 7.3.1: Schematics of the main balances in the equatorial Pacific and

the effects of performing data assimilation and pressure correction on these

balances.
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pressure field has to be calculated through a compensating temperature field
or temperature bias, . In the assimilation, the analysis of this compensating
temperature field is calculated, as another state variable, by adding to its
forecast a small weighting of the difference between the forecast and observed

temperatures, so that
0.0 = 8.7 + AWEVi[e — 6y, (7.4.1)

The forecast of this compensating temperature field is made by keeping it
constant from one time step to the next, i.e. Q;_If_l = 6. It is difficult to
obtain an accurate estimate of the weighting matrices Wy, Vi¢. We therefore

make the following approximation:
WEVe = yWEVE. (7.4.2)

The model next calculates a new density field through the equation of
state, where the temperature input is altered to be the sum of the tempera-

ture and the compensating temperature field, i.e.
Py = P (% + 017, S, 2). (7.4.3)

However, the model’s temperature field is not affected by this.

The pressure field is now calculated from this new density field using
the hydrostatic equation. Finally, the corrected pressure field is used in the
calculation of the velocities through the horizontal momentum equations to
balance the systematic errors in the forcing of those equations introduced
by the wind stresses. A summary of this new forecast/analysis procedure is

given below.
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1. Starting from a forecast z{ = g,’: at time tj, use observations of tem-

perature to produce an analysis using the following equation:

AT = 2+ AWVily, — Hizll, (7.4.4)
et
87’

can be written as

where z; = and z§ = zj 1s the analysis after 7 iterations. This

A 6 WiV 6
s 5 Wiy 5
wf = [N W 16 - (H0,0,0,0) | w ],
ot it WiV it
6" i YWV 6’
(7.4.5)

where WV, determines how much of the temperature increment sig-
nal is present in the compensating temperature field and y, = B =

Hiz) + & = H{O) + 8.
2. Calculate wy, p,:

w, = g7 (ug,vp), (7.4.6)

— g0+ 65, 59). (7.4.7)

3. Forecast the state variables onto time t514:

ZIJ:-H = fk(éz) + Ek (7.4.8)
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This can be written as

ol FO88 ug, vf) F
S{ F2(8%, ug,v3) F}
ulo | =] e S |+ B[ (749)
vl F(0% + 637, 5%, ug, of) Fy
85 b 0

7.4.2 Results of experiments

Two experiments were performed using the pressure correction method. These
experiments start from the same initial conditions and contain the same forc-
ing fields as those described in Section 7.3. In one of these experiments, the
weighting coefficient, v, is chosen to be —0.1 and in the other it is chosen to
be —0.3.

The time mean potential temperature cross sections along the equator for
the second year of integration are shown in Figure 7.4.5 for both the pressure
corrected experiments. These show that the thermocline still contains the
tighter temperature gradients that were obtained in the run with the nor-
mal data assimilation, although the structure is slightly different below the
thermocline. Table 7.1 gives variances calculated from 1st May - 31st July
of the second year of integration. These are for the differences between the
temperature observations and the model values at the observation locations
obtained before (forecast) and after (analysis) the observations are assimi-
lated. These show that at 50m depth, the run with normal data assimilation
(v = 0) has the highest variance. The pressure corrected runs both have

smaller errors at this depth. At 200m, all the runs have similar variances.
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These results are significant as they show that we are fitting the observa-

tions better with the pressure correction method than with the normal data

assimilation.
Variances Depth (m) ||y=0|~vy=-01|~=-0.3
forecast - observations
47.85 || 1.10 0.98 0.85
203.7 || 0.72 0.72 0.75
analysis - observations
47.85 || 1.00 0.88 0.77
203.7 || 0.67 0.64 0.68

Table 7.1: Variances of model - observed temperatures taken from 1st May

to 31st July in the second year of integration.

Figure 7.4.7 shows the time mean cross sections of temperature increments
along the equator for the second year of integration. It is clear that the
temperature increments are much smaller for the runs with the pressure
correction method included than for the normal data assimilation run and
are constrained to the top 150m. The maximum values for the pressure
corrected runs are about 2°C per month compared with 4°C per month for
the run with normal data assimilation. Figure 7.4.1 shows the RMS values of
the monthly mean temperature increments over the two years of integration
for the region +15°N/S, 140°E-80°W at 50m depth (note the different axis

scales for the two figures). Both pressure corrected runs have much smaller
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RMS

values over the entire time period, the average value being about half of that

for the normal data assimilation run.

Q 1

=

ocean assim pot. temp. increments at 47.85 meters ocean assim pot. temp. increments at 47.85 meters
T T T T T T T T T T T T T T T T T T T T T 2. T T T T T T T T T 1T

2.

o

i
y \ 0.

=== yith data assimilation —-=-- bios corrected, olpho=0.1

bias corrected, alpha=0.3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1

T T R A N SR N ERE N

Ji
i

1 1 1 1 1 1 1 1 1 1 1 1 1 1
n Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May dun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mor Apr
1996 1997 1995 1996 997

Figure 7.4.1: RMS plots of monthly mean temperature increments (°C per
month) at about 50m depth over region +15°N/S, 140°E-80°W: (a) normal
assimilation (b) bias corrected - v = —0.1 (dot-dashed), v = —0.3 (dotted)

A vertical cross section of vertical velocities is shown across the equator in
Figure 7.4.9 at 110°W. Here, the large vertical velocities below 150m depth
which were present in the run with normal data assimilation have been elim-
inated. A horizontal view of the vertical velocities at 250m depth is given
in Figure 7.4.11. The pressure corrected runs both have significantly smaller
vertical velocities at this depth than those for the run with normal data as-
similation, as shown in Figure 7.4.10. The magnitudes are now comparable
to the control run without data assimilation. To show that the overall mag-
nitude of the vertical velocities has been reduced, the RMS of their monthly
mean values are shown in Figure 7.4.2 for the region &15°N/S, 140°E-80°W

at 250m depth. It can be seen that the pressure correction method has re-
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duced the vertical velocities although the values are still not as small as those

of the control run.
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Figure 7.4.2: RMS plots of monthly mean vertical velocities (cm/s) at about
250m depth over region +15°N/S, 140°E-80°W: (a) no assimilation (dot-
dashed), normal assimilation (dotted) (b) pressure corrected - v = —0.1

(dot-dashed), v = —0.3 (dotted)

The u velocities for the two pressure corrected runs are presented in Figure
7.4.13. In both experiments the EUC is stronger and less diffuse than for
the control run, although the magnitudes are not as large as for the run with
normal data assimilation. The EUC now extends to the east because of the
reduction in the vertical velocities. The surface currents are now of similar
structure to the control run.

The time mean cross sections along the equator for the second year of in-
tegration for the compensating temperature field are shown in Figure 7.4.14.
The same structure is shown for both values of ~ although the run with

~v = —0.3 has much larger magnitude. Most of the field is concentrated in
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the top 200m and is sloping down towards the west, the values being posi-
tive above the thermocline and negative below it. Figure 7.4.15 shows the
compensating temperature field at about 50m depth for the region £15°N/S,
140°E-80°W. This shows that most of the field is concentrated within 10— 15°
of the equator with larger values to the east of the region. The field is positive
along the equator and to the south but there is a negative area to the north of
the equator at about 120°W. RMS values of the monthly mean compensating
temperature field are given in Figure 7.4.3 for the region £15°N/S, 140°E-
80°W at 200m depth. Here, the run with v = —0.1 appears to converge after
8 or 9 months of integration. However, with v = —0.3 the compensating
temperature field does not appear to converge which might indicate that this
choice of weighting is too large.

The pressure correction field has been calculated and is given in Figure
7.4.16 at the surface for the region +30°N/S, 140°E-80°W. This field does
not appear to be confined to near the equator, especially with v = —0.3,
although the largest values are on or close to the equator. To calculate the
effective correction to the v momentum equation, for instance, the gradient in
the = direction of this field has to be calculated at each model level and then
integrated up from the bottom. This has been done to calculate an estimate
of the implied wind stress error fields in the x and y directions and is shown
in Figures 7.4.17 and 7.4.18 respectively. Surprisingly, the errors in 7Y are
larger than those for 7*. This indicates that the assumption that most of
the errors in the momentum equations come from incorrect wind stresses and
their parameterisation in the vertical is not necessarily very accurate as there

might also be systematic errors in the horizontal transport of momentum, for

183



mstance.

at 203.7 meters
LI B

1.0 T T T T T T T T T T T T T T T T T T

08— ) —

06— : —

RMS

/
02+ Y _

—-- bias corrected, alpha=0.1

L bias corrected, alpha=0.3

0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Moy Jun il Aug Sep Oct Nov Dec dan Feb Hor Apr Moy Jun dul Aug Sep Oct Nov Dec Jon Feb Mor Apr
1995 1996 1997

Figure 7.4.3: RMS plots of monthly mean compensating temperature field
at about 200m depth over region +15°N/S, 140°E-80°W: v = —0.1 (dot-
dashed), v = —0.3 (dotted)
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Figure 7.4.7: Annual mean (year 2) potential temperature increments (°C

per month) cross section along the equator: (a) vy = —0.1 (b) v = —0.3
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Figure 7.4.11: Annual mean (year 2) vertical velocities (cm/s) at about 250m
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7.5 Conclusions

In this chapter, we first of all described the ocean component of the FOAM
system which is used operationally at the Met. Office. As can be seen
from this description, the model contains many parameters to which the
resulting flows are sensitive. Perhaps the most important parameterisations
in the equatorial Pacific are those for the mixing of the wind stresses in
the vertical. Errors in these parameterisations can cause the model to have
significant systematic errors. There are also many other possible sources of
systematic model error. One important aspect of the model is the numerical
scheme used for advection. In the experiments of this chapter, this scheme
is a simple centred-difference scheme which is known to produce artificial

grid point noise. Some experiments were also carried out using the more

190




| DBX/C UnkQOWn stash cgde 200 qt 47.85 meters |

DBXZF Unknown stash code 206 at 47.85 meters
! j 9

<

Y Vo)

/\4Vo \ 10N -

0 ‘Qb‘/\ :

1508 180 1500 1200 900 1508 180 1500 1200

Figure 7.4.15: Annual mean (year 2) compensating temperature field (°C)
at about 50m depth for region +15°N/S, 140°E-80°W: (a) v = —0.1 (b)
v =—0.3

sophisticated QUICK advection scheme but are not shown here because the
impacts from the pressure correction method were qualitatively similar.
The results of experiments with and without the normal AC data assimi-
lation scheme were presented. These illustrated the problems of assimilating
data into a numerical model of the equatorial Pacific in the presence of sys-
tematic errors in the wind forcing. They showed that the model is driven out
of balance, which leads to very large vertical velocities. This is due to the data
assimilation continually putting in large temperature increments, attempt-
ing to bring the model towards the observations, whilst the wind stresses
force the model to a different equilibrium. The reason for performing the
data assimilation is to produce the best estimate of the initial conditions for

a forecast. A forecast made from the initial conditions at the end of these
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Figure 7.4.17: Implied annual mean (year 2) systematic errors in 7% at the

surface for region +15°N/S, 140°E-80°W: (a) v = —0.1 (b) v = —0.3
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experiments would not produce very accurate results.

The pressure correction method was then applied to produce a more bal-
anced and accurate estimate of the state of the ocean. The results of the
experiments with this method showed that by using the temperature obser-
vations, the pressure correction method can alleviate the problems caused
by the systematic errors in the wind forcing. The vertical velocities and
temperature increments were shown to be smaller than with the normal data
assimilation, which implies that the model is now more balanced. Also, statis-
tics were presented which show the model’s temperatures to be closer to the
observations than with the normal data assimilation scheme. However, the
observations also contain errors and so these statistics do not necessarily im-

ply that the model is closer to the true state of the ocean. It would therefore
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be useful to verify the results against some independent observations.

As well as producing a more balanced ocean state, the pressure correction
method gives us some insight into the origins of the systematic model error
through the structure of the compensating temperature field. These fields
contain a significant depth dependent structure. It therefore seems likely
that both the the wind stresses themselves and the parameterisation of mix-
ing in the vertical contain systematic errors. Another important point when
implementing this method is the question of what to do with the compen-
sating temperature field during a forecast. Perhaps the best thing would be
to ramp the field down to zero over some time period. However, more work
is needed on these last two points.

An important source of observational information, the satellite altimeter,
has not been discussed so far in this chapter. This instrument provides a wide
and frequent coverage of information on the height of the sea surface, [1]. A
method for including this data in the assimilation scheme to infer subsurface
information is given in [17]. It is shown in [57] that altimeter data is very
useful but that subsurface observations are still required to produce good
analyses. Using the pressure correction method whilst assimilating both
temperature data and altimeter data is therefore another problem which

needs to be addressed.
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Chapter 8

Conclusions

The foundations of physical oceanography which are relevant to the work
in this thesis are reviewed in Chapter 2. We first described the standard
approximations used when formulating the equations for an ocean general
circulation model. We also indicated the main area of study for this thesis,
that is, the tropical Pacific, and why we are interested in this area. The
problems associated with estimating and forecasting the ocean state in this
region were also discussed, including those associated with wind forcing. This
discussion motivated the main theme of the thesis, that is to obtain a better
understanding of the flow in the equatorial Pacific by using observations.
The general data assimilation problem is formulated in a discrete frame-
work in Chapter 3, where we aim to use observations, together with a numer-
ical model, to produce an estimate of the state of a system. Some theoretical
results are given from Control Theory which include some results for the
convergence of observers. These observers are designed to achieve the same

results as data assimilation. We therefore related the theory of observers to
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a general sequential data assimilation method in the case of a linear model
and gave conditions for stability and convergence. We also showed how the
theory can be extended to non-linear problems under certain circumstances.

Chapter 4 contains an overview of the more popular data assimilation
methods. Initially, the variational cost function used in some of the data as-
similation methods is formulated in a statistical framework. Here, a weighted
sum of the squares of the differences between the state and a background state
and the differences between the state and the observations is minimised. A
description is then given of the main sequential data assimilation methods,
including the optimal method over a period of time, the Kalman filter. It
is shown how the Kalman filter can be extended to non-linear problems and
how it is possible to simplify the Kalman filter using various methods. A
brief overview of some of the 4D data assimilation methods is also given for
completeness.

Some results were presented which give examples of how four sequen-
tial data assimilation methods perform when implemented on two ordinary
differential equation models, a linear damped oscillating system and the non-
linear, chaotic Lorenz equations. These experiments show that the Kalman
filter is the best method in the linear model. In the nonlinear model, the
extended Kalman filter produces the most accurate results when the obser-
vations are closely spaced in time. When the observations are taken less
frequently, the extended Kalman filter produces similar results to those of
Optimal Interpolation.

The theory given in Chapters 3 and 4 is based on the assumption that

the forecast model is perfect. This is rarely the case in practice, however,
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as Chapter 2 indicates in the oceanographical context. We therefore showed
in Chapter 5 how the method of state augmentation can be used to account
for systematic model errors in the linear case. The theory given in the two
preceding chapters is then extended to give conditions for the stability of
the data assimilation process and the convergence of the analysed state and
systematic model error to their true values. To implement this method, a
model is needed for the evolution of the systematic model error. This model
is an important part of the technique and some possible choices are given,
the final decision depending on the particular problem to which the method
is to be applied. We then showed how the method could be applied to the
sequential data assimilation methods and gave expressions for the calculation
of the weighting matrices.

Some experimental results are presented in this chapter which aim to
account for systematic model errors. A constant bias is included in the
models for the damped oscillating system and the Lorenz equations, and it
is shown that this error can be accounted for by a constant bias correction.
Also, the model parameters are altered in the damped oscillating system
and 1t is shown that these can be accounted for by using the state model
equations to evolve the systematic model error variables. We also showed
that, in the Heat equation, the constant bias correction method gives an
accurate correction for incorrectly specified boundary conditions.

In Chapter 6, we investigated a specific type of systematic model error in
the two-dimensional linear Shallow Water equations. It is shown in a contin-
uous framework that systematic errors in the wind forcing of the equations

are not taken into account when using normal data assimilation. We also ex-
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amined the use of systematic model error correction in this case, which leads
to a new method that can account for certain types of systematic errors in
the wind forcing whilst being easy to implement and computationally inex-
pensive: the pressure correction method. The convergence of this method
was analysed in a continuous framework, and it was shown that the analysed
solution should converge to the true solution for the types of waves expected
in the equatorial Pacific.

A numerical model of the linear Shallow Water equations was formulated
in the domain of the equatorial Pacific. This was used to verify the theoretical
results where there are systematic errors in the wind forcing. These experi-
ments show that using Optimal Interpolation does improve the accuracy of
the pressure variable during the assimilation, but the velocities are worse
than the solution without any data assimilation. The results when using the
bias correction and pressure correction methods were then compared. The
main conclusion from these results is that the lack of information about the
gain matrix in the analysis of the bias, and the small values of o, mean that
the bias correction method does not perform well. The form of the pressure
correction in the momentum equations implies that the pressure correction
method produces better results than the normal data assimilation scheme.
These experiments also give an indication of which values of v should be used
in the pressure correction method.

After producing a method which should account for systematic errors in
the wind forcing of a model of the equatorial Pacific, we implemented and
tested the method in an operational model of the ocean, as described in Chap-

ter 7. The model used is FOAM, the operational Met. Office ocean model.
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We first described the FOAM ocean model component and Analysis Correc-
tion data assimilation scheme. This description showed the importance of the
many parameterisations that are included in the model, especially those for
the mixing of the wind stress in the vertical. Results were shown of some ex-
periments with and without data assimilation. These illustrate the problems
caused by incorrect wind stresses. The vertical velocities and temperature
increments are very large when the data assimilation is performed. This is
explained to be due to the systematic errors in the wind stresses and their
parameterisation. We next described how the pressure correction method is
implemented when assimilating temperature observations. The results of the
experiments using the pressure correction method for two years of integration
were presented. These show promising results in that the vertical velocities
and temperature increments in the model have both been reduced. Also, the

model temperature is shown to be closer to the temperature observations.

Open questions and further work

The experimental testing of the pressure correction method given in Chapter
7 could be extended. The first thing to do would be to obtain some inde-
pendent observations of temperature with which to verify our results more
rigorously. Another way of testing the results would be to observe how the
forecasts of the various experiments evolve after the assimilation period. This
would lead to another area of future work which is to explore how best to
predict the compensating temperature field in the forecast. Also, the exper-
iments could be performed again but in an El Nino or La Nina year to see

how the changes in the surface wind stresses affect the impact of the pressure
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correction method. More knowledge could be obtained about the main types
of systematic model errors by looking in more detail at the compensating
temperature field. The structure and magnitude of this field should give us
some insight into how to alter the parameterisation of the mixing of the wind
stresses in the vertical.

Another open question is how well the pressure correction method would
perform in a different region of the world’s oceans. For instance, it is difficult
to obtain an accurate estimate of the place in which the Gulf stream of the
North Atlantic separates from the coast of North America. An investiga-
tion into the types of error responsible for this could lead to a form of bias
correction which will produce a more accurate estimate of this separation

point.
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Appendix A

Derivation of the forced shallow

water equation

In this section we describe the derivation of equation (6.3.5) from equations
(6.3.1 -6.3.4). First of all, differentiate equation (6.3.2) with respect to « and

equation (6.3.1) with respect to y, and use equation (6.3.3) to obtain

a 9 A Fo arv Ore

ailar ) TP T H G T T

(A.0.1)

To eliminate @, take the = derivative of equation (A.0.1) and use equation
(6.3.3) again, giving

0 00 1.0 0? ) Jd orYy  or°
6t( )—I_ﬁ_—I_H(@t—I_ )(ay ot f@x)p_a_x(%_ 6y>7

(A.0.2)

where V2 = % + %. We require another equation in ¢ and p and obtain
this by taking f multiplied by the first derivative with respect to time of

equation (6.3.1), and subtracting the second derivative with respect to time
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of equation (6.3.2). This gives us

9 .0% . 3, 0? d.. 0 0rY .
gz T U)+g(§+7)(6y6t_fa_x)p_ 5l — ) (A03)

To eliminate p we add the derivative with respect to time of equation
(A.0.2) to v multiplied by equation (A.0.2) and multiply this by g H. We then
subtract from this the derivative with respect to time of equation (A.0.3) and

e multiplied by equation (A.0.3) to obtain

0 0 00 Jd 0 0%
20 7 e 2 YUy Y Y b 2~
C(at + 7)(at(v U)+5ax) at(at+€)(at2 + f20)
0 0 o0rYy  Or* Jd 0 orY

= cz(a + V)a—x(% - a—y) - a(a + 6)(% — ), (A.0.4)

where ¢? = gH.
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Appendix B

Properties of two polynomials

B.1 Hermite polynomials

In this section, we state some of the properties of the Hermite polynomials
used in Sections 2.4.1 and 6.3. Much of this section is obtained from [53], [6]
and [73].

We want to find the polynomials which satisfy the equation

d*J(¢) dJ(¢)
-2 2 = B.1.1
B S G (B11)
and are of the form
IO =Y e (B.1.2)
r=0
We write the recursion relation derived in Section 6.3 as
_ (r+1)(r+2) _
=7 - . B.1.

T 2(n _ T) cr-|—2 ( 3)

Substituting (B.1.3) into (B.1.2) gives the following expression:

Q) = (e =" Doy
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2nn—1)n—=2)...(n—2r+1)

—1 e
+(=1) 2r.2.4.6...2r ¢ o)
[3n]
S Gt DI 2
= e B.1.4
n 7;) 22 rl(n —2r)! i ( )

where [in] denotes the largest integer < 1/2n. The standard coefficient is
chosen to be ¢, = 2" giving,
[5”] ]

" n!
Ha(¢) = >_(=1)

r=0 T’( QT)

Theorem B.1 [t is possible to write the Hermite polynomials in terms of a

H(20)" (B.1.5)

generating function:

w((,t) = Xt ZH (B.1.6)
Proof B.1

42 42
Q20— 20—t

- i:% (2?‘)’” 2)00(—; )’

= 3 (1B e (B.17)

Is!
r,s=0 r.s

For the value r 4+ 2s = n. the coefficient of t" is
(2§)n—25

—1) = B.1.
(=1) sl(n — 2s)! (B.1.8)
Summing gives the coefficients of t" as
[ln] n—2s
: (20) 1
1)y —=————=—H,((). B.1.9
sz:%( ) sln—2s)  n! (©) ( )
Theorem B.2 Another way of defining the Hermite polynomials is
o d" e
H,(¢) = (=1)"e" —e¢. (B.1.10)



Proof B.2 The Taylor series expansion of the generating function is given

by
2 > anw t"
o2 v
w((,t) = e _;lat”]t:o e (B.1.11)
We can therefore write H,, as
J"w
H, =
o= 5
— |:€C2_(C_t)2i|
t=0
= & [a—ne—@—”] . (B.1.12)
ot =0
We also have that
a" , 0"
S (x —s)=(-1) axnf(x—s), (B.1.13)
which gives
o d" e
H,(C) = (=1)" %e—ﬁ : (B.1.14)

It can be proved by differentiating both sides of the generating function
with respect to ( that

H (C)=2nH. 1 ((), n>1  H() =0 (B.1.15)

By differentiating both sides of the generating function with respect to t, is

can be shown that

Hyi1(C) = 2CH, (C) — 2nH,-1(¢), n > 1 H1(¢) = 2¢Ho(().
(B.1.16)

It is possible to combine these two equations to obtain
H/(¢)—2(H] + 2nH, = 0. (B.1.17)
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This shows that the Hermite polynomials do satisfy the original equation,
B.1.1.

The first few Hermite polynomials are given as

Ho(¢) = 1,

H(¢) = 2,

Hy(¢) = 4¢° -2,

Hy(¢) = 8¢ —12(,

Hy() = 16¢* —48¢* +12.

B.2 I, polynomials

The polynomials I,, introduced in Section 6.3 were said to satisfy the differ-

ential equation

d*J(¢) dJ(¢)
d¢? d¢

Again we look for polynomial solutions of the form

+2 —2nJ(() = 0. (B.2.1)

HO) =Y e (B.2.2)
r=0
This leads us to the recursion relation

. (r+2)(r+ 1)c_|_
=) e (B.2.3)

Subsituting this into equation (B.2.2) , we obtain

[%n] n!Cn—ZT

J() = ; (2l (B.2.4)
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If we choose ¢ = 2" then this becomes

L) = 3 g 20 (B.25)

=0

Theorem B.3 The polynomials I,,(¢) can be written in terms of a generating

function as

w((,t) = 3 = Z L( (B.2.6)

Proof B.3

QHCHT — p20C 17 i 7(247)“:5—'—25' (B.2.7)

r,s=0 15
For the value r 4+ 2s = n, the coefficient of t" is
n—2s
% (B.2:8)

Summing gives the coefficients in t" as

oy 1

; m@g)”—% = —1a(Q). (B.2.9)

Theorem B.4 Another way of defining the polynomials I,(¢) is as follows:

_C2 d C2

L) = e e (B.2.10)

Proof B.4 The Taylor series expansion of the generating function gives

anw] ﬁ

wen-3|5e] L

(B.2.11)

Therefore

w0 = (3],

— [ﬁe—c%(cm?]
otn =0
e | 0" (¢+t)?
= ¢ —e : (B.2.12)
otn =0
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We also have that
LT
ot - Oan

Fla+1), (B.2.13)

so that

_ |9 ey
wo = o ]

t=0
dn
= e—’?%e@. (B.2.14)
It can be shown by differentiating both sides of the generating function
by ( that

L) =2L(0),  nxT L) =0, (B.2.15)
Differentiating both sides of the generating function by ¢ gives
L (Q) = 20O +20La(O), n>1 L(Q) =2L(C). (B2.16)
Combining these two equations we obtain
1(C) 4+ 2CIL(C) — 201,(C) = 0 (B.2.17)

This shows that the polynomials I,, do satisfy the equation (B.2.1).

The first few [, polynomials are given as

I(¢) = 1,

Ii(¢) = 2,

L(¢) = 4¢*+2,

L(¢) = 8¢ +12(,

L(C) = 16(* +48(% +12.
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