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Abstract

A moving grid method for the solution of the porous media equa-
tion in one dimension which involve a mass conservation property is
investigated. Following a moving mesh partial differential equation
approach, where nodes are moved by equidistributing a measure of
the solution, the algorithm here simply conserves mass in each com-
putational cell and moves the nodes appropriately Furthermore a sim-
ple grid refinement algorithm near to the moving front is presented
to work in conjunction with the outlined method. Numerical results
are shown in one-dimension and compared against reference solutions
found in insect dispersal models.

1 Introduction

In many areas moving mesh partial differential equations (MMPDE’s) have
been used to improve the numerical solution of partial differential equations.
These MMPDE’s prescribe the movement of nodes relative to a computa-
tional mesh. In most cases these MMPDE’s are derived from an equidistri-
bution principle [2] which controls the grid in such a way so that a prede-
termined measure of the solution or geometry of the solution is distributed
equally over the entire mesh.

Generally the use of such methods involves having two equations to solve,
one for the movement of the mesh and one for the solution of the underlying
partial differential equation. Presented in this report is a method for the
numerical solution of the one-dimensional Porous Media Equation (PME)
devised in such a way that the MMPDE and the PME are combined, yielding



one system of equations to solve and hence making a computational saving.
The PME is written as

= (e )

T z ,
where m is real and positive, with initial condistions symmetric about z = 0
and Neumann boundary conditions imposed at each outward moving bound-
ary.

Section 2 outlines the method, in particular we see how the technique
takes advantages of two major features of the PME, namely its mass con-
servation property and its singular behaviour at the moving boundary. An
approximation to the speed of the moving boundary is derived from the con-
servation of mass,a simple algorithm for grid refinement is explained and the
idea of representing any steep front formations with an appropriate polyno-
mial expression is explored. Section 3 shows numerical results for various
values of m. Numerical results are compared against an analytical solution
found in Murray [1]. Finally section 4 outlines ideas for further work.

2 Moving Mesh Partial Differential Equation
by Mass Conservation

As stated we illustrate the derivation and performance of the method by using
the porous media equation (1), two features of which will be of importance
when deriving the MMPDE. Firstly the solution has a moving boundary
which moves with finite speed. If the boundary’s position is denoted by the
point zy41(t) then we have that u(zy41(t),t) = 0 for all time ¢. Secondly the
total mass u is conserved over the region (0,zn41(t)) under consideration.

2.1 Conserving mass and moving the nodes

Generally MMPDE’s are derived from an equidistribution principle which
moves nodes such that a measure of the solution is spread equally over each
computational cell [2]. However, by taking advantage of the conservation
of mass property we can move the nodes by ensuring that the mass con-
tained in each cell is kept constant throughout time [3]. In each cell Tl we
approximate the mass Ci+% using a simple trapezium rule integration,

il
CH_% . 5(%‘ + Uiy1)(Tigr — 2, (2)

and fix it for all time.



The rate of change of the integral of the mass between a pair of adjacent
moving nodes ;(t) and z;41(¢) is

5} /zi+1 p /$i+1(f) dz + . .
b~ uar = Utax U; ) — U;T;

If the grid is to be moved whilst conserving mass between adjacent nodes
then the left-hand side of this equation will equal zero. Moreover we can
substitute the porous media equation (1) into the integral on the right-hand

side to get

) ) zipr(t)
UsT; — Uip1T5q1 = / (u™ug)zde.
zi(t)

Using upwinding for discretizing the derivative terms on the right-hand
side we are left with the discretization

Uip1Bip1 = Wil + Ul (——ut — 1/%.-1) —ufls (————utﬂ . ut) , (3)
2\T — Ti—1 2\ Tit1 — T4
where Uip 1 is the value of u evaluated at the centre of the ¢ 4+ Zth cell.
Because we are considering a half-section of the problem (the solution is
symmetric about = = 0) we put o = 0 since this is the centre of mass and it
can be shown that this is constant throughout time [3]. Equation (3) yields
a bi-diagonal system of ODE’s to solve. By using the fact that uy4; = 0 for
all time ¢t we can express all values of u; in terms of the current positions of
the grid points z. Hence from (2) we have that

N+1 _1)k-im1
u; = 2 Cip1~—"bt—, 4
v kgl k+2 Tk — The1 ( )

Finally we require a boundary condition for zy4;. Section 2.2 illustrates
how an approximation to the wave speed for the porous media equation can
be derived from the mass conservation property [3].

2.2 Wave Speed Derived from Mass Conservation

We now present a derivation of a numerical approximation to the speed
of the moving front resulting from the non-linear diffusion equation. By
conservation of mass we have that

wn41(t)
%/ R udr =0
0

where zn41(t) is the position of the front at time {.
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Expanding the integral we have that

eN+1(t) .
/0 uwide + u(zn41(t))En4 = 0.

Obviously there is no derivative on the node at z = 0 since this is the
centre of mass, which remains constant with time. Now substituting in the
diffusion equation into the integral on the left-hand side we have that

ent(t) )
/ﬂ (W™ ug)pdr + u(zn1(t))Ener =0
giving

umuCElE:-’L‘N“ + u(wN+1(t))5.cN+1 =0

since u is zero at x = 0 by conservation. Rearranging gives

i’N-l-l = um_lux|a;=xN+l. (5)

Although u = 0 at = = zn41, Uy is unbounded, yielding a finite, non-zero
front speed. Taking the limit as u — 0, 1.e.

. - )
& = lim(u™ "y
R u-—»O( x))
we have the approximation
. B UN-1
Ty~ u%_ll —_—
2N —TN-1

2.3 Mesh Refinement

In contrast to MMPDEs derived from an equidistribution principle, there
is no reason why all the computational cells should contain equal amounts
of the total mass. By using different distributions of mass we can generate
a higher resolution adaptive grid near geometrically complicated features
of the solution. In the work presented all the initial grids are generated by
equidistributing the mass over the grid [4]. However for higher values of m we
can do some further subdivision such that the masses become progressively
smaller near the front at zy4;. This can be done very simply by setting
a grid tolerance parameter gtol and then repeatedly subdividing the last
computational cell (using the equidistribution idea) until the mass in the
last cell is less than or equal to gtol. Currently the mesh has only been
subdivided at the initial state of the problem, but there is no reason why
this process cannot be introduced at any point during the solution of the
problem.



2.4 Inverse Polynomial Approximations

An alternative idea to using a refined mesh near steep fronts is to approxi-
mate the solution in the last cell by an appropriate nonlinear function. The
motivation for such an approach is that by choosing an appropriate form the
solution will satisfy the properties required for a finite wave speed (see equa-
tion (5)), requiring the value of u™ 'u, to be finite inside the last cell. We
now present two such approximations to u in this region and present results
compared with those produced on a refined mesh.

2.4.1 Approximation 1

We approximate u In the region (zn,zn41) by

) = (—f!‘—) )

IN+1 — TN

3=

where uy is the approximate value of u at x = zy. Furthermore the linear
approximation to the mass in the last cell is replaced by the integral of w1 (z),

so that
TN41— TN

m+1
Using the expression for ON+1 we can find the value of ux which retains this
mass under this approx1mat10n of the solution. So we have that

TN+1
CN+l :/ Ua(z)dz = muy

Cnyir(m+1)

m($N+1 - $N)

UN-1 =

The wave speed is then approximated using equations (5) and (6).

2.5 Approximation 2

We can 'upgrade’ the polynomial expression (6) above by adding a parameter
p which will allow us to use information regarding the derivative of u at
z = . We now choose u such that

uea(z) = Az — x)# + B(zny — z)P (7)

The constants A and B are chosen such that u.s(zy) = uy and ul,(zn) =

INTUN-1 - Ag before
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d



As with the previous approximation the value of un_q, uy and hence Ty
can be found using the various froms of C. It is worth noting that here C'N:%
is still approximated linearly as before. The details are omitted.

3 Numerical Results

We can compare our numerical results for various values of m against an
analytical solution. This solution comes from Murray [1] and represents the
behaviour of an insect dispersal model, which predicts how a set quantity
of insects @ released at z = 0 diffuses out symmetrically about z = 0 with
time. We take initial conditions at a small arbitrary time tstart and then
compare the approximate and analytical solutions at various times for values
of z > 0.

In all the results presented here we have used the NAG subroutine DO2EJF,
which uses a backwards differentiation formula, to solve the stiff system of
ODE’s (3) with u given by 4). We consider three different values of m.

First, we try the simple case when m = 1. Due to the simple power
on the diffusion co-efficient, the solution does not form a steep front at the
moving boundary, and hence no grid refinement is required. A relatively
small number of nodes can be used to get an adequate solution as shown in
Figure 1, in this case N = 20. The approximate solution values are denoted
by the crosses whilst the Murray solution is represented by the solid line.
On the left hand side of Figure 6 we can see the convergence of the solution
at £ = 0 att = 1 as N is increased. The graph is plotted as the logarithms
of N and the error and from the gradient of the curve we can say that the
algorithm has an order of accuracy of 2. The right hand side of the figure
shows the trajectories of the nodes, from this you can see the movement is
to be as expected since the masses are kept constant and equal (= 0.0263)
with the nodes moving almost uniformly near « = 0. The parameters of the
analytical solution in this case are () = 1 and tstart = 0.01.

Next we show that by using grid refinement we can accurately resolve a
steep front near the moving boundary for a larger value of m. Using the grid
refinement algorithm as described in Section 2.3, starting with an initial 15
nodes and adding an extra 10 by setting gridtol = 10™*, we solve for m = 3.
The analytical solution parameters are ¢ = 2 and tstart = 0.05. Figure 2
shows the numerical solution, again denoted by crosses against the Murray
solution shown with the solid line, for various times.

Finally we present results for when m = 6, with ¢ = 1 and tstart = 0.01.
The mesh was formed initially with 10 nodes and then 9 extra nodes were
added by setting gridtol = 10~*. This is a much more severe problem and
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Figure 1: Approximate

and reference solutions for m =1
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Figure 2: Approximate and reference solutions for m =3



the method seems able to manage the exaggerated steep front quite nicely
without using a great number of nodes. Figure 3 shows the results.

Figures (4) and (5) show results using the inverse polynomial approxi-
mations outlined in sections 2.4.1 and 2.5 (where p = 1). These are gener-
ated using the same solution parameters as used for the results (except that
tstart = 0.01) shown in figure (2) to give us a direct comparason with the
results produced when using a refined mesh. It is obvious that the polyno-
mial approximations do not achieve the desired results. It is apparent that
the wave speed has not been accurately approximated since the position of
the front is always found trailing behind its exact position. It is worth noting
that the inclusion of the parameter p does give a smoother approximation at
z = x but does little to improve the solution as a whole. Experiments were
made changing the value of the parameter p but with little or no significant
improvement in the results.

Figure 7 shows the trajectories of the nodes in the cases of m = 3 (left
hand side) and m = 6 (right hand side). Notice that because of the way
the nodes are moved, nodes near the front tend to move away from this area
as time progresses. It would be expected then that as time progresses the
solution would gain accuracy near z = 0 and lose accuracy nearer the front.
However Figure 8 doesn’t agree. Although the relative error at z = 0 is
significantly greater than at a point measured near the front, the relative
error near the front actually decreases with time, whilst the relative error at
the centre of mass varies only slightly with time. These results are from the
case when m = 3.

Finally quantive measures of the error, by means of the L1 and L2 norms
are shown in tables (3-3).
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Time 0.2 0.4 0.6 0.8 1.0

L1 Norm 0.0900 0.0725 0.0636 0.0580 0.0539

L2 Norm 0.0272 0.0219 0.0192 0.0175 0.0163

Table 1: Errors for m=1 (See Fig 1)

Time 0.2323 0.4242 0.6162 0.8081 1.0

L1 Norm 1.0259 0.9075 0.8414 0.7966 0.7631

L2 Norm 0.3939 0.3479 0.3227 0.3056 0.2928

Table 2: Errors for m=3 (See Fig 2)

Time 0.2 0.4 0.6 0.8 1.0

L1 Norm 0.5055 0.4730 0.4528 0.4383 0.4272

L2 Norm 0.4495 0.4139 0.3940 0.3804 0.3701

Table 3: Errors for m=6 (See Fig 3)
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4 Conclusions and Further Work

The results presented in Section 3 show that the method can give good quality
solutions to the porous media equation for various values of m by solving
only one system of bi-diagonal ODE’s. It is also shown that the steep front
which is a feature of the porous media equation can be resolved by using a
simple grid refinement algorithm at the initial state of the solution, although
attempts at replacing a refined mesh with a polynomial approximation of u
in the last cell did not prove successful.

However, it must be noted that this approach is only possible due to the
two important features of the PME noted in Section 2. The conservation of
mass means there are no terms involving integral of mass differentiated with
respect to time, which could be hard to discretise accurately. Also the fact
that v = 0 at the foot of the front allows the values of u to be easily expressed
in terms of the node positions, so giving only one system of equation to solve.

These two points open interesting avenues for further research. It is easy
to see that if either of these two resttictions could be overcome then the
method would applicable to several different areas. For example, if an accu-
rate way of expressing the time-derivatives of integrals could be introduced
then the method could be applied to reaction-diffusion problems such as the
Modified-Fisher-Equation. Alternatively if an algorithm for the expression
of v in terms of = was introduced when u is unknown at the boundary, then
other conservation laws could possibly also be modelled using ideas from this
work.

Other ideas for further work include extending the method to higher
dimensions and finding other ways of generating and refining the grid, either
initially or as required as the solution evolves.
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