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SUMMARY

This paper compares the performance of the 5522 and 5523
(References 1,2) single step algorithms for the numerical solution
of the second order structural dynamic equation and a related new
algorithm SS32B applied to the eqguivalent first order system,
with sine and step forcing functions. Various aspects of stability

relevant to these equations are discussed.



We consider the structural dynamic system given by the N

equations

M+ Cx + Kx = F(t) (1)

arising from the finite element discretization of a structure. M, C

and K are the mass, damping and stiffness matrices respectively, x

is the vector of displacements and f(t)} is the forcing function. We
make the usual assumption of Rayleigh damping (i.e. the matrix C is some
linear combination of the matrices M and K), then, since the matrices

M and K are symmetric and positive definite due to their finite element
origin, we can use the theory of Wilkinson [3] to show that M, C and K
effectively have a common complete set of eigenvectors ET’ r=1,2,...,N.
Hence we can make a modal decomposition and show that the exact solution

of the system of eguations (1) is
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mA2 + g A +k_ =0, r=1,2, »N (3)
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Another approach to the solution of the system of equations (1)
is to reduce it to a first order system as in, for example, references

(4], [5] by putting v = X and rewriting the equations as



W= Aw + F (5)
v £
where w = < F = 0 and A 1is the 2N x 2N matrix
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The matrix A has the 2N eigenvalues given by the 2N roots of
the N qguadratics in equation (3).
This means that if we suppose that the damping in each mode is
less than critical the matrix A has 2N eigenvalues in complex conjugate

pairs given by

v =/5C ayp [ilm t 0 )1, i = /71 (7)
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i.e. V. gives the damping as a fraction of the critical damping Z/K;E;T
These 2N eigenvalues of the matrix A 1lie in the Argand diagram
shown in Figure 1 in the wedge given by arg(-A) £ o where o = max{qr}.
Equation (1) can be integrated numerically by the single ste; method
described in references [1]l, [2]. Here the function x(t) 1is approximated
as a polynomial of degree p in time t, p 2 2, then x(t), X(t) and X(t)
are substituted into the Weighted Residual equation

(t+At
J WiE) MK + Cx + Kx - fldt = 0 (9)
it



We write

tHAt rt+At
J weeytddt = eq Ath Wit)dt, g = 1,2,...,p (10)
t

t
Thus an algorithm is formed with p parameters eq which can be chosen
to give various stability and accuracy properties. This algorithm is described
in detail in references [1] and [2].

We here introduce the related single step algorithm SSp2B which is

the result of the same approach applied to the first order system of

P
equations (5). The notation X is used for the pth. derivative with respect

to time as in reference [1].
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(iv) Find §ﬂ+1, §ﬂ+1, yﬂ+1, yﬂ+1 by substituting o B
into:-
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(v) Repeat for next time step.

We note that the matrix to be inverted in step (ii) is of the same
order as that in SSp2 and the extra equations in step (iii) are scalar.

In order to explain the motivation for introducing the algorithm
SSp2B we list some different kinds of stability associated with the numerical
solution of eqguations (1) or (5).

(1) A method is AD stable [6] if it is stable when these equations

have all eigenvalues real and negative i.e. when all roots of equation (3)

are real and negative. This would mean all modes of the structure over-

damped. In the Argand diagram in Figure 1 all the eigenvalues would then
lie on the negative real axis.

(ii) A method is A-stable [7] if it is stable when the equations
have eigenvalues with negative real parts. This means that the modes can
be under-damped and it does not matter how low the damping is. 1In Figure 1
then the eigenvalues lie in the left hand half plane.

(iii) A method is A(o) stable [8]1 if it is stable for a system of
equations where the eigenvalues now lie in the wedge of angle 20, shown 1n

Figure 1.



Another way at looking at A(a) stability is in relation to the
stability boundary locus [9]1. For example, Figure 1 shows the Argand diagram
with the stability boundary locus for the Gear 3-step method [10]1. This
method is stable when used for equation (5) when the eigenvalues of the
matrix A are outside the stability boundary. Since this boundary locus
encroaches on the left hand half plane this method is clearly not A-stable
but as shown in the Appendix by calculating the tangents to this curve
from the origin we can obtain the equivalent A(o) stability region. Here
we have tan o = 14.42 i.e. a 86°. Hence for v > 7% damping the Gear
3-step method for equation (5) is absolutely stable.

The single step algorithms SSp2 and SSp2B are equivalent to p-step
methods and with the same starting values will give exactly the same results.
Thus we can apply to SSp2 and SSp2B the following results due to Dahlguist
£71:

(1) An explicit linear multi-step method cannot be A-stable.

(ii) The order of the error of an A-stable implicit method cannot exceed
two.

(iii) The A-stable linear multistep method with second order accuracy

and the smallest error constant [9] is given by the Trapezium Rule. This

=0, = 0.5. [2].

corresponds to S5S2Z2 with © 2

1
Now we are looking for a single step method where we can freely

change the size of time step according to some error criterion, hence we want

unconditional stability. We see from the Dahlguist results that SSpZ

is limited to 0(At2) error when it is A-stable. Widlund [8] gives

conditions which can be translated into conditions on the parameters eq in

SS372B dependent on the angle o , such that we have unconditional stability

and error 0(At®). Hence the motivation for introducing the algorithm SSpzZB

and gompafing its perfofmance with that of SSp2.



It was intended to use the Widlund conditions but in fact as shown later
they do not seem to apply.
The algorithms SS22, SS32Z and SS32B are applied to the numerical solution

of the representative single degree of freedom eqguation

mX  + px + kx = f(t) (11)

with m=k =1, p=2v i.e. v = fraction of critical damping and

(i)} Step function F(t) =0, t £ 0
f(t) =1, 0 <t < 25 (12)
f(t) = -1, t 2 25

(ii) f(t) = sin (wt/20).

The exact solutions can be obtained using the Green's function [11].

RESULTS AND CONCLUSIONS

We present results for some particular examples of SS22, SS32
and SS32B. Values of the parameters eq are chosen so that the algorithms
are single step equivalents of some well known p-step methods. Two methods
of measuring the accuracy are used depending on the form of the forcing
function. The time t = 5 1is chosen as a typical point and the error measured
here as |xn - x(5)] where x(5) 1is the exact solution at t = 5 and X
is the numerical solution at t = nAt = 5. This error is also given as a
percentage of the true solution. When the step function f(t) dis used
we also give the "overshoot”. With a forcing function which has a sudden
Jjump the numerical solution tends to be least accurate just after the jump
{See Figure 2). The numerical solution may under-estimate or overestimate
the true solution. This error is measured as shown in Figures 2 and 3 and
it is also given as a percentage of the true solution at the turning point

(i.e. the minimum value of x(t) after the jump as shown in Figures 2 and 3).



The initial conditions used are : x(0) = x(0) = 0. The method of

approximation of F is that suggested in Reference 1. : F = 6,F

Fpeq © 1128

1. 38522

It is shown in [2] that this is equivalent to the Newmark algorithm
[12] with a = 2B where o = 61 and 2B = 62 i.e. 91 = 82

(a) With e1 = 62 = 0.5, S522 is equivalent to using the trapezium
rule [21, hence by the Dahlquist theorem it is the most accurate second order
method. Tables 1 and 2 show the results for the step and since forcing
functions. The "overshoot” as well as the error at t = 5 shows the O0(At?)

effect (error divided approximately by 4 when the time step is halved].

The approximation to F is evidently quite sufficient. It is interesting

JFn

that at low damping, v = 0.1, the overshoot error is less than that at t = 5.

{(b) Although the S$S22 algorithm with 6, = 6., = 0.5 1is second order

1 2

accurate the absence of numerical damping can be a disadvantage when we want
to eliminate inaccurate high frequency modal components. The accuracy dies

away gradually as 61 and 62 get further from e,l a 62 = 0.5. Hence

61 = 0.6, 62 = 0.805 are chosen to give a small amount of numerical damping

and retain unconditional stability. Tables 3 and 4 show these results which

are now first order accurate.

2. 5532

The SS32 algorithm needs three starting values, displacement, velocity and

acceleration. The differential equation is used to generate
¥ (0) = f(0) - 2yx(0) - x(0).

(a) 64 =2, 0, = 11/3, 65 = 6. This is the single step equivalent to
Houbolt [13); 4t is unconditionally stable and second order.

Tables 5 and 6 show the results for the step and sine functions

respectively.



(b) o, = 1.4, 6, = 1.96, 65 = 2.744. This is the single step
equivalent to Wilson-6 = 1.4 [14]; it is unconditionally stable and
second order. Tables 7 and 8 show the results.

(e) 6, =1.05, 6, = 1.1, 6, = 1.15. This is the single step

1 3

equivalent of the Bossak-Newmark method [15]. This method is only
conditionally stable; for v = .1 it is stable for At < 1.5 approximately.
It is interesting to see how well this performs compared with the SS22 (a)

as well as with the Houbolt and Wilson-§ equivalents.

3. 55328

It was originally intended to run SS32B using the conditions given by

Widlund for Al(a) stability [8]. With

-6, - 16, c =6, - 392/2 + 1/4 (14>

2 1 3

the conditions given by Widlund for A(a) stability are equivalent to

c > 0, 12a2 > 1 (15a)

and

(Z2c + a)?tan?a l

dc(12a? - 1) j Gisb)

b > max {4ac,

Conditions (15a) are almost the same as those obtained for the A-stability
of S832 in Reference 2 but there equality is possible. For a = 1.5,

c = 0.75 the Widlund inequality (15b) gives b > 4.5 for v = 0.5 and

b > 45.7 For v = 0.1. The error constant [39] which gives a measure of the
accuracy of the methed is numerically equal to (2c + a)/24. This error
constant multiplies the At? +term in the error but it is clear that when

tan o 1is large the large value of b implied by ingquality (15b) can magnify

the effect of later terms in the error. A separate investigation of the link
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between the Gear and Widlund approaches to the stability limits led to the
realisation that it 1s easy to obtain the angle o for the Gear 3-step

method [10] {See Appendix). Hence SS32B results are included here for the
parameters which give the single step equivalent of the Gear 3-step namely
a=1.5 b=1.5 ¢ =0.75. As shown in the Appendix these values

give A(a) stability for tan o = 14.42 i.e. v = 0.069 approximately.
Experiment has verified that this method remains stable with v = 0.1 and large
values of At so that the large value of b dimplied by (15b) is not necessary.

The SS32B algorithm reguires four starting values: x(0), x(0), %X(0) and
% (0). X(0) is generated as in the $S32 algorithm and %(0) is generated
by supposing that we can differentiate the differential equation to obtain
% (0) = £(0) - 2vX(0) - (0).

The parameters 01 = 2, 62 = 11/3, 63 = 6 (the same as in SS8S32(a)
Houbolt) make SS32B equivalent to the Gear 3-step. The algorithm was initially
run with zero forcing function to check that it gave third order accuracy.
Tables 11 and 12 show the results with the step and sine functions. In Table 11
the error at t = 5 1is approximately O0(At®) as At gets smaller but the
"overshoot” is not. The results in Table 12 make it clear that the
approximation for F 1s only sufficient to give O0(At2?) accuracy. However,
for both values of v this version of SS32B gives overshoot values which
compare favourably with SS32(a) Houbolt and for the higher damping it is
better than S532(b) Wilson-6. The "overshoot” for both values of v 1s an
underestimate of the true response.

Thus the SS32B algorithm with the parameters used here is unconditionally
stable for the damping ratic v =z 7% and we have O0(At®} error provided
the forcing function is approximated appropriately. Dynamic tests on a
Structure done by Galambos and Mayes (161, however, have shaown that the
damping can be as low as 4% which would necessitate Ala) stability with
0

a 88 With this kind of structure it would seem advisable to use SS32
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with values of the parameters to give A-stability which corresponds
toa= 90°. With SS32 we can have O0(At2) error and choose parameters
to damp out the inaccurate higher freguencies which is not possible with the
second order SS22(a).

We note that the algorithm SS32 with 8[62 = 613 + 1 =0 gives
0(At®) accuracy [2], but it is not possible to find an o such that this

is A(a) stable.
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TABLE }
SCHEME 8522
PARAMETERS 6, = 0.5
6, = 0.5
FORCING TERM F = 0 tg0
F = +1 D0 <t s25
F = -1 t > 25
BDAMPING v = 0.5 (overestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
-2 -3 -1
0.5 2.34 x 10 (1.77) 8.23 x 10 (7.66 x 10 )
-3 -1 -3 -1
0.25 6.33 x 10 (4.78 x 10 ) 1.97 x 10 (1.83 x 10 ")
0.125 1.54 x 1070 (1.16 x 107 ) 4.87 x 1071 (4.58 x 107%)
0.0625 3.85 x 0% (2.90 x 1079 1.22 x 107V (1.13 x 1079
-5 -3 -5 -3
0.03125 9.62 x 10 (7.25 x 10 °) 3.04 x 10 (2.83 x 10 °)
0.015625 2.41 x 107> (1.81 x 107°) 7.5 x 1078 (7.08 x 107H
DAMPING = 0.1 (underestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
-2 -1 -2
0.5 1.83 x 10 (7.68 x 10 ) 5.70 x 10 (6.33)
-3 -1 -2
0.25 7.14 x 10 (2.98 x 10 ') 1.42 x 10 (1.58)
0.125 1.22 x 1072 (5.10 x 10°%) 3.55 x 1070 (3.94 x 1071
0.0625 3.01 x 10°%  (1.25 x 1079) 8.88 x 1071 (9.85 x 1079
0.03125 8.27 x 1072 (3.44 x 1079) 2.22 x 1074 (2.46 x 1079
0.015625 1.97 x 107°  (8.20 x 1074 5.55 x 10> (6.18 x 10°)
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TABLE 2
SCHEME 8522
PARAMETERS 0, 0.5
0, 0.5
FORCING TERM F = sin(wt/20)
DAMPING v = 0.5
At ERROR AT t = 5.0 % ERROR
0.5 7.83 x 107> .32 x 1072
0.25 2.86 x 10> .82 x 1073
0.125 7.69 x 1070 29 x 1073
0.0625 1.98 x 1078 .29 x 107%
-7 -5
0.03125 4,91 x 10 .25 X 10
-7 -5
0.015625 1.23 x 10 .07 x 10
DAMPING v = 0.1
At ERROR AT t = 5.0 % ERROR
0.5 3.04 x 107° .80 x 107"
0.25 8.71 x 10 % .09 x 107
0.125 2.25 x 10} .81 x 1072
0.0625 5.67 x 107° .09 x 1073
-5 -3
0.03125 1.42 x 10 .78 x 10
-6 -4
0.015625 3.55 x 10 44 x 10
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TABLE 3
SCHEME 5522
PARAMETERS 6, = 0.5
6, = 0.605
FORCING TERM F = 0 t=o0
F =+1 0<tzs25
F =-1 t > 25
DAMPING v = 0.5 (underestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
2 -2
0.5 1.62 x 10 (1.24) 1.70 x 10 (1.8)
-3 -1 -3 -1
0.25 7.01 x 10 (5.37 x 10 ") 6.69 x 10 (6.23 x 10 ')
-3 -1 -3 -1
0.125 3.55 x 10 (2.688 x 10 ') 2.90 x 10 (2.70 x 10 ")
-3 -1 -3 -1
0.0625 2.12 x 10 (1.0 x 10 ') 1.34 x 10 (1.25 x 10 ")
0.03125 1.15 x 107 (8.66 «x 107%) 6.46 x 1077 (6.01 x 107%)
0.015625 5.968 x 1077 (4.50 x 107%) 3.16 x 107 (2.94 x 1074
DAMPING v = 0.1 (overestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
0.5 6.89 x 102 (2.88) 9.54 x 10 2 (10.59)
0.25 2.85 x 10°°  (41.19) 3.68 x 1072 4.,09)
-2 -1 -2
0.125 1.74 x 10 (7.23 x 10 ") 1.54 x 10 ( 1.71)
-3 -1 -3 -1
0.0625 8.86 x 10 (3.89 x 10 ) 6.91 x 10 ( 7.87 x 10
-3 -1 -3 -1
0.03125 4.40 x 10 (1.83 x 10 ") 3.25 x 10 ( 3.81 x 10
-3 -1 -3 -1
0.015625 2.23 x 10 (9.28 x 10 1) 1.58 x 10 ( 1.75 x 10

)



-15-

TABLE 4=
SCHEME 5522
PARAMETERS 6, = 0.6
6, = 0.805
FORCING TERM F = sin(wt/20)
DAMPING v = 0.5
At ERROR AT t = 5.0 % ERROR

.5 2.14 x 1073 3.60 x 107"
.25 1.04 x 107> 1.75 x 107
.125 5.24 x 10°% 8.81 x 1072
.0625 2.64 x 107" 4.43 x 1072
.03125 1.32 x 10 2.23 x 1072
.015625 6.63 x 107" 1.11 x 1072

DAMPING v = 0.1

At ERROR AT t = 5.0 % ERROR

.5 7.74 x 10°° 9.68 x 10
.25 4.67 x 10°° 5.85 x 10
.125 2.59 x 10> 3.24 x 107"
.0625 1.368 x 10°° 1.71 x 107"
.03125 6.98 x 10 7 8.74 x 10°°
.015625 3.54 x 10°% 4.43 x 107°
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TABLE '5
SCHEME SS32
PARAMETERS 6, = 2.0 Single step
0 = 11/3 Houbolt
2 .
equivalent
6, = 6.0
FORCING TERM F = 0 t=so0
F =4+1 0<tg?25
F =-1 t >25
DAMPING v = 0.5 (overestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
0.5 1.80 x 1072 (1.35) 5.81 x 1072 (5.41)
-2 -3 1
0.25 1.71 x 10 (1.28) 7.87 x 10 (7.32 x 10 ")
-3 -1 -3 -1
0.125 5.10 x 10 (3.83 x 10 ') 1.20 x 10 (1.12 x 10 ')
0.0825 1.35 x 10°°  (1.01 x 10" 1) 2.22 x 10°%  (2.07 x 1079
0.03125 3.46 x 10°%  (2.29 x 1072) 4.69 x 10°°  (4.36 x 10 9)
-5 -3 -5 -4
0.015625 8.99 x 10 6.76 x 10 ) 1.07 x 10 (9.96 x 10 1)
DAMPING Vv = 0.1 (underestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
0.5 1.98 x 10 (8.31) 2.26 x 1071 (25.1)
0.25 7.14 x 1072 (3.10). 6.93 x 10°%  (7.69)
-2 -1 -2
0.125 2.03 x 10 (8.52 x 10 ') 1.79 x 10 (1.98)
-3 =1 -3 -1
0.0625 5.20 x 10 (2.18 x 10 ) 4.43 x 10 (4.92 x 10 ")
0.03125 1.88 x 1070 (7.05 x 10°%) 1.10 x 107° (1.22 x 10
-4 =7 -4 )
0.015625 5.76 x 10 (2.42 x 10 %) 2.72 x 10 (3.02 x 10 %)
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TABLE 6
SCHEME S532
PARAMETERS 8, = 2.0
1 Single step
6, = 11/3 Houbolt
equivalent
8, = 6.0
FORCING TERM F = sin(wt/20)
DAMPING v = 0.5
At ERROR AT t = 5.0 % ERROR
.5 2.48 x 10°° 4.18 x 107"
-3 -1
.25 1.94 x 10 3.26 x 10
.125 5.84 x 1074 9.82 x 1072
.0625 1.54 x 10 % 2.59 x 1072
-5 -3
.03125 3.92 x 10 6.59 x 10
.015625 9.89 x 1078 1.66 x 1073
DAMPING v = 0.1
At ERROR AT t = 5.0 % ERROR
G 5.97 x 1075 7.47 x 1071
-3 -1
.25 5.57 x 10 6.97 x 10
.125 1.99 x 1073 2.49 x 107"
.0625 5.86 x 1077 7.09 x 102
.03125 1.49 x 1074 1.87 x 102
-5 -3
.015625 3.82 x 10 4.78 x 10
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TABLE 7
SCHEME S532
PARAMETERS 6, = 1.4
Single step
. = 1.96 Wilson © = 1.4
2 :
equivalent
6, = 2.744
FORCING TERM F = 0 tsgo
F =+1 0 <t 25
F =-1 t > 25
DAMPING v = 0.5 (overestimate at overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
.5 3.04 x 1072 (2.30) 1.28 x 102 (1.19)
.25 1,06 x 107 (8.02 x 107 1) | 1.87 x 1073 (1.74 x 107"
125 2.80 x 1070 (2,12 x 10"y | 3.4 x 107 (3.20 x 1079
.0625 7.07 x 107 (5.35 x 1079 | 7.31x 107°  (6.80 x 1079
.03125 1.78 x 1074 (1.35 x 107%) 1.86 x 107> (1.56 x 1079
.015625 4.52 x 107 (3.42 x 1079 4.02 x 10°°  (3.74 x 107
DAMPING v = 0.1 (underestimate at overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
.5 7.80 x 107%  (3.27) 1.08 x 1071 (11.8)
=2 -1 -2
.25 2.06 x 10 (8.65 x 10 ') 2.79 x 10 (3.10)
-3 -1 -3 -1
.125 6.04 x 10 (2.53 x 10 ) .97 x 10 (7.74 x 10 ')
.0625 1.81 x 1072 (7.80 x 1079) 1.73 x 1072 (1.92 x 107 1)
.03125 6.99 x 10°%  (2.93 x 107%) 4.31 x 10°°  (4.78 x 107%)
.015625 2.73 x 107 (1.14 x 1079 1.19 x 1077 (1.32 x 10°%)
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TABLE 8
SCHEME S532
PARAMETERS 6, = 1.4
Single step
8. = 1.96 Wilson-©6 = 1.4
2 .
equivalent
8, = 2.744
FORCING TERM F = sin(wt/20)
DAMPING v = 0.5
At ERROR AT t = 5.0 % ERROR
.5 2.90 x 1072 5.01 x 107
.25 9.01 x 10} 1.52 x 107"
.125 2.35 x 10 3.95 x 102
.0625 5.26 x 10 ° 1.05 x 1072
-5 -3
,03125 1.50 x 10 2.52 x 10
-6 -4
.015625 3.76 x 10 §.32 x 10
DAMPING v = 0.1
At ERROR AT t = 5.0 % ERROR
-3
.5 8.68 x 10 1.09
.25 3.15 x 10 2 3.94 x 107
.125 8.92 x 1074 1.12 x 107"
.0625 2.34 x 1074 2.93 x 10°%
-5 -3
.03125 5.98 x 10 7.48 x 10
.015625 1.51 x 10°° 1.89 x 103
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TABLE 9~
SCHEME SS32
PARAMETERS 6, = 1.05
92 = 1.1 Bossgk—Newmark
equivalent
8, = 1.15
FORCING TERM F = 0 tso0
F =+ 0<tg?25
F =-1 t > 25
DAMPING v = 0.5 (overestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
.5 1.72 x 1072 (1.30 x 1071 1.55 x 107 (1.44 x 10"
.25 6.23 x 107> (4.71 x 10 1) 3.36 x 107 (3.13 x 107%)
125 5.33 x 10°%  (4.08 x 107%) 7.86 x 10°°  (7.31 x 10°°)
.0625 1.44 x 107" (1.08 x 107%) 1.80 x 10> (1.77 x 10°°)
.03125 4.17 x 107° (3.15 x 107 4.67 x 10°°  (4.35 x 107%)
.015625 1.34 x 1077 (1.01 x 10°°) 1.16 x 10°°  (1.08 x 10°H
DAMPING v = 0.1 (underestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
.5 8.65 x 1077 (3.63 x 107%) 3.28 x 1072 (3.64)
.25 1.57 x 107> (6.58 x 107%) 8.23 x 10°°  (9.13 x 107 )
.125 1.84 x 1072 (7.72 x 107%) 2.05 x 107°  (2.26 x 107
.0625 3.40 x 1077 (1.43 x 107%) 5.12 x 1077 (5.88 x 10 )
.03125 2.78 x 107 (1.17 x 107%) 1.28 x 107 (1.42 x 107%)
.015625 1.18 x 107" (4.99 x 1072 3.19 x 107> (3.54 x 107°)
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TABLE -10
SCHEME $S32
PARAMETERS 6, = 1.05
6, = 1.1 Bossak-Newmark
equivalent
6, = 1.15
FORCING TERM F = sin(wt/20)
DAMPING v = 0.5
At ERROR AT t = 5.0 % ERROR
0.5 .23 x 1077 1.55 x 107
.25 2.32 x 107% 3.31 x 1072
.125 5.83 x 107> 9.30 x 1075
.0625 1.46 x 107° 2.46 x 107>
.03125 4.54 x 10°° 7.63 x 1077
.015625 3.14 x 107/ 1.54 x 10°%
DAMPING v = 0.1
At ERROR AT t = 5.0 % ERROR
.5 3.87 x 10> 4.85 x 107"
.25 1.04 x 10°° 1.31 x 107
.125 2.67 x 10} 3.35 x 10°%
.0625 6.76 x 107> 8.46 x 10°°
.03125 1.70 x 107° 2.12 x 1073
.015625 4.25 x 10°& 5.32 x 10 %
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TABLE 11
SCHEME SS32B
PARAMETERS 6, = 2.0 Single step
equivailent to
62 = 11/3 Gear 3-step
6, = 6.0
FORCING TERM F = 0 ts0
F =+ D0 <t 25
F = -1 t > 25
DAMPING v = 0.5 (underestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
, -2 -2 -1
.5 5.75 x 10 (2.83) 1.06 x 10 (8.85 x 10 ')
.25 4.95 x 107 (3.74 x 10 1.62 x 1073 (1.51 x 107 )
.125 6.42 x 1074 (4.88 x 107%) 2.11 x 107 (1.98 x 1079
.0625 2.23 x 1077 (1.89 x 1079) 2.67 x 10°°  (2.48 x 10°9)
.03125 5.80 x 107°  (4.39 x 1079) 3.35 x 108 (3.11 x 107H
-5 -4 -7 -5
.015625| 1.23 x 10 (9.30 x 10 ) 4.19 x 10 (3.80 x 10 )
DAMPING v = 0.1 (underestimate in overshoot)
At OVERSHOOT (% ERROR) ERROR AT t = 5.0 (% ERROR)
.5 5.30 x 107°  (2.22) 3.56 x 1072 (1.08)
.25 2.16 x 1072 (9.06 x 10" ) 2.87 x 1072 (3.18 x 107 )
.125 3.68 x 10°°  (1.54 x 10 ) 5.87 x 107 (6.51 x 1079
.0625 1.44 x 1072 (6.04 x 107%) B8.66 x 10°°  (9.80 x 10°°)
.03125 8.11 x 1074 (3.40 x 107%) 1.18 x 10°°  (1.29 x 107
.015625]  3.76 x 1077 (1.58 x 1079 1.50 x 1078 (1.67 x 107H
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TABLE 12
SCHEME SS328
PARAMETERS o, = 2.0 Single step
equivalent to
62 = 11/3 Gear 3-step
8, = 6.0
FORCING TERM F = sin(nt/20)
DAMPING v = 0.5
At ERROR AT t = 5. % ERROR
.5 5.53 x 10 ° 9.30 x 107"
.25 1.01 x 1072 1.70 x 107"
.125 2.18 x 10 % 3.66 x 102
.0625 5.09 x 10> 8.55 x 1073
-5 -3
.03125 1.23 x 10 2.07 x 10
-6 -4
.015625 3.03 x 10 5.10 x 10
DAMPING v = 0.1
At ERROR AT t = 5.0 % ERROR
r: 1.69 x 10772 2.12
.25 2.81 x 105 3,52 x 107"
125 4.76 x 10 7 5.96 x 102
.0625 9.11 x 1072 1.14 x 1072
-5 -3
.03125 1.94 x 10 2.42 x 10
-6 -4
.015625 4,42 x 10 5.54 x 10
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List of Figures

1. Argand diagram showing stability regicns.
2. Example of overestimate in overshoot.

3. Example of underestimate in overshoot.
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APPENDIX

Given a multistep method whose stability polynomial [9] is

Ko koo
Yoy.rd +aat Jg.d =0 (A1)
j=0" j=0

the stability boundary locus in the Argand diagram with axes O0X, OY is
given by

Ata (o) = - = X + 1Y {A2)
j=0 Y
i.e. for A on one side of this boundary the method is stable and for A
on the other side it is unstable. (Figure 1).

For the Gear 3-step method [10] the stability boundary locus is

given by
11 3 1
X{p) = 5 3cose + 500526 500836
(A3)
. Bl 1 .-
Y(8) = 3sine - EsanG + 561n36
We have X'(8) =0 when 6 = 0,71 or %— Hence the left hand
bound of the locus is where
()
X = X[g} = - 1/12 (A4)

Also if Y(e) + X(e)tana = 0 is a tangent through the origin to the
locus then Yt(g) + Xt(@)tan o = 0 simultaneously. Eliminating tan o then

gives

(c - 1)2(22c - 13) =0 (A5)

where c = cosf.
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Thus the Y axis has fourth order contact with the locus at the

origin as expected with a third order method and the other tangent meets

the locus where c¢ = 13/22 = cose,l say. Then tana= -Y(eql/xteql
which corresponds to v = 0.069.
We can say that there will be stability if

R (AME) ¢ -1/12 1.e. HAESS 4/42
e Z2m

or we can say that we have A(a) stability if v 2 7%.

We note that looking at the diagrams given by Gear [10] for the

Gear 4, 5 and 6 methods it is evident that these have smaller values of o

(AB)
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