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Abstract

In this report we derive a one-dimensional finite
element method on an adaptive mesh which is determined by the
velocity of the moving boundary. A solution algorithm is
presented and stability and truncation error analyses are
carried out. Three test problems are described and the
method, together with various special treatments, is applied
to each. Numerical and graphical results are presented and
analysed. A brief account is given of the extension of the

method to two dimensions.



1. Introduction

Many physical processes, especially those concerned with
heat flow and diffusion, may be described via moving boundary
problems. Such problems differ from their fixed boundary
relatives through the motion of one or more external
boundaries. An additional condition is required at each
moving boundary in order to determine the solution to the
problem, which includes any moving boundary position.

One class of moving boundary problems concerned with
melting and freezing contains the One- and Two-phase Stefan
Problems, which are named after the early work of Stefan
(1889a,b) and (1891). Another example of a moving boundary
problem is the One-phase Oxygen Diffusion with Absorption
Problem of Crank & Gupta (1972a,b).

Crank (1984) provides an extensive survey of the area of
moving boundary problems, including numerical solutions of
the above problems in both one and two dimensions. Numerical
techniques have been employed on both the physical domain and
on fixed domains obtained via a transformation. We describe
some of these, concentrating on the one-dimensional case.

The coordinate transformation

E = x/s(t) (1.1)

of Landau (1950) causes the variable one-dimensional



x-domain, [0,s(t)] (where =s(t) denotes the position of
the moving boundary at time t), to be mapped onto the
time-invariant f-region, [0,1]. Nitsche (1980) implements

(1.1) and a modified time variable, T , given by

t

T = J . (1.2)
o {s(n)}?

in his finite element solution of a one-—-dimensional One-phase
Stefan Problem. Douglas & Gallie (1955) and Gupta & Kumar
(1980) numerically solve a problem of this type using finite
differences. Both sets of workers select time increments in
order to ensure that the moving boundary is located at a grid
point for each time level. Bonnerot & Jamet (1979) describe
an implicit space-time biquadratic finite element method and
implement it on a one-dimensional One-phase Stefan Problem.
They prove their method to be third order accurate and
illustrate its efficiency on problems with both continuous
and discontinuous solutions.

Furzeland (1980) extends the domain-fixing idea of
Landau (1950) for the case of the one-dimensional Two-phase
Stefan Problem. Both the solid and liquid sub-regions are
transformed onto the interval [0,1], and on each new domain
the problem is discretised using the standard finite
difference method with the theta implicit-explicit parameter.
A novel transformation is present in the Isotherm Migration
Method, in which the independent space coordinate and

dependent temperature variable exchange roles to yield the



former as a function of the latter and time: namely,

x = x(u,t) . (1.3)

This method was introduced by Chernousko (1970) and Dix &
Cizek (1970) and is further implemented by Crank & Phahle
(1973). Eyres, Hartree, Ingham, Jackson, Sarjant & Wagstaff
(1946) proposed the use of an enthalpy variable: one which is
representative of the total heat content. This choice of
dependent variable forms the basis of the Enthalpy Method: a
standard fixed-domain method which has been employed by many
workers, including Bonacina, Comini, Fasano & Primicerio
(1973), Atthey (1974), Voller & Cross (1981) and Bell (1982).
Ferriss & Hill (1974) solve the one-dimensional Oxygen
Diffusion with Absorption Problem via an iterative finite
difference technique on a fixed region, so obtained using
(1.1). Crank & Gupta (1972a,b) make use of a short-time
analytical solution and interpolation ideas in their finite
difference solutions to this problem. The numerical solution
of Hansen & Hougaard (1974) to this problem consists of an
integral Equation formulation for the position of the moving
boundary, and an integral formula for the dependent
concentration variable. They solve the equation
asymptotically for small times and apply a numerical

technique to the latter. Miller, Morton & Baines (1978)



implement the analytic solution of Crank & Gupta (1972a.b) to
begin their iterative finite element method. They use an
adaptive mesh in which the number of nodes is automatically
reduced in order to follow the inward motion of the boundary.
The Local Moving Finite Element Method of Baines (1985) has
been used by the author (1985) in his explicit solution of
this problem.

In the present work we employ a constrained moving
finite element method to the above problems, whose
mathematical formulations are described in Section 2. In
Section 3 we derive the adaptive method and describe its
practical implementation. Also in this section we perform
some theoretical analysis on the stability and truncation
error of the method. A presentation of the solution
algorithm, together with a brief account of the extension of
the method to two dimensions, appears in Section 3. In
Section 4 we describe certain special treatments necessary to
each individual problem. Section 5 contains numerical and
graphical results and discussion. Finally, in Section 6, we

draw our conclusions.



2. The Test Problems

Here we briefly describe three moving boundary problems

and present one-dimensional mathematical models thereof.

These particular problems are selected in order to

demonstrate the versatility of

our adaptive mesh method which

is outlined in detail in Section 3.

2.1 Problem 1 The One-phase

Stefan Problem

This problem is concerned
semi-infinite block of ice via
gradient at a fixed boundary.
interface has to be determined
in the water phase. Since the

melting temperature,

required.

with the melting of a

a prescribed temperature

The position of the ice-water
in addition to the temperature

ice is assumed to be at its

the solution in this region is not

This problem was introduced by Hoffman (1977) and

further studied by Furzeland (1980).

The mathematical formulation of an example of such a

problem in non-dimensional variables is

uo o= u 0 < x < s(t) , t >0, (2.1)

u, = - exp(t) , x =0 , t >0, (2.2)

g =0 },x:s(t). t >0, (2.3)
= -5(t)



u=0, 0 < x < s(0) =0, t =0 . (2.4)

The above problem has an analytical solution of the form

exp(t-x) - 1, 0 < x < s(t)
u =
0 . x> s(t)
., t >0 . (2.5)
S(t):t
Numerical difficulties are apparent at time t = O
since there is no water present. This is overcome by

employing a short-time solution, details of which are

presented in Section 4.1.

2.2 Problem 2 : The Two-phase Stefan Problem

The freezing of water into ice may be modelled via a
Two-phase Stefan Problem. In this case the temperature in
both the solid and liquid phases is to be determined as part
of the solution, the remainder being the position of the
ice-water interface as a function of time. The formulation
below is an amended version of that presented by Ciavaldini
(1975), and contains the classical explicit form of the

moving interface velocity in terms of the jump in heat flux

between the two phases. The model is
u, = kL u ot fL(t) . 0 < x < s(t)
, 0 < tXK ty
u, = kR u ot fR(t) , s(t) < x <1

(2.6)



u, = (0 x =0
, 0 <CtXK ty o (2.7)
u = 2 , x =1
X
u =20

- + . 1
kL u, - kR u, = Ls(t)
(2.8)
u=x2—s§. 0<x <1, t =0, (2.9)
where
.——2 — —
fi(t) = =8 exp(t) 2ki +w 1 =L 5 R 0 <t X ty
(2.10)
This apparently complex problem has a simple analytic
solution of the form
u = x? - s? exp(t) , 0 < x <1
° L 0 <t <ty
s(t) = S, exp(it) (2.11)
where
S, = s(0)
L = 4(k -kp) - (2.12)
ty = - 21n(so)




2.3 Problem 3 : The One-phase Oxygen Diffusion with

Absorption Problem

In this problem of biological origin, oxygen diffuses
into and is absorbed by tumour tissue until a steady state is
attained. The oxygen in-flow boundary is then sealed, thus
causing the gas content to be extracted by the continuing
absorption process. The region in which oxygen is present
therefore diminishes and eventually disappears. A
non-dimensional mathematical formulation of the latter stage

of this problem is

uo=u - 1, 0 < x < s(t) . 0 <t <ty , (2.13)
u, =0, x=0, 0<¢t<<t,, (2.14)
u =0
, x = s(t), 0 <t <ty , (2.15)
u =20
X
u = 3(1-x)? , 0 < x <s(0) =1, t =0 (2.16)

The above formulation contains a derivative boundary
condition, (2.14), which is inconsistent with the initial
data, (2.16). Note also the lack of an explicit expression

for the moving boundary velocity, thus rendering (2.13) -
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(2.16) a problem of 'implicit’ type. Although no analytical
solution to the problem is known, numerical results have been
produced by many workers, including Crank & Gupta (1972a,b),
Ferriss & Hill (1974), Hansen & Hougaard (1974), Miller,

Morton & Baines (1978) and Moody (1985).



3. The Numerical Method

In an earlier section we briefly outlined various
domain-fixing and front-tracking methods which have been used
to obtain numerical solutions of the three moving boundary
problems of Section 2. Domain-fixing techniques, which can
be easily implemented in one space dimension, do not readily
generalise to higher dimensions, whereas front-tracking ones
do. An example of such a method is the Moving Finite Element
(MFE) Method of Miller & Miller (1981) and Miller (1981),
which is further analysed by Wathen & Baines (1985). A local
form of this technique (see Baines, 1985) has been
implemented by the author (1985) in his numerical solution of
the one-dimensional Oxygen Diffusion with Absorption Problem.
Expressions are obtained for the nodal position velocities as
well as the usual nodal amplitudal ones. One drawback with
the explicit form of this method, however, is the requirement
of very small time increments, especially in the later stages
of the simulation when the length of the physical domain has
become reduced, in order to prevent nodes from colliding with
one another. The finite element method proposed here
resembles that of the previous work, but is constrained so
that the only nodal position velocity solved for is that at
the moving boundary; the velocities of all interior nodes are
specified proportionally between the fixed and moving
boundaries. In the ensuing sections we derive the
one-dimensional form of the method and discuss its

implementation to Problems 1, 2 and 3.



3.1 Derivation of the Method

Consider a one-dimensional equation of the form

ut = L(u) ' (3'1)
where L 1is a spatial differential operator. We seek a
piecewise linear approximant, v , to the true solution, u ,

of the form

N
v = z a.a, , (3.2)

where ay = aJ(t) . J =1(1)N , are the amplitudal
coefficients (or nodal values) at the corresponding nodal
positions, 8y = sj(t) ., J =1(1)N , collectively
represented by the vector s(t) , and Gy = aj(x.i(t)) are
piecewise linear basis functions of local compact support. A
typical interior a-type basis function is shown below in

Figure 1.

a;(x.5(t}))

}

Figure 1



Differentiation of (3.2) with respect to time yields the

expression
N
v, = 2 (a0 + 5,8, . (3.3)

where Bj = Bj(x.g(t).g(t)) ., J§J = 1(1)N , are (in general)
discontinuous piecewise linear basis functions (see Miller &
Miller, 1981; Miller, 1981; and Wathen & Baines, 1983). It
has been shown in Miller & Miller (1981) and Lynch (1982)

that

ﬁj = —maj , j = 1(1)N , (3.4)

where m is the local element slope of v . Figure 2 below

depicts a typical interior fp-type basis function.




Minimisation of

v, - LD . (3.5)

t

the global L2 norm of the residual, over the variables

éj ., J = 1(1)N , taking éj , Jj =1(1)N , to be parameters,

gives rise to the Galerkin equations

<ag,v, = L(v)> =0, 1= 1(1)N, (3.6)

t

where <+,+*> represents integration over the physical

domain. Substitution of v from (3.3) into (3.6) produces

the semi~discrete system of equations

{<ai,a >a

1 28y * <@y B8 - <ayL(v)Y) = 0,

I N1 =2

J

i = 1(1)N . (3.7)

We now determine the moving boundary velocity via its
governing equation (details of the determination of which are
given in Section 4 for each particular problem) and prescribe

internal nodal velocities using the technique of Section



3.2.3. Implementation of (3.4) and an Euler time-stepping
scheme with a 06 implicit-explicit discretisation technique
on the amplitudal velocities in (3.7) gives rise to a
tridiagonal system of linear equations for the unknown

amplitudes a j = 1(1)N , at the next time level (for

j *
details see Section 3.2.3).
It is to be noted here that in the particular case of

the One-phase Oxygen Diffusion with Absorption Problem an

explicit expression for the moving boundary velocity does not

appear. The value of the amplitude at the moving boundary,
however, is known and is given by (2.15a). In this case we,
therefore, minimise (3.5) over éj , Jj = 1(1)N-1 and éN ;

in order to provide an equation for the moving boundary
velocity. (In one dimension the finite element equation for
éN is merely a multiple of that for éN .) We expand on

this approach in Section 4.3.

3.2 Practical Implementation of the Method

We restrict our attention to operators L in Equation

(3.1) of the form

L(u) = k u ot f(t) , (3.8)



where k is the constant diffusivity of the fluid under
consideration and f 1is a time-dependent forcing function.
Included in this family of one-dimensional linear spatial
differential operators are the three chosen test problems.

In the ensuing sections the finite element equations are
presented together with the various numerical techniques

employed in obtaining and solving for them.

3.2.1. Numerical Evaluation of Inner Products

Since the approximant is piecewise linear and second
order spatial derivative terms are present in the governing
Equation, these derivative terms cause the inner products to
have the character of integrals of sums of delta functions.

A technique to handle these inner products is required and we
implement the approach of Mueller (1983) which is described
below. The mollification method of Miller & Miller (1981)
and Miller (1981) and the approach of Lynch (1982) yield
identical values to those of Mueller (1983), as does the
recovery idea in Johnson (1984) (see Morton, 1983).

Mueller's approach to the evaluation of <aJ.L(v)> over
the interval [Sj—l'sj+1] (which extends over the two

elements [sj—l’sj] and [Sj’sj+1]) is as follows
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(assuming a non-boundary element).

{a,,L(v)> = <aj.k Vex T £(t)>

k<aj'vxx> + <aJ,f(t)>

S S

j+1 j+1
= k I avaxdx + I ajf(t)dx
®3-1 ®3-1
Sy+1 Sy+1
=k {(ajvx)x - aj'xvx}dx + f(t)J ajdx
Sj-1 $j-1
S sj+1
= k {[a v_] J+1 J a v dx}
I'x7g JX X
J-1 Sj—l
+ é(hj g+ by 4)E(¢)
SJ SJ“"l
1 - 1
e {‘J ['hj—_é]"’j-; e - | '1;:1]
S S
J-1 J



where

By = Sged ~ 554
(3.10)
my = (Bgay T 2ymg)/hy

S .
Note that the [ajvx]sJ+1 term disappears owing to the basis
j-1

function aj being zero at the two limits, and that both Vo

and aj < are piecewise constant over elements.

3.2.2 Imposition of Fixed Boundary Conditions

The three test problems of Section 2 contain fixed

Neumann boundary conditions of the form

u, = 11(t) ; (3.11)
for some function ~ (see Equations (2.2), (2.7) and
(2.14)). We impose (3.11) in the usual way for finite
elements; namely, by absorbing it into the weak form of the

differential equation. Implementation of (3.11) at x =0

causes (3.9) to become

<ay,L(v)> = k[v;(t) - mg] + éhgf(t) : (3.12)

The standard method of imposing a Dirichlet condition of

the form



u = 72(t) , (3.13)

at a fixed boundary is to reduce the dimension of the space,
replace the finite element equation by (3.13) and perform any
necessary adjustment to dependent equations. In the
Appendix, however, we outline a possible approach of imposing

such conditions weakly.

3.2.3 Formation of the Discrete Equations

The local compact support property of the a- and
B-type basis functions, together with (3.4) and (3.9),
enables us to express (3.7) (for an internal node s, ) as

i

+ g(hi_1 + hi+é)é.

i-27i-1 i-3 i-37i-1 2 i
_ i o 1 . = 1 N
s(hy_gmy_ g + hy am, )8, + eh; 48,0 ~ 6By 1m,1554
= k[m 4 - my_1] + ;(hi_é + hy 1)E(t) . (3.14)

Multiplication of (3.14) by six and implementation of (3.10b)

yields

hy_sdy_y — (ay =2y 4)8; 5 + 2(hy s + by 4)8y
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- 2(ay,y may )8y v hyeas - (B 724085y

= 6k[(ay,q ~ 23)/hy 1 = (a; =2y 4)/h; 4]

+ 3(hy_g + hy 1)E(t) . (3.15)
which has the generic form

Asé - Aaé = kAa/AS + Asf(t) : (3.186)

where a and s represent nodal values and positions
respectively and Aa , AS denote differences therein. We
now perform a 6 implicit-explicit splitting of (3.16) to

yield
. n+1 n-. n+l n n
Asa - [GAa + (l—B)Aa]s =] k[BAa + (1—9)Aa]/As +

AY res™?! + (1-0)f™] . (3.17)
where the n superscript denotes evaluation at the time
level which directly precedes the n+l one. Note that all
element lengths in (3.17) are considered explicitly. (A
stability analysis of a 6 implicit-explicit treatment of
both amplitudes and element lengths did not produce an

unconditionally stable scheme for as large a range of 6.)
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The above procedure applied to (3.15), in addition to the

Euler time-stepping scheme
a « [a®! - a"y/ae (3.18)

where At 1is the time increment, yields

n+1 . i
ai—l{hi—é + 0At[28, + 5. ;] - GkBAt/hi_é}
n+1 . i
+ ai {2[hi—é + hi+é] + 9At[Si+1 - Si_1] +
6k9At[1/hi_é + l/hi+é]}

n+1

ai+1{hi+é - 9At[2éi + éi+1] - 6k9At/hi+é}

= a?_l{hi_é - (1-8)At[25, + &, ;] + 6k(1-0)At/h, 1}

n . .
+ a1{2[h1—é + hi+é] - (1—9)At[si+1 - Si—l] -
6k(1-6)At[1/h, s« + 1/hy 1]}

+ (1-8)At[28, + ] + 6k(1-08)At/hy 4}

n N
ai+1{hi+é Si+1

n+1 n
+ 3At(hi~é + hi+é)[ef + (l—e)f ] . (3.19)
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as the finite element equation for the ith internal nodal
amplitude. For convenience we have omitted the n
superscript of the element lengths and have denoted f(t) by

n

f in (3.19). With reference to (3.19) we see that a

tridiagonal system of linear equations for the unknowns is
obtained. This system may be easily inverted at each time
level using a standard tridiagonal matrix solver such as
TRISOL. However, we note that the system is symmetric if and
only if O 1is zero.

We now describe in detail the procedure for determining
the nodal velocities éi , 1 = 1(1)N , which are required in
(3.19). A numerical estimate of the moving boundary or
interface velocity may be obtained by considering a
discretisation of its determining equation (for details of
each individual problem see Section 4). With reference to
Figure 3 below, the internal nodal velocities are prescribed

as follows.

e by =i h, ——f
T 1 1 T T | T — 1
Sl Si ST

Figure 3
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Suppose that S and s. are boundary or interface nodes

travelling with velocities él and ér respectively and

that S5 denotes the position of an internal node. In the
case of Problems 1 and 3 and the solid region of Problem 2 we
have

= s(t) ., & =0, = &(t) , (3.20a)

S S
r r

and in the liquid phase of Problem 2 these values are given

by
s, = s(t) , s = 1, él = §(t) . ér = 0 . (3.20b)
The velocity of node i , éi , 1is assigned proportionally
using
éi = 8§, + hl(ér - él)/(h1 + hr)
= (hré1 + hlér)/(h1 + hr) . (3.21)

Techniques similar to the above for prescribing nodal motion
appear in Murray & Landis (1959), O’Neill & Lynch (1981) and
Lynch (1982).

We have now outlined the numerical techniques involved
in the formation of the discrete equations at each time
level, and in the next section we discuss the algorithm for

obtaining approximate solutions to the three test problems.



- 924 -

3.2.4 The Numerical Solution Algorithm

In this section we present a simple solution algorithm
and describe its implementation. Our five-step procedure for

each time level is:-

(1) Obtain values of the external boundary (and
interface) velocities.

(ii) Determine the velocities of all nodes, interior
to either the domain or each sub-domain.

(iii) Form the system of equations for the nodal
amplitudes of the subsequent time level.

(iv) Solve the above system for the new nodal values.

(v) Update the nodal positions.

The treatment required for Step (i) is particular to
each individual problem and is therefore discussed separately
in Section 4. Step (ii) is then carried out (using the
relevant form of (3.20)) via Equation (3.21) of the previous
section. The velocities of Step (ii) are then entered into
(3.19) for each internal node. These equations, together
with those from the fixed boundary (incorporating expressions
of the form of (3.12)) and those from the moving
boundary/interface (derived using further special treatments
of Section 4) form the linear system of Step (iii). Step

(iv) is performed using an efficient Gaussian elimination
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algorithm suitable for tridiagonal systems, and (v) is
carried out via the standard first-order Euler time-stepping

scheme (see (3.18)).

3.2.5 Extension to Two Dimensions

In this section we outline the extension of the
constrained method proposed here to two dimensions. As in
the one-dimensional case we aim to obtain a piecewise linear
approximating solution of the form of (3.2), but now with
a-type basis functions which depend on both the horizontal
and vertical nodal positions xj . yj , J = 1(1)N . An
a-type basis function with 6 direct—-neighbouring nodes is

depicted below in Figure 4.

Figure 4

The time derivative of the approximant, v , assumes the form
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N
v, = 2 {ajaj + (xj.yj).ﬁ_j} ; (3.22)
j=1
where
-] . 3.23
By = (By.y) (3.23)
is a vector of discontinuous basis functions. The result

(3.4) now holds in the form

(3.24)

with m and n being the piecewise constant local element
slopes in the horizontal and vertical directions
respectively. In one dimension each slope has at most two
components (since each node is surrounded by at most two
elements, e, and ey say) , whereas the two-dimensional

form may have many such components (see Figure 5).
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e e
1 2
&= £ 3
51 SO 52
One Dimension Two Dimensions
(2 elements per node) (typically 6 elements per node)

Figure 5
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An identical minimisation of (3.5) over the same

unknowns produces a system similar to (3.7): namely,

N
z {(ai,aj>aj + <ai,Bj>xj + <ai,7j>yj = <ai,L(v)>} = 0 ,
j=1
i = 1(1)N . (3.25)

As in the one-dimensional case, we discretise in space using
a 6 implicitness parameter and in time via the Euler
formula. The resulting linear system, however, is neither
tridiagonal nor symmetric and must therefore be inverted
using a different technique, details of which will be
presented in a later report, along with the specification of
the nodal velocities.

We now briefly discuss the practical implementation of
the method. The inner product evaluation technique of
Mueller (1983) extends readily to two dimensions (see
Johnson, 1985). Neumann and Dirichlet conditions at the
fixed boundary may be imposed using the one-dimensional ideas
of Section 3.2.2. We form the discrete finite element
equations using the standard element-by-element assembly
technique. With reference to Figure 5 we see that each
triangular element contributes towards the equations of three

unknown amplitudes. The two-dimensional form of Equation

(3.14) is



i 20 =

z (12 Jléi - iz Jlxlki - 12 JlYlyi}

l€e(i)
+ 2 2 1 g 1 . 1 .
{24 J;a, — 24 J, X %, - 24 J,;Y y.}]
jen(i) lee(i)Ne(J) 17 ' 1173
_ 1 1 1
-k ) (3K by qy - 3Y bx ()} + & Y I E(t) . (3.26)
l€e(i) l€ee(i)
where
Jl = the Jacobian of element 1
X1 = the x-slope of element 1
Y1 = the y-slope of element 1 =, (3.27)
Axc(l) = a cyclic x-length in element 1
Ayc(l) = a cyclic y~length in element 1 )
and e(i) , n(i) are sets denoting the elements and nodes
surrounding node i , respectively. The same treatment of

the one-dimensional case applied to (3.27) produces an
equation analagous to (3.19). Details will be presented in
the later report.

The numerical solution algorithm of Section 3.2.4,
incorporating special treatments (along the lines of those in
Section 4), may also be easily implemented in the

two-dimensional case.
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3.3 Theoretical Analysis of the Method

In this section we perform some simple error and
stability analysis on the general equation, (3.19), for
internal nodes. For simplicity we restrict our attention to
the case of equi-spaced nodes at each time level. Equation

(3.19) with element lengths given by
h, =h , i = 3(1)N-3 (3.28)

then becomes

n+1

all {h + 0At[25,_

1 éi] - 6k6At/h}

n+1 . .
+ a {4h + 9At[si+1 - si—l] + 12k6At/h}

n+l : .
+a; g {h - 9At[2si + Si+1] - 6k6At/h}

= a]_,{h - (1-0)At[28; ; + 8,1 + 6k(1-0)At/h}

1

+ a?{4h - (1-8)At[& 12k(1-0)At/h}

i+1 ~ éi-lj -

n . .
+a;, {h + (1-6)Ac[25, + &, .1 + 6k(1-6)At/h}

+ 6 At h[of™1 + (1-0)f"7 . (3.29)



- 31 -

The ensuing stability and local truncation error analysis is

performed on Equation (3.29).

3.3.1 Stability Analysis

The stability of the proposed numerical scheme under the
special case of zero forcing function is now investigated
using the Fourier Method. It is, however, shown in Richtmyer
& Morton (1967) that terms in the partial differential
equation of lower order than the highest spatial derivative
do not substantially affect the stability condition: a
non-strict inequality is at most converted into a strict one.

Substitution of the Fourier mode

niLw
a, = kK e (3.30)
(where ¢® = -1) , into (3.29) and division by a? yields
K = Kn/Kd , (3.31)

where

« = he ¥ - (1-0)at[28, + &, Je"V + 6k(1-8)Ate” “¥/h

+

0N

=x
|

(1-8)At[s,,, - 8, ;1 - 12k(1-8)At/h
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+ he'¥ + (1-6)4t[2s, + &, ] + 6k(1-8)Ate'¥/h , (3.32a)

Kd

+ 4h + OAt[&

+ he

Ly

he ¥ + oac[25, + &, Te "V + 6koAte” “Y/h

je1 ~ 8;-1]1 + 12k6At/h

. n L L
- oAt[25, + &,,,]e ¥ _ ekoste‘¥/n

Using the relationships

e "V = 4[cos?(w/2) - 1] = 4[c2 - 1]
e YV = 4csin(y/2)cos(y/2) = 4L;g

say, Equations (3.32) become

where

> I c> B = B = - B

A+ Bgz + (Dsc }

AN

A + Es2 - (Fsc

6h
-4h - 24k(1-8)At/h - 2(1-8)At[&, -5

2(1-0)At[&, | + 45, + &, ]
~4h + 24k6At/h + 20At[5 - 5

i+1 i—l:I

260t[5, _, + 45, + 8. ]

i-1]

(3.32b)

(3.33)

(3.34)

*. (3.35)
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The condition for stability is
le]® <1,

from which Equations (3.31)-(3.35) produce

-~

Gs?2 > H .

A

with s defined in (3.33) and G and H by

¢ = E2 - F2 - B2 4+ p? }

2AB + D% - 2AE - F2

=
I

Since

the inequality (3.37) gives rise to the conditions
HSO, HLCG
The first of (3.40) requires

72k + 6h[s . - &, |1+

. . 2
(26 - 1)At[s, , + 48, + 5, ,,1> 20,

(3.

(3.

(3.

(3.

(3.

(3.

36)

37)

38)

39)

40)

41)
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and from the second the only meaningful conditions which

arise are

12k + W[, , -5, ;120 (3.42)

2h® + (20 - 1)At{12k + h(s, . - &, ;I} 2 O

We see that if the first of (3.42), which is independent
of the implicitness parameter 8 , is satisfied then both
(3.41) and (3.42b) hold for all 6 > 3 . For 8 < 3 the

time increment, At , must be restricted to satisfy

At ¢ min {2h3/[(1 - 20)A] .
6A/[(1 - 20){5, ; + 45, + si+1}2]} ;

(3.43)
for all subscripts, i , where

A = 12k + h[3,, (3.44)

17 811l
must be non-negative.

We now introduce the constrained nodal motion idea
described by (3.21) into our stability analysis. Using the
equi-spacing of nodes strategy (3.28) and the data (3.20a),

(3.44) converts (3.42a) into
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A = 6k + h®\ > 0 , (3.45)
where

(3.46)

the numerical velocity per unit length. The denominator of

the second argument of (3.43) is re-expressed as

36(1 - 2e)sN2[si/sN]2 : (3.47)
which is bounded above by

36(1 - 29)5N2 . (3.48)
We can therefore satisfy (3.43) by taking

At ¢ min {2h3/A , éA/éNz}/(l - 20) . (3.49)

If (3.45) is satisfied the scheme is thus unconditionally
stable for O > 3 ; otherwise, At must satisfy (3.49).
We remark here that if A 2 O , then A remains
non-negative. Condition (3.45) is always obeyed in our
practical experience of the three test problems considered

here and so does not invalidate Condition (3.49).
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3.3.2 Local Truncation Error Analysis

. n+0 N
The local truncation error, TS , can be incorporated

into the scheme via the replacement of the numerical

amplitudes, a? , by the true values, u(si.nAt) , and the

inclusion of the term
6hAtT?+e . (3.50)

in the right-hand side of (3.29). A rearrangement of the

resulting equation yields
L{[u(x;.t") — u(x,.t)] + 4[u(x;.t") - u(x;.t)]
+ [u(x,,t') - ulx,)1}/8t - d0{[u(x;.t") - u(x).¢ )]s
+ 2[u(x_.t") - u(x,.t’)16 + [u(x,.t") - u(xi,t')]é+}/h
- 41 - @) {[ulxy.t) = u(x).€)187 + 2[ulx,.t) - u(x).t)]s
+ [u(x_.t) - u(xi.t)]é+}/h = k0{u(x;.t') - 2u(x;.t")
+ u(xr,t')}/hz + k(1 - 8){u(x;.t) - 2u(x,.t)

+u(x_,t)}/h® + {8£(t") + (1 - 8)F(¢)} + A0 (3.51)
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in which
t' =t + At , (3.52)
and Xy . Xy . X denote the nodal positions s; ; . s; .
B ) . o 5 .+
si+1 , moving with respective velocities § s, S , S

Taylor expansions of the terms in the left-hand side of

(3.51) about the point (xi,t) produce the following

u_ + 3Atu__ + &h%u + é(At)zuT

TT XXT TT

L . .
59{Slux + zhszuxx + AtSluXT

1 c 1 2¢ _ tpa_ -
+ 2hAtS2uxx7 + 2(At) SluXTT} e(1 9){S1ux

+ LhS + &n®S u__} + O[h®] + O[h%Ac]

2Yxx 1
+ O[h(At)2] + O[(At)®] , (3.53)
where
S1 = 8 + 4éi + S
8 oy = : (3.54)
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and the T derivative is a mobile one defined by

by
u_=u_ + su_ . (3.55)

When the expressions of (3.54) are expanded in a similar

manner, we obtain

S, = 65 + h2s__ + O[h*]
XX

. . 1,3 5 (3.56)
S, = 2h&_ + h%___ + O[h®]

Substitution of (3.56) into (3.53) yields

i 1, 2 1 2
+ u + gh + t
u sAt e eh®u e(At) u__

XXT T

- 0{su_ + Atsu + 6h%[s__u_ + 8_u + 5u ]
X XT XX X X XX XXX

+ ;(At)zéuXTT} - (1-8){su + éhz[sxxux

+ S u + 8

X XX uxxx]} + O[h®] + O[h®At]

+ O[h(At)2] + O[(At)>]. (3.57)
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An identical treatment applied to the right-hand side of

(3.51) produces

}

kO{u  + Atu  _ + ia2h%u + 3(At)3u

XXXX XXTT

+ k(1-8){u  + izh®u } + {f + BAtf +

XXXX

s0(2¢)?F) + 72" & O[n*] + O[hZAt] + O[(At)°]. (3.58)

From Equations (3.57) and (3.58) we obtain

T111+9 = {u_- su - ku _ - £} + At{éuTT
- @su__ - kéu - 6} + hZ{du
- eS Uy T 88, Uy ~ §5U iy ~ 2 kug )
+ (At)2{u___ - 30su___ - ikéu . - 56f)
+ O[h®] + O[h?At] + O[h(At)?] + O[(4¢t)°] . (859}

Since u satisfies the partial differential equation

u, = ku + f (3.60)
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(defined by (3.1) and (3.8)) and the mobile derivative form
(3.55), we see that the first term of (3.59) disappears. We
note also that if 6 = 3 then the second term of (3.59) is a
multiple of the time derivative of (3.60) and so this term
vanishes as well. Since the third term of (3.59) is, in
general, non-zero, we conclude that the local truncation

error term for the 0 # é case is of first order in time and

second in space, whereas that for the 6 = i case is second
order, both in space and time. This result is identical to

that of the O method in finite differences.
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4. Application of the Method to the Test Problems

In this section we describe the special treatments
required for the individual test problems of Section 2. The
common areas to be discussed are: initial placement of nodes,
initial data representation, treatment at the moving
boundary/interface and automatic selection of time
increments.

We give here an outline of each of the above areas for
the three test problems: further details are given in
Sections 4.1-4.3. The nodes in Problems 1 and 3 are
initially equi-spaced, whereas Problem 3 contains a small
bunch of nodes at the moving interface. The initial
amplitudes of Problems 2 and 3 are obtained via a least
squares projection of the initial data functions (2.9) and
(2.16), respectively. In Problem 1 we sample point values of
a short-time solution at the nodal positions. All treatment
at moving boundaries is based on the local recovery of the
true solution via a least squares approach (see below). In
all problems the time increment at each time level is chosen
to obey the stability criterion of Section 3.3.1, while in
Problem 3 it is further reduced in order to accommodate the

large boundary velocity.

4.1 Special Treatment for Problem 1

The One-phase Stefan Problem, defined by equations
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(2.1)-(2.4), presents us with an immediate difficulty: there
is no liquid present initially and it is this phase which is
of greatest interest. One possible remedy is to implement
the analytic solution, (2.5), at a non-zero time as a
start-up solution. A more general approach is as follows.

Substitution of t = O into (2.2) and (2.3b) yields

u = -1 , § = -u_ . (4.1)

From this information we may deduce that the initial profile
is approximately linear, with solution at time to (>0)

given by

to - x , 0 < x < to
u = : (4.2)
0 , X > to

Note that (4.2) is the first term in the expansion of the
analytic solution, (2.5). The difference, d , between the

asymptotic and true solutions is such that

d = O[(x-to)?] . (4.3)
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which assumes its maximum value, d , where

at X =

max

= O[t3] . (4.4)

Thus if to 1is chosen to be small, then (4.2)

is a reasonable approximation to (2.5a) at time to . In

practice

we choose

to = 0.01 (4.5)

which gives

nax = O[10 %] . (4.6)

The numerical initial data is provided by point values of

(4.2) at
The

based on

apply to

equi-spaced nodes.
Dirichlet Condition (2.3a) is replaced using an idea
that of Miller, Morton and Baines (1978) which they

Problem 3. The presence of the two conditions (2.3)

at the moving boundary suggests a locally quadratic solution

q of the form

(x) = Ax® + Bx + C , (4.7)
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where A,B,C are constant. The piecewise linear finite
element solution in the rightmost element, [sN—l’sN] , 1is
given by

v(x) = {aN_l[sN—x] + aN[x—sN_l]}/[sN—sN_lj , (4.8)

and is shown together with q in Figure 6.

Figure 6
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Minimisation of

S
N
s = [ {at) - veo)Zax (4.9)

SN-1

over the variables an_1° 2y produces

2 -
hN—éA + 2hN—éB + 6C = 2ay , + day
, (4.10)
2 -
BhN—éA + 4hN—éB + 6C = d4ay ; + 2ay

where hN—é , the length of the last element, is defined by

hN_é ] SN - SN—]. (4.11)
Imposition of the boundary conditions
a(sy) = ay
' (4.12)
1 _ ~
a” (sy) = ay
produces the relationship
an_1 * 5aN = 6qN - hN—éqN . (4.13)

Conditions (2.3) are implemented by
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ay = 0
, (4.14)
Iy = 7 Sn
to yield
ay_q1 + 5aN = hN—ééN ) (4.15)

as a numerical representation of the Dirichlet Condition
(2.3a).

We now describe the technique for determining the
numerical moving boundary velocity éN , which depends on the
gradient of the solution at the moving boundary (see equation
(2.3b)). At each time level we have a finite element
solution which is of the form of (4.8) in the element
adjacent to the moving boundary. Suppose again, that the
true solution is locally quadratic of the form of (4.7) and
assumes the value

at X = s i.e.

qN N:

a(x) = A(x® - sﬁ) + B(x - sN) +oay - (4.16)

If we now minimise (4.9) over A and B , then we obtain the

explicit expression

qi(sN) - {4qN - ay_{ - BaN}/hN—é , (4.17)
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to represent the gradient of the true solution at the moving

boundary. For this problem we have

ay = O . (4.18)

and so (4.17) becomes
qi(sN) = - {ag_; * 3ay}/hy 1 . (4.19)

Condition (4.19) is implemented in (2.3b) to yield

. n n n
sy = {ag_; + 3ag}/hy_s (4.20)
as the moving boundary velocity at time level n

When the numerical scheme (3.19) is treated explicitly

(i.e. with 6 0) , then (4.20) is in the correct form;

otherwise it is not. An iteration or predictor-corrector
technique may be used, but we shall implement the following
idea. For a 6-scheme the required form of the moving

boundary velocity is

. n+0 .
sﬁ = sy(t + 04t) . (4.21)
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A Taylor series expansion of (4.21) yields
sp(t + 8At) = 5.(t) + 6Atsy(t) + O[(At)®] .  (4.22)

The acceleration term EN of (4.22) can be manipulated to

give

= (sN)z/sN ) (4.23)

Substitution of (4.22) and (4.23) into (4.21) yields

20 - sR{1 + ehtsp/sh) (4.24)
as an accurate approximation to the numerical moving boundary
velocity at time level n + 8 1in terms of the explicit one
with 6 = 0

In order to obtain an accurate representation of the
true moving boundary velocity through (4.24), we maintain a
small last element. At all time levels (including the first)
nodes N-~1 and N move with the velocity of the moving
boundary (determined using (4.24)) and the constrained idea
(3.21) is applied to the internal nodes s, i = 2(1)N-2

The value for the time increment At at each time level
is given by

At = min{AtS , At } o, (4.25)

max
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for 0 < 6 < 3 , where Ats satisfies the stability
restriction (3.49), and is otherwise Atmax , the maximum

designated value of At

4.2 Special Treatment for Problem 2

The Two-phase Stefan Problem considered here is defined
by equations (2.6)-(2.10) and has an analytic solution given
by (2.11).

Carey & Hung (1985) prove that the optimal nodal
positions for piecewise linear approximants in the L2 norm
are obtained by equi-distribution of the modulus of the
second derivative of the initial function raised to the power
of two~fifths. Since the data (2.9) is quadratic, this
approach suggests equi-spacing of nodes. In order to more
accurately represent the piecewise linear approximant in the
neighbourhood of the moving interface, we adopt the idea of
Section 4.1 and choose the lengths of the elements to the
immediate left and right of this interface to be small. So
for given numbers NL , NR of interior nodes in the solid

and liquid phases respectively, and left and right element

lengths h; 1+ , h

1+ adjacent to the moving interface, the
I-3 I+5

initial nodal positions are determined by (i) putting nodes

at x =0 , s(0) , 1, (ii) entering nodes at s(0) - hI—é ,
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S(O)+h1+§ , where

0 < s(0) - hI_1 s(0) + h1+; <1, (4.26a)
with
-2
hI—é = hI/(N—l) = hI+é i hI = 10 (4.26Db)

(N being the total number of nodes), and (iii) equi-spacing

NL-l nodes within the interval [O,s(O)—hI_é] and NR—l in

[S(°)+h1_;-1]
Having located the nodes, the initial amplitudes are

then obtained by performing a least squares minimisation of

[l - v[]2, (4.27)

(with u and v defined in (2.9) and (3.2)) over the
variables a; . i = 1(1)N . This process produces an initial
piecewise linear spline to represent the data (2.9).

We now extend the approach of Section 4.1 to obtain an
amplitudal relationship which numerically represents
Condition (2.8a). Again we assume locally quadratic
behaviour, but now seek quadratics q; -+ 9qp in the elements

[SI—I’SI] , [SI’SI+1] adjacent to the interface, s;
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Figure 7 depicts the situation.

Ll

Figure 7

The functions q and qp are defined by

A.x% + B.x + C

Il

q (x)
. (4.28)
qR(x) Asz + Box + C
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and satisfy

qL(sI) =0 = qR(SI)

’ (4.29)
kpap " (sy) - kpap'(sp) = Ls(t)
in order to model Conditions (2.8). Minimisation of
°1
sp = | {a (0 - vp(0y7ax (4.30)
®1-1
over a;.ajg and of
S1+1
sp = | fag(x) - vp(x))%ax (4.31)
°1
over a; , ap produces four linear equations, which together

with (4.29) yield a system of seven equations in the seven

unknowns AL' BL' CL' AR’ BR’ CR and a; - The resulting

relationship between the numerical interface value and its

adjacent amplitudes is

(kL/hI—é)aI—l + 5[(kL/hI—é) + (kR/hI—é)]aI + (kR/hI+é)aI+1

= - Ls; , (4.32)

with the interface velocity éI being supplied using the

technique described below.
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A minor extension of the slope recovery idea, defined

through equations (4.16)-(4.19) in Section 4.1, produces

1 —
a’y (sy) {ap_y *+ 3arl/hy 4

(4.33)

]

qﬁ(sI) (3aI + a

1+17/P14}

An explicit discretisation of (2.8b) can be obtained by

. + .
replacing u, . Uy therein by q; » 4R - respectively. of

(4.33) to give

qu‘L (sg) - qu‘R(sI) = L& . (4.34)
which can be rearranged to yield

s

[ = -{k[a;_;+3a;1/hy s + kp[3ap+a;  1/hy 4}/L . (4.35)

The extrapolation technique (4.21)-(4.23) is then applied to

(4.35) to produce

.h+0 .N n, n
51 = sI{l + BAtsI/sI} i (4.36)
where
. n n n n n
1= - {(kL/hI-é)aI—l + 3[(kL/hI—é) + (kR/hI+é)]aI
n n
+ (kR/hI+é)aI+1} (4.37)
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Equation (4.25), as in the case of the One-phase Stefan

Problem, defines the stability restriction for O ¢ 6 < 1 on

the time increment at each time level; for 6 > 3 we, again,

use At
max.

4.3 Special Treatment for Problem 3

The initial amplitudes for the One-phase Oxygen
Diffusion with Absorption Problem, (2.13)-(2.16), at the
equi-spaced nodes are determined by minimising (4.27) over
these variables: this is identical to the approach of Section
4.2, but with (2.16) instead of (2.9).

We again impose the Dirichlet condition (2.15a) via
consideration of a quadratic form (4.7) of the true solution
in the neighbourhood of the moving boundary. Equations

(4.8)-(4.12) yield (4.13), in which we set

qN=
qN=O

' (4.38)
to produce the result of Miller, Morton & Baines (1978)

+ 5a, =0 , (4.39)

to numerically represent (2.15a).

We now explain the determination of the numerical moving



- 55 -

boundary velocity éN , and hence the nodal amplitudes at the
new time level. The finite element equation for éN .

obtained by minimising (3.5) with L defined by

L(v) = Vg © 1 4 (4.40)
either over § and scaling by -1/m,; 1+ or over a, , is
N N-2 N
¢h, 14 - &hy im, 18 + 5h, 14
N-2"N-1 N-2"N-z"N-1 N-2"N
_ 1 - = _ 1
ShN—émN—éSN = mN_é th-é # (4.41)

where hN—é , My_4 are as defined in (3.10). The 8

implicit-explicit discretisation technique of Section 3.2.3

converts (4.41) into an equation of the form

.n+0 .n+0 n n n n+1 n+1
F(sN oSyl At hN—é »8y_7 » 8y » By-1 ¢ 2§ ) =0,
(4.42)
where
n n+1 n n+1 n
F = hN—é{aN—l -ay g * 2[aN - aN] + 34t}
n+1 n+1 .n+6 .n+6

- at{efay’ " - ag’11 + (1-8)[ay - ay_,1}[5y ; + 25y ]

n+1 +1
+ 6At{B[ay " - ag_l] + (1-9)[a§ - a;}_l]}/h;}_é . (4.43)
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Equation (4.43) may be expressed in the form

.n+0 .n+0
A - B[&y_; + 25y

S|
Il

] +C, (4.44)

in which

A = hﬁ_é{aﬁt} = aﬁ_l + 2[a§+1—a§] + 3At})
n+l n+1 n n
B = At{6[ay - ay ;] + (1-0)[ay - ag 11}l (4 45)
+1 +1 n
C = 6At{Blay’ " - ag ;] + (1-0)[ay - ay ;1}/hy |

The prescribed nodal motion idea, (3.21), produces

s2*9 [(N-2)/(N-1)]80%0 (4.46)

which when substituted into (4.44) yields

F=4A-Ds?%s ¢, (4.47)

where

D = B[3 - 1/(N-1)] . (4.48)

We can therefore determine the moving boundary velocity using

.n+0
§

N = (A=+C)/D, (4.49)
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provided that the values aﬁti , a§+1 at the new time level

are known.
The above working suggests an iteration algorithm in

which the following is considered at each time level n 2 O

. . .n+6
(i) Estimate (sN )o

(i1) Determine (s3°%), . 1 = 2(1)N-1 ., 1 =0, 1, 2,

(iii)Form a linear system for (gn+1)l

(iv) Solve the system for (§n+1)1

(v) Investigate the convergence of the iteration.

.n+0

(vi) If necessary, obtain (sN and return to

)1+1
(ii), with 1 replaced by 1+1

Owing to the negligible initial velocity of the moving

boundary (see Hansen & Hougaard, 1974), we choose

.0
(SN)o =0 , (4.50)
in (i). At all other time levels we obtain an initial
estimate of the moving boundary velocity as follows. A

slight variation of the extrapolation idea, (4.21)-(4.24), of

Section 4.1 applied to the new moving boundary amplitude
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produces
n+1 n n+s.n+0
o~ + At
N 2N

1 _ _1 1.._
~ all + At™"2{an 0 4 1ae™2 + ac™*2)ad 1+6,
1 _ _1 1 _ da
~ an + Atn+2{a§ 146  1(ac™72 & Ae™*2)an 1+8 EEE}
N
1 1 3 da
~ al + At"T2an 1+9{1 + L(AtRTZ & a2 555} , (4.51)
N
where
1
AtPFTE o P (4.52)

is the difference between the time at levels n and n+l

The derivative term in (4.51) may be represented via

da
N .n—14+6 .n—-1+6 n n
—EE = [aN - ay_1 ]/[aN - aN—1] , (4.53)
to yield
+1 n+3.n-1+86 -3 n+%, .n-1+0
aﬁ o aﬁ + At 2a§ {1 + 3(8t"72 + At 2)[a§ -

.n—-1+0
Bya ]/[aﬁ - aﬁ_lj} . (4.54)
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as an approximation to the new amplitude. A central

difference form of (4.53), namely

da
N-1 .n-1+6 .n-1+06 n n
Egﬁ;l = [aN - 4y s ]/[aN - aN—2] , (4.55)
produces as an estimate of the amplitudal value at the
penultimate node
n+1 n n+s.n-1+6 n-: n+3,..n-1+60
ay_] ®ay_; * At 2aN_1 {1+ 3(At 2 + At 2)[aN -
.n-1+86
aN_o 1/[ay - ag_o1} - (4.56)

In practice we reduce the danger of inaccuracy due to
rounding errors in (4.54) and (4.56) by including the
O[(At)?] terms only when they are two or more orders of

magnitude smaller than the O[At] ones. The velocities

én—1+9 .n—-1+06 én—1+6
N-2 v 8yN-1 R\

level using the Euler formula

are evaluated prior to the nth time

. - _1
gh~1+6 _ pon _ on7ly,) 072 3 _ Nog , N-1 , N . (4.57)
J N 3
The forms (4.54) and (4.56) are substituted into (4.45) to

obtain iterates of the boundary velocity through (4.48) and

(4.49).
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Stage (ii) of the algorithm is provided for via (3.21)

with

s, =0, s =0, (4.58)

and we achieve (1ii) using the scheme defined by (3.19). The
new amplitudes in Stage (iv) are obtained via the inversion

technique outlined in Section 3.2.4.

Having determined the values (a?+1

the 1th iteration step at the nth time level, we form a

)1 , i =1(1)N , on

corrected estimate of the moving boundary velocity (é§+e)i .
using (4.49) and (4.45), (4.48) with the amplitudes of time
level n+l1 represented by the extrapolated estimates.

Convergence is then investigated numerically via

.n+6 .n+0,c .n+0
|(SN )1 - (SN )ll < e I(SN )ll . (4'59)
where e 1is the iteration tolerance. If (4.59) is not

satisfied, then a further estimate for the velocity is

provided for in Stage (iv) by

.n+6 .n+t+B,c

S N T A TR S IR [C-aae b (4.60)

(SN
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where © 1is a relaxation parameter. In practice, at most

two iterations are required with the choice

e =3x10°, 0=3, (4.61)

and these occur only in the latter stages of the duration of
the absorption/diffusion process.

Consider now the special case of 0 = 0 . We may then
formulate our problem in terms of the variables éi ,

i =1(1)N, and & using N-1 equations of the type

N ’

(3.14) for a i = 1(1)N-1 , equation (4.41) for s

i [ ]
while that for a

N »
Ny 1s obtained by differentiating (4.39),

and is

+ Ba, = 0 . (4.62)

ayN-1 N

The constrained nodal motion idea, (3.21), enables us to

express the system in the form

Ay = r , (4.63)

~

where A 1is an upper Hessenberg matrix with non-zero entries

indicated in Figure 8,



- 682 -

r=1[a; . & ay s gyl
and r 1is a vector of known values. If we
X X |
X X X X
X X X ' X
XX XX
X X XX
X X1 X

Figure 8

(4.64)
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~

partition A into the form suggested by Figure 8, namely
= A b
= l T g] ; (4.65)

then (4.63) may be expressed as

oA B (1.00

where r, and r, are the right-hand parts corresponding to
the a and éN equations, respectively. An expansion of

the system (4.66) yields

Aa + ;b =T
N= —a
T , (4.67)
ca+ s.d=r
= = N s
the solution of which is given by
. T, -1 T,-1
(1) 8y =1[r, - e A ' 1/[d - c'A "b]
(4.68)

(11) & = A [z, - 8yb]
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Another possible method of inverting (4.63) is to reduce the
system to upper—-triangular form and then to back-substitute
for the solution. We do not consider these explicit
techniques further in this report.

As t approaches t2 , the time at which zero oxygen
remains, the velocity of the moving boundary becomes very
large in magnitude. For this reason we restrict the time
increment in order to preserve accuracy of the numerical
solution. At each time level the difference between the new
and present positions of the moving boundary is not allowed
to exceed a given multiple of the present one; i.e,

n+l n n
|sN - le < ¢ sy - (4.69)

A Taylor expansion of (4.69), based on the idea of (4.54),

yields

.n—1+9|

1
+
At"T2 ¢ ¢ s§/|sN (4.70)

to first order in At. We take the number of elements into

consideration by choosing

¢ = x/[N-17 ., (4.71)
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where x 1is a specified accuracy, given by

x = 0.1 , (4.72)
for a 10% level. The time increment at each time level is

prescribed in accordance with the accuracy citerion,

(4.70)-(4.72), and that for stability in Section 3.3.1.
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5. Presentation and Analysis of Results

In the ensuing subsections we present and discuss the
numerical and graphical results of the test problems of
Section 2. In each case numerical results are tabulated with
11, 21 and 41 nodes, but all graphical output contains 21
nodes.

The implicitness parameter 6 is given by

0 = & (5.1)

in all runs, thus yielding unconditionally stable schemes
according to the analysis of Section 3.3.1. The time
increment, which is unrestricted in the case (5.1), is taken

to be At , where
max

At 107t . (5.2)
max

The local truncation error analysis of Section 3.3.2 using
(5.1) yields a numerical scheme which is second order

accurate both in space and time.

5.1 Results for Problem 1

The numerical solution of the One-phase Stefan Problem
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(defined by (2.1)-(2.4)) is initiated at time to (given by
(4.5)) using the start-up solution (4.2) and run to final
times of 1 and 5 non-dimensional units.

Figures 9 and 10 show the variation of the temperature
in the water region at times 0.1(0.1)1.0 and 1.0(1.0)5.0
respectively. The ")" symbols denote the water-ice
interface positions, the solid lines represent the exact
solutions, and the heavy dots are the numerical values. In
Figure 9 we see the early linear-like behaviour in the
expanding water region and the effect of the Neumann boundary
condition (2.2) is clearly visible in the rapidly changing
solutions of Figure 10.

Tables 1 and 2 contain the exact positions of the moving
boundary and the exact temperatures at the fixed left-hand
boundary, respectively, at selected times, together with the
relative percentage errors (calculated by dividing the
deviation of the numerical values from the exact ones by the
exact values and then multiplying by one hundred). In all
cases the intial errors, which are due to the implementation
of (4.5) in the start—-up solution (4.2), decrease in
magnitude with time for each fixed number of nodes to a
minimum value and then increase. The errors (with a few

exceptions up until a time of 1, and none afterwards) reduce
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on increasing the number of nodes for a fixed value of time.
An order of convergence greater than two is apparent in space
in both the moving boundary position and fixed boundary
temperature after a time of 1 non-dimensional unit; this rate
is not apparent before this time owing to the extreme
accuracy of the results - possibly due to the effectiveness
of the special treatment in Section 4.1 using only small
numbers of nodes.

The c.p.u. times on a Norsk-Data Nord 500 mini computer
for 11, 21 and 41 nodes are 18, 33 and 63 seconds,
respectively, for a final time of one unit, and are 85, 158
and 304 for a value of 5. The computer times therefore

increase approximately linearly with the number of nodes.
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THE ONE-PHASE STEFAN SOLUTION

Figure S

THE ONE-PHASE STEFAN SOLUTION

M 4

0.0 0.5 1.0 1.5 2.0 25 %0 3.5 40 45 50
A i A i L

Figure 10
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Exact Relative Percentage Error in Position
Time

Position 11 Nodes 21 Nodes 41 Nodes

0.01 0.01000 -1.000 -1.000 -1.000
0.10 0.10000 -0.450 -0.430 -0.420
0.20 0.20000 -0.270 -0.255 -0.245
0.30 0.30000 -0.193 -0.180 -0.170
0.40 0.40000 -0.145 -0.135 ~0.130
0.50 0.50000 -0.110 -0.108 -0.102
0.60 0.60000 -0.085 -0.088 -0.083
0.70 0.70000 -0.063 -0.073 -0.070
0.80 0.80000 -0.043 -0.060 -0.060
0.90 0.90000 -0.024 -0.050 -0.051
1.00 1.00000 -0.006 -0.041 -0.044
2.00 2.00000 0.171 0.022 -0.009
3.00 3.00000 0.392 0.079 -0.011
4.00 4.00000 0.669 0.145 0.030
5.00 5.00000 1.003 0.222 0.050

Table 1
Problem 1: relative percentage errors in computed moving

boundary positions at selected times as compared with the

exact values.
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. Exact Relative Percentage Error in Temperature
g Temperature 11 Nodes 21 Nodes 41 Nodes
0.01 0.01005 -1.493 -1.493 -1.493
0.10 0.10517 -0.380 -0.361 -0.352
0.20 0.22140 -0.217 -0.203 -0.194
0.30 0.34986 -0.140 -0.134 -0.129
0.40 0.49182 -0.096 -0.098 -0.094
0.50 0.64872 -0.060 -0.071 -0.071
0.60 0.82212 -0.033 -0.054 -0.055
0.70 1.01375 -0.010 -0.039 -0.043
0.80 1.22554 0.012 -0.028 -0.034
0.90 1.45960 0.032 -0.018 -0.027
1.00 1.71828 0.0562 -0.010 -0.022
2.00 6.38906 0.259 0.054 0.008
3.00 19.08554 0.535 0.120 0.027
4.00 53.598156 0.896 0.206 0.049
5.00 147.41316 1.344 0.313 0.075

Table 2

Problem 1: relative percentage errors in computed fixed
boundary temperatures at selected times as compared with the

exact values.
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5.2 Results for Problem 2

A typical numerical solution to the Two-phase Stefan
Problem, (2.6)-(2.10), may be seen in Figure 11 at times
0.0(0.5)2.5. The variation of the temperature in the
expanding ice and diminishing water regions is again
represented analytically by the solid lines and numerically
by the heavy dots. The right-moving interface nodes (whose
positions are again denoted by "|" symbols below the
horizontal axis) blend in with their left and right direct
neighbours (with the spacing given by (4.26)) to form heavy
blobs on the dashed zero temperature line. Although we have
simple quadratic solutions in space according to (2.11a), the
rapidly accelerating interface position of (2.11b) renders
this a difficult problem to treat numerically.

The relative percentage errors of the moving interface
position and fixed left- and right-hand boundary temperatures
are displayed in tables 3, 4 and 5, respectively, at selected
times. We see that the errors in the moving interface
positions, which are initially zero, increase with time for a
fixed number of nodes: the temperatures at the fixed
boundaries, on the other hand, generally decrease from their
initial values (obtained via projections in (4.27)) to minima

and then increase, like those of Problem 1. The general
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trend is for the errors in the moving interface positions and
fixed boundary temperatures to decrease as the number of
nodes is increased at a fixed time. Quadratic convergence,
however, is not exhibited in these results, but may be seen

approximately for

1 (5.3)

in (4.26a) - although this choice is less robust than that of
(4.26b).

Runs with 11, 21 and 41 nodes require 47, 81 and 153
seconds of c.p.u. time on the Nord 500 mini computer, thus
illustrating an approximately linear dependence of computer

time on the number of nodes.
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_(_t_.uslng 21 nodes )

1.0

Figure 11
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Exact Relative Percentage Error in Position

Time
Position 11 Nodes 21 Nodes 41 Nodes
0.0 0.25000 0.000 0.000 0.000
0.5 0.32101 0.072 0.100 0.062
1.0 0.41218 0.184 0.141 0.080
1.5 0.529256 0.246 0.164 0.091
2.0 0.67957 0.243 0.166 0.093
2.5 0.87259 0.185 0.152 0.089

Table 3

Problem 2: relative percentage errors in computed moving
interface positions at selected times as compared with the

exact values.
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Exact Relative Percentage Error in Temperature
Ee Temperature 11 Nodes 21 Nodes 41 Nodes
0.0 -0.06250 1.040 0.208 0.048
0.5 -0.10305 0.116 0.194 0.126
1.0 -0.16989 -0.300 -0.259 -0.153
1.5 -0.28011 -0.393 -0.296 -0.171
2.0 -0.46182 -0.353 -0.245 -0.169
2.5 -0.76141 -0.206 -0.244 -0.152
Table 4

Problem 2: relative percentage errors in computed fixed
left-hand boundary temperatures at selected times as compared

with the exact values.

Exact Relative Percentage Error in Temperature
. Temperature 11 Nodes 21 Nodes 41 Nodes
0.0 0.93750 1.623 0.124 0.028
0.5 0.89695 0.011 -0.011 -0.009
1.0 0.83011 -0.105 -0.054 -0.028
1.5 0.71989 -0.210 -0.122 -0.065
2.0 0.53818 -0.429 -0.281 -0.156
2.5 0.23859 -1.195 -0.981 -0.578
Table 5

Problem 2: relative percentage errors in computed fixed
right-hand boundary temperatures at selected times as

compared with the exact values.
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5.3 Results for Problem 3

In Figure 12 we see numerical solutions of the Oxygen
Diffusion with Absorption Problem (2.13)-(2.16), at times
0.00(0.01)0.19. The solid squares, joined by the linear
segments, denote the nodal concentrations and the "A"
symbols locate the moving boundary. The negligible initial
and large final velocities of the boundary are apparent in
Figure 13, which displays the variation of the position of
the boundary (on the vertical axis) with time.

The convergence parameters e , ®w , defined in (4.61),
and the constant x , of (4.72), are implemented in the
numerical solutions. Robustness is illustrated by obtaining
very infrequent, negligible deviations in the numerical
results when e 1is decreased by two orders of magnitude.

The nature of the problem is such that zero oxygen
remains in the tumour tissue after a time ¢tz . Values of
0.197050, 0.197424 and 0.197417 for ¢tz are obtained with
11, 21 and 41 nodes respectively, thus indicating a final
time of about 0.19742 non-dimensional units. This number
compares favourably with those of previous workers:
0.1972-0.1977 of Hansen & Hougaard (1974), 0.1973 of Gupta &

Kumar (1981) and 0.197434 of Dahmardah & Mayers (1983).
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Tables 6 and 7 contain the numerical values for the
moving boundary position and the concentration of oxygen at
the fixed boundary, respectively, at selected times; also
included are the results of Hansen & Hougaard (1974), which
are considered to be the most accurate available in the
absence of a known analytical solution, for comparison
purposes. We see that all sets of results, especially those
with 41 nodes, are very comparable to the Hansen & Hougaard
(1974) values - and are increasingly so for increasing
numbers of nodes at fixed times, in general. Note that the
21 and 41 results are in excellent agreement with each other,
particularly in the case of the oxygen concentration at the
fixed boundary (the initial values of which are calculated
using an Lz projection of the initial data function (2.16)
onto the space of piecewise linear functions), even in the
final stages.

The numerical results exhibit an approximately quadratic
rate of convergence, both with respect to the Hansen &
Hougaard (1974) values and with respect to themselves.

Again, the dependence of c.p.u. time on the number of
nodes is linear-like, with times of 7, 13 and 32 seconds for

11, 21 and 41 nodes respectively.
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THE OXYGEN DIFFUSION SOLUTION

{using 21 nodes )
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Hansen & Computed Position
Time Hougaard
(1974) 11 Nodes 21 Nodes 41 Nodes
0.0000 1.00000 1.00000 1.00000 1.00000
0.0100 1.00000 1.00000 1.00000 1.00000
0.0200 1.00000 1.00000 1.00000 1.00000
0.0300 - 1.00002 0.99995 0.99992
0.0400 0.99918 0.99982 0.99936 0.99923
0.0500 0.99679 0.99823 0.99717 0.99689
0.0600 0.99180 0.99407 0.99239 0.99195
0.0700 . 0.98652 0.98431 0.98372
0.0800 0.97155 0.97510 0.97246 0.97177
0.0900 - 0.95944 0.95649 0.95572
0.1000 0.93501 0.93922 0.93608 0.93526
0.1100 - 0.91403 0.91082 0.90999
0.1200 0.87916 0.88336 0.88022 0.87939
0.1300 - 0.84651 0.84355 0.84277
0.1400 0.79891 0.80243 0.79979 0.79909
0.1500 0.74668 0.74953 0.74739 0.74682
0.1600 0.68337 0.68526 0.68384 0.68345
0.1700 - 0.60508 0.60472 0.60460
0.1800 0.50109 0.49938 0.50072 0.50102
0.1850 0.43341 0.42996 0.43267 0.43318
0.1900 0.34537 0.33900 0.34476 0.34553
0.1950 0.20652 0.19266 0.20713 0.20754
0.1955 0.18708 0.16879 0.18631 0.18630
0.1960 0.16266 0.14056 0.16178 0.16186
0.1965 0.13284 0.10360 0.13223 0.13208
0.1970 0.09175 0.03285 0.09151 0.09109
0.1971 - = 0.08068 0.07995
0.1972 0.06708 - 0.06763 0.06673
0.1973 = - 0.05100 0.04962
0.1974 - = 0.02323 0.01951
Table 6

Problem 3: computed moving boundary positions at selected times

as compared with those of Hansen & Hougaard (1974).
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Hansen & Computed Concentration
Time Hougaard
(1974) 11 Nodes 21 Nodes 41 Nodes
0.0000 0.50000 0.49917 0.49979 0.49995
0.0100 0.38716 0.38876 0.38755 0.38726
0.0200 0.34042 0.34128 0.34063 0.34047
0.0300 = 0.30510 0.30469 0.30459
0.0400 - 0.27468 0.27441 0.27435
0.0500 0.24769 0.24791 0.24774 0.24770
0.0600 0.22361 0.22373 0.22363 0.22361
0.0700 = 0.20150 0.20147 0.20146
0.0800 = 0.18082 0.18084 0.18085
0.0900 = 0.16140 0.16147 0.16148
0.1000 0.14318 0.14303 0.14314 0.14317
0.1100 - 0.12557 0.12572 0.12576
0.1200 0.10913 0.10890 0.10908 0.10912
0.1300 = 0.09291 0.09312 0.09317
0.1400 0.07785 0.07754 0.07778 0.07784
0.1500 0.06308 0.06274 0.06300 0.06307
0.1600 0.04882 0.04845 0.04874 0.04881
0.1700 = 0.03466 0.03497 0.03505
0.1800 0.02178 0.02135 0.02169 0.02177
0.1850 - 0.01489 0.01524 0.01531
0.1900 0.00802 0.00857 0.00896 0.00901
0.1950 0.00288 0.00244 0.00286 0.00287
0.1955 - 0.00183 0.00227 0.00226
0.1960 - 0.00123 0.00167 0.00166
0.1965 - 0.00064 0.00108 0.00107
0.1970 - 0.00006 0.00049 0.00048
0.1971 - . 0.00038 0.00037
0.1972 - = 0.00026 0.00025
0.1973 = = 0.00014 0.00013
0.1974 - = 0.00003 0.00002
Table 7

Problem 3: computed fixed boundary concentrations at selected

times as compared with those of Hansen & Hougaard (1974).
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6. Conclusions

We have applied a constrained moving finite element
method to three typical one-dimensional moving boundary
problems. The method is accurate and numerical results show
an approximate second order rate of convergence. The low
c.p.u. times, which increase linearly with the number of
nodes, indicate a very inexpensive solution technique.

In future work we hope to extend the method to solve the
corresponding two-dimensional versions of the problems

considered here.
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Appendix

We describe here an approximate technique for imposing a
Dirichlet condition of the form of (3.13) weakly at a fixed
boundary, which for simplicity is taken to be at x = 0

If we assume that the true solution can be adequately
represented in the first element, [sl,sz] , by a quadratic
function q , defined by (4.7), then the analysis

(4.9)-(4.12) yields
5a1 + a, = 6q1 + hgql ’ (A.1)

where a4 and a, are the numerical amplitudes at the nodes

Sy Sg » respectively, and
ql = q(sl)
~ . (A.2)
ql = q (Sl)

For a Dirichlet condition such as (3.13) we replace u(sl)
by q(sl) and re-write (A.1) as

~

q; = {a1 + 5a2 - 6q1}/hg ; (A.3)

which is used as an approximation to ux(sl) . Thus, with
the assumption of an asymptotic functional form close to the
boundary, the Dirichlet Condition (3.13) may be imposed as a
Neumann one and entered into the weak form of the

differential equation.
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