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Abstract

A direct method is presented for determining the uncertainty in
reservoir pressure, flow, and net present value (NPV) using the time-
dependent, one phase, two or three dimensional reservoir flow equations.
The uncertainty in the solution is modelled as a probability distribution
function and is computed from given statistical data for input parame-
ters such as permeability.

The method involves a perturbation expansion about a mean of the
parameters. Coupled equations for second order approximations to the
mean at each point and to the field covariance of the pressure are de-
veloped and solved numerically. The procedure is then used to find the
statistics of the flow and the risked value of the field, defined by the Net
Present Value (NPV), for a given development scenario.

This method involves only one (albeit complicated) solution of the
equations and contrasts with the more usual Monte-Carlo approach
where many such solutions are required. The procedure can be ap-
plied easily to other physical systems modelled by partial differential
equations with uncertain data.

Key words : [low in porous media. stochastic modelling, numerical
solution of uncertain systems

AMS subject classification : 65M, 65U, T6M. 76S. 86

1 Introduction

Difficulty in the mathematical and numerical modelling of flow through porous
media in underground reservoirs often arises because a precise knowledge of
data is not available. Specifically, reservoir data may only be known within
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certain limits of accuracy, or it may only be possible to specify certain sta-
tistical properties of the data. This may be due to inaccuracy in measuring
equipment or to inaccessibility and a high level of heterogeneity in the reservoir
materials.

The usual approach to problems of this kind is to use Monte-Carlo methods.
However, in some cases the number of realisations that need to be generated
may be prohibitively large, and for this reason we have aimed to develop a more
direct method for assessing the uncertainty in the solution. The procedure
described here uses an approach similar to that of [8] [9] and is an extension of
techniques that we have previously developed for the stochastic steady-state
reservoir flow problem and for a transient mass-balance model with uncertain
parameters [1] {2] [3]. Preliminary results of this work have been published in
[4] [5]. The method that we present can be applied easily to other physical
systems governed by partial differential equations with stochastic data.

We restrict our study to a fairly straightforward two-dimensional model
equation (with the implicit assumption that the results obtained may be gen-
eralised to the three-dimensional case). The model is obtained by combining
Darcy’s law for flow in a porous medium [6] with the equation for single-phase
flow in a fluid with a constant compressibility to give

Op
Vo = V(k7p) = f(x,1), (1)
where 7 is the compressibility, p the pressure, k the permeability, and f(r,1)
is some forcing function. The risked value of the field is assessed using the net
present value (NPV), defined by

NPV = [T Qe 2)

where Q(t) is the flow at the relevant production well and § is some discounting
factor.

In the mathematical modelling of the field for a deterministic case. the flow
term Q(t) may easily be obtained if values for the pressure are known or the
field flow equations have been solved at each time-step. For the simple model
used here, the flow can be obtained directly from the formula

Q(t) = —kV(p), (3)

where £ is the permeability and p the pressure.

In the first part of this paper, we deal with cases where uncertainties in
the permeabilities cause corresponding uncertainties in the solutions for the
pressure. In the second part we investigate how these uncertainties propagate
into uncertainties in the flow and, more importantly, in the NPV.



We make the assumption that the statistical behaviour of the permeability
field may be characterised by its mean value. (k), and the permeability auto-
correlation function (P.A.F.), written as a function of two spatial positions. ry
and rz. The P.A.F is defined explicitly as

((k{r1) — ko(r1))(k(re) — ko(ra)))
ok(r1)or(rz) ‘

p(ry,rz) = (4)
and can be thought of as a measure of how strongly the statistical properties

at points ry and rz are related. For practical purposes, the distribution is
assumed to be of a lognormal form.

2 Hierarchical Equations

We begin by developing a set of hierarchical equations for a general admissible
realisation. By developing these systems of equations as far as possible, before
taking mean values on either side, we can obtain equations that allow us to
solve for the statistical properties of the numerical solution for the pressure.

2.1 Standard Form

For a permeability distribution function that is symmetric about the mean
value, a simple linear perturbation about the mean can be considered. We
therefore treat the two-dimensional permeability field for a single realisation
as a perturbation about some pre-defined mean value field and write

k = k0+ak1. (5)

We assume that ky = (k) is a deterministic mean. knowledge of which is
available.

Equation (1) can then be written

T3 = Vl(ho + k) V(2) = folr.t) + ach(r, ), )

where p is the pressure solution for a specific realisation.

As in much work by Dagan [9] and Dupuy and Schwydler (8], we assume
that the pressure solution can be expressed in a series form

AY
p= Z Q'mpm + RN+17 (7)
m=0

where Ry4, is the residue due to truncating the series for NV** order accuracy.
Substituting equation (7) into (6) gives



0
ki (Z a"pm + By

m=0
— V((ko + akl)V (Z ampm + R:\«'+l> = fo(r,t) + afl(r,t). (8)
m=0

If we define py to be the solution of the mean value problem (also known
as the deterministic problem)

0
a’”t" VkoVpo = fo, 9)

then, by equating successive powers of «, equation (8) can be split into the set
of N + 1 hierarchical equations

)
<=~ VkoVpo = fo, (10)
Bt = VkoVpy — VE Vpo = fi, (11)

)
8”; VkoVpy — Vk Vpy = 0, (12)
v GkyTp — Vi Vs =0, (13)
6{;’? VkoVpn — Vi Vpyn_y = 0. (14)
)

v Rid";“ — V(ko + oky )V Ry st — a1V Vpy = 0. (15)

This represents a set of coupled partial differential equations for each ad-
missible realisation. By truncating this series at the N** term, we impose a
level of accuracy on the possible solutions. In a statistical sense, we are not
able to solve the NV 4+ 1°* equation (15), and so the equations are of N'** order
accuracy.

It may, of course, be possible to obtain bounds on the size of the residue
terms over all admissible realisations. In [2] and [3] an analysis of the residual
error in the expansion for the pressure is given for the steady-state problem
and bounds on the residuals are derived in terms of bounds on the range of
possible values for the permeability. This effectively gives a measure of the

accuracy of the hierarchical approximations in the limit as the system tends
to steadyv-state.



2.2 Lognormal Distribution

If a lognormal distribution function is assumed for the permeability, the ex-
pansion must be formed about the geometric mean [9]. This is equivalent to a
linear expansion about the log of the permeability of form

ln(k) =z=29+ /521,
where zy = (z). Hence

2,2
k = e’°+ﬁzlez°+%em+---

= Ky + PR+ PRyt =Ry + Y Bk, (16)

i=t
where «, is the geometric mean.

If we perform the same procedure as in Section 2.3, assuming that the
pressure has the form

N
P=2_ B"Pm+ Snn (17)

m=0

and substituting for pressure and permeability into equation (1), we obtain

N
VS ot Svia) - Vst B3 "t Swan) = J(0,t). (19

Writing
f(l‘,t) = fO(r’t) + ﬂfl(rat)

and equating powers of 3 then gives the system of hierarchical equations

Opo
1% = V5 Vp0 = o, (19)
d
15 = VR,V = Vi Vo = i, (20)
at Vfcprg VKIIVPI — VKZQVPO = 0, (21)
Bp it
Ly - VK Vp; — Z V&i—cmVpm =0, (22)
m=0
N-1
ag:’ Vi Von = 3 VEN-mVom = 0, (23)
m=0
aSN+1 0 ) o0 A .
~— - Vk,VSys — V(Z,B%j)VSNH — Z Z BV K Vpm = 0.
ot =1 J=N+1m=0

(24)



3 Statistical Properties of Analytical Equa-
tions

To progress further, we must now consider the statistical properties of the
solutions to all of the hierarchical equations.

3.1 Standard Form

For the purposes of this research, we restrict our consideration to second or-
der approximations for symmetric, or standard-form, permeability distribution
functions.

Taking mean values on both sides of equations (10)-(12) and assuming &,
is a perturbation about the absolute mean, so that (k;) = 0, we obtain

dpo 3 B
‘% = Vk()vpo = an (25)
7% — VkV(p) = (f), (26)
75(81’:) — VkoV(py) — V{k; Vipy) = 0, 27
and
78(;?) — V(koV(Ra)) + V{akiV Rs) — &®V{k; Vipg) = 0. (28)

As they stand, these equations are not solvable, even just up to second
order. due to the presence of the cross-correlation term V(k;Vp,). In order to
obtain a solution. a method for evaluating the correlation function (k;Vp,) is
needed.

We consider multiplying k; into the grad of equation (11) to give an ex-
tra partial differential equation. The result of this is to introduce higher or-
der cross-correlation terms. such as (k,V?k,Vpp), into the equations. The
evaluation of these terms involves subsequently higher and higher order cross-
correlation terms. This process. of course, is only feasible if a closure can be

imposed on the system of equations under consideration. As they stand. this
is not possible.

3.2 Lognormal Distribution

Applying the same procedure as in Section 3.1 to the set of equations (19)-
(21) for the lognormal permeability distribution function gives the similar. but
modified. equations
d
‘,/% — VK, Vo = fo, (29)



o :
V22 ve,Y i) = (R) (30)

7a<apt> VrgV(pe) — V(&1 Vpy) = V{k2)Vpe = 0. (31)

The difference here is the presence of the third term, V{x3)Vpo, in equation

(31). This term just links in the first equation in the series with an extra

moment of the distribution, (x;) which is a known property of the distribution.

However, the basic problem remains the same: the presence of (k1 Vp1),

which must be solved for simultaneously in order to obtain closure of the
equations, as for example in [11] and [9].

3.3 Variance

A second order approximation to the covariance can be found in a similar way
to (10] by considering

T B, Opi(ra,0) = pa(er, 07 PR Ly g, OELD
and substituting for 7%‘:—‘, etc. from (11) to obtain
0
757 (Pr(r1, )pu(r2, t))
— Vako(r2)Vapi(ry, t)pi(ra, t) — Voki(rz)pi(r1, ) Vapo(ra, t)
= Viko(r1)Vipi(rs, t)pi(ry, ) — Viki(r1)pi(r2, ) Vipo(ry, t) = 0,
(33)

where V, and V; denote the grad with respect to ry and ra, respectively.
Taking the mean value on either side of this equation results in an equation
for the behaviour of the covariance of the pressure given by

Tar((pr(rs, ez, )
— Vako(rz, t)Va(pi(r1, t)pi(re, t)) — Valki(r2)pi(r1,t)) Vapo(re, t)
— Viko(r1)Vi(pi(re, t)pi(r1,t)) — Vi{ki(r1)pi(r2, t))Vipo(ry, t) = 0.
(34)

If the covariance at time t between pressure values at two points ry, and ro is
denoted by C(ry,rz,t), then these equations are

0
7E(C(r11r21t))
— Vako(r2,1)V,C(r1,ra,t) = Vo(ky(rz)pi(r1, 1)) Vopo(re, t)
- vlkO(rl)vlc(rz’rltt) - V1<k1(r1)P1(r2at)>V1P0(r1at) =0.
(35)



In the case of a lognormal distribution. the covariance takes the same form,
with «,. x, replacing ko, &y, respectively.

Evaluation of the terms in this expression is again rendered impossible if
no method of solving for the cross-correlation term is available.

We conclude that developing a method for determining the lowest moments
of the distribution function of the solution to (1), in this case, second order
accurate approximations to mean and variance, requires some method for ob-
taining the cross-correlation terms (k,Vp;) for values of spatial separation and
time. Finding a solvable equation for these terms is problematic, but we now
establish that we can obtain closure if we consider the discretised equations.

4 Discretisation

We now show that the problem of providing a solution for (k; Vp,), or (k;Vp,),
may be overcome by consideration of the discretised versions of the hierarchical
equations derived in Sections 2.1 and 2.2.

4.1 Standard Form

We consider a discretisation of the equations (10)-(12) with a simple explicit
time scheme and a general (unspecified) spatial difference scheme of the form

n41

VPOLA—XPM - vh(k?jvhl’g i) = o i (36)
n+1 n
TP i T TP gy n n n
a JAt L~ Vh(k?jvhpl z'j) - vh(kiljvhpo ij) = fi i (37)
and "
2 15 — VD7 i . n
P B (Ve ) - Ve Vap ) = 0. (38)

where the (7, ;) indices refer to spatial points ({Az,jAy) in Cartesian co-
ordinates. and p}, ,; refers to the numerical solution for p,(r,nAt). where r is
also in Cartesian co-ordinates.

We now denote a general value of the perturbation k; at a discrete point
(1Az. jAy) by kj;, and consider the value £}, at a second point. (i'Az. j'Ay).
Multiplying this into equation (37) and taking mean values throughout gives

n+41

YPoii — YPo n n
—O—*L_,-At—OJ - Vh(k?jvhpo ij) = fo ) (39)
v(kh ¥y — v(khpf ;)
At
- <k}'j'vh(k?jvhpvf z‘j)> - (kil’j’vh(kiljvhpg ij)) - <ki1’j’f1ni7'>a (40)

8



n+1 ~inT L

D) =) 0189408 ) - (Vb Tt o) =0, (a1
This is now a complete set of coupled ( numerical) equations that have an
explicit solution. \When these equations are solved simultaneously, the cross-
correlation function is found from equation (40) and then substituted into
equation (41). In this form, the cross-correlation is a function of two (discre-
tised) spatial points. The discretised autocorrelation function of the perme-
ability field occurs in the (k31 Vn(kL YV hpd ;;)) terms. These are basically just
linear combinations of the autocorrelation parameters, with coefficients specif-
ically dependent on the selected spatial discretisation scheme. The boundary
conditions are incorporated into the right hand side terms of the equations.

4.2 Lognormal Form

Performing the expansion for a lognormal distribution function about the ge-
ometric mean results in an extra term in the second order equation. as seen
in equation (21). In discretised form, with the obvious notation, the set of
coupled numerical equations becomes

amittl n
/Do i — YPo &5

At

- Vh("?jvhpg ij) = f(?ij’ (42)
Vb0t ;) — v(khap} i)
At
- (’C}'j'vh(ﬁgjvhp? ij)) - (K}'jfvh("}jvhpg ij)) = <K‘}’j’f1nij>a (43)
n+1 n

Y\D2 i —’Y(P i'> " n R
(P J>At -5 —vh(’“?]‘vh@z ij))—(vh(’i}jvhlh ij)) —Vh(”?j)vhpo ij = 0.
(44)

4.3 Variance Equations

The same discretisation performed on the covariance equations (35) (which
have the same form in the linear and lognormal distributions, but with % and
r interchanged) results in the following equations

’Ycﬁf’ilj - ’Ycﬁj'ij
At
- vhk?jvhcgj’ij - Vh(klpl)?'jlijvhpg i
. thngVhC?jilj/ = vh(’klpl)?ji’j'vhpg i 5t =0. (45)

The quantity of particular interest is the variance of the pressure distribution,
an important characterisation of the complete distribution function. In dis-
cretised form, the variance for time level nAt, at spatial position (tAz.7Ay)

9



is the value of CT;;. Unfortunately, in the process of solving for this value,
the correlation values for distinct points. C'%;,;; must also be computed and
stored at each time-level. These values can be considered as a bonus to the
required information, having an academic rather than a practical interest. An

indication of the correlation length of the solution variable is. however. now
directly available through this technique.

4.4 Summary

The discretization of the hierarchical equations (10)-(12) and (19)-(21) gives
us a set of coupled numerical equations for the first two moments character-
ising the probability distribution function of the pressure solution. These are
equations (39)-(41) and (45) for the standard form and (42)-(45) for the log-
normal form. They can be solved at each successive time-level to follow their

progression in time. This results in an approximation to the time development
of the distribution function.

5 Application to Pressure Equations

We now apply this technique to a specific example of a discretisation for a
lognormal distribution of the permeability.

We consider a simple explicit five-point difference scheme, where the value
of the permeability at points halfway between adjacent gridpoints (7, ;) and
(¢4 1,j) or (4,5 £ 1) is always approximated by an average of the two values
at the grid-points. Equation (42) in this case becomes,

’YPSJ?JI' — Py ij
At
K1, + k%) K + &
Usivss +RG) 0k WSTRATI
2Az? 2Az?
+ (klip1 + 1) (ki) + &%)

INTE Do ij+1 + _Tyz——l’o ij—1

g g I ,.9 g g T P |
_ {(K'H-lj + Ky + 268;) | (Kl + 8o +268))

SAL? + Ay }Po ij = fo iy (46)

The equations (43) - (45) are discretized similarly. Provided that the pres-
sure is specified as a deterministic function of time at one point in the region

or on its boundary, it can be shown that the numerical scheme is stable if the

condition
4+Atk,

a/h'z_

<1 (47)

10



holds, where 2 = Az = Ay. In practice the pressure at a well site is controlled
and, therefore, the assumption that the pressure is specified deterministically
at some point is a natural constraint on the system.

If the pressure is not specified as a deterministic function at some point
in the region or on its boundary, then the approximation (46) to the equation
for the deterministic solution py is stable under the condition (47), but the
numerical scheme for the complete hierarchical equations is unconditionally
unstable and errors are expected to propagate with a polynomial growth rate.

5.1 Results

In this section we present some examples illustrating the results obtained by
this method for the full statistical problem.

In each case we consider a single Fourier mode as the initial condition for
the pressure, with no flow conditions around the boundary and zero forcing
function. The region under investigation is a square of unit length. The
parameter < is assumed to be deterministic with unit value. The initial values
for the mean and variance of the pressure are taken to be zero throughout the
region (equivalent to a deterministic initial condition). The pressure at the
centre of the region is assumed to be deterministic and is held fixed at a value
of zero for all time; the higher moments are, thus, also zero at this point for
all time.

All lengths and times are normalised. It is assumed here that one unit of
length corresponds to one kilometre. If one unit of time is taken to represent
ten years. then one pressure unit corresponds to 450 pounds per square inch.

Using a single Fourier mode as the initial condition means that in the case
of a homogeneous geometric mean value, K4, for the permeability, the solution
to the deterministic equation (9) may be expressed as the Fourier mode

po(2,y.t) = ™™ *cos(rz) (48)

with an exponentially decaying amplitude. It is fairly trivial to show by sub-
stitution that (48) is a solution to the model equation satisfying the zero
boundary conditions. We choose this test function as it is a straightforward
solution whose deterministic behaviour is well-known.

In the experiments presented here. the values for the geometric mean of the
permeability and for the variance of the log of the permeability, = = In(k), are
taken to be constants, x, = e{* = 0.2 and o, = 0.1, respectively. The P.A.F.
of the log of the permeability is given by

ol .2 y') = e FEE G (49)
Both the isotropic case, where A, = \,, and the anisotropic case, Ay # Ay,
are consldered. Solutions are computed with A = % and At = ﬁ. Other

11



experiments have been tried for different means and different sizes of variance
and for different computational time and spatial steps.

In Figures 1 and 2. we show the evolution of the deterministic pressure
solution. firstly at time ¢ = 0.1 and then at the final time value ¢ = 1.0.
Figures 3 and 4 then show the correction for the mean at the two time values
and Figures 5 and 6 demonstrate the values of the variance at the same time
points.

The next set of four figures shows the case where the correlation lengths
are anisotropic. Figures 7 and 8 show plots at the final time interval where
the correlation length is short in the z-direction, and long in the y-direction,
with A, = 0.1 and A\, = 1.0. The plots are for the mean correction to the
deterministic solution and for the variance, respectively, after time interval
t = 1.0. Figures 9 and 10 show plots for the same values at ¢t = 1.0, but with
anisotropic correlation lengths reversed, so that A\, = 1.0 and Ay =0.1.

5.2 Discussion

The deterministic solution behaves as expected, decaying exponentially whilst
retaining the basic shape of the (one-dimensional) mode. The numerical ampli-
tude at time ¢ = 1.0 is 0.140 compared to the analytic value of e=™**02 = (3,139.

We can see in Figures 3-6 how the statistical moments grow from very
low values, close to zero at the initial time to more significant values at the
final time. This is to be expected as the initial conditions are assumed to be
deterministic and the statistical moments are zero at ¢ = 0.

The variance is seen to reach a maximum at around f = 0.5, thereafter
gradually decreasing, with the maximum concentrating in the corners as it
decays.

In comparison with experiments using a higher mean value, we observe a
slower decay rate; for example. when &, = 0.1, the numerical decay rate is
halved. The general shape assumed by the variance and second order approxi-
mations after one time unit are the same. The numerical value of the variance
is, however, higher due to a greater relative spread in admissible realisations.

In the case of strong correlation in the y-direction, and much less corre-
lation in the z-direction, we find that the statistical properties throughout
the region are more homogeneous in themselves than in the case where the
strong correlation is in the z-direction, and there are much higher variances
concentrated in the corners. In the case where we considered small isotropic
correlation lengths in both directions we observed a similar concentration of
variance in the corners. with numerical values of one order of magnitude lower,

which is the sort of behaviour we would expect if the statistical properties are
weakly correlated.



6 Treatment of the Fluid Flow and NPV
6.1 Fluid Flow

The equation for flow in a porous medium can be obtained from the pressure
in the fluid using Darcy’s law. which is given in simplest form by

Q = —kVp. (50)

In the case of a lognormal probability distribution we may substitute the
perturbation expansion (16) for the permeability into the equation (50). As-

suming, as previously, that the pressure may be approximated by a truncated
series of form (17), we find

Q= ~ (5g + Br + A2%2) V (po + Bp1 + 6%p2) (51)

where all terms up to and including second order have been retained.
If we now take mean values on either side, then, since (p1) = 0, we obtain
a vector expression for the mean value of the flow given by

(Q) ~ =g Vpo — 3 (k1 V1) + (52) Vipo + £,V (p2) . (52)

The covariance of the flow may be written

Covg = (k151) (VPo)? + 26,V - (k1 V1) + (84)2((Vpy) - (Vp)).  (53)

Using the computational results obtained by the methods described in the
previous sections, we can now compute the first two statistical moments for
the flow. These only require statistical information for the pressure which is
already available. Both these terms can then be used to calculate the mean of
the net present value and its statistical moments up to second order.

It is fairly straightforward to approximate equation (50) with a central dif-
ference approximation so that the flow at the point (1Az, 7Ay) can be written

Qij = —ki;Vipi;. (54)
The equation for the mean value of the flow then takes the form
(Qij) = —’f?thP?j - 3 ((N}jth}j> + (K?j)th?j + ﬁ?jv@?j)) ) (55)

and the equivalent covariance term is

2

Covg, = (ri;rl) (Vaply) + 265Vl - (64 Vank) + (+)2(Vapl) - (Vipl,)).

(56)

These discretised forms for the statistical moments of the flow are used to
calculate numerical approximations to the NPV.

In the case of a standard probability distribution function for the perme-
ability, similar results can be derived.

13



6.2 Net Present Value

To assess the Net Present Value of the systems we are considering, we must
treat the NPV as a time-dependent variable: that is. we define

NPV(t) = /Ot Qe ds, (57)

where Q is the flow at a specified position, and let ¢ — co. Here || - || denotes
the L, vector norm. The mean value of the NPV can then be shown to be

(NPV) = [ l(Qy)leds, (59)

to second order accuracy, and an approximation to the second moment may
be written as

(VPVe) = [((Qi — (Qu)Ne*ds = [ Covyeds. (59)

We are chiefly interested in how the mean value of the NPV compares with
the deterministic solution, obtained by operating the numerical process on the
mean value of the permeability field to give

NEV = [(1Qlle=5ds, (60)

where :
Q= —’i"gjvhp?j- (61)

6.3 Results

We now give examples of risked values of a field that have been computed by the
methods described here for finding the low order moments of the probablilty
distribution function of the NPV. We take the same data as in Section 5.1 for
the test problem. The discount factor is taken to be § = 1.0. Integrals are
computed using the trapeziodal quadrature rule with time step At = 1:70'

As before. we consider a single Fourier mode as the initial pressure condition
in the reservoir, with no flow conditions around the boundary and zero forcing
function. The region under investigation is a square of unit length, and all
lengths and times are normalised. Using the single Fourier mode as the initial
condition means that. in the case of a homogeneous geometric mean value for
the permeability, the deterministic solution to equation (1) is given by equation
(48).

We observe the values for the NPV over the time interval [0, 2] determined
by the flow at the centre of the region. At this point the pressure p is de-
terministic and is held constant for all times ¢. These conditions correspond

14



to those that hold at a well site. Figure 11 shows the various mean values
for the NPV with different permeability variances, compared with the deter-
ministic solution. The homogeneous geometric mean value of the permeability
is kmean = &, = 0.2. In Figure 12 the corresponding relative variances are
shown for the NPV for the same permeability variances.

In Figure 13, we show the equivalent plots in the case of a smaller perme-
ability mean. Here, kmean = x, = 0.1. In Figure 14, we show the plots of the
mean of the NPV for a larger mean permeability field with kmean = kg = 0.4.

In Figure 11 we can see that the mean values for the NPVs corresponding
to the smaller values of the permeability field seem to converge to a similar
order of magnitude, but to a significantly different value from the deterministic
solution (var(k) = o, = 0.0). The value for the case where the covariance of
the permeability field is large with respect to its mean seems not to show
convergence over the specified time period.

This effect is repeated in Figures 13 and 14, with significant convergence

being shown in Figure 14, where the mean is always larger than the determin-
istic value of the NPV.

7 Conclusions

In this paper we establish a new method for computing the statistical mo-
ments of the probabilty distribution of a reservoir pressure field directly from
statistical data describing the stochastic properties of the reservoir, such as
permeability and porosity. We show also that the probability distributions of
the flow and the net present value (NPV) of the field can be assessed from these
results. The advantage of this method is that it requires only one solution of
the field equations, in contrast with the more usual Monte-Carlo procedure
where many such solutions are required.

The proposed method uses a perturbation expansion about the mean of the
input parameters to derive coupled equations for the moments of the stochastic
variables. The key to the success of this approach lies in finding a closure of
the equations for the first N moments of the probablility distributions. We
show here that this can be achieved using numerical approximations to the
pressure, flow and NPV for a specific realization of the field.

The feasibility of this approach is demonstrated for a simple example of
one phase flow in a two dimensional reservoir where the permeability field is
charaterised by its mean value and auto-correlation function and is assumed
to be of lognormal form. Simple explicit finite difference schemes are used to
approximate the pressure and flow equations. Second order approximations
to the mean and variance of the pressure field are calculated and the risked
value of the field is estimated for various statistical descriptions of the perme-
ability field. The results indicate that the estimated mean of the NPV varies
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significantly with the variance of the permeability field.

These results demonstrate that the direct approach described here can
be used effectively to assess the potential of reservoirs with uncertain data.
Further studies are needed to improve the efficiency and range of applicability
of the process. The limitations imposed by the stability conditions can easily
be removed by applying implicit difference schemes to obtain the numerical
approximations. Efficiency could be improved by reducing the computation of
the cross-correlation terms only to those making significant contributions to
the moments.

The approach presented here can be extended to uncertain nonlinear multi-
phase flow problems. In these cases the method is expected to be particularly
competitive, because the equations for the higher moments are linear and can
be solved rapidly and efficiently, in contrast to Monte-Carlo methods. which
require repeated solution of the full nonlinear models. The procedure can also

be applied to other physical systems modelled by partial differential equations
with uncertain data.
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Figure 3: Mean Correction to the Deterministic Pressure at t=0.1
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Figure 5: Pressure Variance t
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Figure 7: Mean Correction for Anisotropic Correlation Lengths at t=1.0
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Figure 8: Pressure Variance for Anisotropic Correlation Lengths at t=1.0
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Figure 9: Mean Correction for Anisotropic Correlation Lengths at t=1.0
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Figure 10: Pressure Variance for Anisotropic Correlation Lengths at t=1.0
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Figure 11: Evolution of Means of NPV for various o2
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Figure 13: Means of NPV for small «, for various o
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Figure 14: Means of NPV for large &, for various o2
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