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Abstract

For linear time-invariant singular systems (continuous or discrete) it
is customary to use a proportional state or output feedback control in
order to achieve a desired closed loop behaviour. Derivative feedback is
rarely considered. In this paper we examine how derivative feedback in
descriptor systems can be used to alter the structure of the system pencil
under various controllability conditions. It is shown that derivative and
proportional feedback controls can be constructed (by numerically reliable
methods) such that the closed loop system has a given form and is also
regular. This property ensures the solvability of the resulting system of
dynamic-algebraic equations.

Applications are also presented. For the linear-quadratic optimal con-
trol problem, conditions are given under which a derivative feedback trans-
forms a singular problem into a standard L-Q problem, leaving the cost
functional positive-definite. We discuss the problem of pole placement

with derivative feedback alone and in combination with the usual propor-
tional state feedback.



1 Introduction

Ve consider linear time-invariant (continuous or discrete) dynamical systems of
the form

Edz/dt = Az(t)+ Bu(t), z(to) = zo (1)
y(t) = Cz(3), (2)
or
Ezy,, = Azp+ Buy, zg given (3)
w = Czp, (4)

where E,A € R**", B € R"*™, C € R?*" and rank B = m < n, rankC =
p < n. Here z(t) or z; € R" is the state, y(¢) or yx € RP is the output, and
u(t) or ux € R™ is the input or control of the system. Such systems are called
descriptor or generalized state-space systems. In the case £ = I, the identity
matrix, we refer to (1)-(2) and (3)-(4) as standard systems.

Descriptor systems arise naturally in a variety of practical circumstances
(31,22] and have recently been investigated in a number of papers {1,2,3,6,7,8,9,10]
(11,12,13,14,18,19,20,21,23,24,25,26,27,28] [29,30,32,33,34,35,36,37,38,39]. The
response of a descriptor system can be described in terms of the eigenstructure
of the matrix pencil

aF — BA. (5)

In order to alter the behaviour of the system, it is customary to use proportional
state or output feedback to modify the matrix A. The closed loop system pencil
then becomes

«F - f(A + BFC), (6)

where the control is taken to be ¥ = Fy+ v or g = Fyx + vg. In the theory
of matrix pencils, the roles of E' and A are interchangeable, but the analogous
use of derivative state or output feedback in multivariable systems has received
little attention in the literature. Derivative feedback modifies the matrix E, and
the closed loop system pencil then becomes

a( E 4+ BGC) — A, (7)

where the control is taken to be u = -Gy + v or uy = —Gyg41 + .

It has long been recognized that derivative feedback is an essential tool in
practical control system design, and recently it has been shown that discrete-
time observers, using both current and past information to obtain a system
pencil of the form

o(E + BGC) — B(A+ BFC), (8)

can give improved state estimates [6]. In this paper we consider both derivative
and proportional feedback and examine the properties that can be achieved with



these types of feedback in various applications. In particular we discuss the pole
placement problem and the linear quadratic regulator problem. In Section 2 we
introduce notation and some preliminary results. In Section 3 we summarize the
mathematical properties that can be achieved for pencils of the forms (6),(7),and
(8) by suitable choices of F and G. The applications are discussed in Sections
4 and 5, and concluding remarks are given in Section 6. Details of the results
presented here can be found in [4].

2 Definitions and Preliminaries

2.1 Eigenstructure of Descriptor Systems

The system equations (1) and (3) are said to be solvable if and only if the system
pencil (5) is regular, that is

det(aE — BA) £ 0  Y(a,B) € C2\{0,0} (9)

(See (5,38].) The behaviour of the system response z(t) or z; is then governed
by the eigenstructure of the system pencil. For a regular pencil the generalized
eigenvalues are defined to be the pairs (o, 0;) € C? such that

det(aj £ — B;A) =0, j=1,2,..n. (10)

Eigenvalue pairs (aj, ;) where §; # 0 are said to be finite and, without loss
of generality, can be taken to have the 'value’ \; = aj/B;. Pairs where §; = 0
are said to be infinite eigenvalues. The maximum number of finite eigenvalues
which a pencil can have is less than or equal to the rank of E. (For a pencil
which is not regular, the generalized eigenvalues can be similarly defined as the
pairs (aj, §;) such that the pencil loses rank.)

For regular pencils the solution of the system equations can be character-
ized in terms of the Kronecker Canonical Form (KCF) [16]. In this case there
exist non-singular matrices X and Y (representing the right and left general-

ized eigenvectors and principal vectors of the system pencil, respectively) which
transform £ and A into the KCF :

Y%“X:[é]?,], YMX:H?]. (11)

Here J is a Jordan matrix corresponding to the finite eigenvalues of the pencil
and N is a nilpotent matrix such that N™ =0, N™=1 £ (, also in Jordan form
corresponding to the infinite eigenvalues. The indez of the system is defined to
be equal to the degree m of nilpotency. (For pencils which are not regular, the
KCF and the index of the system can be defined similarly. See [4].)

We observe that a descriptor system is regular and index 0 if and only if E is
non-singular. In this case the system can be reformulated as a standard system



and the usual theory applies. In practice the reduction to standard form can
be numerically unstable, however, (if E is ill-conditioned!) and, hence, even for
index 0 systems, it is preferable to work directly with the generalized state-space
form.

We observe also that a descriptor system is regular and index < 1 if and
only if it has exactly ¢ = rank E finite eigenvalues. Conditions for the system
to be regular and index < 1 are given in the following lemma [18].

Lemma 1 Let £, A € C™*™. Let S and T.o be full rank matrices whose

columns span the null spaces N'(E) and N'(EH), respectively. Then the following
are equivalent:

(i) aE — BA is regular and indez < 1
(i1) rank[E, AS] =n

(ifiJrank [TEA] —

For systems which are regular and index < 1, there exists a unique solution
for all admissible controls which satisfy certain initial consistency conditions.
For higher index systems, impulses can arise in the response of the system if
the control is not sufficiently smooth [36]. It is, therefore, desirable to select a

feedback which ensures that the closed loop system is regular and index < 1 if
possible.

2.2 Controllability and Observablilty of Descriptor Sys-
tems

The definitions of controllablility and observability for standard control sys-
tems can be extended to descriptor systems. Various types of controilablil-
ity /observability can be identified, however [38]. Here we investigate the proper-

ties of the generalized state-space systems (1)-(2) and (3)-(4) under the following
conditions.

Definition 2 Let oE — BA be a regular pencil. Then the triple (E,A,B) and

the corresponding descriptor system are said to be completely controllable (C-
controllable) if and only if

CO : rank[aE — BA,B]=n, V¥(a,B) € C*\{0,0}. (12)

Similarly the triple (E, A,C) and the corresponding descriptor system are said
to be completely observable (C-observable) if and only if

00 : rank ["EEM] =n, VY(a,B)e€ C?\{0,0}. (13)



We remark that a system is completely controllable and/or completely ob-
servable only if

rank{E,B]=n and/or rank [g] =n. (14)

Complete controllability ensures that for any given initial and final states zq, z 7 €
R" of the system, there exists an admissible control which transfers the system
from z; to z; in finite time [38]. Hence descriptor systems which are completely
controllable can be expected to have similar properties to standard systems.
Analogous remarks hold for completely observable systems.

Weaker definitions of controllability and observability are given by the fol-

lowing.
Definition 3 Let «E — A be a regular pencil. Then the triple (E, A, B) and

the corresponding descriptor system are said to be strongly controllable (S-
controllable} if and only if

Cl:rank[AE — A,B]=n, VAE€C; (15)
C2:rank(E,ASw, Bl =n, where the columns of S span N'(E).

Similarly the triple (E,A,C) and the corresponding descriptor system are said
to be strongly observable (S-observable) if and only if

01 : rank '\ECT A] =n, VIeC;

E (16)
O2:rank [THA | =n, where the columns of To, span N(EH).

C

We remark that C-controllablity and C-observability imply S-controllability
and S-observability, respectively. Clearly conditions C1 and O1 follow from CO
and OO, respectively, for § # 0 and A = a/f. Conditions C2 and O2 follow
from (14), but are weaker. In the literature, systems which satisfy C2 (or 02)
are often described as ”controllable (or observable) at infinity” [10,18,36].

We remark also that the properties of controllability and observability of
descriptor systems are preserved under certain transformations. Specifically,
conditions CO, C1, C2, 00, O1 and O2 are all preserved under non-singular
transformations of the pencil and under proportional state and output feedback.
With the exception of conditions C2 and 02, these same conditions are also
preserved under derivative state and output feedback. We have the following

(4.

Lemma 4 Let (E, A, B) satisfy the condition CO or C1 or C2, and let (E, A, C)
satisfy the condition OO0 or O1 or O2. Then for any P and Q € R™*" which
are non-singular and for any F € R™*?P, the systems

E=PEQ, A=PAQ, B=pPB, C=CQ (17)



and
E=E, A=A+BFC, B=B, C=C. (18)
also satisfy these conditions.
Furthermore, for any matric G € R™*P, the sysiem

E=E+BGC, A=A, B=B, C=C (19)

also satisfies these conditions with the ezception of C2 and O2.

3 Derivative and Proportional Feedback for De-
scriptor Systems

In this section we discuss conditions under which we can alter the structure of
system pencil (5) by the use of derivative and/or proportional feedback. We
show first that if the triples (E, A, B) and (E, A, C) are C-controllable and C-

observable, respectively, then the system (1)- (2) or (3)-(4) can be transformed
into a standard system by derivative feedback.

Theorem 5 There exists a matriz G € R™*P such that the system matriz
E + BGF is non-singular if and only if (14) holds.

Proof: See [4]

Corollary 6 There ezists a feedback control u = —Gy+v or up = —Gyp41+ vk
such that the system matriz E+ BGC is non-singular and the closed loop sysiem
defined by the triples (E+BGC, A, B) and (E+BGC, A, C) is C-controllable and

C-observable if and only if the triples (E, A, B) and (E, A,C) are C-controllable
and C-observable, respectively.

We remark that if S = E + BGC is non-singular, then under derivative

feedback the corresponding closed loop system is equivalent to the standard
system

& = Az + Bv, (20)
or - -
Tr+1 = Az + By (21)

where A = $-'4, B=S"!B. Furthermore, the feedback can be implemented

directly in terms of the states and the external inputs of the system. Using the
closed loop form (20) we find that

v=-Gy+v=Wz+ Vv (22)

or
U = —GYp41 + v = Wapy + Vo (23)



where
W=-GCS™'A and V=I-GCS 'B. (24)

We now show that if the system is S-controllable and S-observable, then a
closed loop system pencil which is regular and index < 1 can be obtained by
proportional or derivative feedback. We have the following.

Theorem 7 There ezists a mairizc F € R™*P such that «E — f(A + BFC) is
a regular pencil of indez < 1 if and only if conditions C2 and O2 hold.

Proof: See (18] and [4].

Corollary 8 There erists a feedback control u = Fy4+voru, = Fyp + v,
such that aE — (A + BFC) is a regular pencil of indez < 1 and the closed
loop system defined by the triples (E,A + BFC,B) and (E,A + BFC,C) is
S-controllable and S-observable if and only if the triples (E, A, B) and (E, A, C)
are S-controllable and S-observable, respectively.

Theorem 9 There ezists a matriz G € R™*P such that o( E + BGC) - A is
a regular pencil of index < 1 if the conditions C2 and O2 hold.

Proof: See [4].

Corollary 10 There ezists a feedback controlu = —Gy+v or uy = —Gyg41+ve
such that o(E + BGC) — A is a regular pencil of indez < 1 and the closed
loop system defined by the triples (E + BGC, A, B) and (E + BGC,A,C) is
S-controllable and S-observable if the triples (E,A,B) and (E,A,C) are S-
controllable and S-observable, respectively.

We remark that the converse of Theorem 9 does not hold. An example is
given in [4].
In the following sections we consider the application of these results to the

problems of pole placement and linear-quadratic optimal control for descriptor
systems.

4 Pole Placement for Descriptor Systems

The problem of pole placement by derivative and proportional state feedback
can be stated as follows.

Problem 1 Given triple (E, A, B) and set £ = {A1,A2,...0¢} where A\; € C

and \j € L=> X € £,j=1,2,..¢<n, find F € R™*P,G € R™*P such that
for some X € C"*4

(A+BF)X = (E+ BG)XA, A =diag{);} (25)
and

det(AM(E + BG)—(A+ BF)) #0, forsome A ¢ L. (26)



We remark that (25) guarantees that the prescribed poles are assigned by
the feedback u = Fz — G% or uy = Fzp — Gzi41, and (26) ensures that the
system pencil is regular.

For C-controllable systems we can assign a full set of n poles to the closed

loop system by using a combination of proportional and derivative feedback.
We have the following result.

Theorem 11 For any arbitrary set L of n self-conjugate (finite) poles, there
ezists a pair of matrices F and G solving the pole placement problem, Problem
1, if and only if the triple (E, A, B) is C-controllable.

Proof: The proof follows directly from Theorem 5 by selecting G such that
E + BG is nonsingular and then selecting F to assign the prescribed poles to
the equivalent standard system (20). For details see [4].

We remark that with proportional state feedback alone we can assign at
most ¢ = rank E finite poles to the closed loop system. (The remaining n — ¢
infinite poles cannot be reassigned.) The use of derivative feedback alone allows
us to reassign up to rank A poles, including all the infinite poles (but excluding
the nuil poles A; = 0).

For S-controllable systems we can assign exactly ¢ = rank E poles with

regularity of the system pencil. The closed loop system is then index < 1 and
regular. We have

Theorem 12 For any set L of q self-conjugate (finite) poles, where ¢ = rank E,
there ezists a solution to the pole placement problem, Problem 1, if and only if
the triple (E, A, B) is S-controllable.

Proof: See [18] and [4].

We remark that for S-controllable systems a closed loop system pencil which
is regular and index < 1 and has the prescribed poles can be achieved by propor-
tional state feedback alone. We expect, however, that a more well-conditioned
dynamic-algebraic system can be obtained by first using a derivative feedback
to obtain a regular pencil of index < 1 and then applying proportional feedback
to assign the finite poles to specific positions.

We remark also that for the problem of pole assignment by output feedback
in descriptor systems analogous results can be obtained.

5 Linear Quadratic Regulator Problems for De-
scriptor Systems

The linear quadratic optimal control problem for descriptor systems can be
stated as follows



Problem 2 Given triple (E,4,B) and Q = QT ¢ R"*"*, R = RT ¢ R™*™
and S € R"*™ such that

[SQTZ]ZO and R >0, (27)

find F € R™*?, G € R™? such that u = Fz — Gz or up = Fzrp — Gz

- [EN[sAfe

subject to (1), or

e = sxla) (83 [x) ()
subject 1o (3).

If £ is nonsingular, then the problem can be solved immediately. If E is
singular and (14) is satisfied, that is, the triple (E, 4, B) is C-controllable, then
by Theorem 5 we can choose a matrix G such that E + BG is nonsingular and
such that the corresponding closed loop system is equivalent to the standard
system (20) or (21) with feedback control u given by (22) or (23) where C = I.
By Theorem 5, G can also be selected to ensure that V = I — GS~!B is non-
singular, and hence that

H
Q=[é,3] [S%fz][v{,g]go VERV >0,  (30)

where W = —GS~!A. The LQR problem then reduces to finding a feedback F
such that v = Fz or v4 = Fz; minimizes

o - ['[T'of)s

e = spflef] o

subject to (20) or (21). This problem is immediately solvable. We obtain the
following.

or

Theorem 13 A solution to the linear quadratic regulator problem, Problem 2,
ezists if the triple (E, A, B) is C-controllable. Furthermore, the closed loop
system corresponding to the triple (E + BG, A + BF, B) is then stable.



Proof: See [4] for details.

By similar arguments, if E is singular and the triple (E, A, B) is S-controllable.
then Theorem 7 implies that F' can be chosen such that the closed loop sys-
tem pencil aE — 3(A + BF) is regular and index < 1, and such that the triple
(E,A + BF, B) remains S-controllable. The LQR problem is then in the form

required by [24] and a solution to the transformed problem can be found. e
thus have the following,

Theorem 14 A solution to the linear quadratic regulator problem, Problem 2,
ezxists if (E, A, B) is S-controllable.

Proof: See [24] and [4].

We remark that the latter problem is solved by proportional feedback alone.
We expect, however, that the derivative feedback may also be used here to obtain
a more well-conditioned dynamic-algebraic system to which the proportional
feedback may be applied.

We remark also that similar constructions apply to the linear quadratic
output control problems.

6 Conclusions

We investigate here the use of derivative and proportional feedback in descriptor,
or generalized state-space systems. We define various conditions for controlla-
bility and observability and demonstrate to what extent the structure of the
system pencil can be altered by proportional-derivative feedback under these
conditions.

It is established that systems which are C-controllable and C-observable can
be transformed into standard systems by a combination of derivative and pro-
portional state or output feedback. It is shown that in this case, with state
feedback, all of the poles of the system can be assigned to prescribed positions;
furthermore, the linear quadratic optimal control problem can be solved explic-
itly to obtain a stable closed loop system.

It is also established that systems which are S-controllable and S-observable
can be transformed by proportional-derivative state or output feedback into
closed loop systems which are regular and of index < 1. It is shown that by
state feedback the maximum number of finite poles can be assigned and the
linear quadratic regulator problem can also be solved.

Details of the proofs of these results and examples are given in [4].
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