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Abstract

A new time step selection procedure is proposed for the ASWR finite element code of
Lorenz and Svoboda, [7] for 2D semiconductor process modelling diffusion equations. The
strategy is based on equidistributing the local truncation errors of the numerical scheme.
The use of B-splines for interpolation (as well as for trial space) results in a banded and
diagonally dominant matrix. The approximate inverse of such a matrix can be accurately
provided by another band matrix, which in turn can be used to work out the approzimate
finite difference scheme corresponding to the ASWR finite element method and further
to calculate estimates of the local truncation errors of the numerical scheme. Numerical
experiments on six full simulation problems have been carried out. Results show that our

proposed strategy is more efficient, and better conserves the total mass.

Key words : Semiconductor process modelling, Nonlinear parabolic PDE’s, Blended B-
splines, Finite difference methods (FDM’s), Petrov-Galerkin methods (FEM’s), Predictor

corrector schemes, Automatic time step selection.
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1 Introduction

In [1] we presented numerical methods for the solution of 1D nonlinear semiconductor
diffusion equations, and in particular introduced a practical time stepping strategy for
the scheme used. There both finite difference methods and finite element methods were
used for the spatial discretization.

Here we continue our study by extending previous 1D results to 2D nonlinear equations
for semiconductor process modelling simulation. Implementation of our new time stepping
strategy into the ASWR finite element code of [7] has been completed; we report on
the test results of performance of the modified ASWR code on some full 2D simulation
problems. The code is capable of simulating, among other processes, 2D dopant diffusion
of Antimony, Arsenic, Boron and Phosphorus for either one dopant or multiple dopants.

We first state the equations which will be considered here. For an r-dopant diffusion
problem in a silicon medium 2, the concentrations of dopants in § at time ¢ may be
described by

% = Div [DygradCy + Z;,Cigrad @] k=1,---,r (1)

where Cy = Ci(z,y,t) is the concentration for the k-th dopant, Dy is the diffusion co-
efficient, Z, = +1 depends on the dopant used (—1 for singly ionized acceptors, +1 for
donors) and ® = ®(3 Z,Cy) is the electrostatic potential. Denote by C = 3 Z,Cj the

k=1

total concentration. Then the potential function is calculated by ® = log(n/n;) where

= % <C+\/02+4—n?>

is the electron concentration and n; is the intrinsic electron concentration at the process



temperature. As in 1], the transformation of fy = log Cx will convert (1) to the following
system
9k

W:£kfk, k)zl,"',T (2)

where Ly fr = Div[Dygrad(fr + Z,®)] + gradfy - grad(fi + Zc®) depends on fi,---, f;.
It is this system which we shall solve in what follows.

The time step selection is an important step in ensuring efficiency of numerical meth-
ods. There are not many strategies that are readily available. In the literature on solving
nonlinear partial differential equations of parabolic type, the traditional method of lines is
usually used and further time step selection is determined by methods adopted for solving
the system of ordinary differential equations. See Eriksson et al [3] and Lambert [5]. This
means that we have to solve a nonlinear system of algebraic equations for a typical im-
plicit time stepping (refer to §3). Even so, it is generally difficult to find a robust strategy
for time steps.

Consequently for many practical codes, it is common to use fixed time step sizes or
heuristic time step selection procedures. For example, see Kreskovsky et al [4] and O’Brien
et al [9].

Here for a particular time stepping scheme, we propose a strategy for automatic time
step selection. The idea applies in principle to other schemes as well. It is based on equidis-
tributing local truncation errors (LTE’s) in time and space discretizations. Therefore it
is readily applicable to finite difference methods since such error estimates can be found.
For finite element methods using B-spline basis, we shall show that good approximations

to LTE’s are always possible so that our proposed strategy can be applied.



In §2 we discuss the finite element discretization of (2). In §3 we introduce a three-
level predictor-corrector scheme for the temporal discretization and linearization of (2)
and further investigate its (linear) stability property. In §4 we use the idea of approximate
inversion to find an explicit and approximate finite difference form of the underlying finite
element method, and then carry out the local truncation error (LTE) analysis. Using the
LTE estimates, we describe in §5 two adaptive time stepping strategies either of which can
automatically select the time step. Here the second approach is designed specifically for
conservation of the total mass, which is of physical importance. Numerical experiments

on six full simulation problems are presented in §6.

2 Finite element solution

For simplicity, let us assume that the domain of interest is the unit rectangular region
Q = [0,1] x [0,1]. More general boundaries may be considered similarly. Divide the
domain Q into N x N boxes Qi = [zi-1,21] X [Ym-1,Ym] (Lm = 1,---,N). Then we
choose a Petrov-Galerkin finite method which uses as

test space :

Sy = span{¢pm | l,m=1,--- N}

and trial space :

S, =span{Dy | i,k=0,---, N+ 1}



where

¢1m _ { 1 (m,y) € le

0 otherwise
and the D;;’s are chosen from blending the 1D quadratic B-splines (as defined in [1])

Dir(2,y) = Bim Bi(z) + BuBi(y) — Bim Bu

where

_ 1 Ym _ J_ Ty
By, = Bi(y)dr and B, = B;(z)dz
: J, Blor = g L, B

The resulting finite element method (called ASWR in [7}) finds the solution

N+1 N+1
Fr= Y oarijDij(z,y), fork=1,---,r (3)
from S, by solving
OF,
<_k—,cka, w> :O, vweS‘l
ot
i.e.
OF .
Y l. d = f N k = S
/le( 8t ﬁka)(T Yy 0, or ]_, ol (4)

In general, (4) leads to a system of nonlinear equations for the unknowns {o4;;} (k =
l,---,r; 4,7 =0,1,---, N 4+ 1). However, as we shall see, only a linear algebraic system

needs to be solved if we use a semi-implicit time stepping scheme.
3 A semi-implicit time stepping scheme

Let us consider a model equation of the one dopant case

g—]; = D - Div(gradf) 4+ (Vi,V,) - grad f (5)



Then the generalization of the predictor corrector scheme of [1, §4] to the 2D case takes

the following form

{ LY=L = D Div(grad /i*%) + (14, V5) - grad f (6)

. t .
f—f—JEi_t ‘=D- Div(grad f'*?) + (W, V2) - grad fi+?

To carry out a stability analysis of (6), we further approximate it by the finite difference

method leading to

4 :2
B =la. S W B ] e Sy )\ fi
mrt =D\ =+ a3 ) T+ Nk HVagdy) fw

) c2
finy ~Lun 62 5 pite 62 by fito
2AL =D Ax? : = Ay? fmn + ‘/1 204z i ‘/2 24y mn

where the usual finite difference operators are defined by

592: mn = ;L+1,n ;1—1,71 - 2.,('777—1,n
63 ;wb o= f:rrm,n—l—-] + .f;z,n—l - 2-f7:L,TL
oz fn = ;1+'l,n - fv‘:t——l,n
6yf'r7r-zn = f;,n+1 - ‘;z,n—l

Further we have

THEOREM 1 (2D stability)

The predictor corrector scheme (6) is stable for any 6 > 0, provided that

. (D D
At < min (W, @> ;

Proof. Use the usual von Neumann (Fourier) analysis along similar lines of the proof of

Theorem 1 of [1]. O
4 Local truncation error analysis

We shall now apply the finite element method of §2 to the model equation (5) combined
with the time stepping scheme (6) and further analyze the local truncation error. Esti-
mates of truncation errors can be used in designing a practical time step selection strategy

(see §5).



Figure 1: 9 point stencil for variable o.
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Integrating the corrector equation of (6) over box ), we obtain the following ASWR

equation

2At/ (fi*? — f)dzdy = D/ Div(grad f/*?)dzdy +/ 1, Va)grad fit0dzdy  (8)
Qm Qm

where f™ =3 of , Dix(z,y). Taking into consideration the piecewise behaviour of Dy, we

get

+1  m+1 J+2 aj

X 2 /ﬂ Di(z,y)dzdy

1= =m— im
- 1kl+1 1m+1 I+1  m+1
=D E Z a’+2/ Div(grad D;; )dzdy + Z Z a1+0/ (W1, V3)grad D, dady
1=l—1 k=m-1 1=l—-1k=m-1 Qm

(9)

Now direct calculations of the above coefficients simplify (9) to

8, . . . .

J+2 7+2 Jj+2 J+2
TOAL [al—l,m—l + Qfimo1 T Y imt T Qptmat

J+2 J+2 J+2 J+2 J+2

+4(a -t O[l,'m.+1 i o) 1,m +o l+1 m) + 16a ]

I,m—1
742 7+2 7+2
[al—l,m—l T Qp1m-1 i a, 1 mt1 T Q1 mt

J+2 i+2 i+2 j+2 J+2 10
+alm 1+al,m+l+al 1m+al+1m 8 ] ( )

Vi
j+6 J+6 J+6 J+€ J+0 J+o
+2Aa: [( Yp1,mi1 — A= tmtt) T (@ mo1 — 1 e )+ m — lm)]

V2
j+6 j+0 i+ i+ i+0 J+0
+2Ay [( Y1 mt1 — Ugtm—1) T (1 i — Oy e 1) + 40 mp — Qe 1)]

~ 3Az?

where §,87t2 = $t2 — 87, The computational stencil of nine points is shown in Fig.1. To
I P g

find the local truncation error for (10), we may use the Taylor theorem. Unfortunately the



unknowns (a’s) are not the solution functions (f). They are only related to the solution

by the following interpolation relationship

+1  m+1
Z Z ,LDzk wl’ym) = f(t’rvjl)gm) (11)
1=l—1 k=m-1

where (Z;,y,,) is taken to be the centre point of box €, for I,m = 1,---,N. For the

Dirichlet boundary condition f(t,z,y)|aq = 0, the above system may be written as

Uy Uy

Ul U2 Ul ﬂ;.] f lT,l
.1 aj e
Fa =7 _ = i (12)
U, U, Uy = N
U, U QNN f N,N
where
6 1 23 7
1 1 7T 40 7
=] - . . |, U= ;
1 7 1 T 40 7
1 7T 23
27 6
6 33 6
Uy = ve T
6 33 6
6 27

The matrix F' can be seen to be diagonally dominant and in block tridiagonal form. The
elements of the inverse of such a matrix are known to decay exponentially to zero in
magnitude away from the main diagonal. Refer to Demko et al [2] and Meurant [8].

By calculating the inverse F~! numerically, we can express the unknowns al,’s in
terms of the solution (RHS vector) f7,’s. Here we propose to use a band approximation
of F~! to solve equation (12) by neglecting those subdiagonal entries of F~! away from
the main diagonal which are less than some small positive number ¢ in magnitude. This

[



enables us to express accurately the of,’s in terms of local f,’s

Figure 2: 25 point stencil for variable f (with each «).
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approximation is given by (taking ¢ = 107?)

ale = 10_4 [_133(fl7:m—3 ot fl‘l,-m+3 + fl‘r—B,m + flT-I-S,m)
—185(f 1 m2 + flamie T fliimez T i me2

+ i amer + flomar + flame1 + flame)

+831(fl1,.m—2 o flq,-m+2 U flT—Z,m + fl:—Z,m)

+852(f st + Slimir T fliimer + fliamin)

_3830(f;;m—1 i fl":m+1 + fl‘r—l,m + fl:—l,m)
+20600 /7,

For (12

), such an

(13)

The computational stencil of 25 f points for each af,, is shown in Fig.2. The availability

of of,’s (for 7 = j,j + 0,7 +2) from (13) allows us to work out the local truncation error

of (10) in a straightforward manner. This has been found to be

where

T(tjyilagm) = RoAt + R11A$2 + RmA.’BAy + RggAyz + -

R0:E1_0E27
d J
Ei=(Vig-+V D*V(V2f);
h (Vlf)w—l—‘ (Jr;) U (V21
7] d d 0
flg = | Vi— - D? 2r.
= (e +vigg) £ 0 (Vg Vg ) 7
Do _,. Dof
=507 1~ g
D o
RIZ ?nga 27 )
D& _,. Doy
fe =o' " 1gy

(14)



In a typical semiconductor diffusion model, the potential term ® is also present and

the equation corresponding to (5) is of the following form

% = D - Div(grad(f + Z®)) + [(V4, V2) + Z Dgrad @]grad f (15)

The above equation may be identified with (5) with the perturbation of f = f + ZD -
Div(grad®) and V; = Vi + ZD% and V3 = Vo + ZD%%. Therefore time step selection
strategies of the next section can be used for solving equation (15). In order to apply our

model analysis to the full nonlinear equation

58_{ = Div[Dgrad(f + Z2®)] + Dgradf - grad(f + Z®) (16)

local linearizations have to be introduced. For example, the diffusion coeflicient D may
be viewed as locally constant and (V;, V3) = Dgrad(f + Z®) may be defined so that the
linear analysis is applicable.

We next consider the selection of time step At based on these truncation error esti-

mates.
5 Time step selection

The automatic sclection of the time step At follows the principle that the temporal error
(At term) should be of comparable magnitude to the spatial discretization error (Az and
Ay terms). In this way, the overall error is determined only by the spatial discretization
accuracy.

Apart from using the errors in certain equation variables, we shall also consider the



relative mass balance error. This quantity is defined at time ¢ by

(M, — My)

Q=" (17)

where My and M, denote the total mass present in the silicon at time 0 and ¢ respectively.

Here the total mass at time t = t; is defined based on the numerical solution f? by

M, = [ C(a,y)dady = [ explf(z,y)ldady (18)

We wish to have mass conservation of the total mass M;, which is of physical importance.
By this we mean that M; = Mj at any time ¢. If the underlying PDE is of the conservation
form such as (1) in C, then most numerical methods (including the Euler scheme) for
solving such an equation will conserve the total mass. But our transformed PDE (2) in
f is not of conservation form. Conservation of mal.ss in f as well as exp(f) cannot be
maintained in general. We hope to conserve the mass as much as possible numerically by

suitably choosing the time step At once given a prior: spatial discretizations.
5.1 Error control in f

This approach is, as introduced in [1, §4.4], to use the transformed equation (5) in variable

f. For equation (5), the time step selection based on (14) should satisfy
At < TOL/ max | Rol (19)

where TOL is chosen to be proportional to the estimate of |Ri; Az?+ RioAzAy+ Ry Ay?|.
Of course, the above choice should also be subject to the stability condition of Theorem

1 being satisfied.

10



5.2 Mass Error control in

The idea is first to relate the local truncation error of §4 to the dopant mass error, and
then to identify contributions from temporal and spatial discretizations in such a mass
error in order to select an appropriate time step.

Assume that stability is satisfied throughout our calculations. Then the following

relation holds for the global error
f—f*? = K1+ O(At?) (20)

where f = f(z,y,t;+2) and fi*? represent respectively the exact and numerical solution
at time level j+2, K is a stability constant, 7 is the local truncation error (see (14)) and
O(At?) denotes the negligible high order error terms. Note from §1 that C' = exp(f) and

Ci*? = exp(f*?). Taking the exponential of both sides of (20) gives rise to
C = C'* 2 exp[KT 4+ O(At?)) (21)
Now integrate both sides of (21) over the entire domain to get
My = M, + /Q exp[ft?] {exp[[&'r + O(At?)] - 1} dzdy (22)

where we have used the definitions of (17) and (18).
We shall try to conserve the total mass, i.e. to minimise My — M, while allowing the

largest possible time step At for efliciency. Define the mass error by
ME = My — M, = /Q explf**?] {exp[ KT + O(At2)] — 1} dudy (23)
whose leading term on expansion is
ME, = K /Q exp[f/] (RoAt + SE) dzdy (24)

11



where substitution of (14) has been performed and the spatial error is denoted by SE =

Ry Az? 4 Ri;AzAy + Ry Ay?. More specifically, equation (24) can be rewritten as
ME, = K(ME; + ME;) (25)

with ME; = At [, exp[f’]Rodzdy and ME, = [, exp[f’]SEdzdy representing mass error
contributions from temporal and spatial discrtizations respectively.
The strategy based on mass error control is to equidistribute the total mass error ME

in time and space by forcing

MEt == MES

i.e. by selecting the time step

At = /ﬂexp[fj]SEdwdy//Qexp[fj]Rod:cdy (26)
5.3 Choice of the predictor step

The choice of the predictor step may be arbitrary as far as the stability of the predictor
corrector scheme (6) is concerned (see Theorem 1). The idea here is to minimise in some
sense a measure of the solution error. We have considered two approaches.

The first one follows from that of [1, §4.4.1] based on minimization of the local trunca-
tion error. As 6 is a constant appearing in the pointwise local truncation error estimates,
we cast the problem of choosing 8 as a minimisation problem in the least squares sense.
See [1, §4.4.1].

The second approach is to track the mass balance history and dynamically adjust 8

from step to step in order to achieve mass conservation; see [7]. To illustrate, let us define

12



at time t = ¢; the approzimate total mass in the silicon medium £ by
N N
=3 Z exp|Z1, Im, [ ()] ATIAYm (27)
l: =
and the relative j-th step mass error by
Bj = (m; —mj_1)/mj (28)

where m; is the result of (18) applied with the mid-point quadrature rule. Using 6 = 1,

it has been proposed in [7] to use
6, =0,_,(1 + 100B;) (29)
if B; >0 and B; > B;_, and
0; = 0;_1[1 — 100(B;_, — B;)] (30)

if B; > 0 and B;_; — B; < B;/3. Similar choices are made for the case of B; < 0,
otherwise set 6, = 6;_;.
In the next section, we shall experiment on our time step selection strategy using both

the minimization and mass balance choices for the predictor step.
6 Numerical experiments

We have taken four typical semiconductor processing structures as shown in Figs.3-6.
The initial profiles for our test problems are obtained from the lon Implantation Menu
of COMPOSITE [6], which are Pearson IV distributions. Detailed data specifications are

shown in Table 1, where Test 5 and 6 use two dopants.

13



Figure 3: Substrate for Test examples 1 and 2

Poly-Silicon

Silicon

Figure 4: Substrate for Test example 3

Nitride

Silicon

We have run all six test examples with both the existing ASWR method of [7] and
our modified version of the ASWR method. With our modified version, we have used the

following strategies :

e For Boron/Phosphorus/Antimony implants, the selection method of §5.1 is used;

e For Arsenic implant, the selection method of §5.2 is used;

o The predictor step uses the second approach of §5.3.

We remark that the above combination of ideas offers a robust method from experimental
observations, although it gives by no means the best results in some cases. The numerical
results are summarised in Table 2, where information on the number of time steps taken,
the CPU user time of SUN-4 and the mass balance error @); is given. The mesh data given
are for the finite difference (FD) mesh, and the number of boxes for the finite element

(FE) discretization is about half of the number of FDM mesh lines in both directions.

14



For example, an 65x65 FD mesh corresponds to [(65-1)/]2 x [(65-1)/2] FE boxes. The
diffused profiles by the modified ASWR method are shown in Figs.7-12.

Results have clearly demonstrated that our modified time stepping strategy generally
shows better performance compared with the existing ASWR strategy, which uses heuris-
tic time stepping ideas (see [7]). Our method of estimating the local truncation errors of

the ASWR finite element method appears to be new and simple.
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Table 1: Ion Implantation and Diffusion Data

[ Test | Dopants Energy (Kev) Dose(cm™) | Temperature / Time (Min) |

] Boron 30 1.0E12 1000 40

2 Phosphorus 50 1.0E15 1000 50

3 Antimony 25 1.0E14 1100 2

4 Arsenic 40 1.0E14 1100 2

5 Boron 30 1.0E13 1100 il
Phosphorus 25 1.0E12

6 Boron 20 1.0E12 1000 )
Phosphorus 50 1.0I15

Table 2: ASWR test results of six examples

| Method ‘ Test | Mesh ” Time Steps ‘ CprU | Error Q) ‘

1 85x85 30 535 1.5E-3

2 65%65 123 1290 | -7.6E-4

3 65x65 86 971 | -1.3E-3

Existing 4 129%x129 69 3000 | -3.3E-4
ASWR 5 85x85 62 2000 | -1.0E-3
-5.0E-2

6 65x65 50 992 | -1.1E-2

1.9E-3

1 85x85 13 277 2.8E-3

2 65 %65 43 574 2.4E-5

3 65X 65 28 428 | -1.9E-4

Modified [ 4 | 129x129 59 2890 | -1.5I%-4
ASWR 5 8585 22 1150 | 2.0E-3
1.5E-3

6 65x65 16 443 | -4.7E-3

-5.7k-4
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Figure 9.
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