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0 Abstract

In Lagrangian codes two of the main problems are hourglassing with bilinear
quadrilateral elements and mesh locking with linear triangular elements. Higher
order triangular elements, with their greater number of degrees of freedom, should
not suffer from mesh locking. Hourglassing, though, is caused by the interaction
of the element and the quadrature used to evaluate the integrals of the derivatives
on it. Higher order triangular elements, as we shall see, unlike their linear coun-
terparts, also suffer from this spurious mode. A higher order element/quadrature
combination is found that does not suffer from hourglassing. The main fault of
this combination is the extra cost involved over the more usual linear or bilinear
element with centroid quadrature combination. A short discussion is given re-

garding this point.



1 Introduction

Lagrangian fluid codes typically require the solution of an equation

/V pedV = — /V pV.vay, (1)

derived from the continuity equation, see Milne-Thomson!! for example. In eq.
(1) V is an arbitrary volume of fluid (usually an element for our purposes), €
is the internal energy, p is the fluid density, p is the pressure and v the fluid
velocity. (We will normally only be concerned with the two-dimensional case,
ie. v = (u,v)%, but we will make no assumptions restricting ourselves to this
situation). We have also used the common notation

de  Oe

eE%=E+v.V5.

Equation (1) tells us that in a divergence free flow there is no in-
crease or decrease in the internal energy of a volume of fluid. It follows that, if
the volume of fluid is distorted and hence the internal energy changes, then the
divergence cannot be zero. Numerically, problems arise when the integral of the
divergence (falsely) equals zero when the velocities deform the volume of fluid.
Unchecked, they can swamp a numerical solution because no force is created to
damp them down. This phenomenon of spurious velocity modes is referred to as
hourglassing because of the characteristic patterns created in a mesh of regular
bilinear elements. Another problem is caused when the nodes cannot move at
all. This is called mesh locking and this question has largely been addressed, see

Malkus & Hughes9 for example, and we will not mention the problem further here.



There are several ways in which the spurious modes may be damped.
Artificial viscosity can be used, see Maenchen & Sacks, to produce nodal forces
that damp the hourglassing forces. Artificial stiffness, Flanagan & Belytschko5, is
really a more sophisticated version of the artificial viscosity. See also Belytschko et
al 3, Higher order quadrature, see Malkus & Hughesg, can be used to overcome
the problem of constant stresses and hence of hourglassing. Schulz!2 performed
a Taylor series expansion of the stresses and retained terms other than the usual
constant term to overcome this same problem. Schulz!? also provides a short

discussion on the merits of the above methods and provides additional references.

In this paper, though, we are not primarily interested in the treat-
ment of the hourglassing mode. The purpose of this paper is to study higher order
triangular elements and to determine to what degree the hourglassing mode is

present.

We shall next look at the two well-known cases of the centroid
integrated bilinear quadrilateral element and the linear triangular element to
demonstrate the analysis. In the following section this analysis will be extended
to higher order triangular element and quadrature combinations. In Section 3 we
will discuss problems with implementing these higher order element /quadrature
combinations. Finally we give a brief summary of what we have shown in this

paper.



Following Margolin & Pyun10

we consider a quadrilateral with u
and v velocity components as shown in figure (1) and represent the 8 velocity

components in the cell by an 8-dimensional vector,

V= (ula Ug, U3, Uyg, V1, V2, U3, ’U4).

Margolin & Pyun10

identify six of the eight degrees of freedom with six physical
modes of motion and with six mathematical objects. The six physical modes are:
one pattern of horizontal translation
one pattern of vertical translation
one pattern of rotation
one pattern of horizontal strain
one pattern of vertical strain

one pattern of shear strain.

The six mathematical objects are:

. o Ou Ou Ov dv
Y 52 8y’ 9z’ By

The idea is then to produce a basis for the 8-dimensional (velocity)
space 11,1z, ...,1g where the first six vectors correspond to the six mathematical
quantities. 17 and lg are then found by orthogonalization and must be spurious.
Assuming the basis vectors to be orthonormal the spurious modes can then be

damped as follows:

8
Vnew = Vold — & Z(vold-lj)lj
7=7

where a is a parameter to be chosen. A range of 0.01 < a < 0.05 is recommended
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by Margolin & Pyunlo.
In this paper we proceed slightly differently in that we will delib-

erately seek out the non-restoring modes. This is explained using the bilinear

element as an example.

Using centroid quadrature, the integrals (subject to multiplication

by the area of the element) of the two spatial gradients of interest are given by

ou

35 = (1 —ug)(y2 — ya) + (w2 — ua)(ys — 1)) /24 (2)
O (01 = vs)(@a — 22) + (02 — va) 21 — ) /24 3)
3y 1 3 4 2 2 4 1 3

where A is the area of the quadrilateral.

By observation we see that the only way for egs. (2) and (3) to be

zero is if

Uy =u3 and up = uy

and similarly in v. There are two independent ways of accomplishing this, either,

Uy =us= 1 =wuy=1uy
or
uy=uz=1 & Uz =ug = —1,
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again similarly in v. The first produces no restoring forces but doesn’t deform
the element and so is quite allowable. This is just the uniform translation of
an element. The second does deform the element and is therefore not allowable.
This corresponds to the 1y vector of Margolin & Pyun10 while the vector lg is

just the v version of this, i.e.,

l; = -;-(1,—1,1,—1,0,0,0,0)

1
ls = 5(0,0,0,0,1,~1,1,~1).

Another simple example is given by considering the linear triangle.
Since the derivatives are constants the choice of quadrature is immaterial; we

then arrive at

g% - i {(u1 — ua)(y2 — ya) — (uz — us)(y1 — y3)} . (4)

(Again, strictly speaking, to obtain the integral we need to multiply by the ele-

ment area A.) It is easy to see from eq. (4) that for this expression to be zero it

is necessary that

Uy =u3 and Uy =us

= U3 = Uy = Ug3.

This is the quite allowable non-deforming mode of uniform translation and so



there are no spurious modes. The argument for Jv/dy is trivially the same.

2 Spurious Modes with other Elements and Quadra-

tures

We will always transform our (irregular) triangle in (x,y) space onto the standard
triangle in (p,q) space with nodes at (0,0), (1,0) and (0,1) as shown in figure
(2). A transformation from (p,q) space to (x,y) space then needs to be calculated
giving z = z(p,q) and y = y(p,q). See Zienkiewiczl6 for example. We note for
future reference that this will also give us the form of the solution in (p,q) space,

u = u(p, q). From these functions we can then define the matrix

o o
9p O¢ (
5)
9y By
d9p JOq
Inverting (5) gives the matrix
9 9p
3z Jy
1
99 9g
d8r Oy

from which we can then calculate the derivatives of interest, namely

u_oup , out
0z~ 9pdz ' Oqoz

etc..



2.1 Six-Noded Quadratic Triangle

Without loss of generality, to make the algebra simpler, we will take (z,y,) =
(0,0). The six-noded quadratic triangular element, see Strang & F ix13 for exam-
ple, is transformed onto the standard triangle in (p,q) space, see figure 3, by the

transformation

t = (2p+2¢-1)(p+q—1)t; —4p(p+q— 1)t +p(2p — 1)t
+ 4pgts + q(2¢ — 1)t5 — 4q(p + ¢ — 1)t,

where t can represent z,y or u.

2.1.1 Quadratic Triangle and Centroid Quadrature

Putting

D = (ys—ye)(drs — 16x2) + ys(dze — 23) + (y4 — y2) (1626 — 4x3) — y3(4z9 — T5)

+ (ys — y3)(—4z4) + (¥6 — y2)(—162,)

we can obtain the following formula for the centroid integral of u,.

g_z = {(u1 — us)(ys — 4y2) + (u1 — us)(4ye — y3) + (us — ua)(4ya)

+ (ues — ua)(4ys — 16ys) + (uz — ug)(—16y4) + (uq — uz)(4ys — 16ys)} /D.

This can be made zero in the following way for example,
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Uy = U3z = Usp

Ug = Uy = Ug

and similarly

V1 = V3 = Vs

V2 = V4 = Ug.

As in the previous section, one way of achieving this just leads to uniform trans-
lation of the element and so is non-deforming. Two of the spurious modes, in the

velocity space

(ul, Uz, Uz, U4, us, Ug, V1, V2, U3, V4, Us, ve),

are

(1’ _11 1, —1’ ]-a —1,070, 0’ 0) 0, 0)

(0,0,0,0,0,0,1,—1,1,—1,1, —1).

There are two other spurious modes given by :-

(ula Uz, U3, U4q, U5, uG) .

with corresponding modes in v.



2.1.2 Quadratic Triangle and Vertex Quadrature

Let

D = 6(—16zey; + 4zeys + 1623ys + 4T5ys — 42oys — 4T3y6

+ z3y5 — T5Y3)

E = 6 (16(1)4?]6 - 16$6y4 + 4$6y3 e 41‘3y6 + 3233?/5 et 3$5y3

+12z6ys + 1225y, — 1224ys5 — 1225y6)

F = 6(—4x5y; + 4z2ys — 3zays + 1624y, + 3z5ys — 1622y,

+12z5y3 — 1204y3 — 1223y, + 1223y,)

then the quadrature evaluated integral in this case is

Ou
3 = {{y2(12uy + 4us — 16u¢) + ya(—3u1 — us + dug)

+ys(—4uz + 3uy + uz) + ye(16uz — 12uy — 4uz)} /D

+ {ys(—uy — Bus + dug) + y4(du; — 16ug + 12us)

+ys5(—3u; + uz + 12ug — 12uy) + yo(—4us — 12us + 16uy)} /E
+ {ya(—4us — 12u3 + 16u4) + ya(—3us + 3us — 12uy + 12u,)

+ya(4uy — 16ug + 12u3) + ys(4dus — ug — 3ua)} /F}. (6)

10



From eq. (6) it is quite straightforward to deduce that the only way the deriva-
tives can be set to zero independently of z1,y;,z2,y2... etc. is if u; = uy =
U3 = ug = us = ug. This is then just horizontal translation and is therefore quite
allowable as it does not deform the triangle. This element/quadrature combina-

tion, then, has no spurious modes.

2.1.3 Quadratic Triangle and the Mid-Edge Rule

Let

D = 6(—2z6ys + T5ys + 223Ys — Tays + 2Toys — 224Y3 — 223y, + 2r3y,)
E = 6(-2z5y; + T5ys + 222ys5 — T3ys — 2T6ys — 225ys + 224Y5 + 2T5Y6)
F = 6(2.’E6y3 + 2$5y2 — TsY3z — 2$2y5 - 2$3y6 + T3Ys + oYz — 2$4y3

— 2z3y2 + 223y — 2TeYs — 2T5Ya + 2T4ys + 2T5Ye).

We can then write the integral for du/dz in this case as

0
= = {{ya(=2u1 + 2us) + ys(ur — us) + ye(—2u1 + 2us)
ozx

+y3(u1 + us — 2ue — 2uq + 2u;) + y2(2uy — 2u3)} /D

+ {2y2(ur — us) + ya(us — uy) + 2y4(uy — us)

+ys(—w1 — uz + 2uz + 2uy — 2ug) + yo(2us — 2u4)} /E

+ {2y2(us — u3) + ya(—u1 — us + 2ug — 2uy + 2uy) + 2y4(us — us)

+ys(ur + us — 2ug + 2ug — 2ug) + 2ys(us — ua)} /F}. (7)

11



It is clear from eq. (7) that to make this derivative vanish we
must have u; = uz = us. Further inspection reveals that we must also have

Uy = U2 = U3z = u4 = U5 = ug and hence there are no spurious modes with this

combination either.

2.2 'Ten-Noded Cubic Triangle

The transformation of the general 10-noded cubic triangle onto the standard tri-

angle is defined by:

i
t = —5(31’ +3¢—-2)(3p+3¢—-1)(p+qg—1)t
9
+ §p(3p +3¢—2)(p+q—1)t,
9 1
- Ep(3p ~L(p+q-1)ts + §p(3p - 1)(3p — 2)t4
9 9
+ qu(3p - 1)ts + ipq(3q - 1)tg
i 9
+5903¢ - 1)(3¢ - 2)tr — 54(3¢ — 1)(p+ ¢ — 1)ts

9
+ §q(3p +3¢—2)(p +q— 1)tg — 2Tpg(p + q — 1)t40,

where the numbering of the nodes is anti-clockwise with node 10 being at the

centroid of the element. The numbering for this element is shown in figure (4).

12



2.2.1 Cubic Triangle and Centroid Quadrature

Define

D = 2(—=3z7ys + 3x7ys + z7y4 — 3z7ys + 3T7ye + 924ys
— 9z3y6 + 3T4ys — 3r4ye — T4y7 — 9T5Ye + IT5Y,
— 975ys + 925ys + 3xsy7 + 9Toys + IZoys — 3Toyr + ITeys
— 9z2ys + 978ys — sy — 3wsys + Izsys — ITsys
— 929y3 + 3Toys — Izoys + IT3y2 + 922y6 + 3z3y7

+ 9z3ys — 9T3ys — 3z,y7 + 3z4ys — 3z4Ys).

Then the integral of the derivative is approximated by

Ou
92 {(y2 + 3yo)(—u7 — 3us — 3us + 3ug + uqg + 3ug) + (y4 — 3ys — 3ys

+3y6 —Yyr+ 3y9)(—u-,v + 3“6 + Uy + 3u8 - 3UQ — 3u2)} /.D (8)

13



Unfortunately there are many ways of making (8) zero, eg.,

Ug
Us = ug =

Ug
and

U2
UG = U3 =]

Ug

Ug
Us = Ug =

Ug
and

Ug
Us = Uz =

Ug

There are so many spurious modes it does not seem worthwhile to list any more
except perhaps for one. Since z19, y10 and u;o make no appearance in these for-

mulae there is a spurious mode given by

14



2.2.2 Cubic Triangle with Vertex Quadrature

Define

D = 6(162zsy, + 18zgys — 324z9y; + 36z4yy — 18z4ys + 36z,y7
— 162z3y9 + 324z2ys — 1622,ys + 424y7 — 18z3y7 + 81xays

— 36z9y4 + 16229y3 — 3627y, + 1827y — 8lxsys)

E = 6(162328?/2 + 198(1)41}4 = 81(129?/2 + 99x4y9 - 198.’174?]8 + 99(1,'22/7
— 162z3y9 + 81xoye — 162x2ys + 1214y — 198z3y7 + 324x3ys

e 99379?/4 + 102(1391/3 - 99.’1)7?}2 = 121$7y4 + 198.’373}3 = 324-’”8?]3)

F = —6(162zsy; — 8lzoy; — 162z3ys + 8lzyyg — 162x2ys — 4z4y7
— 324z3y6 + 16223y5 — 36z3y4 + 32423ys + 162z9ys + 427y,
— 324x5ys + 162x6ys — 18z6y, + 18z5y4 — 8lzgys — 324x5ys
— 18z7ys — 18x9yr + 3625y, + 162z5y9 — 36z7ys + 3627y6
+ 18z7ys + 1622y6 — 8lzays — 162z5ye + 324z3ys + 3625y
+ 324z6y3 — 243z6ys — 36x6yr — 16226y2 — 162z5y; + 24325y6 + 18z5y7

+ 8lzsys + 36z4ya + 18x4ys — 36x4ys — 18z4y2 + 8lzgys — 162z9ys).

We can now write

g—: = {y2(162u8 = 36U7 a 324U9 + 198U1) + y3(—81u8 -+ 18U7 + 16211,9 - 99“1)

15



+ y4(18ug — dus — 36ug + 22uy) + y7(—18usz — 22u; + 4uy + 36u,

+ ys(—18uy + 8lug + 99uy — 162us) + yo(—162uz — 198u; + 36uy + 324u5)}/D
+ {y2(162us — 99u7 — 8lug + 18uy) + y3(—324us + 198u; + 162ug — 36u;)
+ ya(198us — 121ur — 99ug + 22u;)

+ y7(—22uy + 22ug — 198ug + 198ug — 99us + 99uy)

+ ys(—36uy + 36u; + 324ug — 324ug + 162us — 162ug)

+ yo(—18u; + 18ug — 162ug + 162ug — 8lug + 8lug)}/E

+ {y2(—162u3 + 81lug + 99ug — 18uy) + y3(—198uy + 324uz — 162uy + 36u;)
+ ya(—4ur + 4us — 18ug + 36us + 18ug — 36us)

+ y5(198uy + 54u; — 486us + 243us — 8lug + 18us + 162us)

+ y6(—99uyq + 54u; + 486u3 — 243uy + 162ug — 36u; — 324us)

+ y7(—35uz — 4uy + 22uy + 18u,)

+ ys(—324uz — 36u; + 162uy — 162ug + 36u; + 324us)

+ y9(162u3 + 18U1 — 8].U2 - ].SU-( + 81u6 — 162’!15)}/F

Firstly we notice that u;o does not appear in this derivative and therefore possi-

bly renders the scheme useless. The derivative can be made zero in the following

ways. Letting u = (uy, ua, ..., u0),
( 1 . 1 ) 1 ’ 1 3 1 ’ 1 3 1 ’ 1 ) 1 s )
27 27 27 27 27
a =4 ( 13 °» 13 » 13 » 13 1 ) —1 v T3 8 Fl ) I = )
( 449 449 449 449 1 - 14 L il - )
260 ° 260 ° 260 ° 260 T ) 13 » 20 )
(o, o0, 0, 0,0, 0 , 0 , 0 ,0,1 )

16



Again only the first mode (in conjunction with the fourth) represents a physically

allowable mode.

2.2.3 Cubic Triangle and the Mid-Edge Rule

Define

D

E

F

6(—18zsys — 4863y, + Yzoys + 243Toy, — 243z9ys + 8x7y4 + 21627y,

— 216z7y3 — 3622y4 + 486z3ys — 1876y — 486z6y2 + 48626y — 1458z10y3

— 923y4 + 243z5y2 + 5410y + 1458z10y2 + 1874y + 3624y2 + 18z4ye

+ 924y3 + 925y — 24325ys — 924y — 8T4y7 — 54T Y10 — IZT4Ys

+ 486z2ys — 24372y9 — 48623y6 — 216x2y; — 14582510 + 121525y — 2437,y5

+ 243$3y9 + 216$3y7 = 1215(1331/2 = 486$3y6 + 14581‘33]10 - 486-'1733/8 + 243$3y5)

—6(1215z8ye — 216z5y4 — 24378y, + 216T0ys — 121520ys + 9zsys + 36z9y~
— 243z6ys + 243x6ys — 1458z 10y9 + 1458710y — Izeyr + 2439y, — 54z 10y7
— 486z9y3 + 18z5y; + 486w5y9 — 48625y + 8x7y4 + 97y, — 18z7ys

+ 486z5ys — 1458xsy10 — 243z5ys — 18z7ys + 54x7y10 + 9z7ys — 3627yg

— 9z7ys — 486x9ys + 486zsy3 + 216x4ys — 216z4y9 — Sz4y7 + 243x2ys

- 24311,‘23/9 + 1458.’179y10 + 243$9y6 - 9$2y7 + 4863733/9 + 181?3:(/7 — 486w3y8)

—6(92sys — 18z9ys — 9zsy7 + 48626y — 243T6Ys + 9T10y7
. 54$10y7 + 36.’1)5?/7 — 486.’1,'5:1/9 -+ 243w5y8 + 1215$6y5 = 14581‘6y10 = 14582:10?,(5
+ 1458z10y6 + z7y4 — 1215x5y6 + 14585910 — 18z7y2 + 9z7ys — 1825y,

— 243zsys + 243z5ys — 36z7ys + H4T7y10 — 9T7Y6 — 1827y + IT7ys

17



+ 486wgys — 36x6ys + 486z6ys — 2436ys + IT3ys — 48675y, + 54710y
— 9z4ys + 1824y, + 36x4y6 — 9T4y3 — 9Tsys + 243z5y3 + 18x4y9 — T4y7
— 54z4Y10 + 9T4Ys — 486x9ys — 486x2y6 + 18z2y7 + 48622ys — zayr

+ 243x3y6 — 243z3ys5).

We can obtain the derivative in this case as

Ou

a—w=

{ya(—18ug + uy + Yus — Jusz + 54uso — 18ug + 36uz + 8uz + Jug)

+ (ys + 6y10 — 2y6 + §y7 + Yo — 2ys)(u1 + 243us — 243uy — Juy)

+ y3(—36uy + 1215u2 + Yug — 243us — 1458uy0 + 486ug — 216u; — 243ug + 486ug)
+ yo(—=9u; — 1215u3 + 36us + 243us + 1458uq

— 486ug + 216ur + 243ug — 486us)}/D

+ {(y2 — 2ys + §y4 — 2ys + Ye + 6y10)(9us — Yuy — 243ug + 243us)

+ y7(54uq0 + uy — 18usz + Jug + Suy — Yug + Yug — 18us — 36ug)

+ ys(—36u; + 486us — 243uy — 216uy + 486us + Yuy — 1458u;9 — 243ug + 1215ug)
+ yo(—486us — Yu; — 486us + 243u, + 216u,

+ 36ur + 1458us0 — 1215us + 243uc)}/E

+ {(—2y2 + yays — 2ys + 6y10)(Ius — 243us — ur + 243u)

+ ya(—9ug — 8uy + us — Yuz — 54uyo + 36ug + 18us — up + 18uyg)

+ y5(243ug + 216u; + 243uz — 486uy — Yuy — 486ug — 1215ug + 36ur + 1458u4)

+ ye(—243ug - 216U1 . 243’“3 + 486114 = 36”4 + 486’&9 + QU7 d 1458’&10 + 1215u5)

+ y7(54u10 4 8uy + Yus — 18usz + uy + Jug — Yug — 36us — 18ug)}/F.

18



Firstly we notice that u;o does take an active part in this expression. The deriva-

tive can be zero only when:-

(L 4 1 4 1 5 1 41 314 1 4 1 31 , 1

(9,9, 9, 9 ,-1,1, 6 , 1 , -1, -1
u = 9

(1 ,-7,-&, 2 B 1 ,-3,-1, 1, -1

(-1, 1, & ,=2 3% , 1, -1 ,-1, -1, 1

Again only the first mode is physical.

2.3 Ten-Noded Quadratic Tetrahedron

The quadratic triangle seems to be the most promising two-dimensional element
and so we consider here, briefly, the three-dimensional equivalent. The local ele-

ment numbering is shown in figure (5). The transformation is given by:-

t = (2p+29+2r—1)(p+q+r—1)t1 +p(2p — 1)tz + q(2¢ — )ts + r(2r — 1)t
—4p(p+q+7r—1)ts +4pgte —4q(p+ q+r —1)tr —dr(p+q+r — 1)tg

+ 4q7‘t9 + 4p7't10.

The algebra for this problem is even worse than that for two-
dimensions so we shall just quote the results. They are all obtained in exactly
the same way as the previous results.

Centroid:- The conditions for a zero derivative are

19



Us = Ug
Us = Usg

U7 = Uio

There are 10 variables, 3 constraints plus one physical mode leaving 6 spurious
modes. Including the y-velocity and z-velocities as well means that 18 out of 30
modes are spurious.

Vertex and Mid-Face Rule:- Both of these quadratures just have the one zero

derivative mode given by uy = us = ... = uyp.

3 Implementation

This theory is all well and good but unless it leads to an efficient scheme it is
going to be of little use. In this section we consider the possibilities of using these
elements in practice. The 10-noded cubic triangle would seem to be of little value,
although perhaps a 9-noded reduced cubic (without the interior node) might be
of more interest. This leaves the quadratic triangle. With centroid integration,
the most efficient, 3 out of 6 of the modes are spurious. These could be damped
after performing an analysis similar to that of Flanagan & Belytschko6 perhaps.
If these modes were damped too excessively though, the elements would be prone
to locking as they only have the three non-spurious degrees of freedom, which is
no better than the linear triangle. It would therefore seem more logical to use the

20



quadratic triangle/vertex or mid-edge rule combination, since this rules out both
locking and any spurious modes despite the extra expense involved. It should be
noted that egs. (6 ,7) have not been optimised for computation and the operation

count can be reduced by factoring certain terms.

In many Lagrangian fluid dynamics codes mass lumping is used to
avoid inverting the mass matrix, see Donéa et al? for example. However, with

quadratic elements we do not have this option. Consider

Mi = b, 9)

where M is the mass matrix whose elements are given by

My = [ pwi(x)s(x)df. (10)
In (9), b is a vector representing the forces acting on an element and 11 denotes
the total nodal acceleration vector. In eq. (10) © is simply the domain we are
integrating over, 1; are the element basis functions (piecewise linear, quadratic
etc.) and p is the density. Mass lumping is achieved by replacing the matrix M

by the diagonal matrix M¥ whose elements are

M = Y M

We can write down a local mass matrix which involves the same calculation as

21



the M in eq. (10) but with an integration domain consisting of just one element,

E. For a regular quadratic triangular element this matrix is given by,

pparea(Ng) | -1 -1 6 -4 0 0
Me=""g (1

-4 0 0 16 32 16

— 2
\0 4016163)

where area(Ag) is just the area of element E and pg is the element density.
We now note that if we lump the mass matrix of eq. (11) we get zeroes on the
first three diagonals. (In practice it was found that when the global mass matrix
was assembled and then lumped, this rarely led to zeroes but did give very small
diagonal elements which then led to immense particle accelerations caused solely
by rounding error. Although the centroid integrated quadratic, without damping,
failed before the vertex integrated quadratic neither gave any meaningful results.)
This therefore means that we are faced with the extra cost of inverting the full

mass matrix.

Fortunately the mass matrix, M, can be inverted accurately and
cheaply. In Wathenld it was shown that with diagonal pre-conditioning the
eigenvalues of M are all contained in the region [0.3924,2.0598] for the quadratic
elements on triangles to be used here. Similar results hold for other types of

element. This then implies that the pre-conditioned conjugate gradient method,
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see Golub & Van Loan’ for example, is particularly efficient in solving eq. (9)
in the sense that very few iterations are needed. If a vector machine is available

each iteration can also be made extremely fast, seels T 14,

Having inverted the full mass matrix we have a more accurate
scheme than if mass lumping had been used, since lumping the mass matrix
reduces the order of the scheme. This means that if increased accuracy is not the
goal then by using a more accurate scheme we can use fewer nodes to achieve the
same degree of accuracy. This should go a very long way towards recouping the
cost of inverting the full mass matrix. In this sense it would seem illogical to go
to all the trouble of using quadratic elements, as opposed to linear elements, only

to then lump the mass matrix and lose much of the accuracy gained.

4 Summary

In this paper we have extended the analysis of Margolin & Pyun10 to higher
order triangular elements. The 10-noded cubic element was very susceptible to
hourglass modes and it seems that this is largely due to the presence of an inte-
rior node. The quadratic triangular element with centroid quadrature has three
spurious modes which have been identified and could then be damped. Alter-
natively the vertex or mid-edge rule could be used which possess no spurious
modes. Although these elements require more computational effort, especially as
mass lumping cannot be used, this is made up for by the fact that the scheme is
much more accurate and there are no problems with hourglassing or stiffness.
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Figure 1: Velocity components on the bilinear quadrilateral element.
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Figure 2: Transformation of a general triangle onto the standard element.
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Figure 3: Transformation of the general quadratic triangle onto the standard

element.
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Figure 5: Local element numbering for the 10-noded tetrahedron.



