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Abstract

In this report a first order multidimensional upwind scheme is presented for the
modelling of free surface flow in two dimensions. Free surface flow in channels is
described mathematically by the Shallow Water equations. These equations are
discretised using a finite volume approach on quadrilaterals and unstructured trian-
gles. We describe an upwind scheme for hyperbolic conservation laws. The method
is first order in both space and time. However, it is capable of handling complex
flow domains, as we show in the simulation of a dam-break problem in an L-shaped
channel, as well as different source terms such as those in a basin irrigation problem,
and finally problems involving wetting/drying.



1 Introduction

Recently there has been considerable interest in modelling fluid flow in rivers and
channels, much of which has come from the increased public awareness of pollution
and environmental issues in relation to construction projects, such as coastal de-
fences, water supply, treatment, drainage, irrigation and so on. The standard model
equations are the Shallow Water equations (Abbott, 1992) which because of the
complexity of the problems need to be solved numerically.

For this purpose we need a numerical scheme with the necessary features to
handle both steady and transient flow conditions, capable of describing and incor-
porating complex topography, simulating both sub- and super-critical conditions,
enabling inflow/outflow conditions to be specified at different points in the domain
of interest, and finally allowing the wetting/drying of flood plains and river beds. In
addition we would like to have a correct description of the physical problem, easy
implementation, accuracy and speed of computation.

An important issue is the mesh, which should relate to the topology of the
problem being considered; there are clearly difficulties associated with adapting
a structured grid system to an irregular shape domain. For this reason we have
used unstructured meshes, and a comparison between unstructured meshes based
on quadrilateral and triangular cells has been carried out for an experimental test.

We have used the conservative form of the Shallow Water equations that permits
a Riemann solver to be used within a finite volume formulation. This combination
allows us to obtain solutions of complex problems on unstructured grids with good
accuracy and resolution of extreme conditions such as hydraulic jumps.

The motivation of this work is to find a fast algorithm with a wide range of
practical applicability. More specifically, the method:

e is based on the conservative form of the Shallow Water equations,

e uses a finite volume formulation with triangular and quadrilateral unstructured
meshes depending on the geometry of the problem,

e employs an approximate Riemann solver to calculate the fluxes,
e is first order accurate in both space and time,

¢ has the flexibility to specify general boundary conditions, including the capac-
ity to deal with wetting/drying conditions.



2 Governing equations

The two-dimensional Shallow Water equations that govern free surface flow in con-
servative form (Cunge, 1980) are

Jdu oF 090G
—_—t — 4+ —=H .
ot + 0z + Oy (2.1)
with
h hu hov 0
U=|hu |, F=| h?+g% | , G= huv , H={ gh(Soz — Sz)
hv huw ho® + g% gh(Soy — Syy)

where U represents the vector of conservative variables, F and G are the convective
fluxes in the z, y directions respectively, and H is the source term. In addition, & is
the depth of water, u and v are the velocities in the z, y directions respectively, ¢ is
the acceleration due to gravity, Soz, Soy are the bed slopes and Sy, Sy, the friction
terms in the z, y directions.

For the friction term, the Manning equation has been used in the form

) n*uy/u? + v? nivvu? 4 v?
Sts = T o Sty = —
)3 *

(2.2)

where n is the Manning coefficient.



3 The first order upwind scheme

3.1 Discretisation procedure

A cell centred finite volume method is formulated for equation (2.1) over a quadri-
lateral or triangular control volume with the dependent variables of the system
represented as piecewise constants.

We can write the convective flux as (F, G) so equation (2.1) becomes

‘96_?+v.(p,g):1{ (3.1)

The integral form of (3.1) for a fixed area 2 is
Q/UquL/V-(FG)dQ—/HdQ (3.2)
ot Ja Q i ~Ja '

and, applying the divergence theorem, we obtain
2/Uaerf(Fc,:).nds—/Ham (3.3)
ot Ja s ~Ja '

where S is the boundary of the area 1.

A finite volume approximation of the equations is the result of a discretisation
of their integral form. We introduce a computational mesh that defines the finite
volumes €; where ¢ is the index associated with the centroid of the cell in which we
store the cellwise constant values of U.

Equation (3.3) can then be replaced by

1 OF

S+ fSi(F, G)-ndS = H;Q (3.4)

because the mesh is fixed in time.



Equation (3.4) represents a system of ordinary differential equations in which
we have yet to define the boundary integral. We approach this integral via a mid-
point rule, i.e. the numerical flux is calculated at the mid-point of each edge, giving

NE
jé‘ (F,G)-ndS = S (F,G)’, - n,,dS., (3.5)

k=1

where wy, represents the index of edge k of the cell, NE is the total number of edges
in the cell (for a quadrilateral cell NE=4, and for a triangle NE=3). The vector
n,, is the unit outward normal, dSy, is the length of the side, and (F,G), is the
numerical flux.

3.2 Numerical Flux calculation: upwind differentiation

A characteristic of the Shallow Water system of equations, which is very useful when
developing an unstructured finite volume scheme, is that they are rotationally in-
variant, enabling problems to be posed as locally one-dimensional. Evaluation of
the numerical flux in equation (3.5) is carried out by a series of solutions local to the
lines which make up the quadrilateral and triangle meshes. The Riemann problem
is defined by the solutions on the left and right of the cell edges, as in the first order
MUSCL scheme (Van Leer, 1977).

An important feature of the one-dimensional upwind schemes is the definition
of the approximated flux jacobian, A, 1, constructed at the edges of the cells. Once
this matrix has been defined, the numerical flux (normal to the edge) is (Alcrudo,

1992)

1

i+1§:§

Fiy1 +Fi — |4 1|(Uigs — Ui)] (3.6)

It is possible to achieve second order accuracy by defining better estimates of the
values on the left Uy, and right Ug of the cell edge (or internal and external values
to the finite volume) and substituting them for U;;; and U; in equation (3.6), giving

1 .
;‘% = 5 FR ‘|‘ FL - |ARL',+%_|(UR — UL) (37)



The 2D numerical upwind flux in equation (3.5) is obtained by applying the
expression (3.7) in a one-dimensional form to each edge of the computational cells,
so that

(F, G)yr - Dk = [((E G)r + (F,G)L)uwk - Nk — |JrE,, | (Ur — UL)wk] (3.8)

N | =

Here k = 1,..., NE, R and L denote right and left states respectively at the
wy, edge, (JrL, ) ~r presents the approximate jacobian of the normal flux vector and
corresponds to (Agr ) used in the one-dimensional schemes.

|JrL,, | is the matrix whose eigenvalues are the absolute values of the eigenval-
ues of the matrix (Jgzr,,) (Alcrudo, 1992). This matrix must satisfy the following
conditions:

o (Jrz,,) depends only on the Ug and Uy, states,
o (FrR—Fp)uwt = (Jrr,)(Ur — UL)uk,
e (Jrr,,) has real and distinct eigenvalues and a complete set of eigenvectors,
o (Jar,,) =J(Up)=J(Up) if Up=Up
where

_oEG)n_oF oG
T=5u T auttau™ (3.9)

The matrix (Jrz,,) has the same shape as J but is evaluated at an averaged
state given by the quantities &t = (&, %) and é which must be calculated as shown
later. The eigenvalues are

iy

at=u-n+¢
@*=1-n (3.10)
@>=1-n-2¢

where @ - n = un, + on,, and the eigenvectors are

1 0 1
= a+én, | , &= —=tn, | , E=| @-2n, (3.11)
v 4 ¢cny cng U — Cny
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Once we have calculated these eigenvalues and eigenvectors, we can decompose
the difference in the vector U across a grid edge as a sum of the eigenvectors as

3
Up—UL= > of e (3.12)
m=1
where
oh 1
01}2’2 = 2RL + % [6(hu)RLnx + 6(hv)RLny = ﬁnéhRL] (3.13)

1 . .
oz%L == [(6(hv)rL, — ©6hRL) ny — (8(hu)ry — UOhRL) ny)

and é denotes

6hrr, = hp — Ry,

Enforcing the second condition of the matrix (j RL,,) We can obtain the follow-
ing expressions for @, v, and é.

Vhrur + Vhrur, 5 Vhrvr + Vhrop

\/ER'i‘\/EL ' \/ER-F\/EL ’

U =

é= %(hR +hr)

For a first order scheme the values of the variables at the left and right side
of each wall of the cell are taken to be Uy, = U; and Ugr = Uj, the solution at
the centres of adjacent cells. As we have said before, second order accuracy can
be achieved using an upwind weighted linear interpolation function (Berzins, Ware,
1995) amongst others.

3.3 Time integration

Once the approximate jacobian matrix has been constructed, equation (3.8) provides
the numerical flux normal to each edge of the computational cells. We can now
substitute it into the equation (3.5), so that equation (3.4) can be written as

; -1 NE
oU S (F, G),. - Dy dSu, + H, (3.14)

t k=1

at Q



which is an ordinary differential equation and can be integrated by standard method-
s. We have used in all our cases a forward Euler time integration, although second
order accuracy in time can be easily achieved by evaluating this integral using a
Predictor-Corrector algorithm.

The stability criterion is difficult to obtain because the algorithm is non-linear.
However, in the case of the linearised equation of the form

Ou Oou ou

with constants a,b > 0, using an upwind algorithm in finite volume differencing in
a uniform mesh, the time step is limited by (Barley, 1988),

b -1
5t < (;—x + @) (3.16)

We have adopted this stability criterion, adapting it to the non-linear finite
volume context as

ot < mml
2

dij
3.17
(Vu? 4 v% + c),—_,;] ( )

where d;; is the distance between the centroid of the cell 7 and its neighbours j.



4 Boundary conditions

The idea of using a Riemann solver to calculate the flux at the face of a cell can be
exploited in the description of boundary conditions. The variables are stored at the
centre of each cell and the boundary conditions are applied through the flux across
the edges. The imposed conditions at the boundaries combined with equations ob-
tained from characteristics theory give sufficient information for the boundary flux
to be calculated.

We have applied characteristics theory (Alcrudo, 1992) in two dimensions, the
procedure consisting of the approximation of the bicharacteristics that go through
the boundary points. Assuming that we can neglect the source terms and that the
flux has a frontal behaviour we arrive at the following compatibility relations:

D
“(u- = 4
Dt(u n+2c)=0 (4.1)
6
S—t—(u t) =0 (4.2)
where
u-n=ung + vny
u-t=on; —uny (43)
and
D 0 %, 0
>l T (ut cnx)% +(vx cny)% (4.4)
izg-l—ug—{—v—a— (4.5)

Sometimes it is not necessary to use all the equations, depending on the bound-
ary conditions imposed, the number being determined by the normal velocity through
the boundary. Some of the possible situations are:

e Supercritical inflow: all the variables must be imposed.
e Subcritical inflow: two variables must be imposed.

e Supercritical outflow: none of the variables must be imposed.
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e Subcritical outflow: one variable must be imposed.

When the boundary is a solid wall the normal velocity is zero, so it is necessary
to use the above relations with the condition u - n = 0. Special boundary conditions
for the irrigation problem will be discussed in the next sections.

Once we have imposed the boundary conditions on the cell edges and they have
been combined with the appropiate compatibility relations, which can be different
in each case, we calculate the normal flux across these edges and we obtain the
contribution in the updating of the variables at the centre of the cell.
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5 Applications

5.1 Dam-break problem in an L-shaped channel

In order to demonstrate the flexibility of the algorithm, a dam-break problem in an
L-shaped channel is considered. Some comparisons between results on quadrilateral
and triangular unstructured meshes with experimental measurements are shown.
This is a common problem in hydraulic flow simulations (Glaister, 1993). The type
of the flow will reveal any weakness in relation to how well a particular strategy
deals with combined sub- and super-critical flow.

The flow domain, detailed in Figure 1, consists of a square reservoir that con-
tains a wall to separate it from the L-shaped channel. The initial conditions are
zero flow with 0.2m depth to the left and 0.01m depth to the right of the wall. The
resultant flow is clearly two-dimensional, highly non-linear and possibly transcritical.

All boundaries are treated as solid non-slip walls except the outflow which is
considered supercritical. The Manning coefficient is 0.0095 and the bed slope is
zero. The number of cells in the quadrilateral mesh is 3812, and in the triangular
mesh is 2954. The quadrilateral and the triangular meshes are shown in Figures 1-2.

Comparisons of the time evolution of the depth of water are made at the
points P1, P2, P3, P4, P5 and P6, whose respective coordinates are (1.2m,1.2m),
(2.75m,0.7m), (4.25m,0.7m), (5.75m,0.7m), (6.55m,1.5m), (6.55m,3m) and are shown
with the experimental data in Figures 3-8. The experimental data were obtained
from the 3rd Meeting of the Working Group on Dam-break Modelling (Brussels,
June 1997) in which we participated actively.

It can be seen from the graphs that the triangular cell mesh is more robust than
the quadrilateral one, although both give very similar results. Perhaps this is due
to the number of edges involved in computing the numerical flux. If the domain is
regular, either square or rectangular, the quadrilateral cell mesh gives better results
than the triangular one.

As we expected, the worst results are obtained at point P5, after the corner of

the channel. This is the critical point in the test. On the other hand, the arrival of
the advancing front is accurately captured in all the points.
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Figure 1: Geometry of the test and the quadrilateral structured mesh used in the
X,y coordinates.
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Figure 2: Geometry of the test and the triangular unstructured mesh used in the
X,y coordinates.
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Figure 3: Time evolution of the depth of water at the point P1
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Figure 4: Time evolution of the depth of water at the point P2
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Figure 6: Time evolution of the depth of water at the point P4
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Figure 8: Time evolution of the depth of water at the point P6
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5.2 Infiltration

Surface irrigation is the oldest and most extensively used irrigation method in agri-
culture. It has the distinguishing characteristic that water is distributed over the
field by its internal pressure. The efficiency of surface irrigation systems is typical-
ly low. Surface irrigation systems are commonly modelled using a one-dimensional
analysis. However, in many basin irrigation configurations the 1D hypothesis cannot
be justified, especially if the geometry of the field is irregular or if the water does
not enter the field continuously along one of its sides.

The need for a two-dimensional model is therefore justified by its capability to
deal with irregular field shapes, point or linear water inflow, and multiple inflow
points.

The governing equations are the Shallow Water equations, with three new
source terms, ¢, D, and Dy,. The set of equations are the ones described in section
2, equation (2.1). The only change that has been made is in the source term H that
now has the form

—1
H = gh(SOm s sz) + D[;c (51)
gh(SOy - Sfy) + Dly

where ¢ is the infiltration rate and Dy, Dy, account for the momentum transfer as-
sociated with seepage outflow in the z, y directions (Playan, 1992). The infiltration
rate ¢ can be computed using the empirical Kostiakov-Lewis equation,

i = kar*! + f (5.2)

where 7 is the opportunity time expressed in minutes, k and f are coefficients deter-
mined by experimental measures and a is an exponent specified by the experiment
too. The time integrated form of equation (5.2) provides the expression for z, the
infiltrated depth of water in the field.

The following approximations are introduced to account for the momentum
transfer due to seepage outflow (Akanbi, Katopodes, 1985):



Initial conditions

Since the numerical procedure requires all depths to be greater than zero to avoid
undefined terms, a small positive value of 10~8m is initially assigned to the depth of
flow at all the cells of the domain. The same value is used to initialize © and v. This
approximation means that the time step, normally chosen so that the CFL number
satisfies the stability criterion, is very large, and so it must be reduced to allow the
accurate evolution of water in the field.

Boundary conditions

Two types of boundary conditions have been implemented corresponding to different
irrigation practices. A description of each type follows.

e Corner inflow: this simulates flooding of the rectangular domain from a point
source located in one of its corners. Values of the three variables h, u, v are
imposed on the cell edges.

e Line inflow: this represents a line source along a straight boundary of the
domain, for example an overflowing ditch or several point sources located close
to each other along the side of a basin. In this case we impose

-
- N-d-h
v=1>_0

where N is the number of inflow cells, d is the length of the edge of each cell
and (@ is the total discharge assigned to the inflow boundary condition.

The initial depth associated with each of the boundary cells involved in the
inflow domain is computed from
Q*\*
h=1.05 (——)
g

which corresponds to the critical depth increased by 5% to ensure subcritical flow
conditions at the inflow.

Advance and infiltration
A procedure has been introduced to ignore all flow depths smaller than a certain

user-defined threshold, in our case 0.001m, that is the minimum flow depth consid-
ered as part of the advancing front and which allows infiltration to start. Every time
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the depth of flow is computed for a cell, the program checks the validity of this new
value. If it is smaller than the depth assigned as initial condition, it is reset to this
value again. If the depth is greater than the threshold, irrigation will begin at the
next time step.

Friction terms

Due to the small initial values for the variables h, u, and v and the high value of
the Manning coeflicient required to take in account the vegetation in the field, the
friction terms become very strong. We have studied two possibilities to avoid this
problem; the first is to ignore the friction terms when the depth of water is smaller
than the threshold, while another more sophisticated approach is to treat the source
terms in a semi-implicit form. The latter option is the one adopted in our case,
although there is also the possibility of treating the source terms in an upwind way.

In the approximation that we have made, the friction terms are calculated in
the following way: we change the calculation of the source terms vector H from
equation (5.1) to

<
H= gh(SOT, — (1 — H)sz)" — H(gthx)”“ + Dy, (5.5)
gh(SOy . (1 = G)Sfy)n - 6’(ghsfy)n-lp1 + Dly

where n indicates the time level in which we are calculating the variables and n + 1
is the next time level where we update the variables. 6 is a parameter that accounts
for the implicitness of the treatment of the source terms in the equation and can
take any value in the interval [0,1]. We have chosen 8 = 0.5 for the first numerical
test and 6 = 0.8 for the second one.

Numerical test for the first field

A rectangular basin, 465m long by 100m wide, with an area of 46500m? is consid-
ered, irrigated from one of its 100m sides (Playdn, 1992). Water flow in this test
is basically one-dimensional. The number of cells in the mesh was 1860. The bed
slope is zero. The infiltration parameters estimated in the experiment are:

k = 0.00893m/min®
a = 0.406
fo =0.0m/min

A value of 0.1 is estimated for the Manning coefficient. The field is irrigat-
ed with a constant discharge of 0.183m?>/s. The field test consists of observations
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of the advancing front over the field and the advance of the infiltrated depth of water.

Figure 9 presents the overland and infiltrated flow profiles at time=3h. We
compared the results with the experimental data (Playan, 1992) but there was no
agreement.

The advancing front moves faster in our case, reaching 325m in the y direction
of the field, while the front in the results of Playdn only reaches 200m at the same
time. Besides that, the amount of infiltrated water is greater in the Playan result-
s, the maximum depth of infiltrated water being 0.05 while our results give 10% less.

We had a lot of problems with the initial depth of water, set to 1078m instead
of zero. The variables A, u and v are very small, which produce a large time step
with fixed CFL. We therefore had to change the way of calculating the time step,
decreasing the CFL value. Another important problem was the treatment of the
friction terms as explained in the above section.

0.1 T T T 1 T T T T i

"overland_depth" <

@0,
0.09 - %%o% “infiltrated_depth" +

Do,
Oeeoe
0.08 - ©00 .
Oeo
0.07 0, 1
0.06 |- N -

0.05 |- % .

h(m)
o

0.04 |- ° .
0.03 |- %5 -
0.02 |- ° -

0.01

_0.01 L ] 1 1 1 1 1 1 L
0 50 100 150 200 2(50) 300 350 400 450 500
x{m

Figure 9: Overland and infiltrated depth of water in the field at time 3h.
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Numerical test for the second field

This test was developed to illustrate the capability of the code to deal with two
simultaneous corner inflows in a square field with an area of 10.000m?. The number
of cells in the mesh was 400.

The first inflow was located at the northwest corner, with a constant discharge
of 0.1m3/s. The turn-out time was Omin, and the cut-off time was 30min. The sec-
ond inflow was located at the northeast corner, with a constant discharge of 0.1m?>/s.
The turn-out time was 10min and the cut-off time was 40min. The applied infiltra-
tion parameters were:

k = 0.00324m/min®
a = 0.568
fo = 0.000174m /min

The Manning coefficient was set to 0.04 and the bed slope was zero. Figures
10-17 show the results of the simulation at times 1min, 5min, 10min and 15min.
The figures represent overland water surfaces and infiltrated water surfaces.

We tried to compare this test with the experimental measures (Playdn, 1992)
but without any success. Although at the first time steps the depth of water over
the field of the advancing front are the same, the water infiltrated is greater in our
case. This leads to another problem because now we have negatives depths of water
and we have no way of dealing with them.

At time 15min the overland depth of water seems to be in good agreement with
the Playan results, but this does not occur with the infiltrated depth of water.
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5.3 Wetting and drying

In practical two dimensional river flows, there exist boundaries at which the water
depth approaches zero, so wetting/drying occurs. Clearly, an inadequate treatment
of this boundary condition will affect the accuracy of the solution.

The approximate procedure used in this work is to examine the solution depth in
each cell and proceed in a different way depending on the topography, the hydraulic
conditions, the neighbouring cells and the cell we are examining in each time step.
There follows the definition of time-dependent internal boundaries (Bento, 1996)

Three different situations can occur, and in each of them we have to impose
additional conditions, without using the Shallow Water equations directly. These
situations are named as: dry cell, high point and low point.

The first situation, dry cell, occurs when there is no water in any of the sur-
rounding cells in the computational directions. In fact, this condition is satisfied
when the depth of water in a cell and in its neighbours is less than a threshold,
which in our case has been set to 0.00lm. Then the conditions of a dry cell are

hi = 0.0
hj = 0.0

where ¢ is the index of the cell we are examining and j is the index of any neigh-
bouring cell.

In this case, the model sets the variables, h, u, v to zero in the cell, without
allowing the upwind scheme to model the Shallow Water equations. With this con-
dition, we speed up the computation in the regions where there is no water and at
the same time avoid the anomalous appearance of water in cells or the appearance
of negative depths of water.

The second situation, high point, occurs when the depth of water in the cell
that we are examining is zero and the height of the bed is greater than the height
of the water in its neighbouring cell. In this case we adopt the same solution as the
one taken in the dry cell case. The conditions of a high point are

h; = 0.0
2, > h]' +Zj

25



The third situation, low point, is produced when the height of the bed in the
neighbouring cell is greater than the height of the water in the cell under study. In
this case, it is considered that there is a solid wall in that direction, so the flux must
be reflected, and the upwind scheme is applied. The conditions of a low point are

hi # 0.0
zj > hi + 2z

The model calculates the depth of water and the velocities in the z, y direc-
tions in each cell and at every time step, verifying at each point whether the upwind
scheme can be applied or not.

Numerical test

A channel with trapezoidal cross section is considered. We assume that there is no
bed slope in the = direction and the trapezoidal shape is achieved by imposing a
certain bed depth, varying in the y direction, in some of the cells of the domain,
which is a square field of 100m width and 100m length. The number of cells in the
mesh was 400.

It is assumed for simplicity that there are no friction terms and that the initial
condition is 0.3m depth of water and zero velocities in both directions. We impose
a constant discharge at the inflow of 0.1m?/s.

In Figures 18-20 the depth of water is shown for different cross sections at 2.5m,
47.5m, and 97.5m of the channel at different times: Os, 1s, 5s, 10s, 20s, and 30s.

In Figures 21-23 we show the time evolution of the depth of water in a dry cell
that is suffering wetting/drying (celll), its closest cell (cell2) and the next totally
wet cells (cell3 and cell4) on one of the sides of the channel (the other side is sym-
metric) at the three cross sections specified above.
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Figure 18: Depth of water profile in a cross section situated at 2.5m at different
times.
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Figure 19: Depth of water profile in a cross section situated at 47.5m at different
times.
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Figure 20: Depth of water profile in a cross section situated at 97.5m at different
times.
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Figure 21: Time evolution of the depth of water in celll, cell2, cell3 and cell4 in a
cross section situated at 2.5m.
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Figure 22: Time evolution of the depth of water in celll, cell2, celld and cell4 in a
cross section situated at 47.5m.
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Figure 23: Time evolution of the depth of water in celll, cell2, cell3 and cell4 in a
cross section situated at 97.5m.
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6 Conclusions

An efficient first-order multidimensional upwind scheme for the modelling of the
Shallow Water system of equations is presented. Of practical interest is its ability
to describe easily a wide range of problems such as complex flow domains, basin
irrigation problems and problems involving wetting/drying, as we have shown in
this work.

A numerical test, the simulation of a dam-break problem in an L-shaped chan-
nel, has been compared with experimental data to validate and explore the limita-
tions of the scheme, as well as the difference between using quadrilateral or triangular
unstructured meshes.

In future work we intend to extend the scheme to second order in both space
and time in order to achieve better accuracy, and make some comparisons to deter-
mine the influence of the number of nodes and cells used in each case and the CFL
constraint.

The results produced in the infiltration problem are strongly influenced by the
initial conditions and the friction terms. We will study other possibilities to over-
come this problem in order to have better approximations to reality. Our first step
will be the study of the upwind treatment of the source terms.

Finally, the wetting/drying problem is presented and the concept of time-
dependent internal boundaries is defined with the description of the possible sit-
uations that can occur. Some results involving different inflow boundary conditions
(line inflow and corner inflow) are presented. We intend to apply this approach to
a real case.

30



7 Acknowledgements

The author wants to express her gratitude to the members of the Numerical Analysis
Group at Reading University in general for their welcome and, in particular, to Prof.
Mike Baines and Dr. Matthew Hubbard for their support and many interesting
discussions. The work was financed by ESF, Program AMIF (Applied Mathematics
for Industrial Flow Problems), whom the author would also like to thank.

31



References

(1] Abbott M.B., "Computational Hydraulics”, Ashgate Pub. Comp., 1992.

[2] Abbott M.B., Cunge J.A., ”"Engineering Applications of Computational Hy-
draulics”, Pitman Pub., 1982

[3] Akanbi A. A., Katopodes N.D., "Model for flood propagation on initially dry
land”, Journ. Hydr. Div., Vol 114, n° 7, pp 689-706, ASCE, 1988.

[4] Alcrudo, F., ”"Esquemas de lata resolucion de variacion total decreciente para el
estudio de flujos discontinuos de superficie libre”, Tesis Doctoral, Universidad de

Zaragoza, 1992.

[6] Alcrudo, F., Garcia-Navarro P., ”A high resolution Godunov-type scheme in finite
volumes for the 2D shallow water equations”, Int. Journ. for Numerical Methods

in Fluids, Vol 16, n° 6, pp 489-505, 1991.

[6] Anderson J.D., Degrez G., Dick E., Grundmann R., "Introduction to Computa-
tional Fluid Dynamics”, Annual Lecture Series, Von Karman Institute, 1996.

[7] Barley J.J., ”A survey of operator splitting applied to upwind differencing”, Nu-
merical Analysis Report, 12/88, University of Reading, 1988.

[8] Bellos C.V., Soulis J.V., Sakkas J.G., »Computing 2-D unsteady open channel
flow by finite volume method”, Proceedings of the VII Intl. Conf. on Computa-
tional Methods in Water Resources, 1988.

[9] Bellos C.V., Soulis J.V., Sakkas J.G., ”Computation of two-dimensional dam-
break induced flows”, Adv. in Water Resources, Vol 14, n° 1, pp 31-41, 1991.

[10] Berzins M., Ware J.L., ”Positive cell-centered finite volume discretisation meth-
ods for hyperbolic equations on irregular meshes”, Applied Numerical Mathemat-
ics, 1995.

[11] Chow V.T., Open Channel Hydraulics, MacGraw-Hill, 1959.

[12] Cunge J.A., Holly F.M., Verwey A., ”Practical aspects of computational river
hydraulics”, Pitman Pub. Inc., 1989.

[13] Fennema R.J., Chaudhry M.H., ”Ezplicit methods for 2D transient free surface
flows”, Journ. of Hydraulic Engineering, Vol 116, n° 8, pp 1013-1034, ASCE 1990.

[14] Franco A. B., "Modelacao computacional e experimental de escoamentos provo-

cados por roturas de barragens”, Tese de Doutoramento, Universidade Técnica de
Lisboa, 1996.

[15] Glaister P., ”Difference schemes for the shallow water equations”, Numerical
Analysis Report, 9/87, University of Reading, 1987.

32



[16] Glaister P., "Approzimate Riemann solutions of the shallow water equations”,
Journ. of Engineering Mathematics, Vol 24, n° 1, pp 45-53, 1990.

[17] Garcia-Navarro P., Hubbard M.E., Priestley A., "Genuinely multidimensional
upwinding for the 2d Shallow Water equations”, Journ. of Computational Physics,
Vol 121, pp. 79-93, 1995.

[18] Garcia-Navarro P., Priestley A., ”A conservative and shape-preserving semi-
lagrangian method for the solution of the shallow water equations”, Int. Journ. for
Numerical Methods in Fluids, Vol 18, n° 3, pp 273-294, 1994.

[19] Osher S., Solomon F., "Upwind difference-schemes for hyperbolic systems of
conservation laws”, Mathematics of Computations, Vol 38, n° 158, pp 339-374,
1982.

[20] Playan E., ”Two-dimensional hydrodynamic simulation of basin irrigation:
analysis of field shape effects on irrigation performance”, PhD Thesis, Utah State
University, 1992.

[21] Playan E., Walker W.R.., Merkley G.P., ”Two-dimensional simulation of basin
irrigation. I: Theory and Validation”, Journ. Irrig. Drain. Div., ASCE, 1994.

[22] Sleigh P. A., Berzins M., Gaskell P. H., Wright N.G., "An unstructured Finite-
Volume Algorithm for predicting flow in rivers and estuaries”, Computers and
Fluids, 1997.

33



