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ABSTRACT

The Moving Finite Element (MFE) method is applied to nonlinear

diffusion equations of the form

u, = V- [uan] (n > 0)

whose solutions exhibit steep moving fronts. After a crucial change

of dependent variable we show how to derive semi-discrete MFE equations
for the positien of the moving interface. We show that these equations
are exact in the one-dimensional case and also derive a maximum principle
for the gradient of the MFE approximation in this case. No regularization
terms are needed and explicit time stepping, using an adaptive time step
based on the size of the diffusion coefficient, is found to be sufficient

to give a good solution in time.



1. INTRODUCTION

The MFE method for time dependent partial differential equations
introduced by Miller & Miller [7] has been used with considerable success
for parabolic problems (see Miller [8]1, Miller & Miller [7], Gelinas,

Doss & Miller [31, Herbst [4]1). The method has also been shown to be
particularly appropriate for hyperbolic praoblems by Wathen [414] and the
structure of the MFE matrix has been analysed by Wathen & Baines [15].

This analysis has led to a very efficient explicit solution proacedure
avoiding the problem of additional regularization terms as used by earlier
authors and indeed in one dimension the method has been shown to be a purely
local method (see Baines [2]).

The approach introduced by Wathen & Baines has been applied
to convection-diffusion problems in one dimension (see Johnson [5]) and
in this report the method is extended to solve nonlinear diffusion problems.

In Section 2 we introduce the class of nonlinear diffusion praoblems

u. =V e [unyy] (n > 0) (1.1}

and derive similarity solutions in g space dimensions, assuming radial
symmetry.

In Section 3 we discuss a change of dependent variable and show that
one particular transformation is very appropriate for this class of problems
and also very well suited to the application of MFE.

In Section 4 the MFE method is introduced in one and two dimensions and
application of the method to the class of problems described in Section 2 is
discussed. Applying the MFE method to the transformed variable using the
transformation described in Section 3 allows us to derive semi-discrete
equations for the position of the moving interface which are exact in one

dimension.



In Section 6 we derive a maximum principle for the gradient of the
MFE approximation in one dimension using the elementwise formulation
(c.f. Baines [2]).

We describe in Section 7 a time-stepping procedure which prevents
element folding without the addition of regularization terms, and also give
a simple adaptive time step algorithm.

In Section 8 numerical results are compared with similarity solutions
in one and two dimensions for various values of the parameter n in the
partial differential equation.

Sectlon 9 gives a conclusion from the analysis and numerical results

of the previous sections.



2 NONLINEAR DIFFUSION EQUATIONS

We consider nonlinear diffusion equations of the form

u, = ¥ - (u'vu) (n > 0) (2.1)

whose solutions exhibit steep moving fronts. Physical examples of processes
governed by such equations are bursts of radiation, seepage of liquids into
porous media and the spreading of a thin liquid film under gravity.
Similarity solutions exist for many such problems and have been studied

by many authors, e.g. Ames [1], Tayler, Ockendon & Lacey [12] and Zel'dovich
& Kompaneets [16]. Finite difference solutions for such prablems in one
dimension are discussed in Richtmyer & Morton [11] and have been studied

among others by Meek & Norbury [6] and Tomoeda [13].

Similarity Solution

A similarity solution to eguation (2.1) exists in g space dimensions
assuming radial symmetry and constant total thermal energy (see Ames [1]).
Assuming spherical symmetry in g space dimensions (2.1) reduces to

the one dimensional equation

-9 9 | _g-1 n duf _ du
r 5T [r u 3r] T i (2.2)

We assume the form of the similarity variable is X = r/R(t)} and look

for a trial solution of the form
ulr,t) = V(EIY(r/R(t)) . (2.3
Substituting (2.3) into (2.2) yields

1-q d

n+1
V ()X X

E@'“Y”Y?} = RItIIRYV' - XVY'R] : (2.4)

The RHS of (2.4) is separable iff the condition
VR' = - AV'R

is satisfied with A constant so that
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veg)1?

R(t) =
The RHS of (2.4) takes the form
R2V(Y + AXY!)

so that (2.4) separates into

1-q d [ a-1ynye
X ax (X Y Y») ) R2V
Y + AXY N
with B constant.

We now consider the case of constant

corresponding to the diffusion of a fixed

s(q) J
0

the origin, i.e.

E = u[r,t]rq-1dr

where s(qg)

Substituting (2.3) into (2.7) gives
1

is the area of the unit sphere in

total thermal energy,

quantity of heat initially at

constant

n

g dimensions.

E = RICLIV(E)s(q) { yox x93 1ax
0
Hence we require that
RIcevee) = v1™Ad
be constant. Hence
A= 1/qg
and R =y 14
Now in (2.8)
ROV
= -B
n+1

and substituting for R from (2.8) yields

(2.5)

(2.8)

(2.7)

(2.8)



V—Z/qVI e
n+7 -
v
“Z s+ 1)
= v A vt = -B
~-q
2 ng+2
=> V= [Bn + J)t] . (2.8)
so that ,
- ng+2
R(t) = v V9 < (B + 9yt : (2.10)

With A = 1/q the spatial part of (2.6) becomes

4 [y@tyng] - _B 4 ya
T E( YY] 7 ox [X7Y1] (2.11)
which integrates once to give

x3 iy - E-xqv + o

If Y(0) = C and Xq_qY' -0 as X -+0 then o =0 and a second

integration gives

VLI nzé oy
Hence il
n
— [1 gséf }
Y(0) =C => vy = c" and if we set nB = 2an
we have 1
Y = ctr - x9" (2.12)

where the constant C may be evaluated from condition (2.7) which requires

that 1

E = s(q]V[t)J vx)x9™ T/R9 TRax
0

be constant.
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From (2.8) we have V[t]Rq = 1 and hence

1 _
E = s[q)J voox9 Tax
0

Substituting (2.12) into (2.13) gives

1
s(q) C J (1 - x2) g3 gk

E:
0
C
= s(q) £ BU1/n + 1, q/2)
i} _ _2E ng, I(1/n + g/2)
>Ce S U ) Tt

Using nB = 2qC" and substituting in (2.10) gives
1

— ng+2
R(t) = [;” %—(nq + 2J?J

and the similarity solution (2.3) may now be expressed as

1
C r)2) n
e - [ & - 1]
R :

where R(t) is defined by (2.15) and the constant C by

{N.B. (2.14) differs from the result in Ames [1] which is

For the numerical results given in Section 8 we have taken the value

of the constant E in (2.14) to be unity.

0 sr s R(E)

r > R(t)

(2.14).

incorrect).

(2.13)

(2.14)

(2.15)

(2.16)



3. CHANGE OF DEPENDENT VARIABLE

A finite difference solution of equation (2.1) is given by Tomoeda [13]
who suggests that a change of dependent variable of the form v = un is
appropriate for such problems. Similar problems are at present being studied

at Reading by Please & Sweby [10] who suggest that for equations of the form
Uy = ¥« (D(ulvu)
whose solutions exhibit steep moving fronts an appropriate change of

dependent variable is given by

du (3.1)

which yields the equation
2
¢t = Dulv?¢ - (V¢)

If w 1is the velocity of the moving wave and E the flux defined

by
F = -D(u)Vu = uw
then
W = Blwvu
u
=¥ 'I Di“ dU] (3.2)

If also we define a velocity potential ¢ , such that
W = VY

then from (3.2) we see that

i o J Dlu) 4,



Referring back to (3.1) we see that the new variable ¢ 1is precisely
the velocity potential.

In the case of equation (2.1) we have D(u) = d"  and equation (3.1)

n
gives the new variable ¢ = - %;—, which differs from the transformation

suggested by Tomoeda only by a constant factor.

We proceed with the substitution v = 4" which yields

v, = vV2vy + i (vv)2 : (3.3)
t = n -

Since we are interested in moving wave solutions of (2.1) which have
compact support we must look at the behaviour of the moving interface u =0
in (2.1).

If we recall the form of (2.1), that is

- 2
U, = ¥+ = v e e )

then it is clear that in this form the equation gives us no information
to derive the interface velocity, since if we assume that Vu and V?u

remain bounded as u ~ 0 then ut -~ 0 as u -~ 0. If however we consider

the transformed equation (3.3) then as v » 0 we have (assuming V2v remains

bounded])

2

v, = —(Vv) . (3.4)

t

bou J RN

We may now proceed to solve the hyperbolic equation (3.4) to give the
velocity of the moving interface. Moreover, this approach is well suited to
the application of MFE since it has been shown that the method is particularly
successful for hyperbolic problems (see Wathen [141).

Indeed it may be shown that if we were to choose a transformation of the
form v = uP in (2.1) then the value p = n dis the only value for p

which yields a bounded and non-zero expression for the velocity of the interface

as u > 0, assuming that Vu and V2u remain bounded as u > O.



4. MFE METHGD
In general we consider the solution of the time dependent partial

differential equation

Uy = L(u) (4.1)

where L is some nonlinear spacial differential operator. We shall derive

the MFE equations in one and two dimensions as follows.

4.1 One Dimension

We seek an approximate piecewise linear MFE solution of (4.1) in the

form

N
u=7 U, (ta,(x,s(t)) (4.2)
where the parameters Uj[t] are the nodal amplitudes and uj are the
standard piecewise linear finite element basis functions with an additional

dependence on the vector s(t) of time dependent nodal positions.

Differentiating wrt time in (4.2} yields

N
u. = U,a, 5.8, 4.3
Y (U,a, + 858 (4.3)

t 233
where the parameters éj are the nodal velocities and the functions Bj
are a second type of basis function which have the same support as aj but
are discontinuous at the points sj. The functions Bj are defined over each
element by
ou

By T T %

and a typical Bj is shown in Fig. 4.1 below.

0]
w
wm

J=1 J J+1

FIG. 4.1
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We now proceed by minimising the residual

2
llu, - L]
t L,

with respect to the 2N parameters Uj’ Sj (j = 1,...,N) to give the 2N
equations

[}
<Ut - L[U];

which may be written as a system of 2N ordinary differential equations in the

form

Alyly = gly) (4.4)

where y = (U1,5 eesU ) . Equations (4.4) are called the MFE equations

17" NEY

and the matrix A 4is the MFE matrix which is symmetric and block 2x2

tridiagonal with blocks given by

[ <a

o> <a.,B.>
13 13

The RHS vector g(y) 1is defined by

8551 <L(U],ui>

It

g4

5 <L[U].Bi>

4.2 Two Dimensions

In two dimensions we seek a piecewise linear MFE solution of (4.1) on

triangular elements in the form

N
U, = % U (eda, 6,y 0 () (4.5)

where the parameters Uj[t) are the nodal amplitudes and the basis functions
uj are the standard piecewise linear finite element basis functions on triangles

with an extra dependence on the vector r(t) of time dependent nodal positions
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in the xy plane.

Differentiating with respect to time din (4.5) yields
N

u, =) (U,a,

+ X8, * Y.y.) (4.6)
I TR B3 T Y

where Bj and Yj are basis functions defined over each element by

B :—ﬂ(x :—é!a
i ax 3 \5 dy

which have the same support as aj but are discontinuous across element

edges through the node j (see Fig. 4.2).

FIG. 4.2
We now proceed by minimising the residual
2
lu, - LW ||
t L2
with respect to the 3N parameters Uj’ Xj’ Yj (j =1,+..,N) to give the
MFE equations
Alyly = gly) (4.7)

UL X Ly T

where y = (Uq,x1,Y1,. NERNERAY i

Having now derived the MFE equations in one and two dimensions we now

proceed to consider the solution of these equations.
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4,3 Solution of the MFE Equations

It has been shown by Wathen & Baines [15] that in one dimension a
decomposition of the MFE matrix exists in the form A = MTCM where M and
C are block 2x2 diagonal matrices. Hence A may be inverted explicitly in
genéral since A_/I = M_1C—1M_T, and indeed the method may be shown to be
enitrely local, involving only the inversion of 2x2 matrices (see Bainesl[2]).

In higher dimensions this explicit inversion property is lost but it has been

shown by Wathen [141 that, if D is the matrix of diagonal blocks of A,

the eigenvalue spectrum of D_1A always satisfies

p(D_qA] €[4, 1 + d/2]

where d 1is the number of space dimensions. This result is independent
of the number of unknowns and the mesh geometry. It follows that the Conjugate
Gradient method with preconditioning by D—/I will converge very rapidly,
and in two dimensions we find about 10 iterations sufficient.

Additional regularization terms were used by the original authors (see
Miller & Miller [7], Millerl[81) to prevent singularity of the MFE matrix
which occurs in the case of collinearity of the solution over adjacent
elements (parallelism) and node overtaking (element folding in higher
dimensions). These regularization terms introduced a large amount of stiffness
into the MFE equations and necessitated the use of implicit stiff solvers:
the original authors were then unable to exploit the fast inversion procedures
described above.

Here we have introduced no regularization terms, the praoblem of
parallelism being overcome by a constrained minimization (see Wathen [14])
and that of element folding by an explicit time-stepping procedure described
in Section 7. This allows us to use the very rapid inversion of the MFE matrix
at each time level as described above, and explicit Euler time stepping. For

: n n+1
the time step t to t we then have



where A—/I = M—1C_1M_T in one dimension.
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5. APPLICATION OF MFE TO NONLINEAR DIFFUSION EQUATIONS

Using the transformation v = u" in equation (2.1) discussed in

Section 3 we seek a pilecewise linear MFE solution of

<
|

- vy + (g (5.1)
in the form

Vjaj(x,y,E[tJJ

<
I
S 2

On the RHS of the resulting MFE equations we need to evaluate
the inner products

o
1

VTV o IIVIE, B > (= aelN) (5.2)
Y

1

Evaluation of these inner products presents an immediate problem
since V2V does not have a finite L2 norm and moreover the basis functions
Bi’Yi are discontinuous at the nodes and across element edges.
This problem may be overcome by using §-mollified basis functions
(see Miller & Miller [71) or by recovering a smoother function by fitting
a polynomial locally to the function V or its gradient VV. The problem
is discussed in some detail in Johnson [5] and in Baines [2]. In one dimension

we use quadratic recovery of the gradient V as described in [5], and a

X
generalisation of this reocvery procedure has been used successfully in two
dimensions for a linear diffusion problem. However in the two dimensional

non-linear case we have followed the approach used by Mueller [8] which is

described below.

5.1 Mueller Inner Products

We first consider the more general problem of evaluating inner products
of the form

<y . (ovh), 8; ? (5.3)
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where D = D(U)} is some non-linear function of the piecewise linear
approximation U,

The inner products

<y - (OWU),a.>

may be evaluated using integration by parts as in the Fixed Finite Element
Method, since the basis functions ai are continucus at the nodes and across

element edges.

However, for the basis functions Bi, Y defined over each element by

B':""BH(I =—8—U-u,
i Y T R €] 3y 1 -7

we require to evaluate in (5.3)

<V . (DVU)’ - U 0L.> and <V * [DVU]) - U Ot..>
— — X 1 —_ — y 1

Now,

<V « (DVU), - U a,> = -J a.U ve(DVU)dQ
- = x i i'x— =
Q

(where Q 1is the patch of elements around node 1 consisting of the

support of ai]

(
= - J Yf[“iUXDYU]dQ + f.z . (aiUX]-DZU dq
Q Q

Using Green's Theorem the first term vanishes apart from boundary terms
{since o, = 0 over the boundary 38 of & wunless node i 1s on the

boundary of the domain). There remains the term
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DVU(a, VU, -+ U Yo )dQ
DU _VUeVo_.dQ +
x— — 1

Do, —2 [3(vU) 1dgQ
i ax =

DU vU-Yo,da + | -

I
D—m—— D 2D
DO D

2 (Dai-%(gU]zldQ = [ (Dailx-%[gUszsz
Q

Using integration by parts the second term vanishes apart from boundary
terms, giving
r 1 (yu)”
J [DU YU-Yo, - 2 Do, ), (YU) 1dg
Q
A similar analysis holds for the inner product <Zf[D2U]’Yi> and we have
finally that
By 2
<V-(DVY), = > % [DVU(YUeVa,)- 2¥(0a,)(YU) ldg (5.4)
i
Q

+ boundary terms if node 1 1is on the boundary.

Note that since Green's Theorem has been used we have implicitly assumed an
arbitrary . smoothing since VU must be continuous across the element edges
within the patch § in order to use Green's Theorem.

We now return to the inner products (5.2) and rewrite them in the form

(678 Q.
1 1

PRV + HgVIZ, B > = <y W)+ (-1 (gL, e. >
- n - i - = n - i

Y. Y
+ + (5.5)

Q. (o7
1 1

- ey, Bi> e (den < B>

The second term in (5.5) presents no difficulty since (Zylz is simply
piecewise constant over each element. In the problem under consideration
we evaluate the first term using (5.4) with D(V) = V. In this case we
require to integrate piecewise linear functions over each element which may

be done exactly using a three point quadrature.
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We shall now proceed to derive equations for the velocity of the moving

interface in one and two dimensions.

5.2 Interface Velocity in the One Dimensional Problem

Using the change of variable v = u" discussed in Section 3 we
require to solve the hyperbolic equation (3.3) only at the moving interface

v = 0. Thus in dimension we require to solve

A e
Vi = o Vx (5.8)
We seek a piecewise linear solution of (5.6) in the form
Vo= V,o.(x,s(t)) i
I Ve ts
Differentiating with respect to time yields
vV, =Y V,a, + &.8, : (5.7)
t ) 33 JBJ
We may also represent the piecewise constant term on the RHS of
(5.8) in terms of the basis functions uj,Bj since
V2 o= ) - m.m, .o, = (m,*m, ,JB, (5.8)
X ) J 31 Jj i BJ
where U.—V._q AV
mj = 5‘]-—:‘;' = AS‘] ,» Say.
1 %1 i

Substituting (5.7) and (5.8) into (5.6) gives

v 1
V.o, *+ 8,8, == ) - m.m, ,o, - (m,+m, ,)B,
) ] ol #57n ) Mgy T MMy 08

and hence

. 1 . )
) (Vg +mmgmy day ¢ (8 ¢ o tmyem, 0)B, =0 L (5.9)

Since our approximations to both sides of equation (5.6) lie in the space
SuB spanned by the basis functions “j’sj and since the functions Bj are

discontinuous at the nodes we have an exact solution of (5.6) in semi-discrete

form given by
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y 1
= - —m
i T TR M
(5.10)
: - _1 mom
"3 T n i
We now consider the node SN at the moving interface V = 0, as shown
in Fig. 5.1
V
% . T . ., FIG. 5.1
N-2 N=1 "N N+1
If we set j = N in (5.10) with Mg = 0 then we have
Vy = s
. . (5.11)
N n N '

Equation (5.11) gives the velocity of the interface exactly in semi-discrete
form and we may replace the MFE equations resulting from minimisation of the

residual with respect to QN and éN by equations (5.11).

It is also found to be desirable to impose the interface velocity on

the node immediately before the interface. This is because we use a

=
N-1

quadratic recovery procedure to interpret inner products of the form
<vax,6i> on the RHS of the MFE equations, and fitting a quadratic to the

gradient VX over the element (8 ) may give a spurious result due to

,S
N-1" N

the large discontinuity in VX at the ipterface. The remaining inner product

<VVXX,aN_1> for node s may be evaluated using integration by parts.

N-1
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5.3 Interface Velocity in Two Dimensions

In two dimensions at the moving interface we require to -:solve

v, = )’ ; (5.12)

I |~

We seek a piecewise linear solution of (5.12) in the form
Vo= V.o, (x,y,r(t))
L Vo 0ay.r

We first consider twao elements either side of the moving interface

as shown in Fig. 5.2 below.

moving interface

FIG. 5.2

We shall derive expressions for both sides of (5.12) on elements a
and b and in particular we shall look at the form of these expressions as we
approach the interface jk from within each element.

In element a we have

V., = Z Via, + X.8, + ?-Y-
L T e T e

and in particular along jk

V, = Z Q.a. + X.B. + Q.Y.
i€(j, ) -+ v+ FE
In element a 1let V = va, Vv =Vv? then along Jk
X X Y Y

<
ct
I

Iy - VR - v ay
1€03,k) y

1]

\'/l . Va>'< _ as . U] _ a>'< _ a-} .
(v, Ky T VSTt Uy - VER - VEY D9, (5.13)
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where ¢aj* ¢ak are the element basis functions shown in Fig. 5.3

FIG. 5.3

In element a along the line jk we may express the piecewise constant

RHS of (5.12) in the form

1 - o a2
E{yy) = n[VX + Vy ][¢aj + ¢ak) (5.14)

Substituting (5.13) and (5.14) into (5.12) yields

(v, - v, - V3Y))
N x"3

a al al
yTi8as ¥ W= VX = Y Viddgy

= O VDG 9y 2 (5.15)

Since the RHS of (5.15) is a constant the solution of (5.15) is

. - . M N » 2 2
V. = VX, - vAY, = v - A - Ay = 2v® v (5.16)
J X J y J K XK vk nox y

Moreover, since V = 0 on element a Vi = 0 and V? = 0, and hence from
{(5.186)

V.=V =0 . (5.17)

A similar analysis in element b (see Fig. 5.2), together with equations
(5.17) yields

(v, + Vv ) (5.18)
X
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Applying the same analysis on element ¢ shown in Fig. (5.4), gives

moving interface

FIG. 5.4
. 0 = » 2 2
Y SRVl ST SRRV SR (SR VLl . (5.19)
X K X K x i X i n X v
We now have two equations for the interface velocities kk' Yk given
by (5.18) and (5.19), which we may proceed to solve. Let Mx = VS s
Moo= V2, To=VS, WM = \°. Then
y y X X y y
X Vo= Lo e M)
- - G +
Mt = MYyo= o I
and (5.20)
WX, -T¥ =1 @ +m
MWk vk n M+ My]
Solving (5.20), for X, \'(k yields
xk=% =l SINGY +M;]+I"Iytﬁ>2< +W;))
MMy M 4
Y =% 1| W’ sty -m T s W) (5.21)
Xy x)

We replace the MFE equations for the velocities of all nodes lying on the
moving interface by the interface velocities given by (5.21), and thaose for the

amplitudes by equations (5.17).
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B. A MAXIMUM PRINCIPLE FOR THE GRADIENT OF THE MFE SOLUTION

In this section we derive a maximum principle for the gradient of the
MFE solution of (2.1) in one dimension. As usual we seek an approximate

solution of the transformed problem

Ve T W +-% V2 (6.1)

in the form

Vo= ] Vyaylxsltd)

As mentioned in Section 5, in order to evaluate inner products of

o,
Bl> which oceur on the RHS of the MFE equations we recover
i

from the gradient V>< of the MFE solution a guadratic W, defined on element

the form <V _,
XX

i by

AVi

w s, ) =32 (M=+M) Ul § pe=

i
Vs 4

1 = =
wx(2(Si+si_1)] M moE (6.2)

i-1

AV,
+
w (s,) = 3(M+ M) M B sy
X i R R ASi+1

Hence, instead of solving (6.1) we are in effect solving

_ 1.2
Ve T vwXx + E’Vx . (6.3)

It may be shown (see Baines [2]) that the gradient my of the MFE
solution on element k satisfies the ordinary differential equation

S

K
dm
k B 1 2
e [Asklz { ¢K[vwxx - Jdx (6.4)
Sk-1

where b is as shown in Fig. 6.1 overleaf.
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1
IP |
K‘ I
]
[
]
1
i
TS g
: k=1 Sy
|
| FIG. 6.1
1
-1
Since Vx is constant over element Kk
S
" AV ax =0
kan’)'( X =
k-1
and hence (6.4) reduces to
dmK 5 SK
e [Aska JS ¥y wax dx (6.5)
k-1

The functions wk' V and . inside the integral are all linear over
element Kk and hence we need only to integrate a cubic over the element.
After some lengthy calculation we have the result

S

(K 1
JS wKwax dx = e {(VK+3VK—1)mL - 4[VK+VK_1]m + (VK_1+3VK]mR}
k-1
AV AV AV
where m=mK:_A__£'mL=AK_1' mR:Ak+’|
Sk Sk-1 Sk+1

and hence in (6.5)

dm
k _ 1 _
It ztask}z {(Vk+3Vk-1]mL‘4[Vk+vk—1]m+[vk—1+3vk)mR} . {(6.6)
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Explicit Euler time stepping in (6.8) at time level tn yields

n+l1 _ N At n_ n n
LS W {(vk+3vk_1)mL 4LV, #V I (vk_1+3kamR}
- [ __2At ] At n n
T T s e ViVi-1! | " 20hs ) Vi r8Vyqdn Vg3V dmg
(6.7)
From the nature of the problem we have
>
VK z 0
VK
<
and mL, mR, ms20
Hence if we define M = min (mnﬂnE,m;) and if
(8S,)
S
20t K
- —_— i.e. A e ;
1 [Asklz [Vk + Vk-1J >0 1i.e t < Z(VK+VK_1] (6.8)

then subject to condition (6.8) we have from (6.7)

n+1 20t At
M1 - TEEET;—(VK+VK_1J} " 2Mae T ((V,*8V, w0 +(V, _ +3V, )

v

m

n+1
and hence m

v
=

and the maximum principle subject to the time step restriction (6.8) is
established. Using a similar analysis we may also establish a minimum

principle.
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Za TIME STEPPING

As mentioned in Section 4 we use explicit time stepping which, amongst
other things, exploits the structure of the MFE matrix. We recall that the MFE
matrix may be inverted explicitly in one dimension, and very efficiently using
preconditioned Conjugate Gradients in higher dimensions. In the original
formulation of the MFE method (see Miller & Miller [71) penalty terms were added
to prevent element folding since the MFE matrix becomes singular when the area
of an element is zero (see Wathen & Baines [15]1). Conseguently the MFE equations
became very stiff as the area of an element approached zero. As an alternative
to the addition of penalty functions in the formulation of the method we
have used a time stepping algorithm which restricts the size of the explicit
time step to be such that element folding will not occur. The followlng

argument applies to any number of dimensions.

7.1 Time Stepping Algorithm

If we solve the MFE equations using explicit Euler time stepping we have

for the time step t" to t"F

n+1

<
1
<
o+
>
ct
3J
>
!
—
<
—
joa
—
|<
-

At the new time level tn+/I we check the sign of the Jacohian of each

element to see whether element folding has occurred in moving from time level

t"  to tn+1. If folding has occurred we may compute the exact time

n+* n .n+1i . . .
t € [t .t 1 at which the area of an element is first equal to zero.

In one dimension this involves solving a linear equation and in two

dimensions a quadratic equation with coefficients depending on Xﬁ and y

sk
Having solved faor £n? we now take a backward time step Atb of size

n n+* n)

Atb = At - o(t = & o € (0,1)

We have used the value 6 = i which advances the solution from time level

" forward in time by an amount which is egqual to half the time in which

element folding would first occur, hence the new time level tn+1 is given by
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In practice it is found that the time step is never reduced successively
more than two or three times, and reduction often occurs only in the initial

stages of the computaticn, as the nodes readjust from their initial positions.

Adaptive Time Stepping

We have used a simple adaptive time stepping procedure in which the size
of the time step is chasen such that the relative change in size of the diffusion
coefficient v is restricted by some given constant valué.

We select an appropriate constant 6 and at time level t"  the

step size A" is given by

x © (VVi > 0]

Typically we take 8 0[10_2] which restricts the relative change in
the size of the diffusion coefficient over one time step to about 1%.
In the numerical results we give the average time step up to the output

time and the size of the time step taken immediately prior to output.
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8. NUMERICAL RESULTS

In this section we compare numerical results using MFE with the
similarity solution derived in Section 2. For this problem the initial data
is a fixed guantity of thermal energy initially at the origin, but in our

3
computations we have started the process at time t = 10 using the

gimilarity solution to give the initial nodal values.

8.1 0One Dimensional Results

In one dimension we have generally placed the nodes initially using
an equidistributing principle (see Herbst [4], Johnson [5]), that is,

given some initial data

u[x,tUJ = f(x)
we place the nodes such that the quantity

(%1 | ou 1
J | £ (x)]* dx (8.1)
Si-1

is equidistributed over each element.

The similarity solution for the transformed variable v 1is given by

c" [ )2
L PR £ 0= x s R(t)
Vi) =4 o ] ]

8] r > R(t)

with C constant, which is a guadratic for all values of n.

Since v(x,t) 1s quadratic,equidistributing the quantity (8.1) with
f(x) = v[x,tD] is eguivalent to equally spacing the nodes along the x axis
for x € (D,R[tO]J.

We have solved (2.1) for x > 0 and at the boundary x = 0 we have
imposed the symmetry condition Vx[U,t] = 0.

Numerical results for the one dimensional examples are given in Figs. 8.1

to 8.3 overleaf.
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8.2 Two Dimensional Results

In two dimensions the initial mesh is chosen such that the area of the
triangles are approximately equal over the region in which the initial data
is non-zero, as this corresponds to equidistributing a quantity analagous to
(8.1) in two dimensions with YfV[x,y,tOJ being constant.

Numerical results for two dimensional examples are given in the

following figures.
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9. CONCLUSION

We have shown that by applying an appropriate transformation to the
original partial differential equation for non-linear diffusion (2.1} and
solving for the transformed variable with MFE we may track the position of the
moving interface very accurately and resolve the steep moving front to high
accuracy using very few elements. The heuristic choice of penalty parameters
has been avoided throughout and by controlling the size of the time step
the problem of element folding has been overcome without the use of excessively
small time steps, with the simple adaptive time step procedure increasing the
size of the time step effectively through the computation.

Alternative methods for treating second derivative terms have been
discussed and a straightforward and rigorous interpretation has been given
in two dimensions. In one dimension the use of a recovery procedure for the
second derivative terms together with an elementwise formulation of the methad
has allowed us to prove a maximum principle in this case for the gradient

of the MFE approximation.
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