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Abstract

A description is given of the Moving Finite Element Method and its
relationship with the Method of Characteristics and with Optimisation.
A key feature is the use of the envelope of the driving function. For
hyperbolic equations the issue of parallelism is resolved. The concept
of the envelope is then used to extend the range of the theory to
include diffusion operators and to motivate regularisation for resolving

the issue of parallelism in this case.



1. Introduction

The Moving Finite Element (MFE) method belongs to the class of
adaptive grid methods in which the mesh evolves simultaneously with the
solution. Both the evolution of the mesh and the solution are generated
from the governing differential equation in the manner described below.
The method was invented by K. Miller1 of the University of California
and has been used by many authors (Gelinas et a12, MosherB, Mueller &
Carey4, Wathen and Bainess’ Hrymark6 and others) to solve problems in
which sharp features need to be resolved and tracked.

We describe here the derivation of MFE given by Mueller and Carey4.

Consider the partial differential equation
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(1.1)
where u = u(x,t) and ¢ 1is a spatial differential operator in the
space variables x. Define a coordinate transformation between x,t
and new independent variables §.T by

x =x(E.7r) . t=71 ; u(.7) =u(x,t) (1.2)

for which the partial derivatives satisfy

du _du  Budf _ Ju 8udx (1.3)

Then (1.1) becomes



N 1 0
or, using the notation
ﬁ:-g%,fc=%. u =9, (1.5)
G-ux-%u=0 . (1.6)
Now define
R(a,x) = u —u, %X - $u (1.7)

and let IR be the L, norm of R defined in a suitable way. Both
R and IRl are zero by virtue of (1.6). If however u and x are
restricted to sets of admissible trial functions, R 1is a residual, no
longer zero, and the problem may be cast as a least squares variational
problem by minimising IRll; over U and %x. In this way we obtain the

weak forms

R.> =0 R,ux> =0 (1.8)

for all admissible test functions y(=6u) and x(=6%).

Constraints, for example a lower bound on the Jacobian of the
transformations, may easily be introduced through the use of penalty
functions.

Introducing finite element approximations



w = Juy(r)ag(E) x = ) (T)y (E) (1.9)
J J

where the aj(‘g‘) are basis functions for the approximation space, we

find that
1= )u.c, X = )X.Q. 1.10
u quaJ X ExJaJ ( )
and that (1.8) gives
<R, a,>=0 R, uva>=0 Vi (1.11)
i x i

Substitution for R from (1.7) and using (1.10) yields a nonlinear

system of ordinary differential equations of the form

A(VY = &(v) (1.12)

where A(y) 1is an extended mass matrix and y is a vector of the nodal
and coordinate unknowns Uj and Xj' The ODE system (1.12) may be
integrated from specified initial data to obtain Uj and Xj at a later
time. With piecewise linear elements this is identical to Miller’'s
methodl.

It has been shown by Wathen & Baines5 that for piecewise linear
elements the mass matrix A(y) has a special decomposition which leads
to rapid inversion. However, most authors integrate (1.12)
approximately by an implicit procedure using a Newton solver for the
nonlinear system.

The matrix A(y) of (1.12) becomes singular in the event of

collinear nodes (for piecewise linear elements) and there are special



problems when nodes collide or overtake. For these reasons most authors

use penalty functions as essential regularisers in the minimisation of

IIRI.

2. Relation with Characteristics

We present here an interpretation of the procedure described in §1
in the continuous case.

First let %u = F(x,ux) so that (1.6) becomes

u -uxk - F(x,ux) = 0. (2.1)

For each point P of initial data (see fig. la) we may evaluate u,
and F(x,ux) and plot them as a point L in ux,F space (fig. 1b).
Moreover (2.1) is the equation of a line L in %, space (fig. 1c).
As P varies along the initial data in fig. la the point L in fig. 1b

traces out a curve and the line L in fig. lc traces out a pencil of

lines (envelope). Fig. 1b is the point-line dual of fig. lc.
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Consider now a general point K with coordinates ko,ﬁo in fig.
lc. From (1.7) R(ﬁo,ko) is the perpendicular distance of K from the
line L. The L, norm IRI, 1is an integral of R® taken over all
points P of initial data and is a measure of the distance of a set of
points {K} from the set of lines {L}. Minimisation of IRIll; w.r.t.
small variations in both ﬁo and ko leads to the conclusion that {K}
lies on the envelope of {L} as P varies. This is because small
variations in P (and therefore u . regarded as a parameter) will lead
to only small variations in the stationary values ko and ﬁo of IRII.

Correspondingly, in the dual space (fig. 1b) the set of lines ({K}
are tangent to the curve traced out by L as P varies. Since the

slope of the line K is —ko, we have at the minimum point
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X == 3 => u=F—uxaTx-. (2.2)

Discrete approaches to minimising the norm of R of (1.7} (including
MFE) are attempts to approximate these equations.
Equations (2.2) are a subset of the characteristic equations7 for

the problem (1.1) with [Lu = F(x,ux). The others are
a4 =7 ,» u_=0. (2.3)

For example, if F(x,ux)

u; the equations (2.2), (2.3) give
(2.4)
To generalise the argument to the case Yu = F(x,u,ux), suppose
that the solution u 1is given implicitly by

g(t.x,u) =0 (2.5)

so that

g, t B, = o , g, * B, = 0 (2.6)

Then, on multiplying (1.1) by -8, Ve obtain

g
X
g, = -guF(x,u--'g:) = ¥(x,u.g .2 ), (2.7)



say, where

g
I(xugg,) = g Flxu—20). (2-8)
' u

Following the same argument as before we obtain

8% a7 . 8% 8%
X=—g—,0=—5—,8=%¢g 57 B 71— (2.9)
ng agu X agx u agu
which, using (2.8), gives
5 gF . gF .
X = —35 ,u_F—ux-a—u—.g-O (2.10)
(c.f.(2.2)). Moreover the other characteristic equations are
gx 3 5{, gu = al- 5 gt =0 (2.11)
(since ¥ does not contain g) which give, using (2.6),
. dF F N GF
ux=-a—x-+ux-a—u' i ut—FglI (2.12)

c.f. (2.3). (This may be achieved also by using x as the envelope
parameter. ) For example if F(x,u,ux) = —a(u)ux, as for a scalar
hyperbolic conservation law (with wave speed a(u)), we obtain the

equations

*x=a(u), a=0, U = —a’(u)ui. a, = a(u)a’(u)u2. (2.13)
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In higher dimensions, for the equation

u, = F(x,y.ux,uy)

the equations are as for (2.7), namely

% = 9F - —9F 4=TF-u &E ., &
=% ¥ T & ’ - x Bu y 8u
X y y
A
x  8x ' y Oy

while for

u, = F(x,y,u,ux.uy)

an extension of the procedure (2.25) to g(t.x,y,u) =0

equations corresponding to (2.15) together with g = O.

Instead of (2.2) we may set

immediately so that from (2.1)

automatically, see [12]. To obtain ﬁx in this case note that

(2.14)

(2.15)

(2.16)

yields

(2.17)

(2.18)
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ar 5 JdF JdF

Ykt T Fx =ax "okt aux XX
and that
u =1 + xu
X xt XX
giving
. _8F _8F oF Yxx
Uk T x ¥ Ju'x T ﬁ;_ Fo. (2-19)
In the case F = —a(u)ux we find that
% =a(u), @=0 o = -a’(u)u (2.20)
’ ’ X X ’

as in (2.10), (2.13), so that the two strategies (2.2), (2.17) are

indistinguishable in this case.

One feature of the connection with chargcteristics is that, because
of the local nature of the solution, errors will tend to be propagated
as if associated with ODEs. Thus, if an optimal grid is chosen on which
to represent the solution initially such a grid will adapt in such a way
that the representation remains optimal. This accords with the result

of Morton8 that the MFE grid carries the best L2 fit to the solution.

3. Relation with Optimisation

Returning to the case %u = F(x.ux). so that (1.1) becomes
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2~ Fxou) =0, (3.1)

let F(x.ux) define a Legendre Transformation with u and %X as dual

active variables, where

dF
-aT- = X (3.2) .
X
The dual of F(x.ux) is G(x,x)., which has the values of
G(x,%) = u X - F(x,ux) (3.3)
and derivatives
aG G dF aG JF
—=ux 5 -a-}?_a ~ E=_§ (3.4)
%
Then it may be shown9 that the extremal of the functional
t
o) = | 6(6(0).6(0)00 (3.5)

o

which satisfies ¢(t) = x(t) and a given condition at t =0 is
¢(o) = x(¢). Moreover, if we regard x,t as (independent) variables, it
may further be shown that the extreme value of the function 0]

considered as a function of x and t is

t t
ext. [ 6(8(0).9(0)d0 = | Glx(0).k(0))do
?

(o] (o]

= u(x,t) - u(x,0). (3.6)
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Again, writing the first of (3.4) as an imbedding,

ext.(ut + éux B G(x.é)) = 0, (3.7)
¢
or
ext.[@ - G(x.$)] = O (3.8)
¢
we find that
t+At
u(x,t) = ext.[u(x+¢At.t+At) - J G(x.¢)da] + O(At) (3.9)
¢ t
t+At

= ext.[u(¢(a+At).t+At) - J G(x,é)da] +(At) (3.10)

¢ t

which is the principle of optimality in dynamic programming applied to

(3.6).

There are straightforward extensions in the case Hu =y(x,u,ux) and to

many variables.

4, Diffusion Operators

In generalising to <u = F(x.ux.uxx) we can make no further use of
characteristics. But we may return to the envelope argument earlier and
formally seek the envelope of (1.6) by taking its first variation in the

form
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~bu_k ~5F = 0 (4.1)

If we regard u . as depending on u then for smooth F and u this

equation leads to

LN S o S Y (4.2)

For sufficiently smooth u we may approximate the last term to obtain

. OF  “ox OF
¥*="8u " u ou_ ’ (4=8)
X XX XX

It is clear from (4.3) that this procedure for obtaining x breaks down
when u. = 0 (zero curvature) and in that case there is no solution for
% when minimising IRl in the manner of §1. Moreover, provided that
F varies slowly with x, large values of X are associated with small
values of o and vice versa. Large distortions are therefore
associated with small curvature and small distortions with large
curvature.

To make this point more precise consider the graph of the term

Sﬂ

(4.4)

[

occurring in (4.3). This term is zero at zeros of u and there are
vertical asymptotes at the zeros of L the two sets of zeros
alternating with one another in general. Moreover, the x-derivative of

(4.4) is
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u 2
[xxx] XXX (4.5)

which is positive sufficiently close to a zero of u in general.
Thus we obtain the qualitative picture of the graph of (4.4) shown in

fig. 2.
Fi N

&

I Fig. 2

It follows that the corresponding % 1is large and positive to the left
of an asymptote and large and negative to the right of the same
asymptote, indicating a deformation in x having the zeros of u . as
cluster points, i.e. points move towards regions of zero curvature. The

result is unaltered by the presence of the % and % terms as in

(4.3).
[In general, any numerical implementation will lead to impractically

large and oscillatory speeds near to the zeros of u i.e. near zero
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curvature. But see §7 below for the result of implementing the MFE

method. ]

A more satisfactory % from the point of view of associating low
% with regions of high L and moving trajectories apart when u
is small (and avoiding singularities) is X « eu u which is graphed

in fig. 2.

5. The MFE Method

The discretisation (1.9) wused directly in the orthogonality
relations (1.8) yields the system (1.12). The matrix A(y) in (1.12)

consists of blocks of inner products of basis functions of the form
J a ey & , [ a0 U odx (5.1)

where w(x) is the weight function used in the definitions of the L,
norm. In Miller’s original method1 w was taken to be 1 but in more
recent work Miller8 uses a gradient weighting o = (1 + U;)_A, producing
the Gradient Weighted MFE method (GWMFE).

With piecewise linear basis functions aj any @ depending only
on UX is piecewise constant and may be taken through the integral sign

in (5.1). In particular, the decomposition of A(y) demonstrated by

Wathen & Bainess,
T
A(y) = M CH, (5.2)

remains valid. Here C 1is a square block diagonal matrix, each block

being the corresponding elementwise mass matrix, and M 1is an assembly
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matrix, also block diagonal (and square in one dimension) depending only
on the constants Ux'

As a result of (5.2) the method is a local method in the sense that

Uj’xj depends only on values of Uj’Xj at neighbouring nodes, as shown
by Bainesll. This is consistent with the connection with the method of
characteristics in §2.

In solving

Moy = g(v) (5.3)

Baines and Wathenlo write the method as a two step scheme

with MTh = g(y)., the first step being a local elementwise projection

and the second step being a transfer of element information to the

nodes.
. N . . . 13,14
In higher dimensions and in certain approaches to systems the
local character of the approximations is preserved if the procedure
1
min IC% (Mg - w)I (5.6)
NA
which produces (5.3) is replaced by
1
min ICH(ME ~ w1 (5.7)

N4
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where CD is the diagonal of C. Then (5.3) is replaced by
Moy = M Cpu = e C b (5.8)

which is again local. The latter procedure may be shown12 to be
equivalent to a Petrov-Galerkin approach or simply to the use of a
different norm for R (see §1). We shall refer to (5.3) as the global
method and to (5.8) as the local method, although they are
indistinguishable for one-dimensional scalar problems.

For systems of equations using a single moving grid a constraint
may be imposed on the procedure (5.6) or (5.7) which enforces the
14,15

various different grid speeds for each component to be identical

Another use of constraints is to deal with the formation of shocks in

one dimension. When node J overtakes mnode j+1 a simple
. .b,11,12,16
constraint
kg = Kgpq = shock speed (5.9)
may be imposed on the minimisation (5.6) or (5.7). These equality

constraints are easy to impose without destroying the algebraic
structure.

If nodes are collinear or coplanar in the initial data (or
subsequently) the matrix A(y) is singular as a result of M becoming
singular. In that case A(y) 1is not invertible (unless the rank of
g(y) is reduced correspondingly). The situation parallels the
vanishing of u in 8§2. In the hyperbolic case &6¥u  vanishes
simul taneously and there is a finite solution but in the parabolic case

there is a singularity, unavoidable in general. Wathen & Baines5
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suggest a modification to MFE in which the velocity of the of fending
node is overwritten with an averaged velocity over neighbouring nodes,
but other authors combat the situation with penalty terms in the
minimisation of IRIl.

Similarly, if nodes overtake (perhaps as the result of inaccurate
time integration) the matrix C of (5.4) becomes singular. For

5.16 (who use

problems involving diffusion Johnson, Wathen & Baines
explicit time integration) consciously limit the time step so as to
avoid node overtaking, but other authors again rely on regularisation
procedures.

Time integration of (1.12) is wusually carried out with finite
differences, typically forward or backward Euler or a stiff solver.

5,12,16 use explicit Euler which fits in well

1-4,6

Johnson, Wathen & Baines
with controlling node overtaking, but other authors use implicit
methods in association with regularisation of the underlying
minimisation. The former approach is faster per time step whereas the
latter is more robust: in practice the time step is generally restricted

by either node overtaking or convergence criteria.

6. Regularisations

The original MFE papers of M:'Lller1 contained regularisation penalty
terms aimed at combatting the singularities mentioned above. Other
authors, notably Mueller and Carey4, have used the same approach and
various strategies have been used to construct such penalty terms17

Generally the minimisation of IRl (see §1) is replaced by minimising
IRIZ + ezllPllz, (6.1)

where P is the penalty and € 2 suitable constant (chosen by Miller
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to be of the order of the truncation error). The link with the method
of characteristics in 82 is lost when this tactic is used, but the
technique is very effective in practice.1

We have already discussed the need for a special procedure when the
diffusion operator u is present, in §2. It is clear from there (and

11'12’15'18) that regularisation is

also the corresponding discrete forms
needed for either the x velocity or the tangential velocity. Thus
some form of one or other of these velocities must appear in P
together with any additional terms required to enforce other desirable
features, for example node separation or reflection at boundaries.

It is possible18 to introduce regularising terms to overcome the

singularity discussed in §2 while still retaining the algebraic

structure of 83. The resulting form of (1.12) then becomes

{A(R) + 2BV} = a(y) + eZh(y) (6.2)
where A(y) = MiCM or MTCDM (6.3)
el B(y) = WoW  or  WCW (6.4)

where W is a matrix which is in some sense orthogonal to the matrix M
(c.f (3.3).(3.8)): h(y) may be prescribed. Both global and local

regularised MFE methods may be constructed in this way.

1. Discussion
We now investigate the relation between the MFE method and the
characteristic method of 82 which it imitates. In doing so we shall

determine guidelines for discrete procedures to overcome the
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singularities in MFE.

It has been shown11 12

that the intermediate vector w appearing
in (5.4) plays a key role in the MFE equations. This vector is a
collection of element vectors which are the projections of $u into

each element subspace. If the basis functions in a one-dimensional

problem are as shown in fig. 3a,

1 N

fig. 3a fig. 3b

then the projection of $u may be written

(Pu)y =W 1% 1 * Wi, 2%, 2 (7.1)

11,12 .

and then it may be shown hat
, Yk,2 T Yk,1 ~(0 1 = 1,9
e =5 ==, + 55 =T, - Gy p) ()
j+1 T %y x'k x7k-1

See fig. 3b. These equations are discrete representations of equations

in (2.10) and (2.12) where the are now playing the role of

"k, 1
$u = F(x,u,ux), approximately.

(i) Hyperbolic case

If (Ux)k = (Ux)k_1 is very small the second of (7.2) has a very

small denominator, but according to (2.10) for hyperbolic equations it



- 99 -

should be approximating a derivative. Thus we expect W 1T Y19 to
also be very small. The ratio of two very small numbers is however hard
to compute and may lead to considerable error. Moreover e 1" W19
will not necessarily tend to zero as (Ux)k - (Ux)k—l tends to zero

because of the dependence of w on x and u. Therefore, in order to

avoid the potential parallelism singularity we  should, for
(U.), - (U.) less than a certain tolerance, evaluate X as - )il

x’k x'k-1 : ' J du
with x,U0 taken as their values at the point J. This ensures

cancellation. A similar argument applies to the first of (7.2). Again

the recommendation is that, for x . xJ. (Ax, say) smaller than a

j+1
certain tolerance, we should evaluate (I.Jx)k as % with x,U,Ux taken
as their values at -;—(xﬁ_1 +xj). This resolves the parallelism
singularity.
(ii) Diffusion case

In the case of the diffusion operator $u = u . vwe have already
seen in §4 (around equation (4.4)) that singularity is unavoidable
without some modification to the method, and the second of (7.2)

exhibits a discrete form of the same difficulty. The singularity

manifests itself as a very large )-(j with no useful significance and
leads to spuriously small time steps.

According to 84 nodes will move towards points of zero curvature
leaving high curvature regions poorly resolved. This is completely
contrary to the notion that nodes are transported into regions where

they are most needed. Fortunately for MFE the calculated speeds in the

case of piecewise linear elements are governed by the truncation error

which (at least in one dimension) reverses the sign of Xj' so that



- 923 -

nodes are forced towards high curvature regions, albeit with spuriously
large velocities.

For Yu = u_ We can readily solve on a fixed grid (implicitly)
and ignore the difficulty. However, for convection-diffusion problems

there is a need for a moving grid method and the diffusion term must be

treated properly since otherwise non-physical shocks may occur. The
classical case is %u = —uu +ou which gives
ou e~ ou
}'( = u - = . (73)
u u
XX plo’d

As we saw in §2 this speed arises from the envelope construction on

the equation
a-ux+uw -ou_ =0 (7.4)
X X
which is equivalent in the limit to the minimisation of
2 = - + - 2 .
IRIIZ = llu u. tun auxxﬂz (7.5)

over u and x. To avoid the occurrence of the potentially singular
denominator u in (7.3) we may add a regularisation to (7.5) which
prevents % becoming large (c.f. (6.1)). Then HRH% becomes18

2

2
2
IRIZ + &2 IIPIIg (7.6)

where P = k2 and € is a (small) constant, leading to the discrete

equations



- 924 -

Ax, +Axy 4 ~(U )y A% = (U g 8%y g - U,

~(U ) A%~ (U )y g Ay (Ux)ﬁAxk+(Ux)i-lek-1+eo(Axk+Axk—1) "y

A W 1 A% W g0
) (7.7)

Ut W 1 - U 8 W10

(c.f. fig. 3b) Note that when €0 = 0 the solution of (4.12) for Xj

is the second of (7.2). If o # 0 however, we move away from the

equivalence with the envelope construction and find [18] that

=W 17 Weq 2) (U~ (U )y ) A%
%, @ (7.8)

LU (U, 1% A | + e (b + B ;)

(W1 = Weeq,9)
= (7.9)
(03,0 ), 4 + ——2 (A b, ) + )
x’k ‘"x’k-1 (Ux)k_(Ux)k—l -1 Axk Axk_1
which approximates
uu =
% = —= 0.2 (7.10)
u el
XX

for some e(x). Here Axk =% T X 4 (see fig. 3a). The factor €
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has dimensions of Ui and, if chosen proportional to a suitable

combination of (Ux)k and (Ux)k—l’ the speed kj%O under any of the
three conditions (i) (Ux)k,(Ux)k_lew, (ii) (Ux)k—(Ux)k_lﬁO, (iii)
one of (Ax)k,(Ax)k_lﬁO. The qualitative form of % 1is shown as the
dotted line in fig. 2 for a general %u. Note that asymptotically the
directions of the node velocities are unaltered but they are forced to

zero near the asymptotes (zero curvature).

Similarly the discrete form (first of (7.2)) is singular when

AxkﬁO. It may however be similarly regularised to give

. W - W
(Ux)k _ k,2 k,1 (7.11)
el
Axk + Kﬁ;
where €, is a small constant, which prevents the potential

singularity as Axk%O.

In all the above cases the ultimate accuracy of the method is left

to the Galerkin equation for Uj obtained from (7.7) as

(Axk+Axk_1)ﬁj - wk,1Axk+wk_1’2Axk_1+[(Ux)kAxk+(Ux)k_1Axk_1]kj (7.12)

Donnelly [19] has used equations (7.2) in tandem directly. He
solves discrete MFE forms of the two equations (2.10) (i) and (2.12)

(i). which in the case of the diffusion equation mimic the equations

2uX}CX
x = - .0 =3u___. (7.13)
u X XX
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The second of these is solved for u . then the first can be solved for
x. Note that the solution u, satisfies the usual maximum principle.
This is preserved by Donnelly in his discrete version by using a fully

implicit scheme.

8. The Mobile Element Method

We saw in 82, equation (2.17) et. seq., that if X 1is chosen so as
to make a =0, we obtain the same continuous limit in the case
F = —a(u)ux (the scalar conservation law). However, with this approach
the discrete form differs from MFE, even in this special case.

Equations (1.11) are now replaced by
<R,ai> =0 <—ux$ B Qu,uxqi> =0 Vi (8.1)
(corresponding in the second case to the minimisation over % of
H—uxk - Yull®) (8.2)

and (1.12) can be written in the blocked form

Ay Ao u g (¥)

= (8.3)

0 Azp x 22(Y)

Although we do not have the decomposition (5.2) overall we do have in

the case of linear elements the decompositions

Ay, = LICL  A,, =LicL Agp = LiTCL’ (8.4)
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wvhere L,L' are constant rectangular assembly matrices, depending in
the case of L’ on the constants Ux' It is then easy to construct a
local method using the ideas of (5.8) with

oy = LTCDL s = LTCDL' As, = LilC L’ (8.5)

and appropriate changes to the right hand side of (8.3).

One form of the resulting equations is given by

. (P 1 Uy * Weg 0Ty y)
X, =

8 5SS

(8.6)

with Uj given by (7.13), although there are similar forms of (8.6)
with different weights. The parallelism singularity is avoided except
when (Ux)k = (Ux)k—l = 0, when recourse to the differential form

X = gg— is possible. This is the Mobile Element Method of Edwards
X

[20,21] and Edwards & Baines [14].
The significance of this method is that a=0 is imposed,
enforcing the TVD (Total Variational Decreasing) property of hyperbolic

. 22
conservation laws™ .

Both the MFE method and the Mobile Element Method may be extended
to systems of equations with a single moving grid using an averaging

process for the grid velocity. The Mobile Element Method minimises some

20,21

norm of the vector of variables u and, as argued by Edwards in
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this way has a natural stability not possessed by the same approach

using MFE.

9. Conclusion

The connection between the Moving Finite Element Method and the
Method of Characteristics has been brought out using the idea of
envelopes. As well as providing understanding as to what the MFE method
is trying to approximate, the connection may be used to give a
consistent treatment of parallelism. In the case of operators involving
diffusion the envelope may be used to study the directions of the nodal
motion and to motivate a regularisation which avoids the parallelism
singularity. It is also clear that any regularisation destroys the

analogy with envelopes and/or characteristics.
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