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Abstract

The report concerns an attempt to gain understanding into the
formation, shape and propagation of shock waves ('thick’ and ’thin’,
theoretical and numerical) as opposed to modelling their internal
structure; although it has not been possible to totally dissociate the
former from the latter.

The first four sections provide a coherent progression of ideas.

In the first, canonical forms of hyperbolic systems of conservation laws
are provided. As the systems become more complex, the methods become
more difficult and the canonical forms become weaker. Four different
methods are given.

In the second section, the breakdown of smooth solutions is
investigated for a single characteristic equation and a pair of Riemann
invariant equations. A method is given for obtaining information at the
breaking point. This is then used to transform the manifold equation
into the standard form of the cusp catastrophe. Furthermore, an
asymptotic analysis is provided for the flow in this region.

In the third chapter, extensions to the Cole-Hopf transformation
for Burgers’' equation are obtained. A considerable amount of theory is
derived to show that the generalisations given really are the best that
can be done analytically. Nonlinearity is discussed and individual
cases and examples are provided. Implications for numerical schemes are
conjectured.

The fourth chapter represents a synthesis of the previous three as
we here consider the solution to model equations with a limitingly small

amount of diffusion. The Cole-Hopf transformation given in the previous



section is asymptotically expanded. This leads to the idea of
incorporating diffusion into the method of characteristics. Next it is
shown how the characteristic unfolding function is related to the
solution of Burgers' equation near the ’'diffusive breaking point’. The
methods of the section seem to be similar to the philosophy of shock
fitting, but in a diffusive setting. These similarities are discussed
along with their numerical applications.

The fifth section is separate from the proceeding argument. In it,
an improvement to the current theory behind front tracking is given.
This involves deriving a second type of Lagrangian position variable
(and hence velocity). From this derivation it is possible to obtain

shock velocities, for two-dimensional flow, in a sensible way.
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1. Transformation Methods for Hyperbolic Systems

1.0 Introduction

This section is limited largely to systems of two independent
variables. These have been identified with space and time for
consistency. However, there is no reason why the theory may not apply
to systems modelling two-dimensional steady flow.

The basic method of this section is the canonical transformation of
systems of equations into a form lending itself to simple analysis and
solution. For a single equation, no transformation is required and the
method of solution is called the method of characteristics. For several
equations, a canonical transformation is required. The new canonical

system will retain some of the properties of the single equation.

1.1 The Method of Characteristics

Let us consider a single equation

u, + f(u) =0, (1.1)
with

u(x,0) = u_(x) . (1.2)
Let

Au) = S8 (1.3)
hence

u +Au) u =0 . (1.4)

Now, we wish to solve equation (1.4) over the half-space

{(x.t) : xe R, t >0} . This may be achieved by transforming from



Eulerian co-ordinates to Lagrangian co-ordinates.

To this end, let {I'(§) = § e R} Dbe the set of curves defined as

follows:

PE): = Au(x(E.1).0)) }
with x(E,0) = § (1.5)
But, from equation (1.4), u 1is constant along I'(f) . Thus we may
re-define the slope of TI'(f) by

X - Au, (8)) (1.6)

This may now be integrated to give the characteristic equation
X=§ + A(uo(f))t . (1.7)
Thus, the solution may be obtained by geometrically tracing the

characteristic (see figure 1) for t > O by equation (1.7) and using

the condition derived above that

u=u,(E) on I(E) (1.8)

This method of solution is called the method of characteristics

(see [1]).

1.2 The Theory of Riemann Invariants

The theory of Riemann Invariants is not applicable to a single

equation (it can be thought of as being equivalent to the method of
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characteristics in this case). We therefore begin this subsection by

introducing some notation for a system of two equations

Let the system be defined by

[E]t + A(u,v) [:] =0, (1.9)

X

where A(u,v) isa 2 x 2 matrix. Suppose the initial data is

u, (%)
v (x) ) . (1.10)
(o]

Now let the eigenvalues of A be A(u,v) , p(u,v) ; the left

u(x,0)

v(x,0)

eigenvectors be 1(u,v) ., m(u,v) ; and the right eigenvectors be

r(u,v) , s(u,v) . Thus we obtain the relations:
9 AL
T A= T (1.11)
L5 2
Alzr.s] = [Ar.us] . (1.12)

For simplicity, we shall assume that all the quantities are real, a
sufficient condition for which is that A is a real symmetric matrix.
Let M Dbe the matrix of right eigenvectors and A the diagonal matrix

of eigenvalues, i.e.

A= [7‘ 0] (1.14)
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Equation (1.12) may now be rewritten in the form

Pre-multiplying by M—1 gives

Post-multiplying by M gives

Hence 1 and m may be defined such that

as this is consistent with equations (1.11) and (1.17).

following identity is noted

Finally,

This is the well-known biorthogonality property of matrices.

(1.15)

(1.16)

(1.16)

(1.18)

the

(1.19)
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Now, consider a transformation of variables

a2 =0
do _ *
du =~ 0

where u = [u]
- \'s

It can be shown ([2], p.95) that this transformation is

well-defined at least locally.

From equations (1.19) and (1.20) we infer that

2 = a@i
2 - pwn'

for some functions «, B .

Equation (1.9) may be written in the simplified form

L_lt + Au = _Q

. . . . do
Now, consider pre-multiplying equation (1.22) by T

ae ae

@Et-*-@ Al_.l_x=0.

(1.20)

(1.21)

(1.22)

(1.23)
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Using equation (1.21), this gives
a0 T

o Y t al_AEx =0 . (1.24)

Using equation (1.11) we obtain

=0 . (1.25)

Finally, using the chain rule,
Bt + ABX =0 (1.27)

is obtained.

An exactly analogous argument may be used for ¢ to obtain
¢t + u¢x =0 . (1.28)

6.-and ¢ are called the Riemann invariants.

It can be seen that equations (1.27) and (1.28) are very similar in
structure to equation (1.4) for the method of characteristics. This
similarity may be exploited to an extent in an analogous transformation

from Fulerian to Lagrangian co-ordinates. For simplicity, only the
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first equation is transformed.

Let {I'(f) : € e R} Dbe defined as follows:

PE) = &= NO(x(E. 1) 1) . $(x(E.1). 1)),

(1.29)
with x(E,0) = €
Again in an analogous way to §81.1, equation (1.27) shows that 6 is
constant on I'(f) . We write
B(x(f,t).t) = 6(F.0) = Go(f) . (1.30)
Thus, the gradiant equation in (1.29) may be simplified to
L 2 N (E) . $(x(E.1). 1)) (1.31)
dt ~ o ! R ) )

Unfortunately, this analogy between the method of characteristics and

the theory of Riemann invariants does not extend isomorphically to

systems of more than two equations.

Riemann invariants may, however, be defined for these systems. To

this end, more notation is introduced.

Let a general system of n hyperbolic equations be given by

u, + Ay =0

(1.32)
where A(u) 1is again taken to be a real symmetric matrix for
simplicity. Let the eigenvalues of A bhe Al(g),.... An(g) . Let the
left eigenvectors of A be 11(2),.... ln(E) . Let the right

eigenvectors of A be 31(2),..., En(g). Then it is easy to show that
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we have relations analogous to before, namely

if

M= [34..... gn] (1.33)
and

A = diag {Al.. . An} . (1.34)
then

M lAM = A (1.35)
and 1 1 may be chosen such that

T
-1 l{
M = (1.36)
1T
—Il
Finally we have the generalised biorthogonality condition
1Ty =5 Vi,j <n (1.37)
== T %4 oS B '

However, this is as far as the analogy goes. If we now consider a
transformation u P 6 , a natural set of constraints on 6 1in this case

is

., =0, (1.38)
- (not summed over i)

This is the opposite to that given in (1.20). If we now attempt to

ae,
define the gradients Eﬁ} in terms of the left eigenvectors, we only

have the equation

9 T
= zpij(g)_]_._j , (1.39)
J
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for some coefficients pij . It is easy to see that Pi; = O Vi , but
this is now the only condition on the coefficients. Let P be the
matrix with coefficients pij . It is possible to show that equation
(1.32) is transformed to

-1
8, +PAP 8 =0. (1.40)

But P A P_1 is only diagonal when P is a permutation matrix
multiplied by a diagonal matrix. This imposes a further n2 - 2n

conditions on P leading to a badly-posed problem when n > 2 .

1.3 Differential Invariance Theory

Consider again the system of hyperbolic equations as given in
equation (1.32). Remultiplying the system by a left eigenvector of A

gives

1, u +1, A

l,u +1l, Au =0. (1.41)

Using the definition of the left eigenvectors gives

T T
LigerMNLy

: T| 3 3
i.e. liLEE + Ai 5§}u =0 ; (1.42)



= =

Let Fi(§) be the characteristic curve satisfying the equation

.odx
roE):  F=uxe)
(1.43)
X = §
t=
Then we may write the differential equation
T
1y du=0 on  T.(§) . (1.44)

which is a consequence of equation (1.42). This is the differential
invariance theory. Note that lI du 1is generally not a perfect
differential. This fact is analogous to the problems met in the

previous sub-section for defining Riemann invariants for systems with

n>>2.
An alternative way of arriving at equation (1.44) is as follows.

Let us write the co-ordinate along Fi(f) as Xi(t:E) , 1.e.

X = Xi(t;E) on Fi(f) . (1.45)

Now we may write

u = EﬁXi(t;f),t) on Fi(f) . (1.46)

So the time derivative of u along Fi(f) is
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d
S = (u(X, (t:§).t)) (1.47)
dt Fi(f) dt i

GXi
=up * g7 (88 g
= l__l_t + Ai(y u_x , (1.48)

from equation (1.43).

So, using equation (1.32), we obtain

du
— = (A, (WI - AWy, . (1.49)
“lre -

Premultiplying by lI(E) . we obtain

du

L 5o

r: 0, (1.50)

T, (§)
which is equivalent to equation (1.44). Equation (1.49) gives a more

general result, however.

1.4 Perturbations to Linear Transformations

The objective of this section is to attempt to preserve the
canonical form of a hyperbolic system up to an appropriate order of
accuracy near a constant state.

Let the constant state be u, and let the variation be v . Thus

u =

u, tv. (1.51)
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Let the transformed variables again be 6 , with an analogous

approximation

8=0 +¢. (1.52)

0
2o

Let the first order approximation to the transformation be given by

v ="M+ 0(|¢|?) . (1.53)

where M 1is now a general constant matrix. Substituting into equation

(1.32), this gives

v. +Av, =0 from (1.51),
= Mg + AMp = O( |¢]%) from (1.53),
= g, + N A+ VM = 0([g]?) . (1.54)

Now, a Taylor expansion of A(Eo+ v) ., using (1.53) gives

A(u+ v) = A(u) + o(lgl]) . (1.55)

So, assuming ix' Qt are both the same order as ¢ , we obtain

-1
g+ M Au M g = O( l91%) . (1.56)
So, if M is chosen such that

M A )M = A (1.57)



_20_
we have

¢, + Ae, = 0(|g]*) . (1.58)

NB, again, a sufficient condition for A to be real is that A(go) is
symmetric.

This is the first order canonical form. Equation (1.57) shows that
this is a tractable calculation.

Now, for the second order approximation, let the transformation be

b5 T z Mij¢j * z Nijk¢j¢k +0([2]”) . (1.59)
J J.k

where Mij , N are arbitrary and constant. Without loss of

ijk

generality, the condition

Nijk = Nikj Vi.k (1.60)
may be imposed.

In suffix notation, equation (1.32) transforms to

W-'- zAij 3% =0 . (1.61)
J

Now, (1.51) and (1.59) imply

du, av, 3¢ 8¢ 3¢,

= i _J 'k - 3

3t -~ 3t - § Mijae * 2 N, ik {¢j 5t t % 3¢ } +0(]gl®) . (1.62)
J j.k
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aui 6¢j 6¢j s
= W=ZM1JE+2§Nijk¢k% + o(lel?) . (1.63)
J j.k
using (1.60).
Now let
Py =2 2 Ny g 9y - (1.64)
k

Equation (1.63) may now be converted to matrix form:

Ou d¢ a9 1

3t =Mz *Pa +0o(]el?) . (1.65)
du

Thus, applying the same argument to the

Tx term in equation (1.32),
we obtain

3¢ g .
(M+P) zr + A(M+P) = = o(|¢]®) (1.66)
_1..0¢ ¢ =
= M(I+M "P)zr + A(M+P) 5— = o(|¢]%)
-1 9¢ -1 9% N

= (I+M "P) zp + M A(M+P) m— = 0([$]%) . (1.67)

Now, M_lP is first order in ¢ . Thus to leading order we have
(e eyl 21 - wlp (1.68)

So equations (1.67) and (1.68) give

99 S | % 3
3o + (1M P) W A(MP) = = O(|¢]°)

(1.69)
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Now,

A= A(EO+V)

Alu+ Mg + O([s])) .
Also,

(-0 Py lar) = W lam - w7l

PHTAM + M1 AP + O([8]?)) .

(1.70)

(1.71)

The flux matrix must be diagonal in order to have written the equations

in canonical form. However, this does not mean that it is necessarily

constant. The best solution seems to be to allow the eigenvalues in A

to vary with ¢ . So, in general,

>
]

= M0 =200, + 9)

o,
A (8,) + 2 2, (8,) ¢ + o(ls]*) .
J

So, if we impose

M lam - wipw!

AM + MIAP = A(B) + O(]4]2) .

(1.72)

(1.73)

we will have transformed (1.32) into its canonical diagonal form up to

order O(|¢]°) .

Again, a necessary condition for A to be real is that A

symmetric.
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Equation (1.73) may be multiplied by M to give:

1

AM - PM TAM + AP = MA(8) + O(|$]?) . (1.74)

Now, a Taylor expansion of (1.70) yields

OA. .
Ay = Agy(ag) + ) Tk (w) My ¢y - OClel®) . (1.75)
k,1

This equating the leading order terms of (1.74) gives
A(g M = MA(8,) .
= N TA(z )M = A8,) (1.76)
Substituting (1.76) in (1.74) and discounting higher order terms gives
{A(w) - A(u,)} M - PAE,) + A(u )P = M{A(®) - Alg)} + o(lel®) . (1.77)

Writing (1.77) in suffix notation:
2 {45 (@) - Ay (u))} My - z Pik Myy(8)
k k

* E Aj(¥y) Py = } My Ay (8) — A (8,0} + Of lo1%) . (1.78)
k k
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Recalling equation (1.64)

Py=2 E N b o
&

observing from (1.75) that
Aij(li) B Alj(Eo) = E Wl(—o) Mkl ¢1 * 0(]4’]2) ’
ka
and from (1.72) that

AS(O) - A (8,) = 8 z 5—1 ¢+ O(ls1?) .

ij‘=o
k

we arrive at

3A
ik
2 aul(Eo) Mim Om My — ) 2Nix1 #1 Oy Me(8y)
k,1,m k,1

+ 2 Ane(u) 2Ny ¢y = § Mik kj ae (8,) ¢; -
k,l,m

(1.79)

Swapping round the suffices m and 1 in the first term and noting

that ¢ is both arbitrary and arbitrarily small, we obtain

ik
§ Fo \9) M My - 2 2551 By M)
km ™ Kk
a
i 2 An(a,) 2N gy = 2 Mix Oy azk (8,) - (51 S9)

k k



Collapsing the kronecker deltas gives

oA, an
E du_ (1) Moy Moy~ 2A(n)) Nygy + 2 2 Ane(Uy) Mgy = My 38, (8,)
k,m k
(1.81)

A,
N . . J
The arbitrary constants in equation (1.81) are Nijk and 691 (go) .

They need to be chosen in order to satisfy this equation. This problem

does not appear to be easily tractable.

Note: it is always possible to find functions ki(g) with the correct

A,
coefficients 551 (Qo) . For example, a quadratic function will
J

suffice. This problem is well-posed because we only require the

derivatives at Qo (c.f. end of §1.2).
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2. The Breakdown of Smooth Solutions

2.0 Introduction

In this section, it is attempted to formalise mathematically the
concept of a characteristic solution becoming discontinuous when
characteristics meet. The point where this discontinuity first forms is
called the breaking point. Following the analysis of Haberman ([3]),
the behaviour of the breaking point is found by backtracking along the
caustic (the line on which infinitely close characteristics meet).

After this, two different methods are employed to obtain the behaviour
of the solution around the breaking point; namely: catastophe theory and

asymptotic analysis.

2.1 Limiting Caustic Theory

The caustic is the curve along which neighbouring characteristics
meet (and thus the solution curve has an infinite derivative, but is not
discontinuous). It will be shown that the time when the caustic first
forms is also the time when the solution first becomes discontinuous (as
one would expect). Certain other properties concerning the end of the

caustic (which is also the breaking point) will also be derived.

2.1.1 One Equation

The geometry for this problem is shown in figure 2. Following the

notation of §1.2, let T(f) be the curve defined by:

r'(g) : x=F§f+ A(uo(f))t ] (2.1)

Let us consider the intersection of neighbouring characteristics.
Suppose TI'(f-e) and TI'(£+6) intersect at time t . Hence, from

equation (2.1), we infer



- 97 -

E - e+ Ay (E-€))t = E + & + A(u_(E+6))¢ - (2.2)

For convenience, let

A (E) = Nu (8)) - (2-3)

Equation (2.2) then yields

e+ 6 = {Ao(f—e) - Ao(§+6)}t : (2.4)

Suppose Ao is Taylor expandable near § and € and & are of the

same order of magnitude. Then

A(E)t = -1+ o(lel + |&]) . (2.5)

Hence, taking the limit |e| + [6] = O we obtain

AJ(E)E = -1 . (2.6)

We may consider this equation for the caustic as giving t as a

function of § . Thus
t(E) = - —— | (2.7)
A (E)

The minimum time satisfying equation (2.7) must also satisfy %é-: 0.

Therefore, from equation (2.7), we have

A, (E)

_ o (2.8)
(AL (8))
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at this value of § . It can be shown that the solution Aé(f) =t
is just a geometrical anomaly. So, if we use the suffix b to denote

the breaking point, we have

Ag(fb) =0 . (2.9)

As this point also lies on the caustic, we can use equation (2.7) to

give

1

t, = - '
N (E,)

b =

(2.10)

where t, = t(fb)
A further point to note is that if tb is the minimum time, we

also have

a*t(E,)

dg?

>0 . (2.11)

This, together with equation (2.7), implies

]
NG
N (EL)

ie A(E) >0 . (2.12)

The final property to observe concerning the breaking point is to

substitute into equation (2.1) to give

x, = B+ A (B, - (2.13)
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Now, as stated at the beginning of the section, we also need to show
that, locally, no characteristics intersect before the breaking time,

tb . The following lemma is therefore proved.

Lemma 2.1

3 60 > 0 such that V 61, 52 e (- 50. 60) 61. 52 #0 , F(§b+ 61) .
F(§b+ 62) intersect at a time greater than ty -
Proof

F(§b+ 61) ) F(§b+ 62) intersect at

8 = 5
t = = i (2.14)
Ao(§b+ 61) Ao(§b+ 62)
d ()
Using the notation ——H-Ao = Ao and performing a Taylor expansion
df

with a Lagrange remainder, we have

52

N E+ ) = A () + s Dy + LA, )

55 5t

+ '%T'ASB)(fb) + _%T_A£4)(§b+ e;) - (2.15)

where i =1,2 and €169 at least obey

€€y € (- 5,.8) . (2.16)
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Thus, using equations (2.9) and (2.10), (2.15) implies

Ao(§b+ 61) - A0(§b+ 62) = (61— 62) [— ;l}

b
1 ,.3 3 3
+ 583 -6 By + 0 (2.17)
- L [s545(4) _ s (4)
where p = 5 {51 A T(Et eg) = By NS (ELF o)) - (2.18)
Equation (2.17) implies
1
Ao(§b+ 51) - Ao(§b+ 62) =- ?; (61— 62)
2 2
67 + 6,6, + 6 pt
_ 1 172 2 ,(3) 3 b
{ 1 6 Ao (Eb)tb 55 } : (2.19)
1 "2
Back-substituting into equation (2.14) gives
2 2
67 + 6,6, + O pt -1
_ _ 1 172 2 .(3) g
] E tb{l 5 Ao (fg)tb 5 -3 } . (2.20)
1 2
Now 62 + 6,6, + 62 >0 for 6.6, #0 , and t. > O as we are only
' 1 172 2 172 ’ b

concerned with positive time solutions. So, with equation (2.12), we
have
2 2

61 + 6162 + 62
6

A3 e e, >0 . (2.21)

Also, as the 'p’ term in equation (2.20) is of higher order than the
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left hand side of equation (2.21), we clearly see that the lemma is true
for suitably small 60 provided all the functions defined remain
bounded. A definition of 50 may be constructed, but that is not our

purpose here. =

2.1.2 Two Equations

The two equation problem is more complicated than the single
equation problem, but the basic method is unchanged.
Recalling 81.2, it is assumed that the system is already in Riemann

invariant form. Hence it is given by the equations:

8, + N(6.4)8

" ]
o o
- —

6, + 1(0.6)9, (2.22)

We again concentrate on a single family of characteristics, T(f) . now
curves not straight lines, corresponding to the first equation of

(2.22). Thus, as before,

dx
F(E): == A0 _(E).o(x(E.t).t
(£): 5= A8 (E). 6(x(E.1). 1)) .
x(§.0) = §
Equation (2.23) may be integrated to derive an integral equation
analogous to (2.1):
t
X(E.6) = £+ [ A(8,(8), o(x(E.T).T))ar . (2.29)

o
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Geometrically, this integration is taking place along the

characteristic. Figure 3 shows the breakdown.

As in 82.1.1 we shall consider the formation of the caustic.

simplicity, the function A will be replaced by Ao , where

A(E.t) = A8, (E). $(x(E.1))) .

For

(2.25)

Suppose, as before, that the characteristics [I'(§-e), I'(E+6) intersect

at time t . Thus
x(E-e,t) = x(E+6.t) .

Using equations (2.24) and (2.25), we derive

e+ 6= Jt{ko(f—e.T) = Ao(§+6,7)} dr .

¢]
We now require the following Taylor expansion:

a}\o 2
Ao(f‘e’T) = AO(E-T) - € —53'(E.T) + 0(e™) .

Substituting, we obtain

b
-1 = J ‘5% (E.7)dr + o(le] + |6]) .

(o]

(2.26)

(2.27)

(2.28)

(2.29)
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So, again using in the limit |e| + |6] - O , we have

t

2
- 1= J % (E.7)ar . (2.30)
o

Now, as before, we may consider t = t(f) which is minimised at the

breaking point. So
dt
EE-(fb) =0 . (2.31)

Applying this to equation (2.30) and differentiating with respect to

E gives
RON- N ae N
0= J 6E2 (E,T)dT + @ 'TE' (f.t) . (232)
0
hence
b azxo
J —652 (E,.7)dT = O . (2.33)
0

Again, as t = ty is the minimum of t(§) .

d2t

—5 (§,) > 0. (2.34)
g2 b
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Differentiating equation (2.32) with respect to § gives

RS at ¥ a%t Po
0 = 653 (E,T)dT + 2@65_2 (E:t) + -dg—z—af(f,t) 0 (2.35)

Substituting § = Eb gives

t
a2t ) o, o j b a3xo Py
_f “ar L = -a ndl T .
52 b’ TBE b'h J R
Hence
t
o, g 63A0
ARG J ggg— (§,.7)dT < O (2.36)
(o]

(note the possible equality).
The last property of the breaking point, as before, is found by
substituting into the integral equation (2.24) to give

Y,

X, = Eb +J Ao(fb.T)dT . (2.37)

(o]

using equation (2.25).
No proof that the breaking point is well-defined by this process is
given here. The lemma would, however, be exactly the same as before

with an analogous proof.

2.2 Catastrophe Theory Analysis

The object of this analysis is to show that the breakdown point is

an example of the cusp catastrophe and then to derive any properties
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which naturally follow.

2.2.1 One Equation

Recalling the equations for the breaking point from §2.1.1:

(2.1.), (2.3) = x=E+A ()t . (2.38)
(2.10): 6, = - XZT%ET .

(2.9): A(E) =0,

(2.12): Ag(fb) >0,

(2.13): x, = B+ A(EY, -

We wish to perform a local rescaling of the characteristic equation

(2.38) about the breaking point. Introducing rescaled variables

b
Il
o
+
ERd

ot
Il
t
+
+?

(2.39)

(211
]
oy

o
+
R

equation (2.38) becomes

~

Xyt x = B+ &+ A (B ) {6+ T} . (2.40)
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Equations (2.38) and (2.40) yield

X=¢+ A (Bt ®) {ty+ t) - N (E)ty (2.41)
rearranging gives

x = F o+ (N (Epr B) - A (Ep))y, + A (Ey+ )T (2.42)

Performing a Taylor expansion with integral remainders we obtain

~

%2
% ag(E)E = E o (B + B A [ oF (- P AL, man)
(o]
3
+ “EJ AL (E+ m)dn . (2.43)
(o]
This reduces to
. & 3
% - (80 = 2 (B - m® NG man + ¥ [ Ag(gr man (2.44)
(8] (o]
Finally, introducing
Z=X- Ao(fb)% (2.45)
equation (2.44) becomes
b £ 2 .m £
z =5 J (€ = M) A (Ep+ m)dn + EI A (Ep+ m)dn . (2.46)
0 (o]



This equation defines a surface on (;.?,E) space. An equivalent
leading order expansion of equation (2.46) was performed by Haberman in
[3]. where he showed that the leading order terms (chosen in some sense)
correspond to a cusp catastrophe. Our intention here is to arrive at
the same results using more formal arguments.

To this end, equation (2.46) is transformed into a form relating to

~

an unfolding. We seek a function ?( ;E,%) with the following

properties:
F(0;2.%) = 0 Vz,*t (2.47)
a’F\: (s ~n ~ ~ .
— (§:z,t) =0 VE; z, t, satisfying (2.46). (2.48)
o¢

Such a function is given by

. E.m §
FED = 2 [ [ o020 ol [ [ [ e Dale -5 F
o o o o

(2.49)

For ease of notation, an analogous function is considered. Let

X y X Yy
F(x;a,b) = J [J (y - z)2 g(z)dz]dy +a J [ J h(z)dz]dy + bx . (2.50)
o o

(o] (o]
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This function clearly obeys

F(0;a,b) = 0 . (2.51)
Also, the equation

E(xab) = 0 (2.52)

will analogously lead to the equation of a surface in (a,b,x) space.
Following the ideas of catastrophe theory ([4]). we attempt to show

that F(x,a,b) forms the first of a sequence of unfoldings which may be

induced from each other, ending up with the standard form of the

universal unfolding of Yox* (which is the cusp catastrophe unfolding

function, A+3).

The first step is to show that

f(x) = F(x;0,0) (2.53)

is strongly 4 - determinate (where k-determinate is defined as in
[4]1).
Following theorem 8.1 of [4] in the single variable case, f is

strongly 4 - determinate if and only if 3 a ... B € R such that

b

x5 = [ § a_ xr] j3 E%ﬂ ; (2.54)

r=0

where jk¢ is the Taylor expansion of ¢ about the origin up to order

—¥k
k and denotes truncation at order k .
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Equations (2.50) and (2.53) imply

X y
£(x) = J [ I (v-2)> g(z)dz]dy : (2.55)

o o

Calculating successive derivatives of f gives

X

£'(x) = I (x-y)® e(y) dy . (2.56)
[o]
X

09 = [ 2669 8() ay (2.57)
(o]
X

n

£ (x) = J 2g(y) dy . (2.58)
[o]

£'V(x) = 2g(x) . (2.59)

Recalling the Taylor expansion for f'(x) ,

3 ", x2 m, x3 v

J7f'(x) = £'(0) + xf (o) + oT f (o) + 3T f "(o) . (2.60)
Therefore, we obtain

3 x3

j f'(x) = §-g(o) « (2.61)

We may assume g(o) > O as this corresponds to equation (2.12) in
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our original notation. Therefore, equation (2.54) can clearly be

satisfied by setting
a =0, a=0.a2=E(T).a3=O,a4=O.a5=O. (2.62)

So we conclude that f 1s indeed strongly 4 - determinate.
Now, by definition, this implies that there exists a neighbourhood

N of O and a function

with the property
L (o) =1 (2.63)

and

vxeN. f(x)=&oac? . (2.64)

It is possible to determine 6(x) by a naive polynomial expansion

(1]
o=x+)ax’ . (2.65)
r=2

In order to transform the unfolding into the standard form, we define

the function ¢ by

= [Eilgl]%e . (2.66)
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SO

4
P(x) = 2XL (2.67)

It will be assumed that this function is invertible for small x and
¢ , and that the inverse function may be approximated by a finite
Taylor series. It will turn out later that we require the quadratic
term in this expansion. For simplicity, let us first consider the
inversion of equation (2.65):

2

x(8) = 8 + A8% + 0(8)° (2.68)

for some constant A .

But, differentiating equation (2.59) gives

V(%) = 2g' (x) . (2.69)
Therefore,
PE(x) = Bol(o)? + L0y (0)5 | (2.70)

Substituting in equation (2.68) gives
£(x(8)) = 5§%l (6% + 4a6®) + Egégl 8° + 0(6%) . (2.71)

Thus, equating terms of fifth order in 6 gives

M;}A+g._(2)_—o

12 60 (2.72)



implying,

P () (2.73)

- 20g(o) -

We may now define a function G(¢;a.b) such that
G(¢;a.b) = F(x(¢):a,b) . (2.74)

This may be written explicitly, using equation (2.50) as

x(¢) ¥y x(¢) v
G(¢:a.b) = J [J (y - z)2 g(z)dz]dy +a J [I h(z)dz]dy + bx(¢) .
) o o o
(2.75)
Using equations (2.53) and (2.67), this simplifies to
4 x(¢) ¥
G(¢:a.b) = %— +a [ h(z)dz]dy + bx(9) . (2.76)
o )
Also, equations (2.66), (2.68) and (2.73) give
3 1% g (3 1.2 3
w0 = [255] ¢ - B2k (B3] 62+ o - (2.77)

The next step is to use theorem 8.7 in [4] to prove the existence of a

more simple unfolding from which G may be induced. We therefore
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attempt to apply this theorem with the following values of the relevant

constants:

k=4, p=5, gq=2, r=2, n=1. (2.78)

The conditions we need to meet are as follows:

i) ¢4/4 is strongly 4 - determinate;
ii) M? c A5(¢4/4) (as we are attempting to satisfy case a) );

iii) G is a versal unfolding of ¢4/4 .

Condition 1i) is trivially satisfied (e.g. it is equivalent to the
preceding analysis of f(x) being strongly 4 - determinate with all
derivatives of g =zero at the origin).

Let us consider condition ii). By definition (see [4] again),

M = (A¢° st ¢ €R} (2.79)
= 5
b (9/4) = { Ya_ o i [EE'(¢4/4)] st a,....ag € m} . (2.80)
=0
= {a0¢3 +a, ¢4 + a2¢5 sta ,a; . a, € R} . (2.81)

So condition 1ii) is easily satisfied by setting A = a -

Finally, it is shown that condition iii) is satisfied. The

following notation needs to be introduced:

k k

I = 5%¢ - 3%, (2.82)
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@ = & [ciaon)] . (2.83)
and similarly,

wi(e) = gg-[Jk(G(¢;o.b))] . (2.84)
Let V¥(G) = span (v(G). vi(G)) - (2.85)

Now, theorem 8.6 in [4] states that G 1is versal when Vk(G) and

o

Ak(¢4/4) are transverse subspaces of J? , where 3 is k-determinate.

k T .
[Jl = { z ar¢ st al....,ak € R}] . Clearly, here, k =4 . Equations
r=1

(2.76) and (2.83) with k =4 give

. 4X(¢) y

@) = J h(z)dz |d (2.86)
2@ = 1 [ ] neseelay
vi(©) = J%(4) . (2.87)

We have the general result for u = u(¢) that

d™u [
Ju= E(O)tﬁ + —2(0) 5T +— (o) 3Tt 3 (o) v (2.88)
Now, similarly to equation (2.81), it can be shown that

A (¢774) = {ao¢3 + a1¢4 st ao.alem} . (2.89)
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Clearly,
. 4
dim J1 =4 ; (2.90)
Also, equation (2.89) simply gives
. 4
dim A4(¢ /4) = 2 . (2.91)

Furthermore, equation (2.88) shows that the coefficients of ¢ in

v:(G) and Vﬁ(G) are constants, so we must have
" 4
dim V*@G) = 2 . (2.92)

Therefore, A4(¢4/4) and V4(G) are transverse subspaces of J? if

and only if

dim (A (679) nViE) =4-2-2=0. (2.93)

It can be shown that, up to order ¢3 ,

2 2

v:(c) - [g%(o)] h(o)$r + 0(¢)° (2.94)
4, _ dx x, o> 3

Vb(G) = H(O)¢ + FO)ﬂ + O(¢) . (2.95)

Therefore, as A4(¢4/4) = 0(¢)3 , we may infer that A4(¢4/4) and

V4(G) only intersect at isolated points (assuming the higher order
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terms in v:(G) and VE(G) are not proportional, which verifies
equations (2.93) and hence condition iii).
So we have, by theorem 8.7, that G(¢:a,b) 1is strongly equivalent

to another unfolding H(y;a,B) , where

4
H(y;a.B) = 55(%) + aJ2[£ G(\p;a.o)] + BJ2[3% G(\p;o,B)] . (2.96)

The strong equivalence condition means that G may be induced from H

(so ¥ = y(¢;a,b) , a = afa,b) , B = B(a,b)) with

a!‘#' 'B!
a(¢.g.b) s =1 (S

where 13 is the 3 x 3 identity matrix.
This equation enables us to envisage another Taylor expansion (here for
v,a and ) , but these calculations are not presented.

However, equation (2.96) still needs to be simplified. Clearly,

4 4
J5(% ) = % : (2.98)
x(v) ¥y
Let u(y) = h(z)dz|ay . 2.99
e ) =[] nemaz]ay (2.99)
Then,
o x(v)
u
and
2 o XMW 2
Lo oL [y + [ e (2. 101)

dy dy )
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Now, x(o) = o , and

0) = [g%)]% . (2.102)

28

d

from equations (2.66) and (2.68). So, substituting into the above, we

obtain

¥ 2
Ju = [53(;)] h(o)ir . (2.103)

Hence, by a similar construction to equation (2.86), we obtain

% 2
J2£(G(\P:a.o)) = J2u = [g%)] h(o)g—! ’ (2.104)
It is then simple to show that
2 3 2 3 % %, ¥2
Pacwom = P = Gl v @ e
Equation (2.78) gives
2 %
d ‘(o) 3
o2 = Do) 2 %) - (2.106)
Thus, combining,
2 9 (q(y: —[; ]% ﬂﬂ)—[;’ ]%“’2 2.107
J %( (¥i0.B)) = 1) ¥ - 102(0) (o)) 2 (2.107)

Equations (2.97), (2.99), (2.105) and (2.107) now combine to give

4 . % 2 %
H(yia.B) = % + {ah(o) - B %é%%)}[é%] L. 3[5—0)] v . (2.108)
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The final induced transformation is the simple linear transformation of

coefficents (a,B) » (v.0) given by

el -8 53] el

3 %
s=825] (2.110)
Giving the final unfolding function

4 2
I(yi7.6) = H¥ia.) =% + % + ov . (2.111)

This is the standard form for the cusp catastrophe (A+3) , as already

mentioned.

So, as we have been considering an analogous function to the

~

characteristic unfolding function ﬁ( ;Z.%) (recall equation (2.49)),
it is therefore also possible locally to transform this function into

the standard form for the cusp catastrophe.

2.2.2 Two Equations

In this subsection we will only attempt to derive the
characteristic manifold equation local to the breaking point and
transform it into the form of an unfolding.

First of all, let us recall some of the results of 82.1.2.

Equation (2.24) gave the characteristic equation:

t
X(E.6) = £+ [ A(8,(6). $(x(E.T).T))ar .
(o]
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k5
=

For simplicity, we will use equation (2.25) to reduce the above to

t
x(E.t) = € + J AO(E.T)dT .

(o)

Equation (2.37) was

t
b
X, = § + J;ko(fb,T)dT .

The local reparametrisation equation (2.39) will now be employed.

Combining this with the previous two equations gives

tb+t tb
x=F+ J N (EtE.T)ar - J N, (. 7)dT
o o
implying,
tb tb+t
x=§f+ J;{Ao(§b+§,7) - Ao(fb.r)}dT + J Ao(§b+§.r)d7 .
b
By the theory of Taylor expansions,
aA 62A ~2

Yol Eor) = N (8, ) = g (6, F + — 5 (8, -

§ >\

1~ 2 )
i L 57 (&-n) o (§, + m.7)dn .

(2.112)

(2.113)

(2.114)

(2.115)
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Also, as the breaking point lies at the end of the caustic, equation

(2.30) may be applied to give

ot

N,
3F (Eb.T)dT =-1. (2.116)

Furthermore, equation (2.33) is recalled:

t

N
—2 (E,.T)dT =0 .
o> b

o ——

The previous three equations combine to give the result

b b F A
N (Ep#Em) — A (B ) dr = F + SEm> —2 (g . 7)dnar .
o o 0o 23

(2.117)
This is now combined with equation (2.114) to give

3

E 1l (2 g Ao
[ 3Em? —2 @, + n.ryan]ars
o

A (E, + E.1, + T)dT . (2.118)
aE b b

(o]

O t—

;=ctj)b[
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The second integral on the right hand side of equation (2.118) may be

expanded as follows

IA
0

3 (§b+ n o+ T)dn]dT.

|

O —
O ——m?

[3 L
JAO(Eb + §.Tb + T)dT = Jko(fb,Tb + T)dT +
o o

(2.119)

In a similar vein to the single equation case we define a new parameter

as follows:

=X -

N2

Ao(Eb’Tb + T)dT . (2.120)

O “— et

Equations (2.118), (2.119) and (2.120) now imply

t ~ ~ o5
Z = Jb[ J %{g_n)2 ?53% (E n,T)dﬂ]dT + T [ J§ g;Q-(§b+ n.t+ T)dn]dT ;
(o] o] [0} o

(2.123)

Equation (2.121) defines the manifold for & = E(z.t) . It should be
noted that it has exactly analogous structure to equation (2.46).

In the final part of this subsection, equation (2.121) is converted
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into the form of an unfolding. As in the previous subsection, equations

(2.47) and (2.48) hold for the unfolding F(¥:Z.t)

F(0:2.%) =0 VZ.t
F ®z29 =0 VvEILY
o

¥ q B\
F(E:;.z) . %‘J [ J {J (n—g)2 ___% (fb + C.T)df}dn]dT
(o] 0o (o] aE
* T [ f{ Jﬂ Z\_o (€, + Lomyy + T)df}dn]dT -z . (2.122)
o o o

Because of the similarity of this unfolding to that given in the
previous subsection, it is envisaged that it may also be transformed
into the standard unfolding of % x4 - the cusp catastrophe (A+3).

A less constructive proof for both a single equation and two
equations may well be possible by a simple application of an unfolding
theorem for the cusp catastrophe given by Schaeffer ([5]). All the
conditions for the proof are satisfied, but the unfolding contains an
extra constant term. However, the theorem may be applicable for gaining

insight into the nature of characteristic singularities for more

complicated systems.
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2.3 Asymptotic Analysis

The basic idea for this section is to analyse the behaviour of the
solution to the single characteristic equation with a discontinuity
imposed by the application of the Rankine-Hugoniot jump conditions in
the region of the breaking point. Because of the intimate relationship
between characteristics and the transfer of information, it will be
shown that this behaviour can be analysed by considering characteristics
near the breaking characteristic (e.g. F(§b+6) , where & 1is small).

Because of the tedious nature of these calculations, only the

initial equations and the final results are presented. The results have

been checked with MAPLE.

2.3.1. Initial Equations

Let the shock curve be given by

S : x =X(t) . (2.123)

As the shock starts at the breaking point, we must have

%, = X(t,) . (2.124)

Recall equation (1.1)

u, + f(u)x =0 .
It is a standard argument (e.g. see [6] §2.3.2.)that the
time-dependent form of the Rankine Hugoniot jump conditions in one

dimension
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may be written

_[f]
= 51 - (2.125)

o[

where [.] , as usual, denotes the jump in a function over a
discontinuity.

Suppose that the two characteristics F(Eb— e) and F(§b+ 5) meet
at the point (X(tb+ 1), ty+ t) . Because the characteristics meet, we

have an equation analogous to equation (2.4):
e+ 6= {A(§,- ) = A (E+ 8)) (t* t) . (2.126)

The jumps in f and u may be expanded in terms of their

characteristic data:

[£]

£(u (B, 8)) - £(uy(E,- €)) (2.127)

[u]

uo(§b+ 8) - uo(Eb— e) . (2.128)

Furthermore, we suppose that e may be expanded as a power series in
6 , thus
2 3
e = a16 + a26 + a36 + ... (2.129)
It is therefore possible to use equations (2.126) and (2.129) to find t

as a power series in &6 . But, equations (2.123), (2.124) and (2.125)
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may be combined in the form

?

t

D) = [f]
X(tp+ t) =x, + J; Fa] ‘t=tb+7

dr . (2.130)

The integral in this equation may be transformed to give

6
~ £ dt vy
X(t,+ T(8)) = x, + J L2, | OX (2.131)
L " o Lul t=t, +t(3) .
vhence we may obtain X as a power series in 6 . The system is closed

by resubstituting this result into equation (2.125) to give

X
dé_ _ [f]
_EET = Ta] (2.132)
do
. dt dt
(noting &= a3 ) .
This procedure enables us to calculate the coefficients 2y, g ...
2.3.2. Results
For convenience, the following notation is introduced
(n) dnu0
U= (Eb) , n2o0 (2.133)
d§
(n) dnxo
Ao = (Eb) . no0. (2.134)

dg™
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It was found that ay obeys a cubic equation with roots 1,-1 and -1 .
The second and third roots correspond to data on the same side of the
breaking characteristic F(Eb) and we therefore discounted (they
actually also correspond to the caustic where %%% is undefined).

Taking the root a, =1, it is then possible to show that

il

ag(DN(4) , 5, (2),(3)
o) o) o) o)

a. = " 2.135
2 IONE) (2038)
o o
and from this to show that
2
ay = a, . (2.136)

This rather surprising result leads to the conjecture that e may be

written as an analytic function of &6 thus

(2.137)

However, a first attempt at imposing this conjecture would seem to
suggest that this is not the case.

The next objective is to write X as a power series in t by

eliminating & . Thus we require b1 . b2 ..., Where

~ ~s N2
X(tb+ t) = Xy + blt + b2t + a3 (2.138)

The results are that

b, = A£°) . (2.139)
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as would have been expected (as the shock S is continuous with the

limiting characteristic F(Eb) at the breaking point (xb X tb)). Also

3
b AL (a2 (3) 5, (1[4)y

= (2.140)
2 2
Loa(DA(3)
o] (o]

This leads to the radius of curvature of the shock tip in (x,t) space

to be calculated as

2 2
10A3) o () (1 4 plo) 7y
P, = °3 ° : (2.141)
NN RO NON
o o ‘o o ‘o
Finally, if we define the arc length from the shock tip,
o= L(X(t+ D) - x)2 + T2 (2.142)
3 b Xb . s
It is possible to show that
3)
2 A(
pe (Ag°) + 1% 2 5% 4 0(8%) . (2.143)
en!
o
From which we obtain
[u@)] = 2202 (q & A(°)2)‘% [-—§-]% # 4 0(5) (2.144)
T o ‘o o 7\(1) ’ )
o

So we see that the initial shock formation shape is the standard
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pitchfork suggested by catastrophe theory. Note, however, that the
equal area rule for thermodynamic transitions (see [4] p. 328) does not
have an analogue for the catastrophe in §2.2.1 even though the Rankine
Hugoniot jump conditions may be manipulated into a similar form. This
is because of the transformations necessary in changing the initial
characteristic manifold equation into the standard form for the cusp

catastrophe. So, for example, we cannot use an equal area argument on
equation (2.111) to obtain

[v] = 2V -~ (2.145)

and then transform back to the initial variables.
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3. Burgers®’ Equation

3.0 Introduction

Burgers' equation is widely regarded as the simplest equation
expressing the balance between convection and diffusion. The analytic
solution discovered by Cole ([7]) and Hopf ([8]) is often used to
provide test problems for numerical schemes. In view of this, it seems
surprising that the so called Cole-Hopf transformation has not been
extended to more complicated systems which would have much greater value
for practical problems.

The purpose of this section, therefore, is to extend the Cole-Hopf
transformation as far as is analytically possible and then to

investigate what uses these generalisations might have practically.

3.1 The Cole-Hopf Transformation

In this subsection, a brief review of the Cole-Hopf transformation
is given for the sake of completeness and the introduction of suitable
notation. Here, and in other places, we shall follow the account of
Whitham ([9], 84).

Burgers’ equation ([10]) may be written

u, + (%uz)x = eu

- (3.1)

where u = u(x,t) and e 1is a positive constant. We introduce the

substitution

u=y_ , (3.2)
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yielding the equation

Voot (D), = v . (3.3)

This equation may be integrated. without loss of generality, homogeneity

may be assumed to give

v, + %wi =ey . (3.4)

XX

Now, let us introduce a further substitution.

¢y =-2¢ 1n ¢ . (3.5)
A small amount of analysis leads us to the transformed equation

b =ed . (3.6)

This is just the heat equation for which there exists an exact
solution when e 1is positive. First of all, let us calculate the
initial data for ¢ .

Let

¢, (x) = ¢(x.0) . (3.7)
Suppose, as in 81 and §2, that

uo(x) = u(x,0) . (3.8)
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Equations (3.2) and (3.5) can now be inverted to yield

$,(x) = exp{- é—e J’Xuo(n)dn} : (3.9)

0

The standard solution to the heat equation is

2
¢(x.t) = — Eqbo('n) exp{ .(_Tl)—‘let }d'n . (3.10)
Let us introduce two new functions:
n 2
Q(mix. t) = J’ u (0)ag + 1) (3.11)
o
1
e, t) . Gnix.t)) = | glmix.t) exp- b= Gmi, ) Jam (3.12)

(I 1is in fact a functional of g and G and implicitly a function of
x and t ), where g(m:x.,t) 1is an arbitrary function.

Then it can be shown that the general solution to Burger’'s equation

is

I [x_:q_ . G(m:x, t)]

I(1, G(mx,t)) ° (S.43)

u(x,t) =

The combination of the transformations given by equations (3.2) and

(3.5) is collectively known as the Cole-Hopf transformation. It may be

written

u = -2 7 (3.14)
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3.2 Generalisations

3.2.1 Several Equations

Af ter having played around with different attempts to generalise
the Cole-Hopf transformation to systems of equations, it has become
clear to the author that the generalisation is only possible if the
quadratic structure of the non-linear convection term is preserved. To

this end, we consider the system of equations

ui + z A;k(ujuk)x = z Eiju;jcx , (3.15)
j.k J

where 1i,j,k run from 1 to n , ui are the dependent variables and
Al and E,, are constants.

jk ij
Let

u = (u ....un) ; (3.16)
We shall consider linear transforms

v =Mu , (3.17)
where M 1is a constant matrix.
The following theorem is now presented.
Theorem 3.1
The system of equations (3.15) may be solved exactly by the use
of the Cole-Hopf transformation and the method of characteristics if

there exists a constant matrix M and constant coefficients el....en
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such that:

i) M 1is invertible;

ii) Epr-nr € 2 0

11) Vigk . AL =% ) N M M (3.18)

E . 14 il 71571k '
1

iv) E=Mlem, (3.19)
where

€ = diag{el.....en} (3.20)
Proof

Our aim is to decouple equations (3.15) to the system

2 -
Vi , vi + (‘Av1 )X = e v . (3.21)

i'xx

Then condition ii) allows us to solve the individual equations either by
the method of characteristics (when e, = 0) or by the Cole-Hopf
transformation (when €y > 0).

Introducing the linear transformation given by equation (3.17)

gives

2 .
g J 91 J k . 9 J
3t { E M, ju } * & 2[ 2 M ju ] [ z Mid ]} = &4 2 { E M ju } '
J J k J

(3.22)

As M is constant, this reduces to

il Jky _ J
2 Mijut + 35 z MijMik (u‘u )x =€, 2 Mijuxx . (3.23)
J j.k j
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We now use condition i) and pre-multiply by M_1 . This gives us
= M1J vy My (udu 2 MllelMlJuxx . (3.24)
J.k 1

Clearly, condition iii) is satisfied by comparing equations (3.15) and
(3.18) with equation (3.24). Finally, to observe condition iv), we

write equation (3.19) is suffix form:
-1
E,, = ) M€y - (3.25)
k,1

But, by equation (3.20),

€1 = 61 - (3.26)
Therefore
Ei_j:szklllj
2 M, e M 2" (3.27)
whence condition iv) is satisfied. m

Taking a look at the degrees of freedom, and observing that without

loss of generality we may impose

A§k = A (3.28)
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(because of the quadratic term ujuk) , in general we see that theorem
3.1 is very restrictive. This is because {A;k} has %nz(n+1) degrees
of freedom and E has %n(n+1) degrees of freedom as it must be
symmetric, giving a total of %-(n+1)2 . However, the only degrees of
freedom allowed in theorem 3.1 are the n coefficients {ei} and the
n2 coefficients of the transformation matrix M , giving a total of
n(n+l) . These issues will be discussed further in §3.3.

The coefficients €yv:--1€, are of course the eigenvalues of E .
They may be thought of as diffusion coefficients. Condition ii)
corresponds to E being a positive semi-definite matrix. This is
similar to the strong diffusivity condition given in [6], §3.4.

Another property of the system with a physical interpretation is
described by the following lemma.

Lemma 3.2
310 such that the right hand side of equation (3.15) is zero for

i= io < E has a row of zeros < at least one eigenvector of E

is zero.

No proof is given as the result is fairly obvious.

The physical application of this lemma might be to the continuity
equation, which almost always has a zero right hand side.

Despite the restrictions on the degrees of freedom in equation
(3.15), theorem 3.1 does seem to provide the best possible
generalisation using a linear transformation. The following three
theorems illustrate this point.

Theorem 3.3

Suppose the system of equations (3.15) is reduced by the linear
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transformation given by equation (3.17) to the system of equations

2

i i i
v+ ai(% v )x = €V (3.29)

then there exists a linear transformation
w = Nu (3.30)

which reduces equations (3.15) to the original decoupled system of the
form of equation (3.21), i.e.
i 12 i
LA (4w )x = eqW . - (3.31)
Proof

We exploit the quadratic convection term by observing that the

transformation
wo=av (3.32)

reduces equations (3.29) to equations (3.31) for a, #0 .

We may then set

N =AM, (3.33)
where A = diag {al.....an} . (3.34)
and equation (3.30) is satisfied. -

This theorem shows that the most general rescaling of a single
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Burgers' equation can be achieved using a linear transformation on a

system of Burgers' equations.

In the next theorem we show that two successive linear
transformations do not give coefficients {A;k} and {Eij} any more

degrees of freedom. To this end, we define the following functions:
! 1 -1
A (D) = 5) MMy M (3.35)
1
1

E(M) = M EM . (3.36)

Theorem (3.1) shows that the system

i ! Jky _ z -~ J
up + ) Ay (e = ) B nul (3.37)
J.k J
is analytically soluble for any invertible matrix M . This leads us to

the following theorem.

Theorem 3.4

The structure of equation system (3.37) is invariant under linear

transformations. In other words, the two transformations

(3.38)

I< [=
o
Sl
——

applied successively to the decoupled system of equations (3.31) only

has the effect of transforming it to the system

u) + 2 K;k(NM)(ujuk)x - E ﬁij(NM)uix (3.39)
j.k J
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Proof
By a change of notation in equations (3.37), it is clear that the

first equation (3.38) transforms equations (3.31) to the equations

) X}k(N)(vjvk)x =) E, j(N)v}‘L( . (3.40)
j.k h|

Now, let us introduce the second transformation equation (3.38).

Equation (3.40) will become

(1] vl (1)

j j.k 1
=) f:ij(N) [ ) Mjkuk] . (3.41)
J k X%

As in the previous argument, because M 1is constant and invertible, we

may reduce equations (3.41) to

ui + 2 Mgé Kiil(N)Mkleq(upuq)x - z M:; ﬁjk(N)Mklu}l{x :
j.k.,1l,p.q J.k,1
(3.42)
But
AL ) = 3 ) QU700 ), (3.43)
1

from equation (3.35). This expands to

! 1 -1 ~1
Ajk(NM) =3 z ip Npl qu qu Nlr Mrk

l,p.q.r

= ) N R

ip Aor o Mo - (3.44)



- 69 -~

Changing the suffices, we obtain

K;q(NM) =5 ) M;; Al Mo My (3.45)
§uk, 1

Also, by equation (3.36),

EaM) = (v~ E (w) (3.46)
v lenn
- MIEM) M . (3.47)

Substituting equations (3.44) and (3.47) into equation (3.42) gives us
equation (3.39). Hence the result is proved. =
The final theorem in this sequence concerns linear transformation

with the Cole-Hopf transformation.

Theorem 3.5

The system of equations

¢, = ed (3.48)

i_ o1 j :
¢ = exp { Ze z Ny ¥ } . £
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and

" M, (3.50)

becomes the system of equations (3.39). M and N are again constant

invertible matrices and the coefficients {ei} must be positive (rather

than possibly zero).

Proof

It can be shown that

i i

. = . J
¢ = 2e, 2 TR (3=51)
J

and

. S N U J k
eIk s Tnmoddle . e
J i

So, substituting in equation (3.48), we obtain

3, Jjk _ J
z ij ¢ 2 Nij Nik wx wx = &y z ij ¢ : (3.55)
J j.k J

Using the same method as before of multiplying by N_1 , Wwe obtain

v+ Eﬂﬂm v Egﬁmw (3.56)
.k i
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Differentiating with respect to x and performing the transformation

given by equation (3.50) we obtain

J i P4y _ = k
) My ud 4 ) AN (wPu?) = ) B, (MM - (3.57)
J Jj.k.p.q j.k

Multiplying by M'-1 and using equations (3.44) and (3.47), equations

(3.57) transform to equations (3.39) as required. =

Corollary
By setting either of the matrices M , N to be the identity matrix
we are able to show that the two linear transformations within the

Cole-Hopf transformation individually correspond to a linear

transformation of the dependent variables.

3.2.2 Several Dimensions

The underlying idea of this subsection is to provide a
generalisation to the Cole-Hopf transformation dependent on an arbitrary
direction in space. We recall that if e is the unit vector in the

direction of the co-ordinate xi that
_ d
g& .V E axi : (3.58)

In a similar vein, let v be the unit vector in the direction of the

co-ordinate y . Thus

(3.59)

|e

q

"
Q@
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Thus,
axi axi
W:zv.‘a?-':D. . (3.60)
J

Also,

ox
a i 2
-a—i(g.g)—zwvi=2vi_l. (3.61)
i i
So we may consistently write
Yy = X.D . (3.62)

We wish to seek solutions to a problem in several space dimensions. Let

us write the dependent variable u explicitly:

u = u(x,t) . (3.63)

Let the initial data be given by

u(x,0) = uo(y . (3.64)

Now, this causes a problem when our solution is only a function of ¥y
and t . It is necessary to introduce a new function u*(y) with u,

having the property,

Vx such that y =X.v,

uo(g =u(y) . (3.65)
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We may now consider the Burgers' equation
u, + (§u )y = eu (3.66)

as this problem has an analytic solution because its initial data is

well defined.
However, equation (3.66) may be transformed into its

multidimensional form using equation (3.59) to obtain

62u

a 1 2
u, + z 4 B (5 u%) = ez byv,s Bie, (3.67)
i i3]

This technique may also be applied to the system of transformed Burgers'
equations (3.37). Changing the single space variable x to the

variable y gives:

uf + ) X;k(M)(ujuk)y = Y E, j(M)ugy . (3.68)
J.k i

The initial data, by analogy to above, must obey
i i
u(x,0) =u (x) . (3.69)
and Vi VX such that y =x.v ,

5o(0) = B y) - (3.70)
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Equation (3.68) may be rewritten

62u1

i o~ 8 3k -
up + ) ZAjk(M)vp 2 (uld) = ) EEU(M)UP y Bpx, (3.71)
ik p P ip.q

An alternative form for the system is to start from the following

decoupled system

i .2 2 i

_gl+L(LV1)=ea" , (3.72)
t ayi 2 i i2
gy
where
8 _ =, v, (3.73)
1 —
dy
where E} are constant unit vectors.
In an analogous way to before we may write consistently
y' = x.pl (3.74)
and we have the following condition on the initial data:
] i i
Vi ¥x such that y" =x.v" ,
i i, i
Vo) = vy (3.75)
where
i
vo(§) = v(x,0) . (3.76)
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From equations (3.72) and (3.73) we derive the system of equations

A S e B
at P axp 2 S | P g axpax
P P.q

This may be simplified by defining

pidk

17 1
B3 LNy = 5-2 v M M, My, M

where N is the n xm rectangular matrix

where m is the number of space dimensions. We also define

<

1 R R S
FJ L) = ) v vy W) e My

i
(note b = Npi) §

Equation (3.78) simplifies to

2] TP g i - Y o B
ik p Jj p.a P d

(3.77)

(3.79)

(3.80)

(3.81)

(3.82)
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which is not much of an improvement.
Equation (3.82) represents the most complex linear generalisation

of Burgers’ equation known to the author.

3.2.3 Non-Linear Transformations

As already covered in §1.2, the equation

4
@ = M(u) (3.83)
is not well-posed unless n =1 or 2 . Therefore we cannot consider

an arbitrary matrix M(u) replacing the constant matrix M in the
system of equations (3.15) as this system does not in general have an
analytic solution. To obtain anything apart from a constant matrix we
must either solve a well-posed set of equations such as (1.38) or
prescribe higher order terms in u similar to the construction of
equation (1.52).

This having been done, the differential identity

gv =

.8u . (3.84)

)2

Shows us that the nonlinear form of equations (3.15) is

up+ ) A ) ey, =) B, (3.85)
ik J

v
where M(u) = 3y 1s substituted for notational convenience rather than
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being solved.

Similarly, the nonlinear form of equations (3.71) is

. 8 A 2]
i ~i g 3k _ z -~ d™u
up + 2 ) AL (M) 5o (W) = ) E, (M@)v v, Bt (3.86)
.k p p J p.q
and the nonlinear form of equations (3.82) is
LY Yo 2 oy =Y Y e T8 e
at P ). axp Sl e S ols| w). axpaxq ’ )
.k p j p.q

Another possibility is to consider having variable unit vectors in the

multidimensional analysis, e.g.

v = (x) . (3.88)

This corresponds to one (or many) curvilinear coordinate
(or coordinates) y (or yi).

This case is not considered here as it is not expected to be
particularly applicable due to the difficulty in prescribing the initial

data. The second order terms also become extremely complicated.

3.2.4 les
We shall limit ourselves here to linear transformations in one
space dimension. We shall look at the structure of the simple cases and

make an attempt to model the physical flow equations.
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The case n =1 1is trivial as shown:

M= (Mll)

i 1
{Ajk} = {All}

M—l = Ml
11
€ = (61) J

The conditions for theorem 3.1 become

i) M11 #0
ii) € 20
s 1 1 ) i
iii) A11 = §-M11 :
-1
iV) E=M €M = € = (61).

So we can always reduce

2
1 1 1 1
gy o+ A (0 )y = e
to
2
1 1
v, + (§-v )x =€ Vey

and then solve analytically, provided Ail # 0 and € 2 0.

(3.89)

(3.90)

(3.91)

(3.92)

For the case n = 2 , by the argument in §83.2.1, we have 10 degrees

of freedom in our initial equation and 6 degrees of freedom in our final



equation.

61 = €&
62 =6
detM = ad - bc = A
Then it can be shown that
1 Haz - b02
A == Flbd(a~c)
[ac(c-a)
1
- Alac(d-b)
1 [ead ~ 8be
B ~ K| (8-e)ac

For the case n

The equations
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Let us introduce the following notation

(3.93)
bd(a - c)]
bd(b-d) (3.94)
ac(d-b) ]
ad2 _ cb2 (3.95)
(e-6)bd }
6ad - ebc (B-A26)

3 . we have 27 degrees of freedom being reduced to 12.

are obviously much more complicated.

We now turn our attention to the one-dimensional unsteady Euler

equations and attempt to fit them into this structure.

The equations
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are (e.g. see [11] 8§87 & §8):

P pu
i S -0 (3.97)
Et uH X
where
H=E+%. (3.98)
and, for a perfect gas,
12, 1Lre
E = 5 U + 5T 5 ° (3.99)

Now, we need to convert equations (3.97) into the form of equations
(3.15) and then try to see whether the conditions of theorem 3.1 are
satisfied. In order not to confuse the notation, we shall write the
transformed dependent variables as U1 . U2 .

The simplest of the three equations in (3.97) is the first which

suggests the transformation

U1 =p
U2 _— (3.100)

It then becomes

1 1.2
U+ (UU) =0. (3.101)

. 3 2 . .
We now require an equation in Ut , i.e. u The first two equations

-
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in (3.97) imply

1 .
u, +uu + SIBs = 0 (3.102)
1 2 1 ,.2.2
Clearly = (§-u )x = (5-{U } )x . (3.103)

which is in the correct form. We shall, however, need to convert the

third term so that

Lo =[] e o] (3.104)

for some constants ¢ where i and j run from 1 to either 2 or 3.

1

The only dependence on p (if p 1is an independent variable from

p and u) will come from U3 . We write
P = U3(p.p,u) (3.105)

and look at the terms in the right hand side of equation (3.104)

containing . By symmetry, these are
1
2(c 4 U U3)x + 2(023U2'U3)x

so, the terms containing P, will be

1 00> 2 au>
dp P

2013U as-px + 2023U -
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we may therefore equate coefficients in p, on the left and right hand

side of equation (3.104) to yield

1 1 au>
L= 2(cyy U + ey ) &
i.e.
1 au°
i 2(013 P+ Coy u) 3p (3.16)
This may be written
au’ 1
— = . (3.107)
dp 2p(013p+c23u)
This can be integrated to give
= E + ¢
= p,u) , (3.108)
2p(cy3pteyzu)
for some arbitrary function ¢(p,u) . From this we obtain
p = 2U3p(013p + c23u) - ¢(p,u) . (3.109)

Finally, we may differentiate with respect to x to give
1 1 1 2
E-px = (c13U U3 + cqq U3U + c23U2U3 + 032U3U )x

P
X
= 2(cyqp, * Cogl JU° + 4o gp + 20, X u+ 20yl - . (3.110)

The terms outside the first bracket on the right hand side cannot be
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converted into the correct form as the U3 term cannot be eliminated
(because ¢ is not a function of p).
Thus it is impossible to have p independent of p and u . For

this case, equation (3.104) may be written in the form

1 2 2
5Py = (ap” + bpu + cu )x . (3.111)

Thus,
P, = p(2appx + bpuX + bupx + 2cuux) . (3.112)

The right hand side is homogeneous third order in p and u . We

therefore write

P = Ap3 + Bp2u + Cpu2 + Du3 ] (3.113)

We shall differentiate equation (3.113) with respect to x and equate

coefficients with equation (3.112). Equation (3.113) gives

2 2 2 2
P, = 3Ap Py + 2Bpupx + Bp u + Cu Py * 2Cpuux + 3Du u, - (3.114)
Equating coefficients gives
2
p px] 2a = 3A (3.115)
2
pu ] b=28 (3.116)
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pupx] b =2B (3.117)
puux] 2C = 2¢ (3.118)
2
u px] 0=C (3.119)
2
u ux] 0=23D. (3.120)
Thus,
3

p = Ap° . (3.121)

This corresponds to a polytropic gas with <~ = 3 , which is
theoretically impossible. It can be shown that the third equation of
(3.97) is degenerate in this case. Putting this together and using the
standard letter k for the constant in equation (3.121), we arrive at

the system

ul vl y?
ol ¥ |zk.1.2 1 2]=°'
U —2{U}+§{U2}x

(3.122)
Using the previous notation, this corresponds to matrices
o 3
A= 1 (3.123)
5 0
3K/2 0]
B = ’ . (3.124)
0 )
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Using equations (3.94) and (3.95) , we obtain the equations

[daz = be? bd(a - c) 0 %
bd(a-d) bd(b-d) = (ad-bc) 1 o (3.125)
2
[ac(c-a) ac(d-b) 3K./2 0
ac(d-b) ad2 _ cb2 = (ad-bc) o 1| (3.126)
2
These yield the relations
cC = -2a
d=hb (3.127)
which imply
2% = - &
3 3k (3.128)
a~ = - 3
2
So, if we introduce
%
= [3_5] (3.129)
the transformation matrix is
42 sl
M= |, 3 [ (3.130)
+ L
W om

So, for this example, we can satisfy the conditions of theorem 3.1.
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Therefore an exact solution exists for this problem.
Finally, we shall consider adding diffusion to the system of

equations (3.122), to transform it to the system

1 T 1
[U] LB AR =E[U] . (3.131)
2 ) ot BU v

X b 4

From the above argument and equation (3.96) it can be inferred that

1 + %&
E = (e + &) g (3.132)
+ 2a 1
where
e-0 3
@ =55 2
e-b
= K m (3133)

Unfortunately, the two degrees of freedom present in E are
insufficient to use it to model physical diffusion. The one-dimensional
steady Navier-Stokes equation for an ideal polytropic gas with constant

kinematic viscosity v correspond to equations (3.131) with

(3.134)

Wi ©

so, equations (3.132) and (3.134) are clearly inconsistent.
Other exact models of physical systems may be possible (e.g. we

were not forced to choose U1 = p — another possibility might be
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1
U1 = pé - see [12]). The theory may still be useful to solving

physical problems, as described in the next subsection.

3.3 Implications for Numerical Schemes

The basic idea of this subsection is to attempt to extend the
concept of locally solving exact equations to the more complicated
systems of equations decribed in §3.2. First of all, we review the
major techniques of this type employed in existing numerical schemes.

The classical work in this field is Godunov’s method for solving
the one dimensional unsteady Euler equations in the form of a Riemann
problem (see [13], §12.15). His method was excellent for solving the
Riemann problem, but suffers from unbalanced inaccuracy when it is used
locally and then reprojected onto constant states for the solution of
more general initial-value problems.

To counter this, Roe ([12]) suggested using only approximate local
Riemann solvers in order to increase efficiency without affecting
accuracy. His method has been widely used.

An alternative related method is the ’'random choice’ method of
Glimm ([14]). This has been improved and extended by Harten and Luc
([15]).

Finally, Roe ([16]) has considered a way of incorporating diffusion
terms into his scheme. This appears to be the only attempt within the
class of ’local exact solvers' so far.

It is anticipated that the exact solutions obtained in this
section, in the same vein, will be useful for constructing local exact
solutions. The global solution, however, will now be for a system of
diffusive (rather than non-diffusive) conservation laws. A general

procedure for accomplishing this objective is described.
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We start off with a system of diffusive conservation laws (see

[6].§ 2.2.2),

E Y ) B { ;ém a“ d } =st . (3.135)

J p.qm

We shall assume S1 = 0 . The standard combination

ij ij
lad @ = z VI 4 (3.136)

is employed. The domain, A , is subdivided thus

A=84 (3.137)

r°

On each subdomain Ar we use the initial solution Eo to obtain a

Taylor expansion of equation (3.135)

z z Aij au z 2 Ble a (uJu )
i p i.kp

1 6
=) ) ql 0% (3.138)
i P B
C;g is proportional to |Q| . The linear term on the left hand side

can hopefully be removed by a change of variables u » v , giving

SR L DR E-{< ¥ (.19
j.kp J
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This is only possible when there exists a matrix M such that
Vp. M_lApM =0 (3.140)

where Ap is the matrix of coefficients A;J .

This is now in a form compatible with equation (3.82). Our objective

now is to choose e . €

A , M and N such that
1 n

pldk (y Ny ~ plik
P P

pld (M,N) = oli (3.141)
pq jols]

in some optimized sense (the initial conditions will also need to be
approximated). These equations may now be solved exactly using the
Cole-Hopf transformation (or approximately if this improves efficiency
without the expense of inaccuracy). The exact (or approximate) solution
is then found for the next time step and the process is repeated
(perhaps with a new partition of A , similar to Glimm in [14]).

The concept of dividing the domain up into subsystems is similar to
Orlov’s approach to approximating irreversible thermodynamics equations
(see [17]). The incorporation of the thermodynamical issues to the
system derived here will be discussed in the author’s next report.

Naturally, if any theory or test cases are going to be produced,
they will need to be much simpler than this general structure. However,

it is anticipated that the principles will remain unchanged.
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4. Limiting Diffusion Theory

4.0 Introduction

The aim of this section is to consider models with limitingly small
diffusion, relating them to some of the work covered in the previous
sections. Once this has been accomplished, implications of this

investigation to numerical schemes is discussed.

4.1 Asymptotic Limit of the Cole~Hopf Transformation

This subsection contains an extension to the asymptotic analysis of
Burgers®' equation in the limit e - O given by Whitham ([9], §4.2).
Our purposes here require the next term in the expansion. The procedure
used may, however, be extended to higher terms to give an apparently
regular perturbation expansion.

First of all, we recall some of the equations of 83.1. Burgers’

equation was given as (3.1)
u, + (§-u ). =eu__ . (4.1)
We had the two definition equations (3.11) and (3.12):

n 2
G(mix.t) = Juo(g) dg + i“’-_;ll (4.2)
(o]

(4]

I(x,t ; g.G) = J g(n: x.t) e

—00

-G(n: x,t)/2e dn (4.3)
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This enabled us to write the solution to Burgers' equation as

t
u(x,t) = =, 1.0) (4.4)
Now, let us consider the behaviour of I(x,t; g,G) as e - 0 . Because
of its dependence on the integral term e—G/2e , this will be dominated

by the contribution near the value of 71 where G 1is minimised. We

shall introduce the variable §(x,t) such that
G(mix,t) 1is minimised when 7 = §(x,t) . (4.5)
Performing elementary calculus on equation (4.2) gives us

x = f(x.,t) + uo(§(x,t))t . (4.6)

and
. 1
uo(§(x.t)) > S (4.7)
Note the similarity between equations (4.6) and (1.7).
We shall limit ourselves to the cases where G has at most two minima

with approximately equal values. These are as follows:

i) G has a single dominating minimum;

ii) G Has two minima at 7 = El ,and 7 = §2 , with
|G(E 5%, t) - G(Egix.t)| = O(e) (4.8)

but

1§, - &5l = 0(1) : (4.9)
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iii) G has two minima as in ii) but with

€, - &5 = 0(e) . (4.10)
These three cases are represented in figure 5. We shall consider each
of these cases in turn.
Case i): G has a single dominating minimum. As the major contribution
to I will come from near 7m = § , we introduce a change of variable

= E + ez . (4.11)

We shall also use the notation
(n) _ 8%
G = — (E(x.t):x,t) (4.12)

(G(n) is in fact a function of x and t). We can use the change of

variable to obtain the Taylor expansion

G(mix.t) = GO 4 ¢(2 . G c(4) + 0(e2) (4.13)

(we clearly have G( ) 0) .

From equation (4.13), we derive

o~C/2e _ e—G(O)/Ze exp{_ c(2) _ 1 c(3) ¢ 4 oe )}

(4.14)
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We need only consider functions g(n:x.,t) of the form
g(n) =an+ b,

wvhere a and b are functions of x and t . Using
edz = dn ,

and equations (4.13) to (4.15), we obtain

3.4

- % G(4) + 0(64)}6(12 :

We recall the two standard integral formulae

r22n e—az2 dz = (2n-1)(2n-3) ..(1) ['r_r]%
(22)"

-0

-0

Also, by symmetry,

2
r22n+le—az dz = 0 .

—00

So, expanding the 23 and z4 terms in the expotential

(4.15)

(4.16)

(0) 2 23
o 6O /2 (aea) f [+ 22 o] expf- 2= o) g2 ™

(4.17)

(4.18)

(4.19)

(4.20)

in the right
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hand side of equation (4.17) gives

% _a(0) (3) 44
I= Lj%%i (ag+b) & © /26{1 - G?z)‘ EELb * i ] ¥ 0(62)} S

Thus, substituting for g , and hence for a and b , we obtain

oe B0 - o 2 80 o) - o [B2] ¢ o)

(4.22)
by cancellation. This reduces further to

u= [—%i]{1 + ETE%EEZ%ES + 0(62)} . (4.23)
We also have the following

5%5 = u_(E) (4.24)

¢ - gy + 1 (4.25)

¢ = ule (4.26)
Substituting these into equation (4.23) yields

u (E)¢
u(x.t) = u_(§) + —2 e + 0(e2) . (4.27)

[1+u) (£)t]°
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As already mentioned, this method could be used to obtain further terms
in the expansion of u . The expansion appears to be regular, condition

(4.7) ensuring the order e term does not become singular.

Case ii): G has two separated nearly equal minima. In this case, we

introduce two changes of variable:

n=§1+ezl
4.28
n= By en (4.28)
we also introduce a(x,t) such that
G(§2) = G(fl) + ae . (4.29)

Using these substitutions, the expansion procedure used on case i) may

also be employed here. To leading order this gives

u_(,) + ke u_(E,)

u = - Ke_a/2 ; (4.30)
where
o2 14
a G
__2' (El;x’t)
an
K = 32G
? (fz;x,t) (4.31)

we again have relations such as

a%c

— (§ix.t) =u (§) + % : (4.32)
an



The analysis above may easily be extended to higher order expansions.

Case iii) : G has two minima near in position and value. As in case
ii), let us use El and §2 for the two minima. Clearly, from figure
5, we also have a maximum between the two minima. Let us call it §3 .

We introduce an arbitrary value Eo such that

El = EO + ae
§5 =8, + Pe (4.33)
EB H EO + ve

and a,B8,v are not all of the same sign (so, in effect, §°€(§1,§3)).

This leads to the change of variable

n= Eo + ze . (4.34)

It is claimed that there exists constants A,u (functions of x

and t) such that

z
c=r | EEHETE (4.35)
o
to leading order for 71 near to Eo . Now
e d 2 1
3= F{Ea@pzn) =y + P . (4.36)

dz
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Whence we obtain the three relationships

na-p) (a-r) = *{ul(E;) + B
n(B-1)(B-a) = e{ul(E) + T - (4.37)
n(v=B)(v-a) = e*(u!(Ey) * D

The next derivative gives

3 2
i—%-: g—-2{(z—a)(z—[3)(z—'r)} = esug . (4.38)
z dz

Whence we obtain the further three relationships

n(20-p-7) = el (E,)
n(2p-v—a) = eBu:JI(EB) . (4.39)
n(2r-a-B) = e ul(E,)

It is conjectured that p is order 64 as G 1is a quartic local
to Eo . The error in equation (4.35) is therefore order 65

In principle we may obtain «,B,r and u from equations (4.37)
and (4.39), given u; and ug at §1,§2 and §3 ;

However, the quartic function for G in equation (4.35) means that
we cannot find I analytically.

To conclude this subsection some striking similarities between the
analysis of G and the method of characteristics are noted.

Firstly, the minimization of G led to the characteristic equation

for Burger’s equation (as Ao =u here). Secondly, to first order,

the solution for u given by equation (4.27) is just the characteristic
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equation. Thirdly, equation (4.30) yields a tanh curve for u as a
function of x , which will stiffen up into a discontinuity in the limit
e » 0 . Fourthly, the conditions on u, and its derivatives in the
third case tend to the conditions on the breaking point as e - 0 .

These similarities are investigated in further subsections.

4.2 The Diffusive Method of Characteristics

This section basically picks up on the second similarity noted
above. We use the methods and results of the previous section to devise
a new method for obtaining asymptotic solutions in e . It is shown
that this method is not just applicable to Burgers’ equation, but also
to other more complicated model diffusion equations. The name °the
diffusive method of characteristics’ is appropriate because information
passes along the same characteristic curves, but is modified according
to the gradients of the data and the value of the diffusion coefficient.

The three cases distinguished in 84.1 are shown to also be present here.

4.2.1 Burgers’ Equation

We start off again with Burgers' equation
u +uu = eu (4.40)
we wish to impose a solution of the form

u=u(E) + eO(E.t) + 0(e2) (4.41)

where x = § + uo(f)t (4.42)
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Using the differential transformation equations

and differentiating equation (4.42) with respect to x and

we derive

By repeating the differentiation, it may also be shown that

du =Qu_|
at| = |,
8u =@|
ax ¢ ag .

X

GE| , Gu

at at !
b £

i’

ax

t

i FRENORENGLS

1= i@ &
t t
o W@ E) + 50 g5
Il =~ | tegzt O(e
X 1 + uo(f)t
. (&) + 5
& = = I + 0(6 ) .
t 1+ uo(E)t

e —— [—

e’ (E)

, 5+ 0(e?) .
(1 +ul(E)0)

t =

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

substituting equations (4.47) to (4.49) in equation (4.40) and equating
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coefficients in e gives

%] 0=0
g6 I a6 I I
1 u (§) F a8 Yo (5) aF * u (£)86 u (§)
3 - + — + =
1+u'@®e 9 1ad (@) (1 +u' ()t)2
o] () )
(4.50)
This leads to the equation
1
3t {1 + uo(f)t)e} = | 5 (4.51)
E (1 + u(E)t)
which is easily integrated to give
ul ()t
6= - b L+ £(E) (4.52)
1 +u@®0® @+ ul@®r)
for some function f(§) . We obviously have the initial condition
u=ug when t = O , so we therefore have
6(§.0) =0 VE . (4.53)
This transforms equation (4.52) into
n
WL
0 = (4.54)

(1+u (B)e)
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This is exactly the same term as we obtained in §4.1 .

The expansion is clearly invalid when
1+u (E)t=0. (4.55)

This represents an infringement of equation (4.7), thus identifying
this analysis with the case i) of §4.1.

Also, when u:(f) = 0 , we have the right hand side of equation
(4.51) zero except when equation (4.55) holds. In this latter case it
is indeterminate and a different analysis is required. This case

corresponds to case iii) in §4.1.

4.2.2 A Generalised Model

The generalised model is

u, + )\(u)ux =eu . - (4.56)

We again impose equation (4.41) and equations (4.43) and (4.44)

obviously still hold. However, in place of equation (4.42) we impose
x =+ Ao(f)t : (4.57)

where AO(E) = A(uo(f)) as before. Performing the analysis and
equating of coefficients as before proves to be more laborious but of
the same structure, giving consistency for e® and a perfect
differential for 6 from el . Applying the boundary conditions as

before gives the result:
{B(E-t) = {(AG(E)ug (§) = AL(E)al(E)) (1A (E)E) In(1 + A (§)Y)

+ A EMENLEOLERNE anlEnfT (4.58)
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We observe that in the special case,

A (E) =au () + Db, (4.59)

equation (4.58) reduces to equation (4.54). The comments at the end of

§4,2.,1 are also applicable here.

4.2.3 A Two-Dimensional Steady Flow Model

Here we shall use the model obtained in [6] §3.3, which could be

written in the notation of this section as
Aulu + p(ulu = e(au_+ 2bu_ + . 4.60
(W, + p(u)uy, = e(an,+ 2bu + cu ) (4.60)

We again impose equation (4.41) with y replacing t . The other

condition is now

A (E)y
YR m®

x =

(4.61)

as this is the characteristic equation corresponding to the
non-diffusive form of equation (4.60).

The method of §4.2.1 may again be followed exactly here. We again
obtain consistency when equating e® coefficients and a perfect
differential equation for 6 when equating el coefficients. The
latter may again be integrated and boundary conditions imposed. The
function 6 obtained is, however, rather complicated so it is not
presented here. It again displays the three cases of §4.1. In a way

this result is quite surprising as it shows two—dimensional steady
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diffusion can be treated in the same way as one dimensional unsteady
diffusion (in the sense described) despite the fact that the structure

of their diffusion terms is different.

4.3 Relationship to Catastrophe Theory

In this subsection, we shall attempt to relate the function

~

G(m:ix.t) of §4.1 to the unfolding function F(§;z.t) of §2.2.1.

To this end, we require an expansion of G about the breaking
point. We need to make a distinction between m and § as § obeys
the characteristic equation (4.6), whereas 7 1is an independent

variable. However, as the major contribution to G will come from

about the breaking point, we can rescale 7 about Eb , thus

n = Eb +7n, (4.62)

where % is now an independent variable. The rescalings for x and t

are those of equation (2.39). We introduce

G, = G(E %, t,) (4.63)

and

+ G %t ) . (4.64)

This leads us to

n = ~ .9 2

o 8 (x*+x=-8 -n)" (x-§)

G(n :x.t) = J uo(§b+§)d§ + - b — - xbzt 2 . (4.65)
. 2(tb+ t) b
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The relations for the breaking point from §2.1.1 hold here, but
with A(u) = u (as we are dealing with Burgers’ equation and not the

general characteristic equation). These are

x, = £ +u(E ), : (4.66)
uwl(g) = - (4.67)
b
uZ(fb) =0 ; (4.68)
and
u () > 0 (4.69)

We use these relations to obtain

3 ~ 52 r4 m ~5
[ uoEyr 0 = 5 w8, - Be + Fr (s, + o) (4.70)
(o]

We also have

i ~ 9 2 2
_E -~ B - 2r -1
(g rx-Epm)™ (;E &) ) (:b Ep) {[1 . X ] [1 + E_] - 1} (4.71)
2(t, +%) b b b "
“o(fb)ztb 2(x-1) 2(x-m) B
-T2 [“uo(fb)t (‘s‘b)t] [1_—+—+O(t) a

(4.72)

We now have the problem of knowing what order the rescaled variables
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are. For simplicity, we shall assume the rescaling orders given by
Haberman ([3]) are valid. It is hoped that in some sense they will be

proved to be consistent. The rescaling orders are

7= o(eH ; (4.73)

T = o(F%) : (4.74)

% = o(e% ; (4.75)
and

z = 0(e¥) . (4.76)

(Note: we assume 7 = o(%)).
Following equation (4.70), we are concerned with the leading terms up to
order e%

The right hand side of equation (4.72) now becomes

~2 2
o v~ o s T (E)
up(Ep) GA) + () T+ G - T -

- + 0(eh (4.77)
b

2t

Substituting equations (4.70) and (4.77) into equation (4.65) gives

~2 ~4
G = Tug(8,) - Fe=+ B ug(E,) + u,(E) GA)
~2 2
o = ~2~  thu ()
nt . -~ 0t o°b %
* Uy (8p) ty 2t o2 4t +0(e) (4.78)
& b
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This cancels down to give

~2 ¥2uo(§b)2] . [uo(gb)’E ;1

EHEY) = K ug(8y) + Bt X3
o'>b 2tb 4tb tb tb
T ]~2 ﬁi " %
- |—5n" * 331 uo(fb) + 0(e™) (4.79)
2tb

. . ~2 P (£)°
Let ¢(x.t) = t X uo(fb) t ot — (4.80)

We then obtain
G(mix.t) = T2 12 o(&p) - ;‘bn - zn + ¢(x,t) ¢ + O(e™) (4.81)

This leading order quartic in ﬁ is identical (up to the factor % )
b

to the leading order expansion of ?(E,E,?) in E .
When calculating u near the breaking point, the exponential in
1
Gb and ¢ cancel and the terms of order e% become of order eA so

can be ignored. So, if we introduce the function

S — 1 b m T 2 =
H(m;z.t) = b{z 117§u0(§b -?b —zn} (4.82)

equation (3.13) implies

u(xb+§, tb+'E) ~ (4.83)
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SCLLNNTS (4.89)
b

To obtain the higher order terms for u , we shall need to explicitly
write the terms of order e% and above in the preceeding argument.
This is beyond the scope of this report. We only note that the
behaviour of u near the breaking point is governed by the highest
order terms of the unfolding of the characteristic catastrophe function,
F. An interesting diagramatic representation of this relationship is
shown in figure 6.

Finally, we note that Haberman ([3]) has shown that the deviation
to u about the breaking point satisfies Burgers' equation in the
rescaled variables. His method is to use leading order expansions

similar to §4.2.

4.4 Relationship to Shock Fitting

In this section we pick up on the similarities between the analysis
of G and the method of characteristics that we noted at the end of
§4.1.

We recall that in shock fitting, a discontinuity is imposed within
the flow field in order to model a shock wave. When the discontinuity
ends, it will either meet the boundary or another discontinuity or its
strength will diminish to zero. In the last case, this end point will
have to be tracked along with the front itself.

The separate treatment of these three cases in shock fitting
corresponds very closely with the separate treatment of the three cases
in §84.1. In fact, we could say that the analysis in 84.1 to 84.3

represents an extension of non-diffusive systems with shocks to the case
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of having a small amount of diffusion. Correspondingly, this small
amount of diffusion means that, instead of treating shocks and shock
tips separately, we just treat the regions near shocks and the regions
near shock tips separately from the rest of the flow.

The outworking of these ideas is discussed on the final subsection

below.

4.5 Implications for Numerical Schemes

We have successfully shown in this section that i1t is in principle
possible to extend analytic solutions of non-diffusive equations with
shocks to analytic solutions of corresponding equations with small
amounts of diffusion and thick shock layers.

It could be argued that this analysis is useless to numerical
applications because a discretization process (or a scheme itself) will
introduce effects similar to diffusion and hence smear out
discontinuities at least slightly. However, this approach (of shock
capturing) contains many difficulties so it is asserted that fitting a
shock layer with a solution could be a useful process.

One way in which this ’viscous shock fitting' could be implemented
is as follows:

i) Introduce a shock tip region when the characteristics of the
corresponding non-diffusive equations overturn.

ii) Introduce a shock region when the shock tip region becomes too
large.

iii) Solve the equations in these three separate regions using the
methods introduced in this section.

iv) Match the solution between the regions somehow.
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v) Propagate the boundaries of the shock and shock tip regions somehow

(generalising the Rankine-Hugoniot jump conditions).

If this process is possible, it will potentially yield better

solutions than both shock capturing and shock fitting.



- 110 -

5. Front Tracking Thoery

5.0 Introduction

Front tracking theory concerns the rules for the propagation of
discontinuity curves (in two dimensions) or surfaces (in three
dimensions). The standard result is that the normal speed is given by
the Rankine-Hugoniot jump conditions in an appropriate form. However,
when a surface is propagating tangentially as well as normally (for
expample a rotating wedge shock - see figure 7), the surface normal
speed is insufficient for predicting the position of points within the
discontinuity surface a finite time ahead.

In order to overcome this, a ’shock velocity’ will need to be
prescribed in some sense. This is achieved here by first defining a
second Lagrangian type frame to give a velocity to each point in the
flow which is then constrained for shock waves.

After this, implications for numerical schemes are discussed.

5.1 The Second Lagrangian Frame Formulation

5.1.1 Initial Equations

Suppose we have a system of flux equations given by

Gui i
otV - f'(uy=0, i=1,..., n (5.1)
t —
Now, let us consider the propagation of surfaces on which ¢(u)
constant. Suppose that the velocity of propagation of these surfaces

Q . We wish to find an analytic expression for Q . It will be shown

is

is
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in 85.1.2 and §5.1.3 that this may be achieved in two ways.

5.1.2 The Taylor Expansion Method

Consider a small timestep At and a small displacement
Suppose ¢(u)

Ax .
remains constant from (x,t) to (x+Ax,t+At) . Hence
#(ulxrhx, t+ht)) = d(u(x, t)) . (5.2)
Now,
Su
a(erlx obe) = w(xet) + ) by g (6:0)
i
= 2 2
+ At z= (x.t) + o(|ax|“ + |at]*) (5.3)
Thus,
du du
$(u(x+hx, t+ht) + z M, 3= (x.t) + Atz (x.t) + O
. i
i

Iax|? + |ac]?))
= ¢(u(x.t)) .

(5.4)
This implies

J
a

) az:i { ) bx, gii (x,t) + At g_: (§.t)} = o(|ax|® + |at]?)  (5.5)
J i
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We now divide through by At and introduce

lim .
9-=At-—>o X (5.6)

Equation (5.5) then gives
za—"’ EQ 9—;J+-a£j = o(]a.ax| + |At]) (5.7)
aJ i 3t [ = Q. i ;
. du i
J i
So, assuming Q remains bounded, we infer

du
3 L _
E_ . {a + Q_VE} =0 . (5.8)

Equation (5.6) shows that Q 1is clearly well-defined as the velocity of

the surface.

5.1.3 The Second Lagrangian Frame Method

Let £(a.s:t) be the position of a particle of fluid a time t
which is at position a at time s . Let Z(a,s;T) be the position of
the particle of fluid at time T which has the same value of ¢(u) as
the particle of fluid at position a at time s . We shall assume

these maps are continuous. We introduce

|
]

§(a.s;t) (5.9)

X = E(a.s:t) (5.10)



- 113 -

The fluid and surface velocities are defined as follows:

8§
q(g(a.s:t).t) = 3 (a,s;it)

o
Q(E(a.s:7).7) = 5= (a.s:i7) .

We also have the identities,

Vx, t, E(x,t;t)

]
|=

vX. T, E(X,7:7)

I
[><

and the inverse relations

|p
]

§(x.t:s)

a = E(X.7:5)

The equation for the conservation of -¢(u) is

VT, #(u(E(a.s;T).T)) = const
i.e.,

a Yy

ar ¢ ={a,s; ’ =0 .

aTE’S{(E(_oasr)T))}

Let us treat x,t,s and 7 as the independent variables.

(5.

(5.

(5.

(5.

(5.

(5.

(5.

(5.

Instead

11)

12)

13)

14)

15)

16)

17)

18)

of
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equation (5.18), equations (5.15) and (5.17) give

2| {seEExa.smm)=o. (5.19)

§.t.s

The chain rule gives
2 gii 5?'-| {ui(i(f_(ﬁ-t:S)-SW).T))} =0 . (5.20)
i du }_fot.S

Now,

2 {dEEess.smm) -

E.t.s

i

(03] [al}

II!| =

;

o |
(B tis).8i7).7) g7 (B eis)osim) Iy ¢
Bui - |
- 8 e s m )y (5.21)
And

gz
5 Eetis).sim) | o o= QEER ts).smT) - (5.22)

Equations (5.20) to (5.22) combine to give

i
120 %, (EECe ti0).0:m) MO (EE (K. ti9) 8i7).)
i J

+ aui(z( - . | -
I E(E(x.t;8),8;7),T)) g [ = 0. (5.23)
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Now it is possible to consider E and T as the independent variables

and to rewrite equation (5.23) as

y 2

i i
&, (E10En + 5 @ L }=o- (5.24)
i J

Rewriting x for

{11

and t for T we finally obtain

i i
) gﬁi{ & xt) + ) gﬁs(x,t)QJ(§,t)} =0, (5.25)
i j

which is identical to equation (5.8) in suffix form.

5.1.4 Relevant Form of the Frame Condition

Let us generalise the function ¢(u) to several functions ¢1(gg

with associated velocity 9} . Let
o) = ot . (5.26)

Substituting into equation (5.8) gives

du v ot.wal =0 (5.27)

We shall only consider the case of two space dimensions for the moment.

Let E} and I} be the u' = const. Thus we may write

(5.28)
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for some functions Vi.Wi . We also have
1w
N = T (5.29)
lvu” |

Hence, equations (5.27) and (5.29) imply

08" & {V L wi'ri}.vui =0 (5.30)

1wl =0 . (5.31)
Hence

aui i i

3 tViw|=0. (5.32)

Combining this with equation (5.1) gives

(5.33)

5.2 Incorporation of Shock Waves

5.2.1 Additional Constraints

It is clearly suitable for a point lying within a shock surface
S(t) at time ¢t , identified ui = const, to be moved with velocity g}

| .
to a new point in S(t ) with u' equal to the same constant value.
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We know, however, that S(t) has normal speed

(£
Vi s = r .

[u]

where v is the normal to S(t) .

for some function ai , where 7T 1is the tangent to

5.2.2 Derivation of Shock Velocity

We assume that

(5.28) implies

with equation (5.35) gives

i i i
sp.N" + a'7.N

Thus,

=

I3
Iz

v and T are known functions.

s , where

(5.34)

Hence we must have

(5.35)

S(t) .

Clearly, equation

(5.36)

(5.37)

(5.38)
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In this way, the shock velocity 9} is defined in terms of quantities
already known.

It turns out that the above argument is only possible in two
dimensions. If we attempt it for a higher number of dimensions, we will

only be able to find g}.g? = 0 , where g} = sp + ai and g?.y_: 0.

5.3 Implications for Numerical Schemes

For two-dimensional unsteady systems of conservation laws, the
. i . i
above argument shows how to calculate shock velocities Q on which u
is constant. In fact we obtain 2n values of g} (where i =1,..,n)

as  ul (and hence Vi.ﬂé etc.) can be prescribed on both sides of the

shock S(t) .
i i .
= € i . )
Suppose u ug at X S(to) at time to Then, provided
there exists a point x, + Ax in S(to+At) where u' = ui . QY will

give the velocity separating the two space—time points. For normal
length timesteps this will usually be possible for most points of
S(t) . The problems occur at maxima and minima and at the boundaries of
S(t) .

Hence we should look for new points of discontinuity with

approximate position

x_+ Mx = x_+ soht + alTht (5.39)
These are likely to be better estimates than the points X, + svAt
currently used in front tracking algorithms.
It should also be noted that, at least highest order ai can only
take one or possibly two values due to purely geometrical restrictions -

see figure 8.
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6. Conclusions

In this report, it has been shown how the breaking of smooth
solutions is related to the cusp catastrophe. The analysis is carried
out for a single equation and should be possible for two equations. It
is shown how the same °‘breaking point’ in systems with diffusion is also
related to the same unfolding of the cusp catastrophe, at least to
highest order for Burgers’' equation.

Along the way, new generalisations of the Cole-Hopf transformation
are provided for systems of equations and various asymptotic analysis
methods are devised and instigated.

In the last section, a potential improvement is found to the
current theory of front tracking.

These theoretical results will hopefully lead to improved numerical
schemes and a better understanding of the formation of shock waves on

more complicated systems, such as the Euler of Navier-Stokes equations.
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