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Abstract

In this report a simple procedure is used to determine the best
piecewise constant L2 fit to a given function of a single variable

with adjustable nodes.



§1. Theory

This report is an extension (or in some ways a truncation) of [1],
in which best piecewise linear L2 fits were considered.
Let f(x) be a given continuously differentiable function of x

and denote by u, the best constant L2 fit to f(x) in the interval
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where Hk is the family of constant functions on the interval
(xk—l’ xk) . For an interval (xo. xN+1) which is the union of

intervals (xk—l’ xk) , (k=1,...,n+l) , the best L, fit to f(x)

amongst piecewise constant functions discontinuous at X s (k=1,...,n) ,
is also given by (1) and (2), (k=1,....n+l) , since the problems
decouple.

Now consider the problem of determining the best L2 fit u(x) to
f(x) amongst all discontinous piecewise constant functions on the fixed
interval (xo, xn+1) on a variable partition (Xl’ Koseoes Koo ooX )
of the interval. Then
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where u(x) = U{uk} and the xk,(k=1,...,n) , are also varied. It is
convenient to introduce here a new independent variable § which remains
fixed, while x joins u as a dependent variable, both now depending

on £ and denoted by x and u , respectively. Then (3) becomes

n+l *K . A
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with u(g) = U{u) .

Taking the variations of the integral in (4) gives
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Integrating the last term by parts leads to
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Collecting terms and returning to the x,u notation, (4) yields
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where the summation is over nodes j and the square bracket notation
[]j denotes the jump in the quantity at the node j .

The conditions at an extremum are

*K
J {f(x)—uk}éukdx =0 (8)
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With 6u in the space of piecewise constant functions the

orthogonality condition (8) is equivalent to

f(x)-u(x)p m (x) dx = 0 (10)
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where wk(x) is the characteristic function in the element k (see
fig. 1). On the other hand, we may set 6uk =0, 6xj # 0 to obtain

from (9)

[[f(xk)-uk]z]. =0 . (11)

J

Using L,R for values to the left and right of the (variable) node j ,

it follows from (11) that either

u.
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It is easy to verify that the latter corresponds to monotonic behaviour
of f while the former may exceptionally occure at maxima or minima
(see fig. 2).

The solution of the problem (10),(11) is then the set of best
constant fits in separate elements which have the continuity property

(12) or the averaging property (13).

82. The Algorithm

The algorithm used here to find the best piecewise constant L2
fit with variable nodes is in two stages (carried out repeatedly until
convergence), corresponding to the choices of variations referred to in
§1 above.

Stage (1) 6xj =0, 6uj =i 1T (k=1,2,..., n+l) (14)

k
This stage of the algorithm corresponds to the best L2 fit amongst

constant functions discontinuous at prescribed nodes, as in (1),(2).

Stage (ii) 6xj # 0 (j=1.2,....n), oy, = 0 (k=1,2,..., n) (15)
This stage corresponds to finding xj such that (11) holds, with u
restricted to points lying on the piecewise constant approximation
(possibly linearly extrapolated) in element k .

As remarked in [1], the algorithm is analogous to minimising a
quadratic function f(x,y) using two search directions vl and v2
spanning the plane. Starting from some initial guess we may alternately

minimise f 1in the directions vl and v2 . Similarly, to find the



best L2 fit we may begin with an initial guess {xj}.{uj}L,{uj}R .
Stage (i) is to find the minimum in the linear manifold specified by the
variations given in (14) and so solve (10) for new {uj}L.{uj}R with
the % fixed. Stage (ii) is to find the minimum in the linear
manifold specified by the variations given in (15) and so solve (11) for
new {xj} by the implementation of (13) as described below.

Note that the calculation of X from (13) is implicit since f
depends on xj and y .Up are new values. Any standard algorithm may
be used to extract Xj : here we use the elementary bisection method.

In the case of (12) there is no solution for Xj unless u o= up -
In this exceptional case any xj in the element is a solution.

The L2 error of the fit described here is never worse than the

error of the interpolant Uy which is well known [2] to satisfy

-1
ug - £11y < 21811, (17)

on (0,1) . This order of accuracy is borne out in practice (table 1),

as is second order for the corresponding piecewise linear approximation

[1] (table 2). (See also Appendix).

83 Results

We show results for three examples,
e—20(1—x)

(a) 0<¢<x<1 11 interior nodes
(b) tanh{20(x-0.5)} O <(x <1 11 interior nodes
(c) sin 2mx 0<¢x¢(<1 11 interior nodes

In each case the initial grid is equally spaced. In each example

the trajectories of the nodes as they move towards their final positions



are shown together with the function and the fit obtained. The process
is said to have converged when the relative error in the L2 norm of

f(x) - u(x) 1is less than 10—4 . (The number of iterations appears on
the ordinate axis of the trajectories. The iteration is of Jacobi type

and no attempt has been made to accelerate the convergence.)

Table la exp(—20x)

no. of internal nodes 8 16 32
relative error in ||.||2 0.1163 0.0843 0.0604
convergence rate 0.875 0.929 0.959

Table 1b sin 2mx

no. of internal nodes 8 16 32
relative error in ||.||2 0.3317 0.2448 0.1784
convergence rate 0.993 0.876 0.912

Table 1c tanh 20(x—%)
no. of internal nodes 8 16 32
relative error in ||.|l2 0.1773 0.1274 0.0909

convergence rate 0.917 0.953 0.972



Table 2a exp(—20x)

no. of internal nodes 8 16 32
relative error in ||.||2 0.03256 0.01711 0.00888

convergence rate 1.747 1.856 1.892

Table 2b sin 2mx

no. of internal nodes 8 16 32
relative error in ||.||2 0.09727 0.05259 0.02742
convergence rate 1.6 1.774 1.88

Table 2c tanh 20(x—%)
no. of internal nodes 8 16 32
relative error in ||.||2 0.05611 0.02994 0.01555

convergence rate 1.672 1.812 1.892



- 10 -

§4. References

[1] Baines, M.J. and Carlson N.N. (1990). On Best Piecewise Linear L2
Fits with Adjustable Nodes. Numerical Analysis Report 6/90,

Department of Mathematics, University of Reading, U.K.

[2] See e.g. Porter D. & Stirling D.S.G. (1990). Integral Equations; A

Practical Treatment from Spectral Theory to Applications. CUP.

[3] Carey G.F. & Dinh, H.T. (1985). Grading Functions and Mesh

Redistribution. Siam J. Numer. An. 22, 1028.



- 11 -

Appendix A
In this appendix, following [1] and [3], we give an asymptotic
equidistribution result for the convex case. From (10) it follows that

u-f vanishes at at least one point in each element, r, say. Then,

since u' =0 ,
X X
[Te@ e = [ ®- v =160 -y (A1)
Tx Tx
Hence
Xy Xy 2
£(x)-u, )2dx = £ (F)AE} dx A2
7 cemmac= [T { [ o) (42)
X1 1 K
Xy 2
7 {9 faerd & (43)
Xp-1
where f' is the maximum norm of f' in element k .
max, k

Now, if E'(x) 1is an equidistributing function,
(xk—xk_l) E'(Gk) = a constant, C , (A4)

where x , <6 <x , and we have from (A3)

JXk (£-u,)%dx ¢ JXR {E'(ek)}‘2 {f&ax‘k}zdx (A5)
*k-1 *k-1
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so that

*n e B
J (F-u)2ax < C° ) I {E'(ek)}'2 {f&ax’k} ax . (A6)
%o k=1 %,

Finally, as in [3], we approximate the right hand side of (A6) by

the integral

X

C2J n{E'(x)}‘2 {f'(x)}zdx . (A7)

X
(o]

and minimise over functions E(x) ., yielding

tffr)® )] -o

or

E'(x) « {f'(x)}2/° (A.9)

X

5o« [{r@®} 7 a (A.10)

which may be regarded as the asymptotically equidistributed function.
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Appendix B

In this appendix we extend the result in the main body of the
report to general extremals.

For the problem of finding the extremal of the integral

J%(x.u)dx (B1)

over piecewise linear discontinuous functions u(x) with variable

nodes, we folllow the same procedure as in 8§81, obtaining

X

k
J Fu(x,uk)éuk dx = 0 (B2)
k-1
[F(x,u)] ox, =0 vk (B3)
J J

in place of (8) and (9). Then (10) and (11) become

Kk
J Fu(x.u) wk(x) dx =0 (B4)
k-1

[F(x,uk)]j =0 . (B5)

The corresponding algorithm is to solve (B4) for L in each
element with fixed X (stage (i)) and then to solve (B5) for the X
with u restricted to the stage (i) solution, possibly extrapolated
(stage (ii)). Both problems are nonlinear and may or may not have

unique solutions.
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