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Abstract

A comparison is made between earlier resuits obtained from solving
the shallow water equations on the sphere using an explicit TVD scheme.
and those from using a corresponding implicit method. The equations
considered resuit from a transformation of the flux form of the shallow
water equations into a set of conservation laws with source terms due to
the earth’s rotation and topography. The technique of operator splitting
is used to allow the methods to be applied to the two-dimensional model
which is solved on a regular latitude/longitute grid. Solutions are presented
for a meteorological test case which demonstrate that the implicit scheme

considered is highly diffusive and not suitable for the particular application

of interest.
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1  Introaducrtion

[n this report the application of a class i ~chemes known as Lutal Vartationai
Diminishing ( TV'D) to solve the Shallow Water Equations (SWE) on a sphere is
considered. The S\WE are a test case for numerical schemes proposed to soive
atmospheric low problems. and describe the height and velocity profiles ol a
fluid. The equations are derived by assuming that the fluid is inviscid and that
the vertical component of acceleration is negligible. Integration of the Navier
Stokes equations over the fluid depth then gives the SWE (see [4] for details)
which are a 2-dimensional non-linear system of equations. The particular form

of the equations of interest here is the Aux form

oh* i d(h*u)  A(h*vcosb)
— — - . =0
ot a cos f do a6
A(h u) 1 d(h™u®)  I(h uvcos ) gh* Oh < > .
L=
Jt +acos()[ Jdo + d0 ]+(tcosé?dcb f+ tan@ t

a(g;v)+ac(1)sa [a(fg:u) N a(h-Lgocose)}+gZ'g_Z _ <f+ %m@) b (1)
where £* is the fluid depth and & is the height of the free surface above sea level
such that » = A" + h, (if h, represents the orographic height). The velocity
components u and v are defined in the longitudinal ¢ and latitudinal # direction
respectively and the Coriolis parameter f is given by f = 2Q0sin 6 where 2 is the
earth’s rate of rotation. and a is its radius.

In previous work [1] an explicit TVD method. Roe’s scheme. was used to solve

a set of conservation laws derived from the above equations. namely
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[0 Wwas tond that winen ow oerured i 0 e DOlar Fesions o e ~aall time
step was needed for the C'I'L condition 1o he =atisfied and the soiution 1o remain
stable.  The main conclusion rom the study was that an implicit <cheme was
needed if the severe time step restriction imposed by the stability criterion was to
be overcome. To that end this project was instigated to identify suitable implicit
schemes which might be of beneiit to the meteorological community. Anyv such
scheme would have to be conservative. TVD. at least second order accurate and
perform better than the schemes used in current operational models.
In the preceding sections the original explicit method is described. [ollowed
by details of the implicit scheme used. Results are shown for a particular test

case, and finally the conclusions of the project are presented.

2 The explicit scheme

Roe 5] proposed a method to obtain an approximate solution to a set of conser-

vation laws of the form

based on regarding the data as piecewise constant and solving a set of Riemann
problems. .\ Riemann problem is one where the initial data is constant either
side of a discontinuity. If the discontinuity lies at the point 2 = ' then the initial
values are
, wy o<
w(0.z) =
wgr ifz>1
where w; and wg denote the left and right states and 2’ is the interface between

them.

The solution to equation (3). w'. is regarded as an approximation to the

average state between two interfaces. where the interfaces are placed at the mid

points of the cells. i.c.

. 1 (i+4)Ar
w / w(x.nAt)dr
' (

N S i—%)dr

where A is the grid spacing on a regular erid. and A¢ is the time step.
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W, + AW =1 i

where 4 Is a constant matrix. then an approximate solution to the exact problem
(3) can be taken to be the exact solution to the approximate problem ().
The matrix 4. which depends on w; and wpr. can be picked in many wavs

but in Roe’s scheme is chosen to satisfy the following properties:

(1) A constitutes a linear mapping from the vector space w to the vector space

F.

. oF
(i) Aswp — wp — w. A(wp,wr) — A(w), where A = 0—

ow’

(i11) For any wi, wg, fi(WL,WR).(WL —wp)=F — Fg.
(iv) The eigenvectors of 4 are linearly independent.

The above set of conditions, termed ‘Property U’ by Roe [3] ensures that the
Riemann solver has the desirable properties that the solution is consistent and
conservative and therefore gives the correct shock speeds across a shock.

For any two states, w and wg, the flux difference across the interface can be
expressed as (6]

Fr—Fp =) ahé; (5)
§

where €, are the right eigenvectors of 4. A, are the eigenvalues or wave speeds
and a are coefficients known as the wave strengths. This results in the Hux at

the interface being (6]
1 . L - B[4
F1'+§_(WL-‘VR) = 7(FL r FR) -5 Zak !)\k\ €.
i = ok

A local linearisation can be introduced by choosing an A with property U7 which
implies (as a result of (ii1) above) that its eigenvalues and eigenvectors not only
satisfy equation (3) but also
WRp — Wy = dkék.
k

Lach a satisfies a scalar scheme and the method of updating is to add

At N
—'A—‘I:,\;;dké;\. to wp il A >0
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where M. a: and é, are determined in the caiculation using the values of w and
F from the current time step. and so rthe method is explicit.
To allow the niethod to he applied to a problem with source terms. denoted

by f. the source terms may be expanded in terms of the eigenvectors of .{ i.e.

. I
f(w*) = —— 3 3¢,
(W) - g K€k
which enables the difference equation to be written as

witl = wh + ﬁ i AeTeer
Az k=1
where ¥ = & + J/A¢ and P corresponds to either the left or the right state.

The resulting scheme is then to add

At o ¥
—_/\k;)’kék towp if A\, >0
Az

or
—ﬂ:\k’?kék to wy, if /.\'\k < 0.
Az
Details of how to calculate i, 7k and & for the SWE maybe found in (1].

If (2) is written in the form

Wi+ Fs +Gy=f+g+s (6)

where

w = (h'. h'u. h'v)T

o ( h'u h'u? R h'uv )T

* 5 p -
acost acosf  2acosfd’ acos

a a a 2a cos

’ Ih, T
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and

L
—W. — =0 — (S
SWe Ga gl i e (3)

Only the terms from f and g are incorporated within the decomposition (5). The
terms in s which result from the earths rotation are added pointwise at the end

of the update.

3 The implicit scheme

The implicit scheme chosen for investigation was one used in previous work [2]
to solve flow problems in channels and pipes. In [2] the method was applied to a
l-dimensional form of the SWE known as the St. Venant equations. A detailed
analysis of the scheme may be found in (8} and [9].

If the method is applied to a scalar conservation law, in the form of (3),
then the flux function is one coming from the TVD version of a centred scheme

without the term responsible for the space-time combined discretisation and may

be written as
=7 1 n n n in n
fi+;- = 5[ i T 7= (1= ‘9(7'{+;_))|/\i+‘5|6u5+%]7

= . N

.1 1s the approximate advection speed and o(r)

N, — a4
where éui+i— = up,

represents a limiting function (see (7] for details). The scheme mav be extended

to a system of equations by discretising the equations in the following manner

n+t
{

= Wfl

] 1 — - 1 - x +1 n
R n+ n )] = gpttl 2 — o
t - (08 (FT + (1= 0)67 (7)) = 6t + (L= O)r

w

where ¢7(F7 ,) = F7 |, —F* | and r = f 4+ g + s are the source terms. The
t+5 L+3 i~z
Aux function is formed using an approximate Jacobian matrix A1 and can be

written as

¢+%éﬁ%]

l 8 [
FT+: = E[FH_[ - F; — Z l;';‘+é_(l —o(rf )t

H-._J
i=1.2

(9)
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corresponding erenverors e . Lhe denntion ot i< the saie as thai in Roe's

s<cheme. [lere tne argument ol the limiter is taken (o be

\»

g

i L .
Ay Ll
1‘"_1' -"_T

where s = .sign(,\f."Jrl_). Inspite of coming from a centred scheme this choice of s
causes the scheme to be upwinded.

The Jacobian is written in diagonal form using

Ai+;— e Pi+é_diag(;\f+%)15:._l

1
3

where 151-“_ is the matrix of column eigenvectors. If the matrix Bl-+2; is defined as

B£+L- = P£+ Fi+ 151:1

o]—
tp—
=

with Lipi = diag['lpl.’;%(l - rDﬁ_%)], then the flux can then be expressed as

. 0
Fi+,i—, = E[Fi.H +F; — Bi+%6Ui+§]‘

Both the flux vectors and the source terms can be approximated at the implicit

level by a Taylor series expansion of the form
F! = F? 4+ ATAw; + O(At?)

R* = RY + GFAw;: + O(A8?)

where Aw; is the time increment to w; and A and G7 are the exact Jacobians

of the flux and source term vectors evaluated at the explicit time level. By using

this linearisation and approximating Bl":f by
2

n+l __ n
L+,;— - Bf+

o=

a block tridiagonal matrix system is obtained. with off diagonal terms correspond-

ing to the periodic boundary conditions of the problem. i.c.
AAAU L + BB;AU, + ('C,AUL, = D,. (10)
The coetficients of equation (10) are 3 x 3 matrices of the form

Y/ -
14, = —_—)—‘L.{g_| - B-‘—LJ”



[I; = ﬁu‘A(, — ey —

o \i) .
CC, = =iy — B,
2 C

D, = -MF7 . - F_.," + AtR"
Again using the technique of operator splitting. two equations of the form of (7)
and (8) will need to be solved for the separate coordinate directions. Working

through the algebra it is found that the corresponding sets of matrices for the

two problems are. for the longitudinal (o) direction.

0 1 0
v 1
d = -2+ w? 20 0
a cos
—uv v U
dYi — l;') —d*(a + u_"‘) —d' + ¢* 0
1 . . . _ )
B = —91/:"' (d' — d3) (@ + )@ — ™) —dM@ + wT) + d¥(a — w) 0
d'o(d — ) — d*o(i + 0*) + 235" —d'% + %% —2d3¢"
0 0 0
JR
— ey uy . v [/ u tan §
C=sw = "2 -L% ey 3(f +2228) |,
u? 'g tan u tan
et~ ey —h(f + el 0
and for the latitudinal (6) direction,
0 0 1
== — v 0w
al -~
—0* 4w 0 20
d*(5 + v=) = d'(D — &) 0 dt — ([
1 . . _ _ .
B = N ad*(o + w”) — ad" (v — w*) = 200°d® 207 a(dt — %) '
(B + ™) (& — w™)(d? — d) 0 dYD 4 w") — d*(T - )
0 0 0
1 {.-)R 4 N 1w tan j
G='()—w: _uu;inv bt;:t? %(f‘}‘ LIL U)
et - Lamgens _yfitms
where v=? = iL’g/ cost and a tilde above a quantity denotes the approximate

value at the midpoint of the cell.



4+ Application 1o a rest case

Fhe scheme was appticd 1o tie Hrst of a series ol 1esL cases proposed by \Williamson
I 1 DR TR . ) i ) ) o . -
et al (L1} wherein a cosine beil is transiated around the globe. Tle advecting wind

is specified by
=ty (cosdcosa+sindsina)
' = —ugsin @sin o.

where « is the angle between the axis of solid body rotation and the polar axis

of the spherical coordinate svstem.

The initial cosine bell is defined by

%(l—{—cos(%)) ifr<R
0 ifr>R

h™(¢,0) =

where A5 = 1000m. R = «/3 and r is the radius of the great circle distance
between (¢,0) and the centre of the bell which is initially at (¢.,0.) = (37/2,0).

The radius r can be calculated from

r =acos™! [sinf.sin @ + cosd, cos 6 cos (¢ — o)),

the parameter values are taken to be
a =6.37122 x 10°m

Q= 7.202 x 10°s~!
g = 9.80616ms*

and ug 1s to be set as 2ray( 12 days) which is equivalent to about +0ms~!'. There
are no mountains in this problem. corresponding to h, being zero everywhere.

If the program is run for 12 days then the initial profile should return to its
starting point. without any change of shape.

The chosen grid has points equally distributed in the longitudinal and latitu-
dinal directions. with grid spacings Ao and A0 respectively. In this instance the
angle 6 is not the standard polar coordinate but is instead measured from the
equator so that 6 lies in the interval [—~7/2. 7/2] where —x/2 is the South pole

and 72 is the North pole.

v
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closest the poles being A0 [rom the pote. 1o avoid nodes at ihe pole points. 1t

Is necessary to take an even number ot intervais in the longitudinal direction.

5 Results

For the initial testing and debugging of the program. 6 day runs were performed
with a = 0. This choice should result in the profile being translated halfway
round the globe along the equator. In each instance the solution is found using
a time step of 1800 seconds (1 hour). The initial profile is shown in figure 1.
Comparing this with the results in figure 2 using the scheme with § = 0 and ¢ = 0
(corresponding to Roe’s explicit scheme) we see that a highly diffusive solution is
obtained. as seen previously [1]. If the Superbee limiter is then applied the results
are much improved (see figure 3). Setting § = | gives figure 4. The solution is
again diffusive, but this time the introduction of a limiter has little effect (see
figure 5). At this stage it is apparent that, when the scheme is used explicitly, a
limiter must be used to achieve satisfactory results, while if an implicit scheme is
used the results are always too diffusive.

The results so far seem reasonable. though a little disapointing. When the
code is run for 12 days with § = 0 the results shown in figures 6-7 are obtained.
When 6 is set to 1. figures 3-9 are produced. A number of subsequent tests have
been performed. results for which are not shown here. which demonstrate a similar
behaviour when the implicitness parameter is set to 1. There is no evidence to
suggest that the phenomenon which occurs in figures 8-9 is present in any of the
6 day plots. and the behaviour is unexpected. It is believed that the cause is a

fault in the code. rather than a consequence of the scheme.

6 Conclusion

A scheme has been presented which had previously been found suitable for mod-
elling lows in channels and pipes. It was hoped that the scheme would also prove

to be suitable to solve the SWE on a sphere. However. as can be seen from
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aighly difusive. it is now crear al this stage woetler the computer coae is line-
tioning completely correctly. aud this mav account tor the poor resuits. \Ve have
experimented with other tnplicit schemes ot higher order but without resolving

the difficulties. ["nfortunately due to time restrictions. work on this problem is

unable to continue. though it is believed that a suitable scheme could still be

found.
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Figure 1: Initial profile

Figure 2: Explicit scheme with ¢ = 0. 6 day run

[ligure 3: Explicit scheme with Superbee. 6 day run
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Figure 4: Implicit scheme with é = 0, 6 day run

Figure 5: Implicit scheme with Superbee, 6 day run

Figure 6: Explicit scheme with o = 0. 12 day run
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Figure 7: Explicit scheme with Superbee. 12 day run

Figure 8: Implicit scheme with ¢ =0, 12 day run

Figure 9: Implicit scheme with Superbee. 12 dayv run
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