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Summary

A finite difference numerical technique is presented to solve
equations of Navier-Stokes type when coupled with a stress equation.
Steady planar two-dimensional flows of incompressible non-Newtonian and
turbulent fluid models are considered. The system of nonlinear
equations that results is solved iteratively using a successive
substitution approach that introduces a set of linear equations and a
combination of inner and outer iterations.

The convergence of the iteration and the stability of the difference
scheme are analysed for a forward-facing stép problem. Particular
attention is paid to the dependence of the outer iteration upon the
relevant material parameters. Results are presented for the
secand-order Non-Newtonian model and an extension is developed to enable

the scheme to deal with a k~t1 turbulence model.



1. Introduction

' Scope of Paper

A numerical scheme is presented which solves equations of Navier-Stokes type
for steady planar two-dimensional incompressible flows. The flow variables
considered are stream function ¥ , vorticity w and stress . The eguation
system to be solved is then stated in non-dimensional form as

VY = -w, (1a)

V2w

Ru.Vw + Wu.Vrg, “b)
. R . (oY oY .

with the definition of velocity u =V x ¢ = (593— 5;) and where R is a Reynolds

number and W a stress parameter (W is a Weissenberg number for the Non-

Newtonian fluid model). Eguation system (1) is completed by a stress

description equation. Attention has initially been directed towards a stress

term that arises in a simple Non-Newtonian fluid model where

= V2w . (2)

This description is derived from the so-called second-order model. It is an
overall aim that the techniques proposed should be sufficiently general to find
application in any flow situation that may be described by a coupled system of
the incompressible flow equations and a stress equation system. The
Maxwell/Oldroyd models [1], some models for turbulent flows and buoyancy driven
flows are all obvious candidates.

The full system of equations (1) and (2) is considered in a form with
(1b) replaced by

WE.YQ - = —RH.Yw . (3)

representing two elliptic Poisson eguations and a hyperbolic egquation.

It is discretised by finite difference methods on a uniform grid: the usual
five-point operator is used for (1a) and (2) with (3] replaced by

a Crank-Nicolson type scheme. The resulting system of (nonlinear) equations is



solved iteratively in a sequence of Picard-type iterations at the outer or
nonlinear level. At the linear or inner level a combination of inner iterations
for the elliptic equations (SOR) and direct marching scheme for the hyperbolic
equation is used. The convergence of the iteration and the stablility of the
difference schemes are analysed for a forward-facing step problem. Results are given

for various model problems covering a range of values for the two-parameter family (R,W).

(") Historical Background

The full system of nonlinear equations is solved iteratively. This paper
concentrates on a traditional approach of linearisation by decoupling,
introducing a set of linear equations and an outer Picard-type iteration. The
present iterative scheme is compared to two similar iterative schemes proposed
by Crochet and Pilate (2) and Davies (3). With integer n 2z 0 indicating

an outer iteration number these schemes may be summarised as follows:

wa" Vet s Ry W2 - VAT = 0, (4a)

vzwn+1 + ot 0 TR S “ wn+1 (4 b)
where for Scheme 1 (Crochet) r,l = r, = r3 = n+1; Scheme 2 (Davies) r1 =n, |
ry = n+1 , R = 0; Scheme 3 (Present) r, = ry = n+1 , r, = n.

Scheme 1 yields a third-order differential equation for W leading to
convergence difficulties in the corresponding inner iteration.
Converged solutions of the outer iteration were reported for the values (R, W)
of £(15.1), (10,.2), (4100,.4), (500,.8), (1000,1.4)}. A critical upper limit
on W was observed for each selected R value, though this 1limit increased
with increase in R. Scheme 2, with R = 0 , gives an efficient inner W
iteration but W is effectively limited by the numerical smoothing of the source
term Wgn.Y[Vzwn). Converged solutions were reported for (R,W) of {(o,.n,
without filtering; (0,W) , W £ 10 with filtering}. The third and present scheme
differs from schemes 1 and 2 by the inclusion of a three-step outer iteration,
and the solution for V2w at the.linear level by a direct marching scheme. No
upper limit on W is found for converged solutions for R £ 10, though scheme 3

is dependent upon restriction of R.



The dependence of the outer iteration on R and W may be investigated
through a linearised perturbation analysis using a single Fourier mode (see
Morton et al., L41). It may be deduced that low frequencies (i.e. long wave-
lengths) |E| give convergence difficulties for all three schemes. Scheme 2 also
suffers at high frequencies leading to a bound on IKI « W' (see Tanner L\ 5] )
and convergence difficulties with increasing W. For scheme 1 at fixed R ,
as W incréasés from zero a limiting value may be predicted W « R |E ;in
which will increase with R. The present scheme presents much less severe
restrictions on W for small R , but the situation is expected to deteriorate
mare rapidly with increasing R.

Acceptability of converged solutions for small R 1is based upon the
Tanner/Geisekus theorem, (see Tanner [61 ), for creeping flow (R = 0). At
W =0 the solution for ¢ is trivial, C = V2w = 0 , and from Tanner's theorem

the velocity field {H]wzo also satisfies the problem ¥ W > O.

7. Full Statement of Model Problem

The solution of the forward-facing step or contraction geometry is considered

for the model equations discussed earlier and used in the following form:

WHH.YCH+1 = @t g Rgn.ywn , (g a)
vt - MY, (5b)
gyl o oot Hn+1 -V x VUSSR ULS B (50)

The region of solution is shown in Fig. 1: ABCD is a fixed boundary, FE a
symmetry boundary, AF the inlet boundary and DE the outlet. The flaow is
assumed to be fully-developed at inlet and outlet. With, firstly, a statement
of the minimum boundary assumptions required, followed by the implied conditions
actually used, the appropriate boundary conditions are

Fixed boundary ABCD

3%y

U=v=0 == V=0, w=-—L,0 =05 (6 a)
an?

Inflow boundary AF

u given , v=~?r>v(=0 —) V., w given ; (6 b)

Outflow Boundary DE

N dw _ 3T _ oY oW - .
L A "GN M~ Go)



Symmetry boundary EF

%% =0, v=0 == V¥ = constant, w=0, C=20, be (G6d)

For given values of R and W , the last remaining parameter in the problem

is the step ratio AF:DE taken as 4:1.

Commencing from W = 0 for (5) and introducing small W > 0 involves
consideration of a singular perturbation problem. One may expect boundary layers
for C to result dependent upon the boundary conditions imposed. If a zero
value of ¢ is imposed at outlet then boundary layers are avoided. This is
consistent with the exponetially decreasing complementary function form for
C when treated as an 0ODE along the streamlines in the upstream direction.

3. Numerical Approximation

(iy Finite Difference Equations

The region § of Fig. 1 is covered by a regular square grid of side h

and nodal values of the variables Y , w , T are denoted by wi j etc. at

nodes x = ih , y = jh. Values of h of %—and ?%-are used, with some 1400

mesh points and 16 mesh lengths at inflow for the former choice. Use is made of

standard ditterence operator notation as follows:

S Y = Y] - wi,j ; uxw. .= 3

X i+%: 1+%-JJ

+ P, L) (M

1+1, ] i+1,35 0 T4,

with similar meaning for 6y and uy. The difference approximations for the

Poisson eguations for w and Y (5 b,c) are then

(6 2+ 68 2) oY o ng"*Y (82 4 82y 0t oo o 20t (8)
X y i,] i,] X Y i, i,]

the standard five-point schemes: here superscript (n+1) denotes the stage of the

+ + +
n»i 5 wn1 3 wnl.

Two different schemes are used for the stress equaticn (5 a): the box

outer iteration process, ¢

scheme in the recirculating flow region Q; and the Crank-Nicolson type schgme
in Qa where the flow 1s predominantly in the x-direction. For the former,
velocities are required at the centre of each cell and are given by the four-
point formulae

n n n n
u = 6 = - .
148,945 * P Oy Viag gep 7V oged, g4l Hy, S Viel, je1 9%

The box scheme approximation to (5 a) is



..5._

S n n+y . ) n+1

n n n
= - § §
R[(U uy x TV y}w ]i+%,j+%
where the parameter 6 permits weighting within the scheme on a pointwise basis
and ensures stability for all possible velocity fields. The Crank-Nicolson

scheme covers two neighbouring cells with the same x-coordinates and is therefore

centred at (i+%,3j): thus the velocities are given by the unsymmetric formulae

n _ n n _ n )
Uieg,5 "M My Oy Viegg 0 Vied,s T T S Vieg,s e
h h
and the approximation to (% a) is
n n n+1 “n+ _ oD n n
[w(u OF v uxuydy)c s ]i+%.j B R[U O & “x“yéy]w ]i+%,j Ll
where Ci+%,j = BC i+, 1 + (1-8) ai,j g 7 (1o¢)

The weighting parameter B is introduced to again ensure stability of the
scheme for all velocity fields.

(ivy Boundary Condition Implementation

For the stream function wn in (8), Dirichlet boundary conditions apply
over the whole boundary except DE , from (6a,b,d). From (6c) Neumann
conditions apply on DE (same for ©w') and are incorporated in the following

fashion:

n _ N n = N
Vg "V, ¢ Yy %14,y (11)

Likewise for wn in (8) Dirichlet conditions apply on AF and EF from
{ 6 b,d); only the specification of w" on the wall ABCD remains. This
approximation is achieved by Taylor series expansions based on local wall velocity

conditions. With reference to Fig. 2, use is made of the following derived

formulae:
Wf yE =2y sy T (12a)
Wi g =30y g - Vi, 5y g St
WMy Ty gt 2 ) e

where I and J are wall coordinates, (I,J) is the re-entrant corner

point C, and r din (12 b) may be chosen at level n-1 or n. Formula



( ‘Y2:a) is formally first-order accurate, see (Thom [71); formula ( 12 b)

is second-order accurate, see Woods (8] , and is used with r = n at all

wall points bar C; formula (12 c) is attributed to Kawaguti L 9 land provides
a finite estimate of wg based on the first-order form. At C , w is
unbounded; however the simple formula (1 2 c) generates an estimate closely
approximating that provided by an asymptotic expansion matching scheme (see
Holstein and Paddon [ 10]).

For stability reasons the equations for gn+1 in ( 10 b) are intégratéd
from outflow to inflow, and from ( & a,c,d) gn+l is set to zero on all
boundaries, except on the inflow boundary AF. Fully-developed conditions at
inflow provide a compatability check on the solution generated and for
consistency Cn+l should decay and vanish there. Providing the exit
length CD is sufficiently large no boundary layers are encountered, and in fact
with R Z 0, then CTZ 0V W20 as it should be. If the Crank-Nicolson
scheme (10 ) were to be used over the whole region Qh sufficient data would
now be available with {w,W}z'j specified at all interior and boundary points:

the same is also true if the box scheme (8) is incorporated in a limited

zone Q; based on ABC but not extending across to the symmetry boundary EF.

4, Solution Procedure

The nonlinear equation system is decoupled into a system of three linear
equations. A three-step outer Picard-type iteration is introduced where each
step constitutes the solution of a linear equation at the inner level. The
procéss commences with the iterate (Cn,wn,wn] and the order of computation is
to first calculate Cn+1 , from which wn+1 is generated, and finally wn !
is obtained from wn+1. The cycle may then be repeated after recomputation of

1
the new velocity field iterate gn+

The difference equations (8) for wn+1 and ¢n+1 are solved using

a secondary inner SOR iteration with empirically estimated optimal relaxation

factors of 1.6 £ £ 1.8 and Py = 1.0  (as in Davies et al., [11}1).

pw=

Additionally, a necessary consideration for the stability of the outer

iteration is to restrict the w inner iteration to a single iteration per



outer iteration cycle. This is a consequence of the influence of the
boundary conditions on wn+1 and applies equally in a Stokesian context
(cf. Morton et al. [41). Utilising graded iterative convergence
tolerances with less stringent restrictions on w than ¢ also produces
the same effect (see Webster [11). The essential nature of such
practices becomes quite apparent when the residuals of the equations are
monitored throughout the iteration process. It is certainly an
advantage therefore to be provided with homogeneous boundary

conditions on §n+1

The stress §n+1 is calculated in the following manner. First,

the box scheme ( 9 ) is introduced for the recirculation zone Q;.

+1 , ,
Proceeding in a point-by point fashion starting near B , ;2 541 is given by
n+1 . n+1 . Cn+1 . Cn+1 _hn
“184,501 " %2%1,35 7 B3 baen, 501 T %4 Baen,g T Biay, g (13
. w iy 4N . _ _gah n _ -
where c, = (36 4]5 W(u V]i+%,j+% pc = 65-1 W(u = V)i+%’j+%, m=2, 3, 4;

and 0 <0 £ 1. It is vital that Q; is restricted to the recirculation zone

defined by the known separation line value of wn. Otherwise, large numerical

: ] . n+l ) ]
oscillations in ¢ occur cross-stream and are subsequently swept upstream.

This is due to the sign switch of coefficient C, » when v begins to dominate
un. The factor © may be altered from the average value of unity to the totally

weighted zero value dependent upon a pointwise selection criterion; its choice

guarantees the stability of the scheme for all variations in (u-V]2+l j+
27 2

Second, the Crank-Nicolson scheme (10} is used in Qﬁ involving a direct

line-by-line marching procedure from outflow to inflow. A tridiagonal matrix

R . n+1l . n+1t
of equations results for each I-line and CI is related to E I+1 by



n+1 n+1
[vz;j+1 (U+h(1-g)) v%_dI + [vz.:j+1 * (U-Bn) g, v¢§j_1]1+1
n
= -FI+%,J (14)
wher V = E- n and U = WUn A fast tridiagonal solver is used to
© ZV 1+l I+1,3. g

solve the system of equations (14 ). Numerical stability of this solver is
guaranteed since the associated matrix is diagonally dominant almost everywhere

. 2 . . - N T s 1 n _ . _
in Qh , i.e. provided 'PI+%:JJ 2 31 LYI+%'j] for B 0. From a basic 1-D

analysis of simple channel flow, the condition B & %— must be satisfied
to avoid streamwise oscillations in the implementation of the Crank-Nicolson
scheme. Furthermore, from a discrete Fourier analysis of the line-by-1line

marching sweep, the stability criterion B8 = %—+ i emerges. Both

n

>
1+4,5 = 0

conditions are satisfied and stability affirmed if 8 =0 and u
(see Morton et al., [4] ). The Crank-Nicolson scheme is only applicable for
a zone predominantly in the x-direction, where streamlines can effectively be
tracked. If it is extended to Qﬁ a large cross-stream oscillation in Cn+1

1s observed due to small velocity field values, and leads to a failure to

gonverge in the Picard iteration.

Relative tolerances in [g, w, Y] of [10_2, 10-2, 10_3] are used to
monitor iterative convergence: smoothing of one outer iterate with the
next is also used. It is generally observed that, as R is increased,
convergence criteria become increasingly more difficult to satisfy. The
convergence of the Picard iteration is directly related to R: for small R
convergence may be obtained for any W , whilst for larger R (greater than 10)

convergence of the Picard iteration deteriorates for larger W. These conclusions

are 1n agreement with the arguments of section 1.

A selection of results is presented in Figs. 3 — $ . For creeping flow

-y

(R=10) & vanishes V W =2 0 . For R = 10 solutions are found for
-4 2 . 1 . R 1
10 £W<10°: T bebhaves like Rg.Vw for W £ T and like Ww for W > Mk

where U 1is a characteristic velocity value. The same relative behaviour for



L 1is observed for R £ 1. The solutions for ¢ for 0.1 £ W <10 at R =1
and R = 10 are shown for comparison in Fig. 3. For completeness the solutions
for y.and w are also given at W =1 for R =1 and R = 10 1in Fig. 4.
Solutions for ¢ and w <change negligibly with W for R £ 1.

Fig. 5 is included to illustrate the standard tensor stress components
pik (cf. [1]) for the second-order ﬁodel that arise in the situations
investigated. This should dispel any possible confusion arising between

these (dependent upon second-order derivatives of u) and the scalar stress ¢

(dependent upon third-order derivatives of u). Here the first normal-stress

~

difference pxx N pyy and the shear stress pxy are displayed at R = 1

for W=1 and W =10 , where normalisation is performed with respect to

the corresponding downstream fully-developed wall value.

5. Extension for a Turbulence Model

An initial proposal to utilise the techniques already outlined is to consider
the k ~ I one eqguation turbulence energy model as the stress description
equation replacing ¢ (see Thomas et al, {121). The model variables are then

turbulence energy Kk , w and Y and the model equations are

' eI 3 _9u, (ou, . du,

49+ vk =78.7B K+ BK's , S - 3] ('a?§ ") (152)
u.Vy- D% = Ve (0, Wy ¥y )+ 200, s 200+ Dt b ) (15b)
VY s - : u=Vxy, (15¢)

=

- 1 - _
where D =R * +Bk? ,B' =R * + B0 k*, v -c B ', R,8,0,Y,5, > 0; and
R(x) is the length scale given by an assumed algebraic specification. S is

noted to be a positive definite field variable.

The treatment of (15a) for Kk is similar to that for . The positive
coefficient Yy indicates a switch to marching in the flow direction and there

are now additional terms VB.Vk and BV?k to augment the scheme. With

reference to Fig. Ba, k2+1 at point P2 is calculated by the Crank-Nicolson



_.10-

scheme as follows: 29 Kn+1 uses (k.,k ]n+1; 3 kn+1 uses (K Sk k, o,k )n+1
X 2°°5 y 3’74’76

=

50 nys N+ 1 n
k*k is replaced by (KSJ k2 , and YB,B and Bk*S also use (k J)7;
+1

B V?k uses K"* at P P P3 P4 P P P8 and Kn at P7. A tridiagonal

n+i

system again emerges with unknowns (k k KB] at each step. Next with

1”7 72’

reference to Fig.6 b, the box scheme is used to calculate Kn+l within a

1 1
recirculating flow region. Thus kM is obtained using (k2 ’ KS’ K4)n+

1
and , additionally, (kg, kg)' for B8 Vk.
Boundary conditions follow as before except for k and w at the wall.

Here the velocity field near the wall is used to derive such boundary conditions

based on the universal logarithmic law of the wall and matching with a viscous

sublayer (see Turner, [(13]1). This necessitates the calculation of the
wall shear stress TWALL from the known velocity field gn using the
relationships
_1
= - = 2
“wALL RTaLL ’ KwaLL = Cu ALl (18)

Also at attachment and separation points the normal derivative of k at the
wall must vanish.

The approach adopted has been to solve laminar flow for R = 2000 ,
using for the vorticity equation the centred difference scheme of Dennis and
Smith [14] with exponential coefficients. Beyond R = 2000 the switch to
modelling turbulence with the proposed scheme can then be attempted.

The k ~ £ turbulence model provides an example of a scalar stress
equation with the complications arising from a positive coefficient vy .

It may therefore be viewed as a forerunner to problems with a stress
equation system of similar form, as occurs for Maxwell/Oldroyd fluid

models, or indeed for the k ~ e turbulence model [15].



6. Conclusions

A finite difference numerical technigue has been developed to solve
specifically incompressible flow problems of various types. New features
involved are the direct marching scheme employed for the stress equation
and the particular choice of outer iteration scheme. The study of this
and similar iteration schemes has lead to a more complete understanding of
their convergence behaviour with respect to the material parameters involved.
Indeed, for the second-order model the convergence of the present scheme
is directly related to R , and for small R solutions may be obtained
for a wide range of W . Extensions of these techniques to further
problems with different stress description equations is already in hand

and will form the basis of future research.
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Figure Legend

Fig. 1. Schematic flow diagram.

Fig. 2. Mesh near boundary.

Fig. 3. Stress ¢ contours.

Fig. 4. Stream function and vorticity contours.

Fig. 5. First normal-stress difference and shear stress.

Fig. 6. Finite difference scheme stencils.
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