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Abstract

Some observations are made on the nature of the moving finite
element equations, namely their invertibility for co-incident nodes, and
conditions for equivalence of local and global methods when using
Mueller inner products. Techniques are then described for

two—dimensional recovery and regularisation of nodal movement.
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1. Introduction

The moving finite element (MFE) method, originally devised by
Miller and Miller [6], and being still in its infancy has prompted much
work in its development and implementation, see e.g. [10], [11], [3]. as
well as associated work, e.g. [2]. In this report we describe some
aspects of MFE and its implementation not described elsewhere in the

literature.

In the rest of this section we describe briefly the Moving Finite
Element method in one and two dimensions, both local and global
versions. An indepth account is not given, the reader being referred
to more detailed works for this, the purpose of this section being to

set the framework and notation for the remainder of the report.

In section 2 we demonstrate the non-singularity of the MFE matrix
for coincident nodes, a result not appreciated in early work. In
section 3 conditions are derived for the equivalence of the local and
global versions of MFE when using Mueller inner products to deal with
diffusion terms, while in section 4 a form of recovery to deal with such
terms in two dimensions is described. Finally in section 5 a technique
of regularisation (see also [1]) is described which imposes a constraint

on nodal movement in order to prevent element folding.



1.1 Moving Finite Elements in one-dimension

Consider the scalar evolutionary equation
u = L(u) (1.1)

where L 1is a spatial differential operator. We approximate the

solution v by piecewise linear finite elements, i.e.

N+1
v(x.t) = ) a0, (%.5(t)) (1.2)
0

where aJ are the nodal amplitudes and aj are piecewise linear basis
functions (see Figure 1.1), depending on the nodal positions Sj which
vary with time. s(t) 1is the vector (SO""Sj""SN+1) of these

nodal positions.

Figure 1.1 aj

Partial differentiation of (1.2) with respect to time gives

N
Ve = g {a0;0c.5(2)) + 84B,(x.2(t).5(t))} (1.3)



‘where

a (1.4)

j—l /_.—’” j+

Figure 1.2 Bj

The 2N unknowns éj and éj are obtained by minimising the L2

norm of the residual, namely

v, = L(v)I_. (1.5)

with respect to these parameters, giving the set of 2N equations

|
o

<vt - L(v),aj>
J=1,....N (1.6)

Il
o

vy = L(v).B

where <.,.> 1is the L2 inner product. Substitution of (1.3) into



(1.6) yields the MFE equations

Ay = s (1.7)

where
Y = (al,sl;az,sz;...;aN.sN)T (1.8)
g = (<ay,L(v)>.<BL(v)>i..... < L(v)>. <By L(v)) | (1.9)

and A(y) 1is the MFE matrix, which is square, symmetric and 2 x 2

block tridiagonal, the ijth block given by

la,,a.> <a,,B.>
Agy = [ 17y i j]. (1.10)
<ﬁi.aj> <Bi,Bj>
The system (1.7) 1is solved for N using, for example,

pre-conditioned conjugate gradients and the solution updated using Euler

time-stepping on aj and s, ,

J

aJ(t+At) = aj(t) + Atéj(t)
(1.11)
sj(t+At) = sj(t) + Atéj(t) .
Various time-stepping strategies can be used to select At . For

example, choosing At to be half the time to when the first pair of
nodes would coincide. A more sophisticated strategy also prevents the
arc length (VAa®+As® ) from passing through an extrema during the

time-step.



1.2 The local method

MFE as described so far involves the global solution of a set of

2N coupled equations for éj and §, . This system however will

J

decouple to produce a two—step locally based method.

Firstly we define two linear basis functions ¢§E& and ¢§%& as
shown in Figure 1.3. It is easily seen that
= o(2) (1)
aj = ¢j—% + ¢j+% (1.12)
= (2) (1)
and ﬁj = mj—%¢j—% + mj+%¢j+% (1.13)
where
a, - a
m o, — = (1.14)
j—% §, — 8 ’
J J-1

is the gradient of the piecewise linear segment of the solution in

element j-% .

Figure 1.3

The inner product <aj,L(v)> can be decomposed into
2)
-%
and similarly (1.15)

B L) = mj_%<¢§%%.L(v)> + mj+%<¢§i%,L(v)> .

@lL(v)> = <¢§ L(v)> + <¢§i%,L(v)>



The inner products <ai.aj> N <Bi.aj> etc. also decompose in a
similar fashion allowing us to rewrite the system (1.7) as
T T,

MCMy = Mb (1.16)

where the matrix M 1is a 2 x 2 Dblock diagonal matrix, whose block

entries are

M, = , (1.17)

the matrix C 1is also 2 x 2 block diagonal, but with its blocks,

staggered with respect to those of M , of form
Ay ul2 1
Cj—% = 5 [ 1 2 ] (1.18)

and b 1is the vector of inmer products of L(v) with the elementwise

basis functions ¢

T ,T T
b o= (B by )
1 2 T
= (<L) oLy (1.19)
Since M is square and invertible (assuming mj_% # mj+% . in

which case we have the singularity of parallelism [10]) we can write
(1.16) as

CMyg = b (1.20)



which may be solved in two local stages:

1. In each element solve
Cidtu = Rjy
for
)
~j—4 T wg%&
2. At each node solve

(2)
fy =8 s [W?If]
’ Vi

At each stage only a 2 x 2 inversion is necessary.

The local and global methods are equivalent (but see section 3) in

the one—-dimensional case.

1.3 Two-dimensions_— the global method

In two-dimensions the nodal positions now have two coordinates,

i.e. g = (xj.yJ)T and (1.3) becomes

N

v, = % (80, (x,8(0)) + KB (x.a(8).5(8) + ¥y7,008(t).5(£))} (1.24)

where the extra function
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", = —vVv.a, (1.25)

now appears and the elements are now triangular.

The MFE matrix A i1s mow 3 x 3 Dblock tridiagonal, its entries

being
<ai.aj> <ai'Bj> <ai.7j>
Aij = <Bi,aj> <Bi.ﬁj> <Bi.7j> (1.26)
<7i,aj> <11.BJ> <11.1J>
and the vectors j and g are now composed of triplets. The method

then proceeds analogously with the one-dimensional form described above.

1.4 Two-dimensions — the local methods

Just as in the one-dimensional case the MFE equations may be

written in the form of (1.16) where now

. . A 2 1 1
G = {<¢1£1).¢1({J)>} =3 (1 2 1 (1.27)
1 1 2

Ak being the area of element k and ¢£1) being the element basis
function of element k which is unity at node 1 . The matrix Mj is
given by

boome ™y
M, = = : : (1.28)
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where the J subscript refers to node J and k spans over
surrounding elements. The piecewise constant y gradient of element

k 1is denoted here by n, -

Since Mj is rectangular we cannot multiply through by its
inverse, and the dimensions do not permit its pseudo inverse to be
exact. Instead we solve the following local element and nodal
problems.

1. For each element k solve

Gy = By (1.29)

2. For each node j solve

T. . T.
MDMy. = MD, 1.30
i3 i 3% ( )
where Dj is the diagonal of Cj . (See (5.2) for the explicit form

of these equations).

Here, due to the non—invertibility of Mj ., the local method is

not equivalent to the global method.
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2. Non-singularity of coincident nodes

Early work (e.g. [10]) assumed the singularity of the MFE matrix
when two nodes coincided in physical space. This misconception arose
from the decomposition of the matrix into

A = MCH (2.1)

where the matrices M and C are block diagonal, namely

5
. Ciy
M = i C = p (2.2)
where
As, 2 1
M, = [ 1o-myy ] Cpy = — [ } . (2.3)
1 mi+% 1 2

(Note the staggering ofthe blocks of M compared with C , thus giving

the block tridiagonal A).

When two nodes, S5 and s, » merge, then Asi_% becomes zero
and C Dbecomes singular. Clearly if M remains finite then A is
also singular, however this is not the case. To best see this, let us

decompose C further into

C = EDE (2.4)
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where E 1is diagonal and D block diagonal, with

C =ET

14 1-801-4F 1y (2.5)

As” 0 2 1 (2.6)

The potential singularity has now been removed from the block diagonal

matrix, into the matrix E . We now recombine,
A = MEDEM = NDN (2.7)

the potential singularity being taken into N ,

N = EM = N, (2.8)
where
% % % %
Bsy_y My yhSi_y bsy_y, —huy_y AsTy
Ny o= | 4 | T |, % % (2.9)
DSy Mgy Asihy ~Buyy Bsyy
since
Au
mi+% - i+ -
S1+%

Note the effect of the staggering of the blocks of M and E .
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The matrix D is now always non-singular and finite, so we
consider the matrix N. In particular since it is block diagonal we

consider one of its blocks,

% ~i
N Asy yy ~huy sy y,
A % A A ~%
Si+4 Yiug %14y
Its determinant is given by
1
det(N,) b1y )" A et/ (2.102)
et = u u . 10a
i AS1—% i-% A 144 1+%
or equivalently by
%
As, As, , _
det(N,) = | o A | G My Aty (2.10b)
S+ Si-%
and its inverse is given by
- ~4%
S N Thug Sy AUy bsy 2.11)
i det(N.) _ A % A ¥% ’
1+ 1

We now consider the cases where either Asi_% or Asi+% tend to

zero, i.e. either S; sy OF 8, 2S;.4 . (but not both, which

would be classified as the true singularity of parallelism).
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Consider first the case As, ,~»0 ., choosing expression (2.10a)

for the determinant, we have

% -1 %

_1 =
-1 Asy AUy Sy B8y AUy Sy
N = 9qbu, , - — Au_ . (2.12)
i i-% Asi+% i+% —As% AS—A As
i-% i+ "i-4%
which as Asi_% -0 (Asi+% # 0)
0 bu, sy
u S,
N;l = Au;i% i-% 1+%]
0 0
0 As?”
s,
= L (2.13)
0 0

If, alternatively, Asi+% - 0 we choose (2.10b) for the determinant,
and obtain
=] -% % -1
S R o v S Ay sy AUy hs lss y
i 7 As._% i-% i+4 L A ~% A Y%
S+ 014 Si+4
-%
Au,  As 0
1 its "i-%
- Aui_'_% as Asi_'_% -0, Asi_% #0
) 0
-1,
—Asi’f1 0
= (2.14)
0 0]

Note that in each case N;l exists but Ni does not, in the sense that
N is not invertible. This should be interpreted that, although the

minimisation equations cannot be explicitly written down for coincident
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nodes, an inverse exists, and so, provided the right hand side, g , or
more precisely A_é exists and is finite, the solution does not have an
analytic singularity for coincident nodes and the solution can be
continued through such a situation. In such circumstances, however,
care should be taken to use an inner product which integrates along arc
length, such as the gradient-weighted MFE of Miller [8] , so that the

norm of minimisation remains appropriate for overturned manifolds.
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3. A condition for the equivalence of local and global MFE in

one-dimension when using Mueller inner products

When using Mueller inner products [9] for second derivatives in the
right-hand side of diffusion problems, the integration by parts produces
terms involving u, evaluated at the nodes. In the global method
these terms cancel as the contributions from adjacent elements are
assembled and therefore are not explicitly calculated. However, in the
local method, since the assembly matrix M is not applied to the
element inner products, this cancellation does not occur. The question
then arises as to what value to take for u at nodes, since due to the

plecewise linear nature of the solution it is underfined there.

For the local and global methods to be equivalent, the requirement
is that these additional terms should cancel when assembled using the

matrix M , we therefore compare

{a.,, (D >
) { a;, (D(wu, ) } B
<Bi. (D(u)ux)x>
the r.h.s. of the global system, with
(2)
1 1 <¢:75. (D >
Al e
i Ty <¢i+%'(D(u)ux)x>

the assembled element inner products from the local methods.
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Simple integration by parts gives

s,
i
{2} (D(uu) > = D(u, )u(L)l M- ':J D(u)dx (3.3a)
-1
. i+1
{1 (D(u)u) > = D(u, )u(R)l *‘ I D(u)dx (3.3b)
1+A
where uiL)|. and u(R)| are the values of u, at node i

approached from the left and right respectively. On the other hand we

have

m, i m, i+l
. DE)aR Satill D(u)dx  (3.4)
As As
i-¥% i-1 i+4 Vs,

<ai,(D(u)ux)x> = =

which, comparing with <(¢§%% + ¢§1%),(D(u)ux)x> gives

W)= WP S

x|
1

i.e. we must use a consistent value for ux at the nodes, and not, for

example in (3.3a) and in (3.3b) as we might be tempted.

M+

This is only natural if we require the terms to cancel.

M1

If we now compare the [ equation

i+l i+1
(ﬁi.(D(u)uX)x> = J; D(u)u;(ai)xdx - %J; u;(D(u)ai)xdx
i-1 i-1

(using ﬁ = —ua, and integration by parts)



- 19 -

m? i m> S1+1
i-4 1+%
= %3 J‘ D(u)dx - Kg———-J‘ D(u)dx
i-% Ys i+% vYs,
i-1
+ %{m§+% - m‘;_%}n(ui) (3.6)
with
2 1
<(my_#3) —m o)) e0)u ) >
gives
= 2 - 2
(myyg = mi—%)uxl . #(m gy~ Myyg)
l1.e.
uxli = %(mi+% + mi_%) (3.7)

So for equivalence of the local and global methods in 1-D when using
Mueller immer products, we must take the value of u at nodes to be
the average of the slopes on either side. Of course, we need not
stipulate that the two methods be equivalent - we could, for instance,
choose a weighted average instead, thus generating an alternative

method.

In two-dimensions, although the global and local methods cannot be
equivalent, due to the different spaces in which (a,B.7) and
(¢(1).¢(2),¢(3)) lie, we can adopt the same strategy of taking u.x.uy

to be the average of adjacent slopes at the nodes.
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4, Recovery in two—-dimensions

An alternative to using Mueller inner products for second
derivative terms in the right-hand side of (1.1) is to use recovery
[10]. This entails fitting a piecewise polynomial to the first
derivative and then differentiating. Typically a quadratic would be
fitted to the first derivative giving a piecewise linear representation
of the second derivative. This process is simple and straightforward
in one-dimension, best results being obtained using weighted averages of
gradients at some knots [3]: however in two—dimensions the expressions

derived by Johnson [4] become complex.

In this section we show how, by using area coordinates, the
expressions for quadratic recovery 1in two—dimensions are much
simplified. We also show how, by inclusion of a cubic term, the

quality of the recovery is improved.

Consider a patch of elements as in Figure 4.1.

Figure 4.1
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Fit a quadratic to points 1-6 for u and for uy . such that
i 8
) Pymy
= i=1,23
i
2 Py
o= ey = 1 (4.1)
PEE PN N,
PE n . i =4,5,6
i
where
pj = weighting function for element j ,
mJ = x gradient in element j ,
E = 1indicates element of interest,
Ni = neighbouring element on side containing i ,
s, = number of surround elements

and similarly for wy(§i), m being replaced by n the y gradient.
That is, the gradients interpolated at the knots 1-6 are given by a

weighted average determined by the pj .

We now construct the interpolant to the first derivatives.

Figure 4.2



Use area coordinates Ci : (i(§J) = {0 ;
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1 j} I
j i,j =1,2,3

won

with Cl + fz + §3 =1.

Then points have area coordinates: 1: (1,0,0)

as in Figure 4.2.

Hence

W (£1.05.03)

and therefore

W (£1:05.05)

(0,1,0)
(0,0,1)
(%.%,0) (4.2)

(0,%,%)

a O s W N

(%.0,4%)

20, (0w + 20,0, )+ 20y (0w
ag Cort )+ ag,t0l®) + g o w(®) (4.3)

Z = X or y

(ar,-1wi e (a0 Pe, + (a1

400, * Cypfoi ) + 4(0gla, + Lo L)l
4(C,Cy, + £y LS (4.4)
Z = X or y.
We need now expressions for gix and ciy ‘ In terms of x and

y the area coordinates are given by

with

gi = ai(x - XJ) + bi(y - Y) (45a)

I
(@

ai(xk - Xj) + bi(Yk - yj)

5)

ai(xi - xj) + bi(yi -y

where

(i,j.k) = perm (1,2,3) (ordered

permutation)

(4.5b)
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- i (yj_yk) (yj_.yk) (4.6)
therefore a, = - - = .
i Gox ) (97 )~y ) (%4 7%) 2A
and
o (q%4)
i 2A
where A = area of element = ¥ X element jacobian.
Hence
(v;=3,)
ix i 2A
(4.7)
(x,—=x.,)
C 5 b = e,
iy i 2A
The question now arises as to the weights pj used in the
averages. pJ =1 1is a straightforward average, whilst pj = Aj , the
area of element j , 1is a possible analogue of the element weighted
recovery so successful in one-dimension. Another possible analogue of

this one-dimensional recovery is to weight according to transversals,

see Figure 4.3, which appears more robust in practice.

Figure 4.3

Both of these possible analogue differ in one important feature

from the one-dimensional recovery, and that is that the gradient of the
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element ’'being recovered’ is not used singly at any of the nodes,

whereas in the 1-D recovery, the situation is as in Figure 4.4.

(P 54gm 5P g™ 43507 (P 53g*P s010)

(Py My 1Py i)
pj"'%+pj"%

Figure 4.4

We can strengthen the analogy by introducing a seventh knot at the

centroid of the element as in Figure 4.5.

o
e )
3 5
Figure 4.5

This point has the area coordinates (1 = (2 = §3 = 1/3, and so (4.3)

has added an extra term
(7)

where, to interpolate my (or ni) at this point, we take

w§7) = my + %[w}(cl)+w>(c2)+w)(c3) - 4(W,(c4)+w,(<5)+w,({6))] (4.9)
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and (4.4) gains the extra term
(€1, 8os + o Ca * Tilola YUl (4.10)
1z>2°3 1°2z>3 1*2°3z/"z ° ’
The effect of this is to add a cubic term to the interpolating
quadratic, although the interpolant is not a full cubic. Numerical

results indicate that this form of recovery is far less prone to

spurious over/under shoots than that given by (4.3),(4.4).
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5. Regularisation

In one-dimension the problem of node merging can usually be easily
overcome using a time-stepping strategy. However in two—dimensions the
equaivalent problem of element folding is not so readily overcome.

This 1s possibly due to the extra degree of freedom in nodal movement.

An alternative ©ploy is to use ©penalty functions [7] or
regularisation [1], both of which effectively constrain nodal movement.
Baines [1] gives a general overview of regularisation strategy, but here
we describe an ad hoc regularisation which works well in practice for

the two—dimensional local method.

Consider the second stage of the local method in two-dimensions,

where we are solving

T . T.
MiDiMixi = MiDigi (56.1)
at node i, i.e.
Y A -YAm - YAn, |[& ] Y A
zj 3" i % "3
-) Am, A m? z Amn || %, = |- Am.w} (5.2)
J i 3 J 3 i 33
—z An, Amn, E A .n? V. -y An.w
A JJ JJJ JJ L1 ] L JJJ |
where summation is over elements j surrounding node i . It is

easily seen that if we were to overwrite the centre term 2 Ajm§ of the
matrix MIDiMi with ’'infinity' this would produce a zero ki on
solution, similar treatment of the z Ajn§ entry would produce the same

effect on yi . We can therefore control the nodal movement by

modification of these two diagonal terms of the matrix MIDiMi , whilst
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the first equation of the system ensures that the nodal amplitude is
correctly adjusted. We achieve this by multiplying the second two

diagonal terms by limiters, ¢? and ¢¥ giving the new system

2 Aj - z Ajmj - z Ajnj &y Ajwj

| X 2 : . _ L i

z Ajmj ¢iz Ajmj Ajmjnj X, = z Ajmjwj (5.3)
L y 2 . L i
ARy LAmpy D AT || | 2 APy |

The choice of these limiters now give great latitude to control of
the nodes. Choosing them to be different will change the direction

6 of movement, modifying it by an angle 66 such that
X
-1 %
6 +60 = tan — tanf (5.4)

including even a reversal of direction by taking them both negative.
The larger the values of the limiters the smaller the resulting

velocities.

The crudest possible regularisation is to use the same limiter on
both terms, ¢§ = ¢¥ N ¢i , and to choose it in such a way that if one

of the surrounding elements is much smaller than the rest the limiter is

large, slowing the node down to prevent element folding. Two such
regularisations have been used successfully in practice. The first
takes
A'ave
¢i = K-__ (5.5)
min

where the minimum and average of the areas are taken over all the
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surrounding elements, the second takes

T
A"
¢i b Ta g (5'6)
min

where T 1s the transversal of the element Jj passing through node
i. (See Figure 4.3). Just as in the case of the recovery (see
section 4) the regularisation using transversals works better in

practice than regularisation using areas.
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