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Abstract
In this report we consider the flow in an open channel with a
region of geometry-induced super-critical flow. A shock capturing

scheme is used to resolve the resulting discontinuous solutions.



1. Introduction

Although discontinuities are not normally associated with the flows
in rivers they can, and do, occur.

In this report we will consider the flow in an open channel with
rectangular cross—section. The channel width and the bed-slope will be
such as to induce a sub-critical - super-critical - sub-critical flow
regime.

A shock-capturing scheme is used and although it is an inefficient
method for smooth flows some examples of non-discontinuous flows are
included to show that the method also copes with these types of flows.
However, the shock-capturing scheme comes into its own as the bed-slope
is increased and the flow becomes super-critical. Discontinuities are
formed and many of the classical methods fail at this point, or at best
contaminate the solution with oscillations. We shall show that the
shock-capturing scheme takes all this in its stride.

In Section 2 the equations will be introduced and the method of
solution will be described in some detail.

In Section 3 the model problem will be described and the results
given.

Finally some remarks are made about work that will be done in the

future to (hopefully) improve the results yet further.



2. The St. Venant Equations and Roe’'s Scheme

The St. Venant equations for rough-turbulent flow in an open

channel are:-
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a— + -a—x- =0 (la)
3Q . a8 [Q? dh . QlQ
ﬁ' + —a—}z [—A] + gA [’a—x + —;I<;J-] =0 . (1b)

Where
A = cross-sectional area = breadth x depth =B x d

(only rectangular channels are considered).

Q = massflow

u = velocity

g = gravity

h = height =d + z where z is the height of the river bed.

gl%l is the friction term chosen to give the fully
K
rough-turbulent form in this case.

K = %-(hydraulic radius)%

where the hydraulic radius = A/wetted perimeter. M 1is Manning's
constant for which we will take a value of 0.03.

The scheme we shall use for the solution of these equations is an
approximate Riemann solver due to Roe (1981).

To get the equations in a form to which Roe's scheme can be applied



we rewrite (1) as
At+Qx=0
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where we have replaced h by A/B+ z and f =z

. An extra
X

Y%g A® BX/B2 is added to both sides of equation (2b) for reasons we will

give later.

The equations are now in the form
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Following Roe (1981) we define an intermediate, or parameter,

vector



and now express the vectors g and F in terms of the parameter vector

to get
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Using the standard notation of Ax = Xp ~ ¥ and g:: %(§R+ §L)

we proceed to calculate matrices B(w) and C(w) such that

Aq = B(w) Aw
AF = C(w) Aw .

This leads to
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where B = VEL BR :

At least this is what we have tried to do, but not all the terms

fit into this form which is why we added the term Yg A? Bx/B2 earlier



to cancel the additional term out (see equation 2b).

We proceed to find A such that
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Reassuringly, if we ignore the averaging, these are then u % vgd
as we would expect.
These eigenvalues give two eigenvectors which, after multiplication

by B , are given by:-

— / =72 9 %9 s ——2 2 %2
& = |Wg ~ VeBw, w;/B v 8y = (Vg ‘/ Wy wy/B

Two a's are now found such that 3 a e, = Ag (and by construction
i

Sa; A e = AF) , i.e,
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If we define ¢j’i+% to be the signal from the jth eigenvalue at

the jump at i + %, 1.e.

At
P4 = TN Y Y

then the first order upwind algorithm is defined by

Algorithm Ul
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If we in addition transfer an amount aj 144 against the direction
of the flow we can achieve second order accuracy in smooth regions by

choosing

aj = %(1 - |VJI)
: .th
where vj is the CFL number of j =~ wave.

Defining a transfer function, Baines (1983), by

B(ay jay 5,144 - aJ.i+%—aj) = B(b;.by) .

say, where aj =sign (Aj) , Wwe can arrive at various second order
schemes. Linear functions of b1 & b2 tend to give classical second
order schemes with all their faults for discontinuous solutions. Taking
non-linear functions, however, enables us to arrive at oscillation-free

second order schemes (see Sweby (1984, 1985) for a fuller discussion).



We note, for further reference, that if we wished to project the

right hand side of the equation, i.e. (3c), in the following fashion

then ﬁl and ﬁz would be

- V& (aB /B - Q*/% - p)B”
Bl = J— (4&)
vB

and

B2 - ﬁl . (4b)

3. The Problem and the Results

We consider only flow in a rectangular channel. It is desired that
the flow be sub-critical - super-critical - sub-critical which means
that one boundary condition needs to be applied to each end of the
channel. At the left-hand end we fix the massflow, Q, and at the
right-hand end we fix the depth, d, by extrapolation from the interior
values.

The parameters available to us in choosing the channel are its
breadth and slope. The channel is 10,000 metres long and has a smooth
constriction that goes from a breadth of 10 metres - 5 metres - 10
metres, see Figure 1.

The bed-slope was taken to be a constant value except between 4500
and 5500 metres where twice this value was taken. See Figure 2 for a

typical cross—section.
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Depth, mass flow and Froude number have been plotted out for the

following slopes:

1

10,000 Figures 3-5
e Figures 6-8
10,000

S Fi o-11
250 igures

L Figures 12-14
500

L Figures 15-17
50 gu :

These figures show that Roe's scheme copes with both the smooth
flows and the discontinuous flows equally well. We should just remark
that because the flow in Figures 15-17 is super-critical throughout, the

boundary conditions are not correct for this problem.

4. Conclusion

It has been shown that Roe’s scheme can cope with these flows.
However, further improvements could be made to the treatment of the
source terms. Here it has been found necessary to evaluate them
pointwise, in line with the experience of Sweby (1988) but in contrast
to the experience of Priestley (1987) and Glaister (1987). Using a
second order scheme exaggerated problems with the source terms. This
obviously needs to be looked at if we do not want to keep changing our

codes every time the source terms change.
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