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Abstract

We investigate a number of three-level (two step) finite difference schemes for
time discretization in solving a class of nonlinear parabolic partial differential equa-
tions (PDE’s). In contrast with two-level (one step) implicit schemes, where a
nonlinear system of algebraic equations has to be solved, our proposed schemes are
semi-implicit (or linearly implicit). Therefore the implementation is simple since
only the solution of a linear system is needed at each time step. Linear stability
analysis together with local truncation error estimates are provided for all schemes
considered. We finally illustrate the schemes by applying them to one linear and
four nonlinear parabolic equations. Test results show that the stability of these

numerical schemes is well predicted by the linear theory.
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1 Introduction

In this report we shall consider the finite difference solution of the nonlinear parabolic

partial differential equations (PDE’s)

o pinZL v o (1)

Oz? z

in the region 0 < z < 1, ¢t > 0, where f(z,0), f(0,t) and f(1,t) are prescribed. Assume
that in (1), both D(f) and C(f, f;) are nonlinear but smooth functions. Of course we
require equation (1) to have an unique solution F'. For the stability analysis we shall

replace (1) by a linear model equation

of _ ,0f of

where D, k are taken to be constants with D > 0. The choice of C is based on similarity
to semiconductor models,

Let us adopt the usual notation for stepsizes Az in space and At in time. Denote the
finite difference solution by f(nAz,jAt) = fi. For brevity we shall denote the central

differences by
§f1 = f,’;+1 - f,{_l first order

52f3; = ff];+1 —2f3 + f,’;_l second order

The idea of using three time level schemes, instead of two say, is to theoretically



increase the accuracy and stability, and to be able to practically linearize the nonlinear
algebraic systems which are usually generated from using implicit schemes and difficult
or expensive to solve. Our proposed three-level schemes will all be of the form

L ¢ i+t D(fit') s~ 5 pim) pitt | o~ = e 1 SN i+t 3
Elzzowzfn _WZ Z Wy Jagm t+ (Z%an ,Ekzowlfn >, (3)

{=0m=-1

)

where wy, wﬁ"‘ , Wy and 1w, are appropriate constants. Refer to Fig.1 for the molecular
stencil of (3), where j refers to the known level, j+1 the intermediate level and j+2
the new time level. Note that in (3) the coefficient function D is always evaluated at
the intermediate level. As we shall discuss later, some terms of the function C will be
linearized if w, or wy are not zero.

Therefore the nonlinear PDE (1) is to be approximately solved through the ‘linearized’
finite difference equation (3). Specific schemes to be studied here are all of the general
form (3) and hence can be easily implemented, as the resulting linear system has at most
a tridiagonal coefficient matrix.

In section 2 we shall introduce the first five schemes, all based on the idea of the
‘leap-frog’ scheme. These have been generalized from the two-level schemes tabulated in
Richtmyer and Morton [8, Ch.8] to solve equation (1). In section 3 we consider the three-
level fully explicit scheme of Du Fort and Frankel [2] for our problem. In section 4 the
Varah [12] scheme, proposed for mildly nonlinear equations, is generalized for solving the

nonlinear equation (1). Local error analysis of all schemes are given in section 5. Finally



in section 6 we carry out numerical experiments for five test examples and in section 7

we draw our conclusions.

2 Semi-implicit three-level schemes

Scheme 1 (backward Euler time stepping)

P —fi _ D(fI") 2 s i 8
For the linear model equation (2), we have
(1—-o8)fi" =wsfi + f] ()

where o = 2DAt/Az? and w = DkAt/Awz. The stability of Scheme 1 follows from

THEOREM 1 Scheme I for equation (2), i.e. (5), is A-stable if

Az

At < ——,
< DIk

Proof. Write equation (5) in an equivalent form

1—0é® 0 fit? wé 1 fi

0 1 git? 1 0 gitl

following Richtmyer and Morton [8, Ch.7]. Then the amplification matrix (associated



with the 8 component of Fourier variable) is given by

)

b 1
1¥a 1+a

G(¢,At) =
1 0

where ¢ = BAz, a = 4o'sin2§ and b = 2wsin¢ (since §(e®®*) = 2isin¢ €% and

§2(een) = —4sin® § eon). The eigenvalues p of the matrix G satisfy

(14 a)p® —bip—1=0. (6)

From the Appendix, we know that the roots of (6) satisfy |u| < 1 if and only if (the Schur

criterion)

1) di=(14a)>—1=a*+2a >0

2) dy = |bi—(1+a)bi| =alb| <di.
Obviously the first inequality is true except when £ = 0. Since a > 0, the second inequality
requires that |b| < a + 2 or |b| < 2. That is, |2wsiné| < 2. Thus a sufficient condition is

|DEAt/Az| < 1 ie. At < Az/(Dlk]). O

Scheme 2 (Richtmyer and Morton [8, p.190], No.9)

3 fit2 _ fitl ] fIHL_ fi 0 D(fitly ., Sfit
“Jn n __Jn no_ n 52 7+2 7+1 n
2 At 2 At Ax? R+ R, 2Az ) (7)



For the linear model equation (2), we obtain

(3-8 fit? = (4 +wo) it - fi (8)

with ¢ = 2DAt/Az? and w = DkAt/Az.

THEOREM 2 Scheme 2 for equation (2), i.e. (8), is A-stable if

1
At<W'

Proof. Denote again a = 4o sinZ% and b = 2wsiné. Then the amplification matrix is

given by
a4bi 1
3+a 3+a
1 0
with the eigenvalues y satisfying
(3+a)?—(4+bi)p+1=0. (9)

For |p| < 1, we require by the Schur criterion (see Appendix)

1) di=B+a)?—1=(a+4)(a+2)>0;

2) dp=|—4—bi—(3+a)(—4+bi) =/42(2+a)2 + (4 +a) < d.



The first inequality is always true. The second inequality may be written as

42 b?
(G+ay  (2+ay

<1,

1.€.

a

¢ (D e w

Now the left hand side of (10), after substitution of b and a, becomes

4 (DkAt> sin? E/( 2DAt sin? é) = 2Dk At coszg < 2Dk2AL.

On the other hand, the right hand side of (10) is bounded from below by

2
) (a+8)="22>2,

(a+2
2a +4

Thus we are able to satisfy the inequality (10) from the sufficient condition 2Dk*At <

21 At < 5. O

Scheme 3 (Mitchell and Griffiths [7, p.99])

2o DU (B S T
2A¢ Azx?

) v B



Applying (11) to the linear model equation (2), we obtain

(3 — 08%)fi*? = (062 + 3wé) fiT + (3 4 a6%)fi (12)

where o = 2DAt/Az? and w = DkAt/Ax.

THEOREM 3 Scheme 8 for equation (2), i.e. (12), is A-stable if

V3Az

P < ——.
At < 2DTE]

Proof. The amplification matrix is given by

3bi-a 3-ea
3+a 3+a
1 0
with the eigenvalues p satisfying
(3+a)p’ + (a —3bi)u+(a—3) =0, (13)

where as before a = 4o sin2§ and b = 2wsin{. Using the Schur criterion, we require for

lul <1
1) di =(a+3)%—(a—3)%=12a > 0;

2) dy = |(a — 3)(a — 3bi) — (a + 3)(a + 3bi)| = 6ay/IF B2 < dy.

The first inequality is true except when { = 0. The second inequality simply becomes |b| <



V3, ie. |b = 2|klfmm|sin£| < /3. Then a sufficient condition is At < v/3Az/(2D|k]). O

Note that in Varah [12] the condition At < Az/(D|k|) is given. For diffusion domi-
nated problems, this scheme is known to lead to improper decay in numerical solutions
(refer to Varah [12] and Cash [1]). The scheme 3, which is second order in both space

and time (see §5), was first proposed by Lees [3].

Scheme 4 (Crank-Nicolson type, Svoboda [11, Ch.4])

2 f5 DAYy L, (fitP+ fi i O3t
At - Aw 5 + U 9A7) (14)

Applying (14) to the linear model equation (2) gives rise to
(1 - 083" = w8 fi* + (L + 06)f] (15)

where 0 = DAt/Az? and w = DkAt/Az.

THEOREM 4 Scheme 4 for equation (2), i.e. (15), is A-stable if

Az

At<m.

Proof. For (15), we write its amplification matrix as

—
Vel
fa
o
|
Qg

f—t
o



whose eigenvalues p satisfy

(a+ L)u? — bip +(a— 1) =, (16)

where as before a = 4o sinzg and b = 2wsin. The Schur criterion requires for |u| < 1

1) dy=(a+1)?—(a—1)°=4da > 0;

2) dy = |(a — 1)(~bi) ~ (a + 1)(b3)] = 2alb| < dy.

The first inequality is satisfied except when ¢ = 0. The second inequality gives |b| <
2, 1.e. At|siné| < Az/(D|k|). Hence the sufficient condition is At < Az/(D|k|). O

resulting scheme may be named as 4a. For the linear model (2), the scheme 4a is always
unstable. This can be shown as follows. For the new scheme 4a, corresponding to (15) of

Scheme 4, we have

(1= o8)fi** = (08" + wb)fi* + f3 (17)
and then the new amplification matrix is

bi—a
l+a

‘ e

Jury
+
[~}

G(¢, At) =
10

where parameters a, b, o and w are as in Scheme 4. The eigenvalues g of matrix G satisfy



(a+ 1)p? + (a — bi)p — 1 = 0. The Schur criterion requires for |p| < 1,

dy = |(—1)(a — b2) — (a + 1)(a + b7)| = ay/(a + 2)% + b2 < d,

with d; = (a + 1) — 1 = a(a + 2) > 0. But obviously we have d; > d, for Az, At > 0!
Therefore the scheme 4a is unstable (note that the condition dy < d; is also necessary in

the Schur criterion).

Scheme 5 (Richtmyer and Morton [8, p.190], No’s.10 and 11)

fitz _ fitt fitt — fi D(fj“‘l) - o, SfitT
1 n n _ n no__ n 7+2 7+1 n
(1+6)=— = VTR R ARy e (18)
For the linear model equation (2), we obtain
(1406 -08)fi* = (20 + 1 +wé)fi" —0f; (19)

where the parameter 6 is a constant, ¢ = DA¢/Az? and w = DkAt/2Ax,

THEOREM 5 Scheme 5 for equation (2), i.e. (19), is A-stable if either

2(1+20) when —3<6<0

At <
2/(1+26) when §>0
or
1 Azx? Ax?
At< 5~ 1op Yhn =5+ 5pa;



Proof. The amplification matrix for (19) is given by

14204+6: 8
a 8+a
G(E,At) _ 1+6+ 1+6+ ’
1 0

with its eigenvalues p satisfying the quadratic equation

(1+0+a)p?—(1+20+bi)p+6=0, (20)

where a = 4o sinzg and b = 2wsiné. Applying the Schur criterion gives rise to the

requirement (see Appendix)

dy = [(1+ 20+ bi)(=1) — (1 + 8 + a)(bi — 1 — 26)|
(21)

= JO +a)X(1+20) +82(1+20+a)? < &y

whered; = (1460 +a)?— 62 =(1+20+a)(a+1) > 0if § > —2. Now the inequality (21)

may be written as

(ot (o

2 <1 22
+260 1+ a 1—|—a) ( )

which obviously holds for £ = 0 and ¢ # 0 i.e. b = 0 and a > 0 (see Richtmyer and

Morton [8, p.190]). Consider inequality (22) when b # 0. It is equivalent to

b al2(1 + 20) + a
(I+a)? = (L+20+a)

11



1.€.

b2

| +a
(

= < ({ragrs 20 +20) +al (23)

Let us first look at the right hand side of (23) in search of its lower bound. Since the

following can be verified

l+a . 2
= __F B 26 24
therefore the right hand side of (23) is bounded from below by
a, g = —%
1+a 5
(m) [2(1+26)+a]l = § 2(1+26) +a > 2(1+28), 6€(-3,0)
(2(1+28)+a)/(1+26)* > 2/(1+26), 6§>0.
(25)

Secondly the left hand side of (23) has the upper bound (refer to the proof of Theorem 2)

¥ DAL sin? ¢

Az? _ DE*Atsin®¢
a Az? 4D At sin? g B 4 sin? g

= Dk2At c052§ < DEKAt.

(26)

Combining (25) and (26), we obtain a sufficient condition for inequality (23) to hold :

21 +26),
DKk At <

2/(1+26), >0,

12



2(1 +20)/Dk?, 8¢ (-1,0),
At < (27)
2/1(1 + 26)Dk2], 6 > 0.

In particular when 6 = % + 1—2%2—” we have from the second inequality of (27)
Ax? 2 1 Azx?
At(2 e At < —— — ——.
2+ 5080 <D0 S DR 12D

This completes the proof. O

1

2 is the special case as introduced in Scheme 2 while the

We comment here that § =

. 2 . .
choice § = 3+ %E increases the order of the truncation error of the scheme. For example,

when k = 0, Scheme 5 with the latter choice of 8 has the accuracy of O(At?) + O(Az*);
while the choice 6 = } corresponds to O(At?) + O(Az?). See Richtmyer and Morton [8,

Ch.8).

3 An explicit three level scheme

This fully explicit scheme due to Du Fort and Frankel [2] is now generalized to solve

equation (1) as follows (see Richtmyer and Morton (8, p.190, No.8]).

Scheme 6 (Du Fort and Frankel [2])

Sife v
2Azx )

£~ i DN

1 : , . , .
I B (i g - g - )+ oUn, (2)

13



For the linear model equation (2), we obtain

(I+0)fi? = (c6+wb) i + (1 -8)f2 (29)

where o = 2DAt/Az?, w = DkAt/Az and §fit! = ,’Lii y B

n

THEOREM 6 Scheme 6 for equation (2), v.e. (29), is A-stable if

Az

At < ——.
< DA

Proof. The eigenvalues p of the amplification matrix

U'1+b1: ]i
G(f, At) - 140 140
il 0
for (29) satisfy the quadratic equation
(L+o)p® = (o1 + bi)p + (0 — 1) =0, (30)

where o, = 20 cos  and b = 2w sin €. We use the Schur criterion, requiring

dy = (6 —1)(—01 — bi) — (0 + 1)(—0y + b2)| = 40\/cos2£ + w?sin® ¢ < d; = 4o,

14



Provided that o # 0 (z.e. £ # 0), this adds up to requiring |w| < 1. Hence |DkAt/Az| <
1 i.e. At < Az/(D|k|) offers a sufficient condition. O
Although the stepsize restriction here is the same as that for Schemes 1 and 4, the

accuracy of the scheme requires that At be much smaller than Az (refer to §5).

4 The modified Varah scheme

All the above discussed schemes, evaluating the lower order terms in the space derivatives
at the intermediate level 74+1, may be classified as ‘leap-frog’ schemes. The following
scheme due to Varah [12] uses ‘equal weighting’ for all terms in (1) (compare with Scheme

5)

fR - P = DU g o pn B
B vg-afg -2 epn voqn i) o

1
~—+4
( +61) "2Az

2

where —1 < 6; < 1 and fit! = 6, fi+2 + (1 — 6,) fi*'. To see the relationship of (31) with
previous schemes, say Scheme 5, let us denote § = 6; — % Then formula (31) then may

be written in an equivalent form

fY - fifM - f DU i BFET
R i R RNVl S RC?)

where fitl = (5 +0)fit2 + (3 —0)fi+! with —3 < 6 < 1. Now the above scheme differs

from Scheme 5 only in approximating the right hand side of equation (1).

15



However in general equation (32) is nonlinear in fI*2. Therefore the advantage of
a three level scheme is not present. One partially linearized version of (32) is given in
Varah [12] but we still have the problem of having to solve a nonlinear system in some

cases. Below we propose to linearize (32) based on an idea from Richtmyer and Morton
[8, Ch.8].

From Taylor’s Theorem, we have the expansion

C(u,v) = C(u,vo) + Cy(u,v0)(v — vo) + O((v — v0)?) (33)
_ ant

Therefore taking v = fi*! and vo = ¢/2—, we can replace (32) by the following

Scheme 7 (Linearization of Varah [12])

J+2 _ fi+1 J+l _ fJ J+1 .. . 741
fn fn o efn fn = D(fn )52f7.7l+1 + C(f;7L+1 6 n )

(1+6) At At - Ax? " 2Az
1 sy OfIFL §fit? §fitt
- 7+1 n n - n

where fit! = (3+46)fit! —(3+6)fi. Forexample, when C(f,%) = C(f)(§)* i.e. C(u,v) =

C(u)v?, equation (34) of Scheme 7 is simplified to

e Y ey -

(1+6)=—% At
D(fit1) ST §fi+t §fi+e § fit+t
= \a ) e ] o P = = Pl )
v AR vl Sy ety v (35)

16



For the linear model equation (2), we obtain from (34)

[(1+8) - (; +8)(08% + w)| It = [(1 +260) + (5 — 0)(c8 +wé)|fiTH —6f  (36)

Do~

with 0 = DAt/Az? and w = DkAt/2Az.
THEOREM 7 Scheme 7 for equation (2), i.e. (36), is A-stable if 0 < 6 < 1.

Proof. Along similar lines of proving Theorems 1-6, refer to Varah [12]. O

Remark 1. When 6 = 1, Scheme 7 takes the form

1
2

AT -FY 1T -f D(fi*

= )52fj+2 + C(fj-{-i 5fg|l

2 At 2 At Azx? " 2Az )
o SfIFL §fit2 g fitl
7+1 n n o n

where fit! = 2f7+1 — fi_ Equation (37) is almost identical to Scheme 2 of (7) but the
difference is again in approximating lower order terms in the spatial derivatives of (1).

Remark 2. In our Scheme 7, the introduction of quantity fi+! is due to Varah [12]
but his linearization does not extend to terms involving g—i‘

Remark 3. It should be noted that all schemes presented are A-stable for the

following model diffusion equation

af B 0% f
57 = Dt

17



Refer to Mitchell and Griffiths [7], Richtmyer and Morton [8] and Smith [9]. Therefore
we shall not test this simple model equation.

Remark 4. One interesting, and also important, point is that the stability analysis
for Schemes 1, 3, 4, 6 and 7 uses the assumption that { = SAz > 0. Therefore the
possibility that one of the eigenvalues satisfies || = 1 exists for these schemes. This may
lead to oscillatory solutions. See Varah [12] for one example. However Scheme 5 with a
general 8 (including Scheme 2) does not possess such a problem. That is, |g| < 1 strictly

when the stability condition i1s met.

5 Local error analysis

The local accuracies of these seven schemes are given by the following theorem.

THEOREM 8 For our linear model equation (2), i.e.,

of o*f of
a1~ Dozt Pkg;

with ezact solution F', we define the local truncation error of a scheme such as (8) by

2 1

2
T(F)iH = AtZwZFJH ADzZ » @™ It ¢ (Z@ '{H’A demu)
m :

{=0m=-1

(38)

18



Then for the schemes presented so far, we have for

where

Scheme 1
Scheme 2
Scheme 3

Schenze 4

Scheme 5
Scheme 6

Scheme 7

T(F)iH

T(F)it

n

T(F)itt

n

T(F)*
T(F)*
T(F)H

T(F)j+1

ke3

RVAt  + RPAL +

RMAt  + RPAe +
RP A +
RPAer +

RWAt  + RPAL 4+

R4y 1 RPAe 4+
RPA +

~D( )it

HGEE - R i

-BHEEN - BSEN

Dk( g )i

R

R

HEFH - B (g

. 4 .
%(B“_F)JH _ 2(3_E)J+1

19

R Az’
R Ax?
R Az?
RY Ae?
R Ax?
R Ax?

R Ag?



RY = D2Z[(6- 1)%E + 20k3 + k2R3t

B = D(ZE)+
R = (G

R = R4+ 2(5 - 0T — 5 + 0)(o2am )it

Bxdz?2 /n

R® - R®
with FI*! = F(nAz,(j + 1)At). Obviously Scheme 5 (including Scheme 2 as a special

(1)

case of § = 1) has a second order accuracy i.e. Ry’ = 0 if the exact solution F' satisfies

the equation

1. 62F OF
(6 — 2) 5oz T 20k + K =0, (39)

Proof. Using Taylor’s Theorem, we can obtain the following :

1) F,{;’A—tF,{ - (3F)J+1 n At( F)J+1+ ..

J+2_FJ+1 J+1_ J

GF

2) (1+6)%
= (FE+G+ 9)At(%2§)’“ + A (5FI

j+2 . .
3) KL= G AUZENY + LRI + SR

) =G+ E

20



5) CE = (GEHN + AR + AR H ST+

6) s2Ftt (321«“)34-1 _|_Alz2_(a4p)]+1 T

Ax? Bz? Ozt
2 2 2 4 0
7) 6Af2 - (?%F )JH At(amzat)ﬁl + 45 (ag2at2)1+l + Af; (gm{:)ﬁl o

8) FlL+RN R - (ZEVi+1 _ (ALY2(2E)i+1 4 As? (OUF)i41 4

Ax? Oz at? 12 \ 9z% /n

On substituting these quantities into schemes 1-7, we complete the proof. O

6 Test examples and experiments

We shall experiment on four test equations of the form (1) as well as on the linear model

(2). Our prime purpose is to examine the practical stability of the seven schemes presented

and the adequacy or otherwise of the linear stability theory.

6.1 Model 1 — Linear model equation

We here specify equation (2) further by taking D =1 and k = 1, so that

of (92}" of
— 4
ot~ 0z’ L Oz (40)
for 0 <z < 1. We use the following initial condition and boundary conditions
f(=,0) = exp[—200(z — 1),
(41)

8f/0x = 0, (z=0,1).

21



As is well known, the solution is a travelling and diffusing wave with reflections from

boundaries.

6.2 Model 2 — Nonlinear model equation (1)

Here we take D = 1 and C = (2£)? in equation (1), giving a nonlinear model equation

of o&f , of

a5 92T (%)2 (42)

for which the solution away from boundaries exhibits a smoothed corner singularity with

the conditions of (41).

6.3 Model 3 — Nonlinear model equation (2)

We now vary the diffusion coefficient D in (1) by taking D =1+ f and C = %, giving

another nonlinear model equation

of
E_(l—kf)

o*f of

8z i Oz (43)

We again use the conditions of (41). The solution away from boundaries is a travelling

wave with nonlinear diffusion.

22



6.4 Model 4 — Nonlinear Burgers’ equation (3)

We take one example of the Burgers’ equation (with v =0.01)

of 0% f of
% =027 Toa (44
which corresponds to taking D = -1 and C = —f% in equation (1). The exact solution

of (44) is given by (see Whitham [13])

O9r, + 5ry

, 45
10(7"1 + To + 7‘3) ( )

where

r = exp{—[(z — 3)/20y] — 99t/400+}
ry = exp{—[(z — 3)/4y] - 3t/167}
rs = exp{—[(z - 2)/27]

The example has been used in Varah [12].

6.5 Model 5 — Nonlinear model equation (4)

We now vary coefficients D and C in (1) by taking D =1+ f and C = (§£)?, giving the

fully nonlinear model equation

w-wenPedly (=il (49)

23



the solution of which has a smoothed corner discontinuity and, with the conditions of
(41), exhibits behaviour similar to that found in semiconductor process modelling profiles.
Refer to Smyth and Hill [10].

Following §2-5, we now tabulate in Table i the theoretical stability restrictions upon
At, given Az. In our numerical calculations we choose two particular stepsizes Az, = 1072
and Az, = 2x 1072, Numerical stability conditions observed from testing on our examples
are listed in Table ii. For Scheme 5, we take 6 = % + % and for Scheme 7 § = % Our
experiments are carried out on a SUN 3/60 computer.

In Table ii the entry of co means that no restriction on time stepsize At is observed for
that particular case. We can see that results of Table ii are well predicted by Table 1. In
particular, Schemes 2 and 5 as well as Scheme 7 do not have any time stepsize restriction
for the fully nonlinear example 5. However Scheme 7 has a second order accuracy in both
time and space while Schemes 2 and 5 have a second order accuracy in space but a first

order accuracy in time in general. The latter can only have a second order accuracy in

time when the exact solution satisfies equation (39).

7 Conclusions

Here we have proposed seven time discretization schemes of three-level type and analyzed
their linear stability as well as local error estimates. We have shown that Schemes 2,

5 and 7 are better than other ‘leap-frog’ schemes (including Scheme 4 used in [11]) in
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terms of stability. In particular Scheme 7 is unconditionally stable whilst the restriction
on Schemes 2 and 5 is not severe. Comparison of Scheme 7 with Schemes 2 and 5 shows
that one of the eigenvalues of amplification matrix of the former may have modulus one
while the latter schemes do not have such a problem.

Numerical results have shown that Schemes 2 and 5 behave closely to Scheme 7 in
terms of stability and accuracy, particularly for the fully nonlinear example 5. High
order schemes based on the ‘leap-frog’ idea (such as Scheme 4) do not have good stability
conditions. The implicit treatment of the first order spatial derivative term is evidently
important for improving stability. The more implicitly we treat these terms, the more
stable our schemes will be. Generally speaking, Schemes 1, 2, 5 and 7 are comparable

although Scheme 7 i1s the most robust and reliable,
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Appendix — The Schur criterion

This criterion was investigated in great detail by Miller [6].

Suppose that a quadratic equation is expressed as
cop? +cip+co =0 (47)

where c;’s are in general complex numbers. Then the roots of (47) satisfy |p| < 1 if and

only if
1) dl = |C2|2 — !i(,‘(]|2 > U,
(48)
2) dy = |t — epc}] < dy,
where *’ represents the conjugate of a complex number. Now since |cjc; — coc}| =

ctcy — coct|, then conditions of (48) can be replaced by
0 1h

a) d]_ = |C2|2 - |C()|2 > 0,
(49)

b) d; = [cher — cact| < di.

In Lambert [5, p.78|, (48) is referred to as the Schur-Wilf criterion when the coefficients
¢;’s in (47) are real; whilst in Henrici [4, p.494], (49) is called the Schur-Cohn criterion.
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Figure 1: Time step advance in a three-level scheme
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Table i: Theoretical restriction on At from the linear stability analysis

| Model Problem | Numerical Scheme | Theoretical Restriction (At <) |

1 1 Az
(D=k=1)

(D=1+1)
(k=1/D)

Az/|f]|
0.01/f?

7 Az/lf]
Az/|f]
0.01/f2-1008%
Az/|f]

00
Am/\g
D/(3)

B ac)|2]
Aw/]%
D/(§)? - &5
Aw/|g—£\

o0

(D=0.01)
(k=—100f)

(D=1+f)
(k=8/D)

I | U W N |~ OO R W N N DOV W N O O W N~ OO =W N
[’
8
ul
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Table ii: Observed restriction on time step At from numerical experiments

Model Problem | Numerical Scheme || Theoretical Restriction (At <)
(Number) (Number) (Az; =1.E-2) ‘ (Azy =2.E-3
1 1 00 4.E-3
(D=k=1) 2 00 %)
3 5.E-3 1.E-3
4 1.E-3 1.E-3
) o0 00
6 3.E-4 1.E-5
7 o0 00
2 1 1.E-2 5.E-3
(D=1) 2 1.E-2 5.E-3
(k=24 3 - 1.E4 1.E-4
4 1.E-4 1.E-4
5 5.E-2 1.E-2
6 1.E-4 1.E-5
7 0o (%)
3 1 00 00
(D=1+f) 2 00 00
(k=1/D) 3 5.E-4 1.E-4
4 5.E-4 1.E-4
5 %) 00
6 1.E-2 1.E-2
7 %) 00
4 1 1.E-2 1.E-2
(D=0.01) 2 1.E-2 1.E-2
(k=—100f) 3 1.E-2 1.E-2
4 1.E-2 1.E-2
5 2.E-2 1.E-2
6 1.E-2 1.E-4
7 o0 00
5 1 1.E-2 1.E-3
(D=1+f) 2 00 00
(k=31/D) 3 1.E-4 1.E-4
4 1.E-4 1.E-4
5 o0 o0
6 1.E-4 1.E-5
7 00 o0
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