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Abstract

A New Algorithm for the pole assignment problem of a controllable,
time-invariant, linear, multivariable system with linear state feedback,
is presented. The resulting feedback matrix is a least square solution
and can be shown to be robust in some sense. The method is based on the
controllability canonical (staircase) form and amounts to a new proof

for the existence of a solution of the pole assignment problem.
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1. INTRODUCTION

The linear state-feedback pole assignment problem (PAP) of a time-
invariant, linear, multivariable system is one of the most studied problems
in control system design. (See [1],[31-[6]1,[111,(44], and many general
texts on control theory, and the references therein). There are essentially

four types of methods for the solution of the problem:

(1) Classical methods - transforming the system into one or several
SIS0 systems or canonical forms (Frobenius, Luenberger, Jordan), or

involving the contraollability matrix; (e.g. [31[141]).

(2) Direct methods - transforming the system into canonical form using

stable unitary matrices, {e.g. Schur form [6]1[111).
(3) Matrix Equation methods - solving direclty the equation

BG ’ (1a)

AX — XA

FX G 3 (1b)

for the matrix F, (e.g. [1]],

and

(4) Eigenvector methods - selecting the eigenvectors xj, the columns
in the matrix X in equation (1), from some admissible subspaces,

(e.g. [4][5]), and then recover the matrix F from equation (1b).

The methods in class (1) are usually inefficient or numerically unstable.
The class (3) methods usually require the solution of the Sylvester equation
(1a) and cannot reassign eigenvalues of the system matrix A. In [11, the
equation (1) may have to be solved more than once for different guesses
of the matrix G. The most efficient and numerically stable methods to date
are those in classes (2) and (4), with class (4) methods look for the most
robust solution using some sort of iterative searching algorithms. Class (4)
methods can thus be more expensive. In contrast, class (2) methods do not
utilize fully the available degrees of freedom (when one has more than a single

input) and do not tackle the problem of robustness of the solution.



The algorithm presented in this paper falls between the class
(2) and (4) methods. It is based on the staircase or controllability
canonical form [6] [7] [9] [10] [12], a stable canonical form resulting from
unitary transformations, and the direct method involving equation (1) produces
a least square solution. It can be shown that the least square solution
implies some sort of robustness [4] [5] in a loose or intermediate sense.
In addition, any composition of the spectrum can be assigned.

Finally, this paper is the result of applying the techniques by

Van Dooren {101, for reduced order observer design, to our problem.

4. TRANSFORMING THE PROBLEM

Consider the time-invariant, linear, multivariable, completely

controllable system defined by
Dx = Ax + Bu (2)

where x and u are n- and m-dimensional real vectors, A,B are constant
real matrices of appropriate orders, and 7 denotes the differential
operator for continuous-time systems or the delay operator for discrete-
time systems.

For the PAP, one requires to find a real feedback matrix F such
that the closed-loop system matrix (A + BF) has eigenvalues equal to
L = {A1""’An}' a given set which is closed under complex conjugation.
It is well-known that the problem has a solution if the system defined by
equation (2) is completely controllable [141.

An equivalent problem will be to find the matrices X and G such
that equation (1a) is satisfied for some matrix A with spectrum

p(A) = L. If X is invertible, the solution F can then be retrieved

from equation (1b).



Transforming equation (1a) to the equivalent form

PiAP-PXQ - P'Xg-@"Ag = P'B-GQ (3)

with unitary matrices P and @, where [°]H denotes the hermitian.
Note that the use of unitary matrices ensures that the numerical stability
of the equation (1a) is the same as that of equation (3) and thus not
worse [2]-[4] [6]1-[13].
Let P be selected such that (A,B) is transformed into the staircase

form [61-[101, [12], where

(P ap,PB) = [ A A 0 L0 (4)
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Moreover, the off diagonal blocks A, 149 Can be chosen to be

»

with A,., being r, xr, and B being r, x m.
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in full-ranked lower triangular echelon form [B] [10].
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as the system defined in equation (2) is assumed to be completely controllable.

Here the x's denote some non-zero components, and *'s some arbitrary ones.



The PAP for uncontrollable or stabilizable systems will be discussed
in section 7.

Given any matrix A with the specified spectrum, one can choose @
to have it transformed to the real Schur form [2] [10], with 2x2 blocks on
the diagonal of the upper triangular matrix QH A Q, representing a complex
conjugate pair of eigenvalues in L . If all the eigenvalues in L are real,
QH A Q will be strictly upper triangular, with eigenvalues Ai on the
diagonal.

Hence one does not have to select the transformation @, but assume
that the matrix A is already in the required real Schur form.

After obtaining the solutions X = PHX and G of the transformed

~

equation (3), the eigenvector matrix X can be retrieved from
X = PX » (8)
with F given by equation (1b), or

T

FPX = G . (7)

3. THE ALGORITHM

Retain the notation in equation (1), and assume that the matrices
A and B have already been transformed to the required canonical forms
and the matrix A 1is in real Schur form, as has been discussed in section 2.
We are now looking for a nonsingular matrix X which satisfies the equation
(1a) for some matrix G.

Assume X to be of the form

X d 1
= (8)
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The matrix X is obviously nonsingular, and will be better conditioned
if the strictly lower triangular part is minimized in some norm [2] [10].

Assume that all the eigenvalues Ai are real. (The complex case
will be discussed in section 5).

Denote the j-th columns of X, A and G by, respectively
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gﬂ

>
.

PN | o
- —
IN
[

| %
.
e

(=]

Also denote the matrix which contains the j1- to j2-th columns of the
matrix M by M, .. , and the j-th column by M,.
With the notation in equation (9), one can prove that a solution

of the form defined in equation (8) exists. Consider the j-th column of

the equation (1a):-

\
i X
1 = .- - _1 = - .
i= - log-a, 8] EJ (A-A), (10a)
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The matrices on the LHS of equations (10), M{(j), are n x (n+m-1),

If the matrix M(j) is of full-row rank, equations (10)

can then be solved, as the matrices are then right-invertible. It is easy

to see that the matrix M(j), once constructed, is of full-row rank row-echelon
form, as a result of the elaborate choices of the forms of the matrices

A, B and X.



Consider a typical example, with r, = 2, r, = 2, ry = 3, m=3 and
n = 10, and (A,B} of the form
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and
M(10) = W i {12¢c)
(6]
_b._ d_ =
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{with nine one's on the diagonal).

The columns Xj of X are solved recursively in the order
j=1,...,n; for some {Aj}. The equations in (10) can be solved using
the usual least square technigue, e.g. QR [2] [13]. The solutions
Ej’ 5j and gj are then minimum norm solutions for the 2- or F-norm.
Note that the unitary transformation P in eguations (3), (6) and (7)
will not affect the minimum norm nature of the solution.

The above algorithm amounts to a constructive proof for the existence
of a solution to the PAP, for completely controllable systems and any given

spectrum L.

Note that for the case m = 1, the matrices M(j) will be nxn

and non-singular. As a result, a unigue solution is obtained.

4. SEMI-ROBUSTNESS

Recall that the unknowns Ej' 5j and Ej in equation (10) are
least square solutions, with minimum 2- or F-norm values. The vectors
z, and x, are in the off-diagonal parts of the triangular matrices A
and X respectively, and their minimizations imply "better” symmetry, and

thus conditioning, for the matrix X and the eigenvalue problem involving

the matrix A([2]). In addition, equation (1b) implies that
-1
el = QxS - sl . (13)

With X well-conditioned enough and gj, (and thus the matrix G) minimized,

inequality (13) implies that the solution feedback matrix F 1is of reasonably



small size, as the upper bound of the feedback in inequality (13) is
minimized. Note also that the solution of equation (1b) will be numerically
stable with a well-conditioned matrix X ([2][13]].

The resulted well-condlitioning of the matrix X and the elgenvalue
problem involving A also implies the minimization of an upper bound
of the transient response of the closed-loop system, and the maximization
of lower bound of the stability margin, The
details can be found in [4].

As the condition numbers and sensitivity measures are not directly
optimized as in [4] (5], the solution of the PAP by the algorithm in
this paper can only be called semi-robust. It is thus a trade-off between

the optimization of conditioning and the efficiency of algorithms.

5. COMPLEX EIGENVALUE ASSIGNMENT

Similar to section 3, assume that the matrices A and B are in
the staircase controllability canonical form. Assume that the matrix

is in real Schur form, with 2x2 block on the diagonal. Let the complex

conjugate pair of eigenvalues Aj and Aj+1 = iﬁ be represented by the
a, - b,
2x2 blocks Aj = bJ aJ in A Similarly, as in section 3, assume that
J J
(z, oz,
N 3 : (14)
J:J . -b
J J
b. a.
J J
0 0
—_

Consider the j-th and (j+1)-th columns of equation (1a), with

1< J < n-1, one has

PR - X, . . =BG, . + X, 2 i 5
A3 13+ a1t J:3+ 131 (ZJ Ej+1] S

Using the Kronecker product @& , equation (15) can be written as,



using the notations in equations (9) and (14),

M(3,3+1) v(§,3+1) = r(j,3+1) ,

with the (2n) x (2n+2m-3) matrix M(j, j+1) = (X1'j_1QDIZ,M2,B ®I1) .,

the (2n + 2m-3) vector v(j,j+1) denoting

[(Ej]1'[5j+1]1’""(Ej]j-’l’[5j+1]j-1 ;
[ij]j+1'(5j]j+2'[?ij""]]j*Z'”"(ij)n'[ij*"l)n H
(g.),. (g, ) (g.) (g, )1
By e Byaq’qr ey Byt
and the 2n vector r(j,j+1) = M1,
g = bj
where M = [(a I -A) ®I, -1 ® A I
J
T
s My = Moje2:2n
Here, (V]| denoites the j-th component of the vector v.

For j=1 and j=n-1, equations similar to equations (10a) and
(10c) can be written down easily, with some trivial parts of the matrix
and vectors in equation (16) deleted.

The matrix M(j,j+1) 1in equation (16) is again in full-ranked

(16)

row-echelon form and is right-invertible. Egquation (16) can then be solved

recursively, for increasing values of j, and minimum norm solutions can
be obtained.

For j=5 for the example in equation (11), one has

m(5,8) = 1

(17)
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Again, the x's denote non-zero entries. The indicated elements in

the matrix M(5,6) in equation (17) divide the matrix into three parts,
with the upper "triangle” part containing only zero components. A lot of
elements in the low "triangular” part are zero because of the Kronecker

product ® in equation (16) involving the identity matrix Iz.

6. OPERATION COUNTS

In this section, an operation count is presented for the numerical
procedures discussed in sections 3 and 5. The procedures can be summarized
into three steps:-

Step 1 : Transforming the matrices A and B into staircase form,

which requires approximately (3n + m)n? flops [(10].

Step 2 : Constructing and solving the equations in (10) and (16). Because
of the echelon form of the matrices involved, the required QR
decompositions [2] [13] can be obtained efficiently, using Householder
transformations [8] [10]. It requires (m + 1)n® and {4m + 2)n?
flops for the real and complex cases respectively. Note that one

"complex" flop 1s equivalent to four real ones.

Step 3 : Recovering the feedback matrix F from equation (7), which
involves a backsubstitution using the structure of the matrix X,

and a back-transformation PH. It requires approximately

n® + n?*/2 flops.

Note that the operation count will be dominated by that of Step 2
if m> 3, and amounts to 0(n*) if me n. The operation count can be
reduced to 0(n®), if step 2 is performed by backsubstitution using the
echelon structure of the matrices M(j) or M(j,j+1), instead of the QR
decomposition [10].

Note that the procedure of backsubstitution without pivoting is,

in general, numerically unstable for the solution of least square problems.
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7. STABILIZABLE AND UNCONTROLLABLE SYSTEMS

In case of the system defined by equation (2) being uncontrollable,
the controllable modes can still be assigned, with uncontrollable ones
reassigned. It will be particularly useful if one can generalise the methods
in sections 3 and 5 to cope with such systems, e.g. stabilizable systems,
where all uncontrollable modes are stable [14]. In addition, one may consider
system uncontrollable, if the matrix A in equation (4) is "nearly” rank

k-1,Kk

deficient, to avoid numerical ill-conditioning.

Note that one can modify the eigenstructure of the reassigned controllable

modes [4].

Consider equation (4) for an uncontrollable system, the matrix

Ak~1 K will be a zero matrix. Rewrite equation (4) as
' \
e,y = a0 1o . (18)
I
]
Aar At By
[}

The staircase controllability canonical form essentially decomposes

the system defined by matrices A and B into two parts: the controllable

part in A22, and the uncontrollable part in A11. (c.f. [61-[101, [121).
Note that for a feedback matrix F = (Fq.le, the closed-loop system

matrix will be in the form

A |
P °®

oo s s
Agg * B Fy 1 Ay v BF,

and thus any feedback will not influence the spectrum of the uncontrollable

Note also that the reduced system defined by matrices A and

part A 52

11°

B is controllable (otherwise one just increases the size of A

2 11]'

Assume that the matrices A and B are in the form as in equation (18).

Assume that the matrices X and A in equation (1a) are in the form

a
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X=X 0 , A= A 0 . (19)

Equation (1) can the be broken up into three parts: (a fourth equation

degenerates into 0 = 0)

= = 20
A11X11 X11A11 o , (20a)

+ B F, )X = Xooh = 0, (20b)

) (Ayg Y 2027

[ T0Gq) £ gy * BFIXoq = Xouhgy = Xophyy = (Ayy * BF X, .
(20c)
Equation (20a) represents the uncontrollable subsytem and so long if the
matrix A11 has spectrum equal to the uncontrollable one of the matrix A11.
a matrix X11 can be chosen easily. The easiest choice will be to choose
x11A11x;1 to be the Schur decomposition of A11 (21. Equation (20b)

indicates that the pole assignment problem for the controllable subsystem

has to be solved, so that the matrices F_,X

50 Xo0 and A22 can be chosen.

It can be done by the algorithms in sections 3 and 5.

For any arbitrary matrices F1 and A21, the matrix X21 can be

chosen to modify the eigenvectors of the uncontrollable modes, if equation
(20c) is satisfied. The operator T on the LHS of equation (20c) is
invertible, if the spectra of A11 and A22 have an empty intersection [1].

In such a case, the matrix X21 will be given by

X_ = T VIX.. A, - (A

21 22721 2q * BFIX ] (21)

If the operator T is not invertible, the matrix A21 can be chosen
such that the RHS of the equation (20c) is in the span of the operator T.

It is possible, as the matrix X22 is nponsingular. Alternatively, one can
expand equation (20c) using the Kronecker product and solve the resulting
linear equation in the least sense. The simplest thing to do will be,

. _wy il
from equation (20c), choose A21 = X, {[A21+82F,]]X11 + T(qu]} for some

F1 and X21.
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8. CONCLUSIONS

In this paper, we presented a new algorithm for the pole assignment
problem of a controllable, time-invariant, linear, multivariable
system with linear state feedback. The algorithm is numerically stable,
non-iterative and produces a semi-robust least square solution.

Although the method is based on the Sylvester type equation (1),
no restriction is necessary on the composition of the spectrum. Furthermore,
no restrictions on the eigenstructure are required. (In [4], the
multiplicity of any eigenvalue has to be less than m+1). A "minus" for
the method will be the lack of control over the eigenstructure.

The method can also cope with complex eigenvalues with ease.
Uncontrollable system can be tackled, if decomposed into subsystems.

More work has to be done to compare the algorithm in this paper with
others numerically.

Finally, a very interesting generalization of the techniques in
this paper to the solution of the pole assignment praoblem for descriptor

or singular systems, defined by
EDx = Ax + Bu, (E possibly singular)

is possible, and the result will be reported elsewhere.
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