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Abstract

In this report a method of enforcing rigid wall boundary conditions
is presented that uses a cartesian grid and thus avoids the need for
body fitted meshes. Roe's scheme is used on the regular grid with a
special technique for boundary conditions.

A number of test problems are tackled which show the approach to be
reliable. The test problems presented are steady state problems and
Roe’s scheme, which is time-accurate, is used to converge to steady
state. There is a brief discussion on time-acceleration techniques to

improve the convergence.



1. INTRODUCTION

In this report we shall consider the application of Roe’s scheme to
the Euler equations in more than one dimension. We shall not bore the
reader here with details of the scheme, other than recalling that it is
an upwind scheme based on characteristics, safe in the knowledge that
this is done elsewhere, see Roe (1981), Glaister (1986) and for a recent
account Priestley (1987). Of prime concern here will be the imposition
of rigid wall boundary conditions along, for example, a curving aerofoil
or perhaps an irregular stretch of coastline in the case of the shallow
water equations.

Roe’s scheme is essentially one-dimensional in nature in that it is
based on an approximate one-dimensional Riemann solver. Attempts to
solve two-dimensional problems with these methods have relied upon
regarding the two—dimensional problem as two one-dimensional problems
and then using the 1-D scheme individually on both problems using some
form of splitting, see e.g. Strang (1968), Barley (1987). Whichever of
the procedures is preferred, a rectangular 2-D mesh of grid points is
required. It is also possible to consider ’'genuine’ 2-D upwind schemes,
see Smolarkiewicz (1984) for example, but with the extra calculation and
housekeeping needed when an irregular mesh is needed it is debatable
whether the modest increase in flexibility that this allows is worth the

cost.



In the next section the possible approaches to the problem of
creating and using a mesh in this context will be discussed. The fors
and againsts of working in transformed space, using a body fitted mesh
in physical space or using a cartesian grid in physical space will be
considered. In Section 3 the difficulty of having curved boundaries
while trying to use the latter type of mesh will be attacked. In the
next section, Section 4, two test problems will be discussed and results
presented that indicate that the solution has not been sabotaged by our
unfashionable choice of mesh.

Methods of speeding up the convergence to steady state will also be
discussed. Finally in Section 5 some tentative conclusions will be

drawn and some suggestions made for further work.



2. THE ALTERNATIVES

2.1 Transformed Space

2.1e Conformal Mappings

Schwarz - Christoffel transformations and the hodograph
transformations are very nice when they work, but are limited to 2-D.
Three-dimensions can, however, be tackled by slicing the domain into a
series of two-dimensional problems with the transformation being applied
to each separately. This is not an entirely satisfactory procedure,
though, and can lead to a lack of smoothness in the resulting grid, see

Thompson et al (1985).

2.1b Body Fitted Co-ordinates

Perhaps, in some ways, this is the most satisfying of the three
methods considered here, The whole domain is transformed, although not
necessarily with a single transformation, so that the irregular body is
now very much a regular body in (&.m) space, the transormed
co-ordinates. That is, in (£.n) the rigid wall boundary lies along
lines of constant § and/or constant 7 . The imposition of the
reflecting boundary condition is now a simple affair being purely

one—-dimensional in nature, see Figure 1.
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Figure 1.

In this particular case the § component of velocity would be
taken equal at the imaginary point and the 7 component equal and
opposite.

Transormations have been used since time immemorial but more
recently Sells (1980) used transformations to calculate flows around the
NACAOO12 aerofoil that we shall discuss later, although he did use
slightly different schemes. Glaister (1987a) transformed a circular
cylinder using in fact precisely the schemes we shall use here for
calculating the flow.

Unfortunately, as with most things in life, there is a price to
pay. Apart from the two one-off calcuations required at the start to
generate the transformations and at the end to transfer the results back
to physical space, which can largely be overlooked, at each time-step at
every point new equations will need to be solved, and it is fair to say
that these will be considerably more complicated and in some cases may
involve the introduction of source terms. Roe (1986), Glaister (1987),
Priestley (1987) have shown that these source/forcing terms can be

adequately dealt with within the framework of the method but again it



introduces extra computation throughout the calculation. There is, of
course, more ‘'houskeeping’ involved in storing the details of the
transformation, although this is in part negated by the fact that we can
use a perfectly uniform square mesh.

We could use the same grid generation techniques but work with them

in physical space as in 2.2a.

2.2 Physical Space

2.2a Body Fitted Co—ordinates

Apart from being aesthetically very pleasing this approach has
little to recommend it if a characteristic based scheme has been chosen.
The fluxes across cell interfaces can be calculated fairly
straightforwardly but the real problem is in determining where to send
the updates. To gain any accuracy from the effort involved it would
also be necessary to feature fit the grid. This has been done very
successfully by Paisley (1986), with a rather different method, for a
2-D aerofoil with a single attached shock. However, for a 3-D
calculation around a complex body it is hard to see that a body plus
feature fitted grid would have much of a saving over one of the fully
adaptive mesh techniques. It would also be very difficult to produce a
mesh that adequately matched all the conflicting requirements on a
complex geometry. The real advantage of a body fitted grid would come

at the rigid wall type boundary of the body.



Figure 2.

Due to the use of the body fitted mesh it would be relatively
straightforward to arrange our ’imaginary’ points as shown and hence the
updating of the values at these imaginary points is simply Uy = Wy and

u .except of course for velocities which have to be resolved into

Sg = ¥
normal and tangential components, with the normal component being equal
and opposite across the boundary while the tangential component is the

same across the rigid wall.

2.9b Cartesian Grids

The benefits of a cartesian grid are obvious:— our scheme can be
used per se on the unmolested equations and housekeeping is kept to a
minimum. The grid can also be packed in close to the body if desired by
using an irregular mesh. Also using a 3-D cartesian grid is only
marginally more difficult than the 2-D version whereas the other methods
have special problems when moving to three dimensions.

The benefits are obvious, but so are the snags. The difficulty



with cartesian grids, for a fairly general body is how to cope with a
rigid wall boundary that does not align itself with either of the

co-ordinate directions, as in Figure 3.
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Figure 3.

Here the boundary is curved and the problem lies in how to update
the ’imaginary’ points (in this case below the line) after each
time-step in order to be able to apply the scheme throughout the grid.

In the next few sections a simple way of overcoming the problems at
the boundary will be discussed that is easily extendable to three
dimensions, and proved on some test problems. At the moment the
procedure limits us to the use of the basic first order Roe’s scheme at
the boundary but this is shown not to degrade the solution on the test
problem even though one of the second order Roe type methods is being

used away from the boundary.



3. Rigid Wall Boundary Conditions

Consider a patch of the grid, much as in Figure 3, through which

the rigid wall cuts.

Figure 4.

It is the circled points that we are considering now. Since we are
restricting ourselves to a first order scheme around the boundary, other
points below the surface can only affect points like themselves, and are
hence of equally little interest, or circled points which will be
overwritten with values from the external flow at the end of the
time-step. Hence these points do not need updating and can be ignored.

Figure 5 represents an enlargement of the top righthand part of the
grid in Figure 4. The rigid wall has been replaced locally by a

straight line.
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Given the intercept of the rigid wall, the line joining T and N
and the angle 6 , a point I on the line NO can be defined. Since
the values of all the variables are known at both points N and O
then we can obtain values for the variables at I just by using linear
extrapolation. This gives us the values (uI,vI.pI,pI) where the
obvious notation has been used. Assuming no curvature at the boundary
we can quickly obtain the values of density and pressure at T
as  pp = Py and Pp = Py - If there is curvature, or we wish to imply
a curvature, the value of the pressure must be modified.

The velocities need to be converted to normal and tangential

u
components and this is done by multiplying I by the rotation matrix

sin © cos O
) (3.1)

- |

cos 8 - sin 6
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hence

[q“"r"‘al] = R(6) H . (3.2)
1 1

qtang v

The tangential component at T equals the tangential component at
I . The normal component at T must be chosen so that if the variable
is linearly extrapolated between T and I it vanishes at the rigid

wall. If we define another matrix V(x,8) , where x 1is the intercept

on TN , then

a Tang v]I

[q N“"‘] = V(x,08)R(0) [u} , (3.3)
T

with

[u:(x.ﬂ) O]
V =
0 1

The function a(x,60) is the formula for calculating q . T to
accomplish the vanishing at the boundary.

To return to cartesian co-ordinates just requires the

multiplication of (3.3) by R(G)_1 , and so we finally have
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H =R(e)'IV(x,e)R(e)[u] . (3.4)
N

\'s vl

If the positioning of points in Figure 5 is altered by a rotation

of ¢ degrees (Y = 0°,90°.180°,270°) then the formula just becomes

u -1 u
. R(360-y)R(8) "VR(6)R(¥) : (3.5)

\'s v]I

This is the final formula and we have now obtained values of the
four variables wu,v, Gr.p and p at the imaginary point. Energy,
momentums and enthalpy can then also be derived as required.

The only other variation is if the point O and the unmarked point
lie to the left of TN instead of the right. This cannot be considered
just as a reflection because the senses of u and v remain unal tered.
However, an equation entirely similar to (3.5) can be derived for this
case.

In practice it has been found advisable to overwrite the value of
the intercept, x , with 0.5 . This does not affect the position of the
point I and hence does not affect the density, pressure or tangential
velocity. However, if the intercept is close to either end point (i.e.
O or 1) then a modest value of the normal velocity at I can be
translated into an enormous (and of the opposite sign) value at T
This leads to much larger momentums and energy values than would be

expected and leads to problems at the boundaries. Assuming the
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intercept to be at 0.5 does not appear to degrade the solution even when
the grid has not been especially refined around the body.
We can see the problems involved by considering the model inviscid

Burgers’ equation

u, tuu = 0 (3.6)

on [0,9) . The boundary at x = O is a rigid wall. The initial

conditions are

u(x)

a(x) (3.7)
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If we assume a uniform mesh and our wall cuts the mesh a distance
ahx , ae(0,1) , from the first internal point then the value at the
imaginary point will be (a-1)/a . Calculating the update due to the
boundary between the cells centred on the imaginary point and the first

internal point leads to a flux of

At 1
0O or - K;-[l - EE]

according to whether
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min[—l.l-—;-a]=1—%;or—1.

[1 = 1% is the eigenvalue at the discontinuity at x =0 i.e.

1- ;—a' = %[1 + (l-é)]] . The correct flux should be ;ﬁ% . If

1 - ;—a- (-1 i.e. aX -‘II then nothing happens. If %( a < % then we

do not subtract enough from the internal cell and hence it has too high

1

a value. For 3 < a1 we subtract too much and it takes on a value

Only for a = % do we make the correct contribution.

too low.
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4. TEST PROBLEMS

In this section two problems are considered that show the
flexibility and robustness of the approach that has been suggested in
the previous sections and highlight one or two possible difficulties and
how they may be overcome. The first consists of a Mach 3 flow in a wind
tunnel around a blunt, shuttle-like, body. The geometry can be seen in
any of the figures 6-19. This problem was chosen because the supersonic
inflow/outflow means that all/no variables are prescribed. The rigid
walls of the wind tunnels are aligned with the mesh and hence present no
problems. The only possible difficulty from the imposition of boundary
conditions will occur around the body in the interior.

A square mesh is used of (70 x 100). A good many of these fall
inside the body of course and hence we do not need to calculate updates
at all 7000 points. The grid has been deliberately kept uniform to show
that the rigid wall boundary conditions along the non-aligned section
cope well even if the boundary is not that well defined. Indeed, along
the whole of the 45° slope and the semi-circle there are just 23 image
points used. The solutions given are for angles of attack of -15°
-10° , -5° , 0° , 5° , 10° & 15° with both the first order scheme and

with the use of the second order minmod limiter. As can be seen, from
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Figures 6-19 the solution is essentially the same for both methods. The
strong bow shock is captured very successfully by both of the methods,
with very little smearing even with the first order scheme. Apologies
are made for the misplaced text on these pictures. The second order
method does sharpen the shock slightly more than the first order method
and the resolution of the Mach stem on the wind tunnel boundary is
superior. The first order scheme has also been tried on a slightly
different domain shown in Figures 20-26. The extra part of the
non-aligned boundary is a 68° slope which requires a further 5 boundary
points to be defined.

Armed with this vindication of our approach a rather more down to
earth example was then tried. That is flow around the NACAOO12
aerofoil. The formula describing this aerofoil is given in the GAMM
workshop paper (1986) together with results for certain farfield values.
In the specifications for the problems involving this aerofoil it was
suggested thart a grid of approximately 4000 points should be used so
that results could be fairly compared. Although we have not been
attempting the same test problems here we have tried to work within the
same guidelines. Unfortunately, due to a slight miscalculation, just
over 5000 points were actually used. If the reader can bring himself or
herself to look at Figures 27 and 28 he/she will see that for simplicity
a tensor product grid has been used. This leads to rather more work

being done away from the body than is actually needed and it is
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reasonably fair to say that all the results presented here could be
reproduced on a 4000 point grid with no loss of accuracy.

From Figures 27 and 28 it can be seen that the mesh has been
refined around the aerofoil so that its shape can be more accurately
modelled and because the area immediately around the body is where the
solution might be expected to be at its most interesting. There is
however a problem with aerofoil type shapes that cannot be overcome by
refinement. This occurs at the trailing edge. In Figure 29 the

difficulty is depicted.

Figure 29.
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Here the point A 1is an image point of both point B and point
F . (In some situations it can also be regarded as an image point of
D) . In general the points B and F will prescribe differing values
upon A and hence defining A to have some sort of average value may
be quite an approximation. The answer though is quite simple. Point A
is given two values, one prescribed by point B the other by point F .
When the updates between the cells F and A are being calculated the
values Up and QAF are used. When the updates due to the interface

between the cells of point A and point B the values of EAB and

up are used. For calculating the update between D and A we have

1
simply used u, and 3={u, +u, ) .
D 2 AF Ap

Although this proved adequate for the use in our test problems here
a rather more sophisticated approach would be to calculate analytically
where the shear line from the trailing edge fell. If it fell below the

shear line then we would take Uy = HAF and if it fell above then we
would use EAB i

Figures 30-49 are results for a Mach 3 incident flow around our
aerofoil with attack angles of 0° , 5° , 10° , 15° and 20°
respectively. The plots are density and entropy deviation contours and
surface plots of pressure and entropy deviation. These problems are
steady state (we assume!) and the solutions have been obtained in a
time-accurate manner which is not the most efficient way of reaching the

steady state. Hence, due to the restricted computing facilities
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available to us, the solutions presented are not yet at the steady
state, although they are hopefully well on the way. We note with
satisfaction the sharp bow shocks on all the pictures and the zero lift
with the 0° angle of attack. The entropy along the body should be a
constant, assuming no attached shocks, as the rigid wall of the aerofoil
forms a streamline. As can be seen there is an increase in the entropy
deviation at the leading face. This is not an unexpected phenomenon due
to the sudden introduction of the body into a free flow and it is hoped
that it may be controlled by using the ’leaky boundary’ technique of
Sells (1980). This may also provide a means for tackling problems with

larger angles of attack where cavitation becomes a problem.

A Note on speeding, up convergence

As has been mentioned, trying to reach a steady state flow in a
time-accurate mamner is not a particularly efficient means of going
about 1it. One means of accelerating the convergence is to use a
different time-step in each cell such that the maximum CFL number in
that cell is equal to some predetermined maximum premitable value.
Reading Sells (1980) one gets the impression that this procedure is
somewhat delicate. This author tried a similar arrangement but allowed
each wave in each cell to have a different time-step so that its CFL
number took on the maximum value allowed. This was found to be
exceedingly delicate; indeed no more than 6 time-steps were ever

satisfactorily performed using this acceleration method. It is believed
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that the problem is caused by having widely varying At’s between cells
(or in cells in the latter case).

To obtain a smoother variation of At it was therefore decided to
use a different At for each of the wu-a , u uta characteristics.
Typically a At was chosen for the uta characteristics and then
3At/2 and 2At were taken for the u , u-a characteristics. This
procedure was found to work quite reliably. A second idea used here was
based on the philosophy that much work is done, particularly with the
meshes shown in Figures 27 and 28, in the farfield where very little is
happening. Hence, a much smaller interior region just surrounding the
aerofoil was chosen in which more ’'time’-steps were done. As the
solution in this inner region converged it was systematically enlarged.

Solutions obtained using both these techniques are shown in Figures
50-59. These show density and entropy deviation contours for varying
numbers of ’time’-steps. The angle of attack was five degrees.

Another way in which it is hoped to speed up convergence and to
improve the accuracy of the results is to use an adaptive mesh
technique. The initial grid used is shown in Figure 60 for a brick type
object. The grid has already been refined around the boundary. Figures
61 and 62 show the grid and density contours at a later time (obtained
in a time-accurate fashion). The refinement of cells was based on the
gra&ient of the density and obviously more than the one refinement used
here would be done in practise. Figure 63 shows a possible initial grid

generated for the NACAOO12 aerofoil.
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Unfortunately this work has now ceased due to the work of Roberts
(1987) who has cast doubt on the use of Roe's scheme for steady state
calculations, and not at all due to the fact that the present author had
immense difficulty writing a boundary recognition routine sufficiently

general to cope with the NACAOO12 aerofoil as shown in Figure 63.
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5. CONCLUSIONS

We have introduced a new approach for applying Roe type schemes to
problems in two-dimensions that have rigid wall boundaries not aligned
with the mesh. This approach has proved to be versatile, robust,
accurate and very efficient. Perhaps more importantly it is relatively
straightforward to extend the method to three-dimensions. As
calculations proceed into ever more complex 3-D geometries cartesian
meshes are bound to find more adherents.

By way of further work the time-acceleration techniques need to
become more refined while the grid that automatically refines itself in
areas of interest c.f. Babuska and Rheinboldt (1979) needs to be
developed more fully.

It is hoped that the combination of these two ideas will lead to a
very efficient and accurate application of Roe’s scheme to steady Euler
flows.

Together with the work on source/forcing terms reported by
Priestley (1987) it is hoped we shall soon have a very effective means

for calculating steady/unsteady hypersonic flows.
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Maximum CFL number s 0. 483,
Dt/Dx = 0.10.

First order method
Angle of attack tIs

-10.0 degrees.



Mach 3 [low Past a

= Jonslty at time T = 7.000,
Mex Imum dons ity !s 4. 38.
Mintmum density (s 0, 64.
M!nmod

Angle of attack Is

e

=10, 0 degrees.
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Fiaure 9%

Airflow at time T

= 7. 000,

Max |mum fiow vetloc!tyv Is 3. 260.

Max {mum CFL number

Dt/Dx = 2.10.

M!Inmod
Angle of attack !s

-10. 0 degrees.

's 0. 483.



Mach 3 Flow Past _a

Non-rectangular Bod
Density at time T = 7.000.

Maximum density Is & 23,
Minimum density Is 0.78.
First order method

Angle of attack !s

i -5.0 degrees.
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Mach 3 Flow Past a

Jonsity at time T = 7,000.
Mex|mum density Is &. 23.
Minlmum densivy 1s 0.74,
Minmod

Angie of atteck Is

-5, 90 degrees.
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Meximum flow veloc!iy Is 3.268.
Meximum CFL number 1s 0, 483,

Dt/Dx = 0.10.

MInmod
Angle of attack is

-5. 0 degrees.



Mach 3 Flow Past a

Non-rectangy lar Body

Density at time T = 7, 000.
Maximum density Is 3, 98,
Minimum density s 0.77,
First order method
Angle of attack Is

i 0.0 degrees.
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Atrflow at time T = 7,000,

MaxImum flow veloctty Is 3.260.
Max imum CFL number 1s 0. 482,

Dt/Dx = 0.10.

First order method
Angle of attack Is

0.0 degrees.



Non--rectangu lar_Gody

&= ' Donsity et time T = 5,500,
Mex!mum densiiy ts 3,79,

Mintmum denstivy ta 0,74,

Minmod
Angle of stteck !s
s 4 0.0 degrees.
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Fiﬂure 13b

Mach

Non-rectangu lar

Atrflow at time T = S5.500.

Max!mum flow velocity is 3, 262.

Max !mum CFL number

Dt/D = 010

Mtamod
Angie of atteck Is

0.9 degrees.

ts 0. 487.



Mach 3 Flow Past a

Non-rectengu lar_Body

Density at time T = 7.000.
MexImum density Is 3, 45.
Minimum denstty 1s 0.70,
First order method

Angle of attack Is

s 4 5.0 degress.
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Arflow at time T = 7.000.
Maximum flow veloclty Is 3.262.
Mex Imum CFL number 1s 0. 484.
Dt/Dx = 0.10.

First order method
Angle of atteck is

5.0 degrees.



Mach 3 Fiow Past a

T = 6.500.

Donstty st time
Mex Imum dens!tv is 3.80.
Minimum density is 0. 68,
Mtnmod

Angie of attack !s

S. 0 degrees.
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A~fiow at time T = 6.500.

Max !mum flow velocity !s 3,262,

is 0. 486.

Max {mum CFL number

D¢/D0x = 0.10.

M!nmod
Angie of etteck is

5.0 degrees.



Mach 3 Flow Past a

Non-rectangular Body

= Density at time T = 7. 000.
Maximum density Is 3.66.
Minimum denstty Is 0.62.

First order method

/ Angle of attack Is

i 10. 0 degrees.
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Mach 3 Flow Past a

Dens ity at time T = 6.500.
Mex !mum density ts 3.78.
Mintmum density is 0.61.

M nmod

Angle of ettack Is

10.0 degrees.
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Al~flow at time T = 6.590,
Max!mum flow velocity !s 3. 314,
Maximum CFL number !s 0. 488.

At/D = 0,10,

MIamod
Angile of attack |s

10. 9 Jegrees.



Mach 3 Flow Past_a

Non-rectengular Body

= Density at time T = 7.000.
MaxImum dens!ity is 3.65.
Minimum denstty ts 0,53
Fl~st order method
Angle of sttack iIs

i 15. 0 degrees.
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Alrflow at time T = 7.000.
MexImum flow velocity Is 3. 447,
Max Imum CFL number 1s 0, 494,
D:/Dx = 0.10.

First order method
Angle of attack Is

15. 0 degrees.




Mach 3 Fiow Past a

Donstty at time T = 6.500.
MexImum denstty is 3.30.
Mintmum doensity !s 0.51,
Minmod

Angie of attack !s

¥ 15.0 degrees.
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Fisure 20a

Density at time T = 6.500,
Maximum density !s 4. 44,
Minimum density ts 0.59,
First order method

Angle of attack !s

-15.0 degrees.
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MaxImum densliy is 4. 37,
Miatmum dens!tv ts 0.65.
F1~st order method
Angle of attack !s

~10. 0 degrees.
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Mach 3 F

Non-rectangular

Alrflow at time T = 6. 500.
Meximum flow veloc!ity !s 3,259,
Mex !mum CFL number 1s 0. 483.

Dt/Dx = 0.10.

First order method
Angle of attack !s

-10.0 degrees.
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Figure 22a

Mach 3 Flow Past a

Non-rectangular Body

Density at time T = 6.500.
Maximum density Is 4. 21.
Miatmum density is 0.71.
Firgt order method

Angie of attack ts

-5.0 degrees.
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Mach 3 f

Non-rectangular .

Ai~flow at time T = 6.500
Maximum flow veloc!iy !s 3.266.
Max Imum CFL number t!s 0. 483.

0t/0x = 0.10.

Flrst order method
Angle of atteck Is

-5. 0 degrees.



Mach 3 Flow Past a

A

Fisure 23a

Non-rectangular Body
Density at time T = 6.500.

Max imum density Is 3.87.
Mintmum denstty !s 0. 65,
First order method
Angle of attack !s

0.0 degrees.
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Fiﬁure 23b

Mach 3

Airflow at time T = 6,500.

Mex Imum flow velocity Is 3.260.
Maximum CFL number ts 0. 480.
Dt/0x = 0.10.

Flrst order method
Angle of attack Is

0.0 degrees.



Mach 3 [ low Past_a

Non-rectanguler Body

Densivs at time T = 6.500.
Maximum densi.v |s 3.65.
Mintmum densitv Is 0,60,
Fir~st order method

Angile of ettack !s

5.0 degrees.
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Fisure A4 b

Airflow at time T = 6,500,
Maximum flow velociiy is 3.263.
Max imum CFL number !s 0. 473.

Dt/Dx = 0,10,

First order method
Angle of attack !s

5.0 degrees.



Mach 3 [ low Past_a

Non--rectanguiar Body
Jensity at time T = 6.500.
MexImum densivy !s 3. 65,
Mintmum density s 0.54,

Flrst order method

I S
%/ ‘ [ n Angle of attack !s
I % 10. 0 degrees.
7 .
< 8 7
aL/‘, S. S. Ef’)ter‘pr‘/’ se
\ 79 ?
|l ]
8 7

4
~J. 3

:

Fi qure 25a



Alrfiow at time T = 6,500
Maximum flow veloctiy !s 3,314
MaxImum CFL number 's 0. 186.

Dt /0x = 9.10.

First order method
Angle of attack !s

10, O degrees.



Mach 3 Fiow Past a

Non--rectangular Body

o < Jensiis at tine T = 6,500,
Maximum density !s 3, 65,
Minimum densitvy is 0. 48.
: T r~st order method
2 1
) ¥ Angie of wattack !s
B i5. D degrees.
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NACAODOD]2 Aerofoi l

Dens ity contours for the NACAO0D12 eerofot L
‘n & Mach 3.9 flow. The angle of aetteck !s 0.0 degrees
Solution !s shown after 400 time-steps end the meximum CFL no. 's 0, 349.
The maxImum vaiue of the density !s 4, 08.
The minimum vaiue of the density !s 0.36.

Flrst order method
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Entropy devistion for the NACADDI2 aerofoi.
‘n @ Mach 3.00 flow. The engie of etteck ;s 0,0 degrees.
Solutlon is shown efter 400 t!me-steps and the meximum CFL no. s 0, 349,
The maxImum vailue of the entropy dev!at!ion !s 1.17,
The minimum velue of the entropy deviat!sn !s 0.00.

lrst order method
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NACAOQ 12 Aerofoil

Surfece pressure deviation along NACA0D12 eerofo!l
In & Mech 3.00 flow. The engie of atteck is 0.0 degrees.
Solut lon is shown efter 400 time-steps end the meximum CFL no. s 0.349.
The mexImum veiue of the pressure !'s 8.63.
The minimum veilue of the pressure !s 0.90.
£, = 0.0000.
C, = 0.0120.

D
irst order method
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NACADDI2 Aerofoi i

Surface entropy deviat!on siong NACADD12 aserofol :
'n @ Mach 3.90 flow. The angie of attack !s 0.0 degrees.
Solut!on Is shown after 400 time-steps end the meximum CFL no. s 0. 349,
The meximum vaiue of the entrooy deviatian is 1,01,
The mintmum veius of the entropy deviatlon !s (.62,

Flrst order method
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NACAOO ]2 Aerofoi l

Density contours for the NACAQDI2 serofol i
‘n a Mech 3.00 flow. The angle of attack Is 5.0 degrees.
Solutton !s shown efter 400 time-steps and the maximum CFL no. is 0, 365.
The meximum velue of the density s 4,09,
The minimum value of the density is 0.64.

First order method

Fiaure 3




NACAQO!2 Aerofoi |

Entropy deviation for the NACA0012 aerofoil
In e Mach 3.00 flow. The angle of attack 1s 5,0 degrees.
Solutton s shown efter 400 time-steps end the meximum CFL no. 's 0, 345,
The meximum velue of the entropy deviation Is 1,27,
The minimum velue of the entropy deviation is 0, 00.

First order method
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NACAQOI2? Aerofoil

Surfaece pressure deviatlon slong NACADD12 aerofo!i
in @ Mech 3.00 flow. The angle of stteck Is 5.0 degrees.
Soluttan fs shown efter 400 time-steps end the meximum CFL no. 's 0. 345.
The meximum velue of the pressure is 8. 53.
The minimum value of the pressure Is 0. 63,
C 0. 0954,
C 0. 0233,

L

D =
First order method
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NACAODO12 Aerofoil
Surfece entrooy dov!at!on along NACAOD12 esrofo!t

in e Mach 3.00 flow. The engle of atteck Is 5.0 degrees.

Solution s shown efter 400 ttime-steps and the maximum CFL no. 's 0.365.

The mexImum velue of the entropy deviatlon is 1.08.

The minimum velue of the entropy devietion ts 0.59.

First order method
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Dens ity contours for the NACA0D12 serofo! i
In a Mech 3.00 filow. The angle of atteck Is 10.0 degrees.
Solution Is shown efter 400 time-steps end the mexImum CFL no. is 0. 380,
The meximum velue of the density !s 3, 89,
The mintmum value of the density !s 0.47,

First order method
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NACADQD1? Aerofoil

Entropy devietion for the NACAOD12 eerofoil
in @ Mach 3.00 Tilow. The engle of etteck Is 10.0 degrees.
Solutlon 1s shown after 400 ti!me-steps and the meximum CFL no. s 0.380.
The meximum velue of the entropy devisation Is 1,39,
The minimum vaiue of the entropy devtetion !s 0.00,

First order method
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NACAOQIZ Aerofoil

Surfece pressure devietlon along NACAOD12 eerofoll
'n @ Mech 3.00 flow. The angle of attack Is 10.0 degrees.
Soilut!on !s shown aefter 400 time-steps and the mexIimum CFL no. 1s 0. 380.
The meximum value of the pressure Is 8.06.
The mintmum value of the pressure Is 0. 44,
C = 0.1985.

C, = 0.0531.

First order method
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Surfece entropy deviaet ton along NACAOD12 aerofo!i
tn a Mech 3.00 flow. The angle of atteck !s 10,9 dogrees.
Solut lon ts shown efter 400 tIme-steps end the meximum CFL no. 's 0. 380.
The mextmum value of the entropy devietion is 1,i7.
The mintmum value of the entropy deviatlon is 0, 43,

First order method
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Bensity contours for the NACAOD12 eerofo!l
In @ Mech 3.00 flow. The engle of sttack Is 15.0 degrees.
Solution s shown efter 400 ti!me-steps end the maximum CFL no. s 0, 401,
The maximum value of the density Is 3.77.
The minimum value of the density Is 0. 34,

First order method
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Entropy deviatton for the NACADO12 aserofolt
fn @ Mech 3.00 flow. The angle of atteck is 15.0 degrees.
Solution !s shown after 400 time-steps and the meximum CFL no. Is 0. 401,
The mexImum vaiue of the entropy deviation Is 1.55.
The mintmum vailue of the entropy deviat!on 1s 0.00.

First order method
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NACAODO12 Aerofoil

Surface pressure deviation along NACADO12 eerofoll
'n @ Mech 3.90 fiow. The engie of attack ts 15.0 degrees.
Solutton !s shown efter 400 time-steps and the meximum CFL no. is 0.401,
The maximum value of the pressure Is 7.97.
The minimum vaiue of the pressure !s 0.30.
C 0. 3168.

L

C, = 0.1063.

First order method
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NACAQOO!Z2 Aerofoil

Surface entropy devlatlon along NACAOO12 eerofo!i
tn @ Mech 3.00 flow. The engle of atteck ts 15.0 degreses.
Solution s shown efter 400 tIme-steps and the mex!mum CFL no.
The meximum velue of the entropy deviatlon Is 1.25.
The minimum value of the entropy deviation ts 0.32.

“irst order method
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NACAQDOD 12 Aerofoil

Denstiy contours for the NACAODI2 aerofo!
tn @ Mech 3.00 fiow. The angie of atteck !s 20.0 degrees.
Solution !s shown efter 400 t!me-steps and the meximum CFL no. 's 0. 420,
The meximum vailue of the density !s 3,77
The minimum veiue of the density ts 0.25,

First order method
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NACAQO!Z Aerofoil

Entrooy devietion for the NACAOO12 eerofol
'n & Mech 3.00 flow. The engle of etteck is 20.0 degrees.
Soiution Is shown efter 400 time-steps and the maximum CFL no. 's 0. 420,
"he mex!mum value of the entropy deviation is 1,72,
The mintmum value of the entropy deviatton 1s 0. 00,

First order method
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NACAOO12 Aerofoil

Surface pressure devistlon along NACA0D12 eerofol i
'n @ Mach 3.00 flow. The engle of attack ts 20.0 degrees.
Solutlon ts shown efter 400 tIme-steps and the meximum CFL no. 's 0.420,
The maximum value of the pressure is 7.94,
The minimum vaiue of the pressure is 0.21.
C_ = 0. 4452,
Cy = 0.1879.
First order method
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Surfece entropy devlation aiong NACAQD12 eerofo!l
fn & Mech 3.00 flow. The angie of ettack Is 20.0 degrees.
Solutton s shown efter 400 t!me-steps snd the meximum CFL no. 's 0. 420,
The meximum value of the entropy deviat!on 1s 1,45,
The minimum velue of the entropy deviation !s 0, 20.

First order method
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NACAQO!Z2 Aerofoil

Jensity contours for the NACAOQ12 aerofoll
n a Mach 3.00 flow. The sngle of attack Is 5.0 degrees.
Solution is shown after 100 time-steps and the maximum CFL no. 's 0. 855.
The max!mum value of the density ts 3. 46.
The minimum value of the density Is 0.67.

First order method
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NACAOO]2 Aerofoil

Entropy deviation for the NACAODI2 aerofoi.
in & Mach 3.00 flow. The angle of attack is 5.0 degrees.
Solutton ts shown after 100 tIme-steps and the maximum CFL no. s Q. 855,
The maximum value of the entropy deviat!on Is 1, 30,
The minimum velue of the entropy deviation Is 0.00.

First order method
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Density contours for the NACAQD12 serofoil
in @ Mach 3.00 flow. The angle of attack Is 5.0 degress.
Solutton Is shown after 200 time-steps and the meximum CFL no. Is 0.852.
The maximum value of the density is 3, 46,
The minimum value of the density !s 0.67.

Firgt order method
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NACAQDO]Z Aerofoi l

Entropy deviation for the NACAQQ12 aerofoit

in a Mach 3.
Solution Is
The maximum
The minimum

First order

00 flow. The angle of attack Is 5.0 degrees.

shown after 200 time-steps and the maximum CFL no. !s 0.852,
value of the entropy deviatlion s i, 30,

value of the entropy deviation Is 0.00.

method
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NACAQDO 2 Aerofoil

Density contours for the NACAOO12 aeerofoit
fn 8 Mach 3.00 filow. The angle of sttack Is 5.0 degrees.
Solutlon is shown sfter 300 time-steps and the maxtmum CFL no. is 0.852.
The maximum vailue of the density is 3. 46,
The minimum veiue of the density ts 0. 67,

First order method
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NACAQO1Z Aerofoil

Fntropv deviatlion for the NACAOO12 aerofoll
in a Mach 3.00 flow. The engle of attack is 5.0 degrees.
Solution Is shown after 300 time-steps and the maximum CFL no. 's 0.3852,
The maximum value of the entropy deviatton Is 1. 30.
The min!mum value of the entropy deviatton Is 0.00

First order method
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NACAQOI2 Aerofoil
Density contours for the NACA00O12 serofa!l
in a Mach 3.00 flow. The engle of attack is 5.0 degrees.
Solution Is shown after 400 time-steps and the maximum CFL no. is 0.852.
The maximum value of the density is 3, 46,
The minimum value of the density Is 0.67.

First order method
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NACAQOIZ Aerofoil

Entropy deviation for the NACAOQ12 aerofoil
In a Mach 3.00 filow. The angle of atteck ts 5.0 degrees.
Solution is shown after 400 time-steps and the maxImum CFL no. ts 0.852.
The maximum velue of the entropy deviatlon is 1. 30.
The minimum value of the entropy deviation is 0. 00.

First order method
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in a Mach 3.

NACAOQI12 Aerofoil

Density contours for the NACAQO12 aerofol i

Solutlon is

The max | mum

The minimum

=

~st order

00 flow. The angle of attack is 5.0 degrees.

shown after 500 time-steps and the maximum CFL no. is 0,352,
value of the density Is 3. 46,

value of the density 1s 0. 67.

method
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NACADDIZ Aerofoil

Entrooy deviation for the NACAOD12 serofoit
in a Mach 3.00 flow. The angle of attack is 5.0 degrees.
Solution is shown after 500 t!me-steps and the max!mum CFL no. Is Q.852.
The maxImum value of the entropy deviation is 1.30.
The minimum vaiue of the entropy doviatlon Is 0,00,

First order method
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e e e i

Denstity contours for the NACADD12 werofo!l
n & Mech 3,90 filow. The engle of attack !s 5.9 degrees.
Solutlon Is shown after 101 time-steps and the mex!mum CFL no. 's 0.213.
The maximum vaiue of the densitv !s 4. 68.
The minimum velue of the dens!tv !s 0.58,
First order method

The number of celis in use !s 39i4,

Fisure, 62,
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