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ON STABILITY OF DESCRIPTOR SYSTEMS
RALPH BYERSt AND N. K. NICHOLS}

Abstract. The concept of “distance to instability” of a system matrix is generalized to system
pencils which arise in descriptor (semi-state) systems. Difficulties arise in the case of singular systems,
because the pencil can be made unstable by an infinitesimal perturbation. It is necessary to measure
the distance subject to restricted, or structured, perturbations. In this paper a suitable measure for
the stability radius of a generalized state-space system is defined, and a computable expression for
the distance to instability is derived for regular pencils of index less than or equal to one.

1. Introduction. The concept of “distance to instability” or “stability radius”
of a multivariable linear system in state-space is closely related to the “margin of
stability” of such a system in the frequency domain. Measures of stability radius have
recently been investigated in a number of papers and numerical methods for computing
the distance to instability have been developed [1, 6, 7, 9]. In this paper we extend
the concept of distance to instability to system pencils which arise in descriptor or
generalized state-space systems described by implicit differential-algebraic equations.
In Section 2 the distance measure is defined and notation is presented. A computable
expression for the distance is derived in Section 3 for regular pencils of index less
than or equal to one. In Section 4 different classes of perturbations are discussed and
conclusions are given. Details of proofs and furthers examples are given in [2].

2. Distance to Instability — Definitions and Notation. We consider the
linear time-invariant system

(1) Ei = Az + Bu

where E, A € R"*" B € R"*P rank[B] = p, and ¢ = rank[E] < n. The system (1)
is said to be solvable if and only if there exists a unique solution for any given suffi-
ciently differentiable control function u(t) and any given admissible initial conditions
corresponding to a given u(t) [3, 10]. It has been shown [3] that system (1) is solvable
if and only if the system pencil (¢ A — BE) is regular, that is det(aA — BE) # 0 for
some

(2) (a,f) € C x C\{0,0}.

For a regular system pencil, the solutions to (1) can be characterized in terms of
the eigenstructure of the pencil. The generalized eigenvalues are defined by the pairs
(aj,B;) € C x C\{(0,0)} such that

(3) det(a;A - B;E) = 0, ji=12,3,...,n.
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Without loss of generality, it can be assumed that |a;|? + |8;|*> = 1. If a; # 0, then
Aj = Bj/a; is a finite eigenvalue and if a; = 0, then \; ~ oo is an infinite eigenvalue
of the system. The right and left generalized eigenvectors and principal vectors are
given by the columns of the non-singular matrices [X,, Xo] and [Y;, Yoo] (respectively)
which transform the pencil into the Kronecker Canonical Form (KCF)

T J 0 T _| L 0

(4) YAX:[O In—r:I, YEX—-[O Nl,
where J is the r—by—r Jordan matrix associated with the r < ¢ finite eigenvalues
of the pencil, and N is a nilpotent matrix, also in Jordan form, corresponding to
the n — r infinite eigenvalues [4]. The degree of nilpotency m € Z such that N™ =0,
N™-1 £ 0, is called the indez of the system.

A simple example of a regular index one system is given by the differential-
algebraic equations

Ey Epg 31 An Arg T1 B,
S i R P (R AT
where E;; and Aj; are square and of full rank. The first block of equations describes
the dynamic behavior of the system, while the second set give algebraic constraints
on the states. Such systems arise, for example, where path constraints are imposed
on the dynamic response.

For a regular system, the solution to (1) can be given explicitly in terms of the
KCF [3, 10]. It is easily seen that with u =0 V¢, the response z(t) of the system
converges to a position of stable equilibrium at the origin, i.e., z(t) — 0 as t — oo for
any admissible z(0), if and only if the finite eigenvalues of the system all lie in the left
half of the complex plane. We make the following definition.

DEFINITION 1. If the pencil (A — BB) is regular and its 7 < q finite eigenvalues
A; = B;/a; satisfy Re(A;) < 0,5 =1,2,3,...,r, then the pencil is stable. Otherwise
it is unstable. 0O

For a standard stable system (with E = I), the distance to instability, or radius
of stability, is measured in terms of the minimum perturbation 64 to the matrix A
required to make the perturbed system unstable [1, 6, 7, 9]. For descriptor systems
this definition is not immediately applicable. If we consider perturbations (§4,6F) to
the system pair (A4, E), it is easy to see from (4) that an infinitesimal perturbation to
the nilpotent part of the pencil can change its eigenstructure and the solution space
of the system.

To illustrate this consider the system (of type (5))

1 = -2r1+4+7z3
(6) By = -T2+ x4
&3 = -w
tg = —ug
with system matrices
-2 010 1000 00
0 -1 01 0100 0 0
(7) = 0010’E_0000’B_10
0 001 0 0 00O 01



The system (6) is regular, index one and stable with two finite eigenvalues A; = -2,
A2 = —1. If we introduce the perturbations (64,6 E), where

000 0
000 O
(8) 6A=0, $E=|g ¢ o o |
000 0

and €; > 0, 2 = 0, then the perturbed pencil (a(A + §4) — B(E + 6E)) is still regular
and index one but it has three finite eigenvalues, Ay = =2, A, = -1 at A3 =1/¢; > 0
and is clearly unstable for any positive value of ¢;. The solution of the perturbed
system has more degrees of freedom than the original system, and the admissible
initial conditions are altered. If the same perturbation is introduced, but welet ¢; = 0
and € > 0, then the perturbed pencil remains regular, but has index equal to two. The
solution space of the system is altered and the admissible controls must be smoother.
In both cases the perturbation causes the algebraic constraint to become differential.

If we exclude perturbations which alter the nilpotent part of the pencil, then the
finite eigenvalues of the perturbed pencil depend continuously on (64,6F) and the
“distance to instability” of the pencil can be measured in terms of the minimum per-
turbation required for a finite eigenvalue to move to the imaginary axis (compactified
by adding a point at infinity), or for the pencil to lose regularity. In practice, it is
reasonable to allow only perturbation such that the system remains solvable for the
same fixed class of admissible controls and initial conditions. This is ensured if the
nilpotent structure of the pencil is preserved, or more specifically in the KCF (4), the
nilpotent Jordan matrix N and the corresponding left invariant space spanned by the
rows of YZ are both preserved under the allowable perturbations.

For systems of the type (5) such restrictions exclude perturbations which cause the
algebraic constraints to become differential, which is a natural limitation. Allowable
perturbations can, nevertheless lead to systems which are unstable, different index or
not regular. Such perturbations are finite and measurable, however. Examples of such
perturbations are given in [2].

As a brief illustration, we consider the system (6) subject to perturbations
(6A,8F) where

0 00O 0 0 0 O

10 7 00 |0 & € 0

) = 00 00} 2 0 0 0 O
0 0 00 0 0 0 O

For small values of the parameters T, €, €2, these perturbations do not affect the
nilpotent structure of the system. For larger values of the parameters, however, the
perturbations can alter the nilpotency of the pencil or cause it to become unstable or
to lose regularity. If, for instance, we select €¢; = €2 = 0, then in the limit as 7 — 1,
a finite eigenvalue moves to the imaginary axis and the system becomes unstable. If
T = €3 = 0 then as ¢, — —1, a finite eigenvalue becomes infinite and , in the limit, the
nilpotent structure is changed, although the system is still of index one. Similarly, if
7 =0 and € = —¢, then as ¢ — —1 a finite eigenvalue becomes infinite, but in this
case, the index of the system is increased to two. Finally, if e = 0 and ¢y = —7, then
in the limit as 7 — 1, the system loses regularity.
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Motivated by these examples we define the distance p(A, E) from the pencil
(aA — BE) to the “nearest” unstable pencil, as the minimum perturbation which
causes the pencil to become unstable, to change its nilpotent structure or to lose
regularity, measured over a class D(A, F) of allowable perturbations. To make the
definition more precise we introduce the following notation. We denote the pencil
aA — BB) by (A, B) and the set of unstable (complex) pencils by Uy,; that is

(lo)un = {(4,E)| A, EeC" ", (A,E)isregular, and det(ad — SE) =0
for some o, § € C with @ # 0, Re(8/a) > 0 }

We denote the nilpotent structure of the pencil (A4, E) by nil(A, E'), where the nilpotent
structure specifically refers to the nilpotent Jordan matrix N of the KCF (4) and to
the corresponding left invariant space spanned by the rows of Y. The set of allowable
perturbations is then defined by

(11) D = {(6A,8E)| 6A,6E € C*™andVte|[0,1],(A+1t6A,E+t6E)
is regular and nil(A + t6A, E + t6E) = nil(A, E)}

We observe that if (64,6 E) belongs to the closure of D(A, E) but not to the set itself,
then the perturbation alters the nilpotency or the regularity of the pencil. We now
define the measure of distance to instability as follows.

DEFINITION 2. The distance to instability or radius of stability of the stable
regular pencil (A, E) is given by

AE)= i SA|6E A+6A,E+6E) e Uy, 6A,6E) € D(A, E)},
pAB)= | i (IISAISE)lp | (A+84,E+6E) € Uy or (84,8E) ¢ D(4,E)}

where |-| denotes the Frobenius norm and D(A, E) denotes the closure of the set of
allowable perturbations D(A, E) defined by (11). O

From Definition 2 it follows immediately that if (6A4,6E)¢€ D(A,F) and
I[6A|8E])|r < p(A,E), then (A + 6A, E + §E) is stable. We remark that p(A, E) mea-
sures that distance to the nearest complez pencil which is unstable, has a different
nilpotent structure or is not regular. In practice we may be interested only in real
perturbation to the pencil. The measure p(A, E) gives a lower bound for this case.
In the next section we derive a computable expression for the distance to instability
p(A, E) for systems which are of index at most one.

3. Regular Index One Systems. We now assume that (A, E) is a regular
pencil of index less than or equal to one. Then (A, F) has precisely ¢ = rank[F]
finite eigenvalues and the nilpotent structure of the systems pencil is given by N =0
and R{YX} = N {E}, where R{-} and N{-} denote the range and left null spaces
respectively.

In order to derive a computable measure for the radius of stability we must obtain
an explicit description of the set D(A, E) of allowable perturbations. We use the
following result form [8]:

LEMMA 3.1. The pencil (A, E) is regular, indez less than or equal to one if and

only if

T
(12) rank [ YEA ] =n
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where R(YL) = NL(E). From this result we can show the following (See [2] for a
proof):

LemMma 3.2. If (A,E) is regular, indez less than or equal to one, then the set
D(A, E) is equivalent to the set of all complex perturbations (6A,8E) satisfying

(i) rank[E + 6 E] = rank[FE],
(ii) YI6E =0,
T

(iii) rank [ wagﬁ-;gA) ] = n, where R(YZ) = Ni(E).
n}

We can show furthermore that the measure p(A, E) is invariant under orthogonal
transformations of the pencil, and therefore, it is sufficient to compute p(A, E) only
for a certain class of pencils. We have the following lemma (See [2] for proof).

LeMMA 3.3. If (A, E) is regular, indez less than or equal to one, then there exist
orthogonal matrices P, ) such that

_ | Aun Ax _ | Ei1 Ea
(13) PAQ_[O An], PEQ_[O . }

where rank Fy; = rank F = q and rank A2 = n — q and

_ Au A12 Ell E22

Furthermore, (6A,8F) € D(A, E) implies

_ 5A11 6A12 _ 5E11 6E22
(14) P6AQ = [5A21 6A22] PSEQ = [0 0 ]

D

In order to evaluate p(A, E) we may assume without loss of generality, that (4, E)
is already in the partitioned form (13). We define

_ 0A11 0A12 inu ’I:w.Ezg
(15) H(0,w)_[ 5 An]-[ 5 0].

We can now show that perturbations to H(#,w) of form

_ 061411 06A12 iw6E11 iw6E12
(16) A(o"")‘[ 64z 6A22]_[ 0 0

can cause the perturbed matrix to become singular if and only if the allowable pertur-
bations § 4,6 E) (in partitioned form (14)) fail to satisfy the conditions of Lemma 3.2

or else cause the pencil (A, E) to become unstable. We can thus establish the following
(See [2].) for details.

LEMMA 3.4. If (A, E) is regular, index less than or equal to one, then

p(A,E) = inf {I[6A|8E]|g |H(6,w) is singular}
,weER
6? +w? =1
where H(6,w) and A(6,w) are given by (15) and (16) respectively. O
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Finally we can show that an equivalence exists between a perturbation
A which makes H singular and a perturbation (§4,6F) € D(A,E) such that
I[6A|6E]|r = |A|p. This gives us the main theorem.

THEOREM 3.5. If (A, F) is reqular, indezx less than or equal to one, then

(17) p(AE) = inf omin{ H(8,w)},
yw €
2 4+w?=1

where omin{-} denotes the smallest singular value, and H(0,w) is given by (15). D

The proof of the theorem is given in [2] and depends on the well-known result
[5] that for a nonsingular matrix H, the perturbed matrix H 4+ A is singular only if
|Alg = omin{H}, with equality of some A. -

We remark that the measure (17) is computable, and we are now developing
reliable and efficient numerical algorithms for evaluating this measure, based on the
bisection methods derived by [1] and [6] for the standard problem.

A simple, but expensive, method for computing p(A4, E) is to apply a standard
software library program to minimize the one parameter function

(18) f(@) = omin{H (cos(a),sin(a))}.

To illustrate the results of Theorem 3.5, we apply this technique to determine the
radius of stability for the system of example (6). We find that p(A, E) = .6180, and
the minimizing perturbation given to four figures by

0 0 0 0

0 —.2764 0 -—.1708

0 4472 0 .2764 |’
0 0 0 0

6A =

causes the pencil to become unstable with an eigenvalue at the origin.

4. Conclusions. In the previous sections we investigate the distance of a matrix
pencil to the “nearest” unstable pencil. We demonstrate that a measure of this dis-
tance in terms of perturbations of the pencil is nil unless the allowable perturbations
are restricted. A natural set of restrictions is defined and the measure of distance to
instability is established. For regular systems of index less than or equal to one, the
restrictions simply imply that in the differential-algebraic equations the perturbations
cannot cause the algebraic part of the system to become differential. That such per-
turbations do not arise in practice is frequently ensured by underlying physical aspects
of the system. A computable expression for the distance to instability of a regular
system of index less than or equal to one is also derived and illustrative examples are
given,

We observe that for some systems other restrictions on the perturbations might
be appropriate. For instance for systems arising in the form

Ey; O &1 | | A An2 T B,
it might be natural to assume also that allowable perturbations keep the right null
space of E invariant, i.e., §EX, = 0. Alternatively it might be natural to assume

6



that the algebraic and differential state variables of the system remain decoupled,
i.e., 6 A21 = 0, so that the solution space of the homogeneous system is not altered.
The results of the previous sections can also be extended to obtain computable mea-
sures of the distance to instability over such sets of allowable perturbations. Detailed
descriptions of these generalizations are given in [2].
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