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INTRODUCTION

When the Moving Finite Element (MFE) method was first introduced
and implemented by Miller & Miller (1981) and Miller (1981) on parabolic
problems, penalty functions were used to inhibit the onset of singularities.
This use of penalty functions was done in a completely implicit manner,
the closer the solution to singularity the higher the penalty to
be added. The resulting method needs a stiff solver to carry through
the time stepping. -

With the realisation that the MFE method without penalty functions
can be regarded as a local method and that explicit time stepping
is sufficient in this case (Wathen & Baines (1985), Baines (1885a,b))
the possibility arose of using MFE as a fast economic solver for
hyperbolic problems. Nevertheless there do appear to be situations
where node overtaking limits time steps in an impractical way and
constraints may be envisaged as a way of speeding up ‘the solution.

In this report we discuss the implementation of constraints
in the MFE method in an explicit manner, giving generalised forms
of the MFE eguations which preserve the matrix structure observed
by Wathen & Baines (1985). One possible constraint is the fixing
of nodes, yielding the Galerkin fixed rule (FFE) method. We begin then

with a section on projecticns describing the interconnection of

the MFE and FFE methods. This is followed by the section on constraints.

The two sections are largely independent however.



1. PROJECTIONS

Consider finite element methods for obtaining an approximate solution

v to the solution u of the eguation

th=LU

(i) The semi-discrete Finite Element Method with fixed nodes (FFE) may

be taken as consisting of two steps. First the residual

v

£ Lv ”2

is minimised over the coefficients éj in the approximation v, i.e. in

v =) a,on, |, v, =) a.,a, ,
zJJ tZJJ
da,
where aj is as shown in Fig. 1(a) and éj =-—§i . This leads to the
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FIG. 1(a) : The ajfunction

Galerkin equations

<a., z d.,0, - Lv> = 0,
i 3 373

a set of ordinary differential equations (ODE’s) in time for aj.

(1.1)

(1.2)

(1.3)

(1.4)

Secondly, these ODE's are solved by a finite difference time-stepping algorithm.



Equations (1.4) can be written in matrix form as

A & =¢g (1.5)
o — =0
- . T _ 1 0 o _ a0
where & = [...,aj,...] 3 gu [gi], g5 <ui,Lv> , Aa [Aij]
A?j = <ai,aj>. The matrix Aq is symmetric positive definite tridiagonal
but its inverse is full. Hence éi = {[A&qga] } depends globally aon

i
contributions from Lu in all parts of the region.

The minimisation can be regarded as a projection of [Lv 1nto the

space Pu spanned by the aj.

(ii) The semi-discrete moving finite element method (MFE) has a corresponding
structure. This time the residual (1.2) is minimised over both sets of

coefficients éj and éj in the approximation

v =) a.o, v, =) (&0, *+ §,8.) (1.6)
) 3% g =L (Bgay v 848
98,
where Bj is as shown in Fig. 1(b) and éj = —3% (c.f. Fig. 1].
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FIG. 1(b) : The Bj function

[The result z ajaj = z éij appears in several places in the MFE
3

literature. (See e.g. Miller, Lynchll. Bj = -maj where m is the local

slope % of the approximate soluticn. We now have the double system of



Galerkin eguations

<a,, y (Ao, + §.8,) - Iv> = 0
. SE (1.7)
<B.» (.o, + §.8,) - Lv> =20 i
Bl 2 JJ JBJ
a set of ODE's in time for aj, Sj' These ODE's are again solved by
a finite difference time-stepping scheme, usually forward Euler.
Equations (1.7) can be written in matrix form as
AV = 8 (1.8)
. . . T J a B B _
where ¥ = {...,aj,sj,...} -1 {...,gi,gi e o3, gy <Bi,Lv>,

<ai,u,> <ui,8.>
A= [A,.], Ai' B J J . The matrix A is symmetric non-
= b <60 > <B.,B.>
i J 17
negative definite tridiagonal in 2x2 blocks and its inverse has the same
structure. Hence yi = {[Aé1)i} depends locally only on contributions  Lv

from elements adjoining the point 1.

The minimisation may be regarded as a projection of Lv into the

space P spanned by the o, and . 5 since o, and . are time

= ag P : j % J %

dependent, PaB varies with time.

(iii) In one dimension the space PaB is also spanned by the basis functions
¢K (see Fig. 2). The projection of Lv into SaB is the same as the

projection of Lv into S, the space spanned by the ¢'s. The corresponding

¢

1
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The functions ¢K1 (dotted line) The function ¢K+1 ’

and ¢K2



Galerkin eguations are
<p, L W, - Iv> = 0, (1.9)

where v, = y & 50 + sij =3 W by - (1.10)

]

Equations (1.8) can be written in matrix form as

C i = by vk (1.11)
T . T T _ T _
where W = [Wk1’wk2) , Ek [bk1’bk2) F bkm <¢Km,Lv>, and
<b, s 1> <6 a0, |
CK = S S (see Fig. 2). For each k eguation (1.11)
<¢K2’¢K1> <¢K2'¢K1>
. P N . = _/I
is a 2x2 system, trivially solved to give Ek CK-EK .
Combining together equations (1.11), write C = diag [CK]’
T LT T _ T g
W= [yk], b = [Ek]’ giving
W =b . (1.12)

C dis symmetry non-negative definite diagonal in 2x2 blocks with the

R . . ) -1
trivial inversion w = C b.

To obtain éj' éj from w,_, use (1.10). Comparison of coefficients

K
gives
a. -ms., =w
Ly L2 (1.13)
aj = mst = Wpy
(see Fig. 3), which can be written in matrix form as
(1.14)

FIG. 3 : Node-element relationship



-B=

17 -m
P g I
where Xj [a,,sj] , W, [WLZ'WR1] , and Mj 1 -mg

For each j equation (1.14) is a 2x2 system, trivially solved to give

. Sl
. = M, w,.
25 J =
Combining together eguations (1.14), write M = diag.{Mj}, QT = {ij} 5
- {ﬂz } giving
My = w . (1.15)

M is diagonal in 2x2 blocks with the trivial inversion y = M_qﬂ.

Equations (1.11) and (1.15) constitute an alternative, equivalent,

way of obtaining (1.8). It follows that, since g = MTE,

Micmy = Micw = Mb = g (1.16)
so that A = MTCM, c.f. (1.8). Then
g=mc Ty (1.17)

exhibiting the local dependence of y on Lv. For future reference, note

that equations (1.16) include the normal equations for the least squares

1
minimisation of My - W with weight C*°.

(iv) Returning to the FFE method, it has been shown by Wathen (1885)
that the mass matrix A N has the decomposition

A = LTCL (1.18)
o

where L = diag{Lj} and Lj = i}J : note that L 1is rectangular.

The eqguations (1.5), namely

LTea =g =Ls = LTew (1.18)

are the normal equations for the least squares solution of the overdetermined
system-

La = W (1.20)

1

with weight C®. The FFE Galerkin equations can therefore be regarded as a
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projection of Lv into the space S¢ (c.f. (1.12)) followed by such

a least squares solution. It is this last step which converts the

local nature of the method into something global.

1

The presence of the weight C® is also important. Since C - is
proportional to the size of element, small elements have small weight
in the least squares minimisation. As a result, mesh refinement yields
lower returns.

Both the non-local difficulty and the mesh refinement difficulty are

overcome if a weighting CD is used (see below).

(v A useful observation for MFE in one dimension, following from (1.13)

is that, since

and aj+1 - mksj+1 = wk2

the speed of the nodes j,j+1 perpendicular to the kth segment are

w,_,co0s6, , w_.cosf, , repectively (see Fig. 4). Moreover we have, by

k1 kK* "kZ Kk

addition and subtraction,

i . . . . ; B T.
aj+1 + aj - mk[5j+1+5j] = Wiy + Wio = 1 1) W
: i R
aj+1 aj mK[sj+1 sj] Wieo Wi 1 -1 W
aj+1-a_
Using m, = tanek - E—h—tgl (see Fig. 4), we obtain
341753
) . ) . T.
=l -1 d =l
nk 2(aj+1+aj10059. 2[sj+1+sj181nej zcosek(1 1) ﬂk
and
) 1 T.
m =——Q101 -1} w
—k [5j+1 sj] —k

where ﬁk is the lateral speed of the mid point of the segment k.

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)



J sh+\
FIG. 4 : k’'th element segment motion

Since both (1 1]T and (1 —1]T are eigenvectors of C, with

K

. _ 1 _ . .
eigenvalues Sj+1 sj and 5 [Sj+1 sj), respectively, we obtain from

(1.113,
cose,

. T
Nk ~ g, s, (11 e

e <1 JLV>

8441
= —*-I Lv dx (1.26)
2
s
where Zkoosek = s, = Sj (see Fig. 4) and
i B T
iy & e (1 1) b,

k (sj+1-sjl

]

S . [ Lv d (1.27)
(s. ,-s5.)? 1pk EHCA !
J*1 73 s,
J
where Ve = k1 T ko

Thus the segment moves perpendicular to itself with speed w,_,cos®

k1 k
at one end and szcosek at the other, eqguivalent to a mid-point speed ﬁk
and rotation mk as given above. It has been shown by Baines (1985b) that,

for a hyperbolic scalar conservation law, the above properties give smooth

transitions to and from entropy respecting shocks and expansions.



(vi) The above analysis is for one dimension. In higher dimensions,
however, the structures is the same, but with one major difference.

In MFE the space P 8 (now PuB) is not identical with the space P¢
o

(see §1(iii)). This is because in higher diemnsions there are generally

more elements surrounding a node than there are nodes at the corners of an

element. The consequence 1S that, although we can write down equation (1.11)

(with the elements now having more than 2 components), and invert CK as
before, the Mj of eguation (1.14) is no longer squatre and (1.14) is an

overdetermined system. Nevertheless if we take a least squares solution of

1
(1.14) with C® weighting we obtain the standard MFE equations (41.16) (c.f.

the FFE description of §1(iv)).

A consequence and criticism of the MFE method in higher dimensicns

is the same as that pointed out at the end of §1(iv), namely, that the method

is no longer local and that mesh refinement gives diminishing returns.

Ni=

A remedy for both criticisms is found in dropping the C
least sqguares step, giving the equations

MMy = M

which invert to give

a local solution.

The result that the speed of the segment normal to itself can be

calculated in the form (1.26) follows from the fact that MT contains a

weighting in the

(1.28)

(1.28)

row of 1's referring to the nodes at the corner of each element. Thus, taking

that particular row in (1.28) yields the sum of the rows of

My = W

which refer to a particular element. Within (1.28) therefore, we have the

(1.30)
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equation
y ékv -m 2 ékv = IR z ﬁkv =y ka 3 (1.31)

where (& ,t ) is the velocity of node y 1in element k (c.f. (1.22)).

kv kv
Since such a row of 1's is a left eigenvector of C we have as in (iv) the
result that

Tk " A

- _J_[ o (1.32)
K

where AK is the "area” of element k. The result is true for any number of
dimensions, and also (because of the eigenvector property) holds for the

standard MFE equations (1.16) in higher dimensions.

(vii) Another approach to dealing with non-locality is (e.g. in two
dimensions) to abandon triangles in the basic grid and work rather with

linear functions or polygons. By projecting Lv into each polygonal element
to obtain a best plane fit, we obtain an approximation Vi to uy which

can be used to move the plane approximation v. As the planes move the
polygons are distorted and the grid also moves. Another way of thinking about

this is to imagine straight lines moving around in two dimensions where points

had moved in one dimension. This approach was suggested by Prof. P.L. Roe.

(viii) For systems of m equations there are m sets of local equations
of the type (1.12) but it may be convenient to work with a single grid, in
which case a further projection may be necessary. (If each component has

its own grid a projection will still be necessary in more than one dimension].

Using a superfix p to indicate the p’th component, we have
CHEF - EH
and in one dimensicn, if a single grid is to be used, the _ﬂ“ have to be
H

mapped on to &  and a single &. The appropriate overdetermined set of

equations is
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a. ﬂ
IJ :J
M, wl o= | ; (1.33)
J a . I
J |
g, |
e = il
W,
LJ-_J

where Mj is rectangular, and we may solve then in a least sqguare sense,

giving
.1 1]
a, W,
i J T
! i
i
I
MT M ! _ MT | (1.34)
J J «M J |
a, |
J I
5, |
- J— I
.M
W,
. J
(c.f. (1.28)) which determines the vector of unknowns in the form
&] ]
) S L) VI I VL (1.35)
: J J J :.
& |
om
_SJu ~3
2. CONSTRAINTS
We now discuss the topic of Moving Finite Elements with constraints.
The FFE method is an example of the MFE method with constraints.
These constraints may be expressed as
g, =0 (2.1)
J
or, in the formulation of §1(v]), as
W, =W (2.2)

L JR
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The MFE method in more than one dimension may also be regarded as a
constrained method, where the w must lie in the range space of M. These

and other possible (linear) caonstraints are now investigated in a general way.
(i) Suppose that the residual

v, - LV (2.3)
vy -2yl

is to minimised subject to the linear constraint

ZT& = e (2.4)

{(e.g. (2.2) above). Using (1.10) we can write

! ||vt - Lv|? = %'TCW . WTE + terms independent of Ww. (2.5)
2

Thus, to incorporate (2.4) we use a Lagrange mdltiplier A, minimising

Wow - wb o+ A (2w - 8) . (2.5)

NI=

This gives the pair of equations

Cw=b -2\ (2.7)
Z'y = e. (2.8)
To eliminate X invert C in (2.7) and multiply by ZT: this gives
Zw=2c' -2 =e (2.9)
o e’ =2ech - e (2.10)
Solving for A gives
r= e @ - e (2.11)

and substitution into (2.7) gives

ci=b-2z2c¢ '@ -0 (2.12)

which is the modified version of (1.12) in the presence of the constraints

(2.4).
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Note that the numerical inversion of ZTC—12 can be simply achieved
using the pre-conditioned conjugate gradient method. The spectrum of ZTC_qz,
preconditioned by the inverse of its diagonal entries, has the same support

as the XNs 1in

al

-1, _
C -ty =0, (2.13)

where C51 = diag{C—q}, which are simple to construct and have a compact

support (see Wathen (1985)).
(ii) The constraint of fixing nodes in the MFE method to obtain the FFE method
can be expressed as (2.2) or, alternatively, in the form that w should lie

in the range space of L (see (1.18)). The constraint takes the form

2y = 0 (2.14)
or
Z'L = 0 wz=-0 . (2.15)
Replacing (2.8) by the second of (2.15) yields, from (2.7],
LTew = L' (2.16)
or, since w = La and LTb = g , we obtain
= = - “u
T s
L' CL& =g (2.17)
- o
as before (egn. (1.19)). In this case Z 1is an array of vectors of the
form [1 -1]T and, if used in (2.12), produces a w which is consistent
with solving the rectangular system
Ld = w . (2.18)
Likewise the constraint of forcing éj =0 VYj may be expressed as
2 = 0 (2.19)
or Z'L =0 (wz -0 (2.20)
m m
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where Lm consists of vectors [-mL -mR]T and Z consists of vectors
[mR = mL]T. This yields the equations

T =
LCL =g (2.21)

= 8 B _ . } ,
where gﬁ {gi}, g; <3i,Lv>, c.f. (2.17). If Z 1is used directly in

(2.12) the result is a w which is consistent with the rectangular system
LE=w . (2.22)

In both of these examples the alternative procedure of using (2.14)
or (2.18) to define 2Z and substitution of Z into (2.12) produces the

same results by eradicating the other eguations.

(iii) To minimise ||vt - LV H; subject to a constraint directly expressed
in terms of y , say PT& = d, we again use a Lagrange multiplier ) and
minimise

WAy -yg ey -, (2.23)

c.f. (2.8)}. This gives the pair of equations

Ay =g - TA (2.24)

rly=d . (2.25)

To eliminate A dinvert A and multiply by PT: this gives

rly - rTA'1(g—rlJ =d (2.26)
- A=Ay -d
S A=A e g - (2.27)
Substituting for A gives
1,71

Ay =g -rirA T g - (2.28)
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This is the modified equation for ¥ 1in the presence of a constraint.

Numerical inversion of A can be done using pre-conditioned conjugate
gradients, which is again rapid since the spectrum of D_1A is compact.
[This is proved by Wathen (1985) by considering A - AD = MT[C - ACD]M,
where CD is the matrix of diagonal elements of Cl. Here it is also necessary

to invert

B=1at = wmlann - A 'myTema . (2.29)

By the same argument as used by Wathen the spectrum of B, preconditioned

in the standard way, satisfies the same bounds as those of A.

(iv) The same equaticns are obtained if an unconstrained projection is
followed by a constrained least-squares minimisation.
The unconstrained projection gives Cw = b. The unconstrained least-squares

1
minimisation of ||C*(My - W) || gives Ay =g where A = m'cM.

If the latter is constrained by PTi = d, introduce a Lagrange multiplier

A and minimise
1
s lcfmy - w) ]2+ ATy - d) . (2.30)

This gives the pair of equations

MTcMy - MTCw + TA = O (2.31)
rly = d (2.32)
. T _ . T .
Using M CM = A, Qﬂ = EJ M E‘= g, the first of these becomes
Ay - g + TA = 0. {2.33)
So we get the same pair of equations as before.
1
(v) Suppose we drop the C* weighting making everything local. We then
get the pair of equations
MMy - M@ + TA = O (2.34)

r’y = o (2.35)
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Invert MTM and multiply by FT: this gives

T

ply =t e - ) = d (2.36)
or
rlemm = et Ty -
giving
A=t et T e - ) (2.37)
Substituting for A pgives
Wiy = Mw - et m T Tt Ty - a) (2.38)

the modified equation for a new y 1in the presence of the constraint.

[If there is no constraint the equation is MTMi = MT@, c.f. (1.34)]].
Inversion of MTM is straightforward. For BD = FT(MTM]~1F, write

BU = [(MTM]—qflT(MTM)(MTMJ_qr: the spectrum of El[J matches that of MTM»

see Wathen (1985).

(vi) An important application of constraints is in the formation of two-
dimensional shocks. In one dimension, when nodes overtake in a hyperbolic
problem such as a conservation law, a shock is formed by maintaining the
speed ﬁk of (1.26) but reducing the mk of (1.27) instantaneously toc zero.
In practice two of the components of w in (1.12) are lost but these are

replaced by the appropriate shock conditions, which derive from (1.26):

if v = - fx, we have
s
. _ J+1 f. .- F.
N T J Foax = J (2.39)
L X a,, ,-4a.
K S, J+*1 ]
J
the usual jump condition. Thus we impose the constraints
. T
TP J”__aJ_ (2.40)
J M L B

which may be written (trivially) in the form (2.32). However, the

formalism of section (v) is unnecessary since the constraints can be expressed
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explicitly. Note that two eguations are lost (for the -EKJ and two

gained (from (2.40)).
In two dimensions the equivalent of node overtaking is a triangular
segment becoming vertical (see Fig. 5). As already pointed out in section

1(vi) the velocity of the centroid of the triangle perpendicular to its

iR

A

/ >>/
X

FIG. 5 : Triangular segment becoming vertical

plane is given by (1.32). If this is maintained when the triangle becomes
vertical, and its angular velocity making it overturn is reduced to zero
instantaneously then, by analogy with the one dimensional case (2.38) above,
the triangle sweeps out mass in accordance with the conservation law.

Specifically, for the problem
u, + Vef(u) =0 (2.41)

we have from (1.32)

(2.42)

where dsK is measured perpendicular to the triangular segment k. When

the triangle becomes vertical mass is swept out at a rate A :

knK which, from

(2.42), is consistent with the conservation law (2.41).
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In practice three of the components of w in (1.12) are lost and
are replaced by suitable constraints. One of these constraints is that the
speed of the centroid of the triangle is continued at the formation of the
shock; the other is that no subsegeunt overturning takes place, i.e. that
the vertical line through the centroid remains vertical. Since two constraints
replace three equations the system is no longer explicit and the formalism
of section (v] comes into play.

From Fig. 6 we see what the constraints actually are. If the

FIG. B8 : Shocked (vertical) triangular segment

co-ordinates of the vertices of the triangle are (Xi,Yi,aiJ (i=1,2,3) and
those of the centroid are (X, Y, a) then one constraint is

(X,Y)e = constant, (2.43)

equal to its value just before the shock forms (where ﬁk is the unit
vector perpendicular to the plane of the triangle). The other constraint,

which is longer to write down, is that the line MN remains vertical.

Together, these constraints supply the Ty =d of (2.32).
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CONCLUSION

Here we summarise the results in this report.

We compared the fixed finite element (FFE) method with the
moving finite element (MFE) method in terms of projections. In particular,
we noted that in one dimension for a scalar eguation the MFE method is local
but the FFE method is global. Also in higher dimensions both methods are
global but there are possible local versions, the crux of the matter being
the transfer of elementwise projection information onto the nodes. If
this is done with the standard weighting a global method results, but it can
be done in such a way that a local method results. Mgreover with the standard
weighting mesh refinement is an uphill struggle since the weight is
proportional to the size of the element.

The local form of the MFE method in one dimensicn gives a clear
picture of what happens at shocks and even in higher dimensions there is a
smooth transition to the shock.

The second part of the report showed how explicit constraints may be
built into the MFE method, both in the local and global formulations. We
observed that although the constrained form looks complicated
its solution make good use of the pre-conditioned conjugate gradient method,
as for the unconstrained global MFE. Finally an application of constraints

to the formation of two-dimensional shocks was considered in some detail.
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