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ABSTRACT

An efficient algorithm is presented for the solution of the Euler
equations of gas dynamics with a general convex equation of state. The
scheme is based on solving linearised Riemann problems approximately and
in more than one dimension incorporates operator splitting. In
particular, only one function evaluation in each computational cell is
required by using a local parameterisation of the equation of state.
The scheme is applied to two standard test problems in gas dynamics for

some specimen equations of state.



1. INTRODUCTION

In 1981 Roe [1] proposed an approximate linearised Riemann solver
for the Euler equations of gas dynamics for an ideal gas. Following
Roe, Glaister [2] developed a similar type of Riemann solver for
non-ideal gases with satisfactory results. A disadvantage of
Glaister’s scheme is that four function evaluations are required in each
computational cell to approximate the first derivatives of the equation
of state. For complex equations of state, e.g. curve fits for
equilibrium air [3], this can prove to be an expensive overhead. We
seek here to devise a scheme that requires only one function evaluation
in each cell with no deterioration in the quality of the solution.
This is achieved by a local parameterisation of the equation of state,

in effect a 'variable effective gamma’ (VEG) scheme.

In §2"we consider the Jacobian matrix of the flux functions for the
Euler equations with a general equation of state and in $3 derive an
approximate Riemann solver for the solution of these equations.
Finally, in 84 we display the numerical results achieved for two

standard test problems in gas dynamics.



2.  EQUATIONS OF FLOW

In this section we state the equations of flow considered and give

the eigenvalues and eigenvectors of the Jacobian matrix of one of the

corresponding flux functions.

2.1 Equations of Motion

The three dimensional Euler equations for the flow of an inviscid,

compressible fluid can be written in conservation form as

¥, t ix + 5y + bz = 0 (2.1)

where
T
w = (p.pu,pv,pw,e) (2.2)
£ = (pu.ptpu’.puv.puw,u(e+p))” (2.3)
T

g = (pv.pvu,p+pv?, pvw,v(e+p)) (2.4)

h = (Pw.pwu-pwv.p+pw2-W(e+p))T (2.5)
and

e = pi+ ¥%p(® + v+ w?) . (2.6)

The quantities (p.u,v,w,i,p,e) = (p,u,v,w,i,p.e)(x,y.2.t) represent
the density, velocity in the three coordinate directions, specific
internal energy, pressure, total energy., at a general position (x,y.2)

in space and at time t . In addition, we assume that there is a



thermodynamic relationship connecting p.,p and i written as

p = p(p.i) . (2.7)

We assume further that the derivatives pp = g% and p; = g% of
i p
the equation of state (2.7) can be determined.
2.2  Jacobian
of
The Jacobian matrix A = o has eigenvalues
Aj = utauuu, j=1,...5 (2.8a-e)
with corresponding eigenvectors
. P : A2 T
€19 = (1,u £ a,v,w.p + 1+ %q° & ua) (2.9a-b)
pp
es = [l.u.v.w.%q2 + 1 - —E] (2.9¢c)
Py
€4 = (O,O.l.O.v)T, (2.9d)
and
T
&5 = (0,0,0.1,w)" , (2.9¢)

where the fluid speed q and sound speed a are given by



q® = u® + vZ 4+ 2 (2.10)
and
PP.
a®? = —%+ P, - (2.11)
9 h
Similar expressions can be found for the Jacobians 5;’ and 5;

In the next section we develop an approximate Riemann solver using

the results of this section.



3.  APPROXIMATE RIEMANN SOLVER

In this section we develop an approximate Riemann solver for the
Euler equations in three dimensions with a general convex equation of

state incorporating the technique of operator splitting.

We seek to solve equations (2.1)-(2.7) approximately using operator

splitting, i.e. we solve successively

¥t £x = 0 , (3.1a)

Et + %y = 9, (Blb)
and

¥.+th =0 (3.1c)
along X,y and z-coordinate lines, repectively. We consider

approximate solutions of equation (3.la); then a similar analysis will

give approximate solutions of equations (3.1b-c).

3.1 Parameterisation of the equation of state.

The equation of state for an ideal gas is given by

p = (v - 1)pi (3.2)



where ~ is a constant and represents the ratio of specific heat
capacities of the fluid. Following this, for a general equation of
state p = p(p.i) we define a new dependent variable ~ = v(p,i) by

v = B_41 (3.3)
so that the equation of state (3.7) can be rewritten as

p = (v(p.1) - 1)pi . (3.4)

(Many equations of state for real gases are already given in the form of

equation (3.4).) Thus, ~ = constant identifies an ideal gas.

From equation (3.3), the eigenvectors €1 9 of equations (2.9a-b)
can be written in terms of ~+ as
- P 42 T -
1.0 = (1,u £ a,v,w.(q_l)p + %q° + ua) ; (3.5a-b)

In particular, for the ideal equation of state (3.2) the sound speed a

is given by equation (2.11) as
a? = 1% , (3.6)

and the fifth component of €3 given by equation (2.9c) becomes %qz

pp
since i - e 1B = 0.
Py
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3.2 VWavespeeds for nearby states.

Following Godunov [4], we consider the solution at any time to
consist of a series of piecewise constant states. Our aim is then to
solve each of these linearised Riemann problems approximately.

Consider two (constant) adjacent states (left and right) close

W o¥p
to an average state W , at points L and R on an x-coordinate line.
In particular, the variable ~ given by equation (3.3) is piecewise
constant. Now, in view of the sound speed a for ideal gases
(r = constant) given by equation (3.6) and the eigenvectors €1.9

given by equations (3.5a-b), we assume that we have approximate

eigenvectors
a® 2, 2 2 T
Ljg = (1,u £ a, V., W, == + %(u+vo+w") % ua) (3.7a-b)
corresponding to the average state W . (N.B. The quantity ~ in
equations (3.7a-b) represents an average value close to L and R )
Ppp
In addition, because i - == 0 for an ideal gas, we split €3 into
i
two vectors as
' 2 2 2T
Iy = (Lou,v,w.%(u® + v2 + w%)) (3.8)
and
r' = (0,0,0,0,8)T (3.9)
'\6 L B B ] L] .

where B represents an average value in the cell (xL,xR) of
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i- ppp/pi Finally, we approximate 54,5 as
T
Iy = (0,0,1,0,v) (3.10)
and
T
Ig = (0,0,0,1,w) (3.11)
We now seek coefficients 0100, 0a,aQy, 0 such that
Ay = @ L) + Ggly + Qglay + @,r, + agTo + re (3.12a-f)

to within O0(A®) , where A(¢) = (°)R - (°)L .
is considered separately since it vanishes for an ideal gas.

do not introduce another coefficient a6 since T

(N.B. The vector r,

~6
Also, we

Ig has only one

non-zero component and is therefore not required.)

From equations (3.12a)

and (3.12c-d) we obtain

a, = A(pv) - vAp (3.13)
ag = A(pw) - whp (3.14)
but
A(pU) = pAU + Ulp , U=u,v or w (3.15a-c)
to within O(A%?) , so that
a, = pAv (3.16)

and
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ag = pAw . (3.17)

Also, from equations (3.12a-b) and (3.15a) we find that
a(a1 = a2) = plAu . (3.18)

Using equations (3.12a) and (3.16)-(3.18) together with the

relationships
A(pu®) = UPAp + 20UAU, U=u,v or w (3.19a-c)

to within 0(A?) , equation (3.12f) yields

a2

2
A(pi) = ﬁp - 370y *+ Bag . (3.20)

However, we also know that pi = ;?T , therefore

ey _ P _ A _p
A(pi) = ﬁ[“r—l] = 17 (v-1)2 A~
_ bp_ _pi
el e L (3.21)

to within O(A®) , and thus equation (3.20) gives

ay - [Ap - 2121] - ‘-";i—)-[ﬁ + %] . (3.22)
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pPp

In the ideal case ~ = constant, so that Avy =0 and i - —£=0,
i

i.e. B =0 for consistency and thus ay = Ap - g% y In the general
case we would like ay = Ap - 2%- as Ay -0, and thus we set

B = w Pidv (3.23)

v-1

so that

ey = bp -8, (3.24)
Finally, equations (3.18) and (3.24) yield

1_
a g = 2az(Ap t padu) . (3.25a-b)

The results above imply an approximation to the eigenvector €3 given

T
by Iy =rI3+Ig/eny . l.e. o= 1,u,v,w,%(u?+v?+w?) - pihv = .
(v-1) ﬁp-az
pp
and hence an approximation to i - E_B .
i
We have found 0.0, 0q,ay and o such that
5
Ay = z ajgj (3.26)
j=1

to within O(A®) and a routine calculation verifies that



~14-
5

Af = Aor, 3.27

~ zl i%5% (3.27)

to within  0(A%) . We are now in a position to construct the

approximate Riemann solver.

3.3 Decomposition for general ¥ ¥p

Consider the algebraic problem of finding average eigenvalues

~ o~

AI.A2.A3.A4.A5 and corresponding average eigenvectors Iy

such that relations (3.26) and (3.27) hold exactly for arbitrary states

~ N N

X2:X3'X4' %5

¥ - ¥p not necessarily close. Specifically, we seek averages

~

E.E,V.W.g,; and i in terms of two adjacent states ¥ ¥p (on an

x-coordinate line) such that

5
o= ) 3z (3.28)
j=1
and
5
Af = z Ajajgj . (3.29)
j=1
where
AG) = ()g - () - (3.30)

W o= (p.pu.pv.pw.e)T . (3.31)
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£()) = (pu.p+pu®,puv,puw,u(e+p))’ .
e = pi+4%pu® + %pv® + Yow®
p = p(p'i) »
v = B4,
pi
'X12345 - Eig,i\l’ll’\l‘l:{'
= A g ~2 s, ~ ~ e
fo- (R @) |
-1
Eg 1.4,v, W 4(03+v2+w?) - ~ pil~y _ .
(v-1)(Ap - Ap/a?®)
r, = 0.0.1.0%",
¥ = (0.0.0.1.9)",
o 1 e
%.,2 & E(Ap t pafu) ,
33 = Ap - %B ,
2
a
‘&4 = ;Av

(3.32)

(3.33)

(3.34)

(3.35)

(3.36a-¢)

(3.37a-b)

(3.37¢c)

(3.374)

(3.38e)

(3.39a-b)

(3.39¢)

(3.394d)
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and

Q2

s = phw . (3.39%)

We note that the solution to this problem is equivalent to seeking an
approximation to the Jacobian A, namely A, with eigenvalues ii and
eigenvectors Ei , such that

Af = Kby . (3.40)

The first step in the analysis of the above problem is to write out

equations (3.28) and (3.29) explicitly, namely,

Ap = a +a, oy, (3.41a)
A(pu) = EI(G+£) + 32(5—3) + Zsﬁ , (3.41b)
A(pv) = AV + gVt agv +oay, (3.41c)
A(pw) = QW+ AW+ oaqw +oa (3.41d)
Ae = Alpi + L0 U A - S %q>2 + ua

2 15

+ @,V + aW (3.41e)
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A(pu) = &1(E+E) + &2(5—3) + 836 ., (3.41f)
A(p+pu®) = Ap + A(pu?) = EI(E+E)2 + ag(u-a)® + 3352 . (3.41g)
Alpuv) = El(ﬁ+§)$ + 82(5—3)3 + 535?; + “’45 , (3.41h)
A(puw) = zl(ﬁé)% + &2(G-§)§ + asa'w + ”53 : (3.411)
2
A(u(e+p)) = A(upi+up) + A[ﬂlzl—q—]
~ ~ v 2 s, ot ol
= al(u+a) NL + %q® + ua}
-1
~ v ~2 N, ~av
+ a(u-a) ~L+ %q® - ua]
v e - 2L g,
-1
+ UV + a.uw 3.41j
4 5
vwhere
a® = u® +vZ+ W, (3.42)
as before, and for convenience we have written
@ = BV (3.43)

Equation (3.4la) is satisfied by any average we care to define, while

equation (3.41b) is the same as equation (3.41f); thus it remains to



solve equations (3.41lc-j). From equations (3.41a) and (3.41f-g) we

obtain a quadratic equation for U whose only productive solution is

u = . (3.44)

In addition, from equations (3.4la), (3.41f) and (3.44) we find that
pow Memd-ulp e (3.45)
= Au = VPLPR - :

Also, from equations (3.4la), (3.4lc-d) and (3.45) we obtain

~ A(pv) - phv VP VL T VPR VR
v ﬁp = (3.46)
VP * Ve
with a similar expression for W . The results given by equations

(3.44)-(3.46) are identical with the ideal case given in [1].

We have now determined B,G.; and W and in view of equations
(3.44)-(3.46) we can show that equations (3.4l1h-i) are automatically

satisfied.
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We are now left with equations (3.4le) and (3.41j), and noting the
identity

2 ~S, ~S ~ ~e
Aﬂﬂg-} - %q>Ap - p(uAu+vAviwAw) = O , (3.47)

equation (3.4le) yields

(R-1)A(pi) + pidy - Ap = O . (3.48)

A

If we define averages ~ and i by

. Vo, S, + Vp
§ - LtV %R , S=+ or i, (3.49a-b)
VP * Veg

we obtain the following identities

A(pi) = pAi + ilp . (3.50)
and
dp = A(pi(~-1))
= (v~1)pM + (1-1)ihp + PiAv . (3.51)

so that equation (3.48) yields
(-1)1dp + (F-1)pAi + p(I-1)Av = O . (3.52)

The only physical solution of equation (3.52) for all variations Ap,Ai
and Ay is

Y = 7 and ¥ = 1, (3.53a-b)

given by equations (3.49a-b). It now remains to determine a .

We begin by subtracting equation (3.4le) multiplied by u from

equation (3.41j) to give
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~2 ~ ~
:7£-Au = A(upi+up) - ud(pi) - uldp
~-1
2 ~ 2 ~
+ ﬁ[uE%—] - A [%] - %pq3Au , (3.54)
which determines a . Simplifying equation (3.54) using the following
identities
~ Py, Pp
3 p\/{[lL-s-g]-ﬁ-ﬁ[iR-ﬁa]ﬁu
A(u(pi+p)) - uA(pi+p) = (3.55)
vp, + Vp,
L R
and
9 (o) VL HaE + Vo a3t
A[“%—] - uA[&g—] - M i (3.56)
Vo + Vg
we find that, after division by SAu .
az = (v-1)(H - %3) . (3.57)
where H is a mean enthalpy given by
Vo, H, + Vp,
f - L L R "R 83.58)
Vo + Vg
and
P
_ _‘L[E)_ + i + 2
LR T By L® T AL®)
L P
LERPLR) . 2
= : 3.59
(TL(R)_l)pL(R) L(R) ( )

(N.B. If we explicitly write out equation (3.57) we obtain
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p p
[‘/’Z o VPR : ] 3 [PL/ pL+iL] + Vog [pR/ pR+iR]

ver P + VP
Vo pg (v -~ up)*

(Vo + Vg )®

which ensures that a2 is positive for real data.)

8 dh

By symmetry, similar results hold for the Jacobians 5w and 5w

Summarising, we can now apply the Riemann solver given above to the
three-dimensional Euler equations with a general convex equation of
state using the technique of operator splitting. We incorporate the
results found here, together with the one-dimensional scalar upwind
algorithm given by Roe and Baines [5], and perform a sequence of

one—-dimensional calculations along computational grid lines in the x,y

and z-directions in turn. The algorithm along a line ¥y = constant,
z = constant can be described as follows. Suppose at time level n
we have data ¥y ¥p given at either end of the cell (xL,xR) , (on a
line y = Yo'2 = zo) . then we update w to time level ntl in an
upwind manner. Thus we
At ~ v
add - -—A,a.r. to w, if A, > O
X M ~R J
or
At ~ oo
add - -+—A,a,r. to w, if A, <O
> SN A (o ~L J
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where Ax = Xp = X At is the time interval from level n to n+l ,
d X..E..;. ar iven b
an 3°%5+E5 e given by
A1'2'3'4’5 = u£a,u,u,u,
. o= (1Litav.wH T
~1.2 ] 1 ] ] 1 ] ]
— T
Ty o= LSS - AT
~3 ’ ] [ ] ” ﬁp 1 1
(1) |ap - ==
a2
., = (0.0.1.0.%)7,
:‘35 = (0,0,0,1.9)F .

& =, l=lip & ‘Sakwl|hp = LR, 3w k.
1.2.3.45 © o ~2

a
~ Ve U+ Vg Up .
p = VprR , U = , U = u,v,w,i,r or H
Vo, + Vg
@ = w? VW, a? = (F-1)(H - %) .
p(pL(R) , iL(R))
TLR) = Tpeond el
L(R)"L(R)
and A(°) = (°)R - (°)L . Similar results apply for updating in the y

and 2z directions.

The Riemann solver we have constructed in this section is a
conservative algorithm (when incorporated with operator splitting) and
has the important one-dimensional shock recognising property guaranteed
by equations (3.28) and (3.29). Furthermore, the algorithm is

efficient in the sense that to accommodate a non-ideal gas requires an



overhead of only a few per cent c.p.u. time; in particular, only one
function evaluation of the equation of state is required in each

computational cell.

In the next section we give the numerical results achieved for two

standard test problems in gas dynamics using the scheme of this section.
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4.  NUMERICAL RESULTS

In this section we give the numerical results achieved for a
one-dimensional test problem and a two-dimensional test problem using

the scheme of §3.

Problem 1

This test problem is concerned with shock reflection in
one-dimension of a gas governed by the Euler equations with a general
equation of state. We consider a region O { x {1 divided into 50
equally spaced mesh ©points and the initial conditions are
(p,u,i,p) = (po,—uo.io,p(po,io)) . This represents a gas of constant
density and pressure moving towards the origin x =0 . The boundary
at x =0 1is a rigid wall and the exact solution describes shock
reflection from the wall. The equation of state chosen is that
developed by R.K. Osborne at the Los Alamos Scientific Laboratory [6],

and can be written in the form

P = (1/(E+¢0))[C(a1+a2IC|)

+ (bo + g(b1+b2§) + E(co+c1§))]

where E = poi , C = ;L -1 and the constants
0

po,al.a2,bo,b1.b2.cl,c2 and ¢0 depend on the material in question.

The particular case we choose corresponds to copper, where = 8.9,

Po

the remaining coefficients can be found in [6], and we specify u, =1 .

0



Three initial conditions are chosen for io corresponding to shock
strengths p+/pO = 100,10 and 2 , where P, denotes the pressure
behind the shock and Py = p(po,io) denotes the pressure ahead of the
shock. The results for these three cases are given in figures 1,2 and
3, together with the exact solution when the shock has moved a distance
0.3. We use the idea of flux limiters [7] to create a second order
algorithm which is oscillation free, and we can modify the scheme to
disperse entropy - violating solutions, (see [8]). The °’superbee’

limiter is the one chosen here, (see [7]).

Problem 2

This two-dimensional test problem is concerned with Mach 3 flow in
a tunnel containing a step and was originally introduced by Emery [9].
but has recently been reviewed by Woodward and Colella [10]. The
tunnel is 3 units long and 1 unit wide. The step is 0.2 units high and
is located 0.6 units from the left hand end of the tunnel. At the left
an inflow boundary condition is applied, and at the right, where the
exit velocity is supersonic, all gradients are assumed to vanish. The
initial conditions for the gas in the tunnel are given by
(po.uo.vo,po) = (1.4,3,0,1) and hence i, from the equation of state
Py = p(po.io) i Gas is continiually fed in at the left hand boundary

with the flow variables taking the initial values given above.

The equation of state chosen is one for equilibrium air given by

Srinivasan, Tannehill and Weilmuenster [3] and can be written as
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p = (7-1)pi

where

= _=r s 2 2
v = v(p,1) a; + a2Y + aBZ + a4YZ + a5Y + a6Z

+ a7Y2 + a8YZ2 + agYa + aloZa

+

2 2 2
(a11 + a12Y + alSZ + a14YZ + a15Y + a162 + a17Y Y

(a, ta,Y+a,Z+a, ,YZ)
2 3 3 21 7227 "237 24
+ a18YZ + ang + a202 }/(1 + e )

together with

<
I

log,,(p/pg)

loglo(i/iR)

N
]

and PR is a reference density and iR is a reference internal energy.
The constants a;, 1= 1,...24 can be found in [3]. Figures 4,5,6
and 7 display 31 equally spaced density contours at times
t = 0.5.1.6.1.5 and 4.0, respectively. The figures represent formation
of the bow shock, reflection at the upper wall, reflection at the lower
wall, and formation of the Mach stem, respectively. A uniform 120 x 40
mesh was used and the second order scalar algorithm with the ’'superbee’

limiter, (see [T7]).

The algorithm described in 83 requires an overhead of only a few
per cent over the ideal gas scheme in order to allow for non-ideal
gases. Any additional expense depends on the complexity of the
equation of state; however, as only one function call is required in

each computational cell, this leads to an efficient algorithm.
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Furthermore, the satisfactory results found for Problems 1 and 2 show
that no deterioration in the quality of the solution is incurred at the

expense of an increase in efficiency.

(N.B. For both problems we apply a reflection boundary condition
at a rigid wall, i.e. we consider an image cell and impose equal
density, pressure and tangential velocity (for two-dimensional
problems), and equal and opposite normal velocity at either end of the

cell.)
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DENSITY DT/0X =« 0. 100 N = 120 NY w 40
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Figure 4
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Figure 5
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Figure 7




- 98 -

5.  CONCLUSIONS

We have simplified the Riemann solver of Glaister [2] for the Euler
equations with a general convex equation of state by local
parameterisation of the equation of state. In doing so we have reduced
the number of function calls to one per cell, but have retained the
important shock capturing property. This results in an efficient
algorithm that has produced satisfactory results for two standard test

problems in gas dynamics.
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