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1. Introduction

The last two decades have seen a growing interest in numerical
solution of optimal control problems. These are essentially
constrained optimization problems where a local minimimum of a given
cost functional is sought subject to a set of differential equations and
possibly some further integral and inequality constraints. While the
early efforts have been centered around the solution of linear problems
with quadratic cost functional by a variety of numerical techniques,
more recently the work has concentrated on non-linear problems [1], [2],
(31. [5]. [9]. [13].

The variational nature of optimal control problems make them
particularly suitable for the application of finite element methods.
Bosarge et al [3] consider the use of the Ritz-Galerkin method in one-
dimensional problems with fixed final time.

In this paper we extend the technique described in [3] to the
two—dimensional case. We treat the problem as a standard Calculus of
Variations problem and reduce it to unconstrained form using the method
of Lagrange. The Ritz-Galerkin finite dimensional approximation is
then derived and the local convergence of the approximation is proved
under certain reasonable smoothness assumptions. We then consider the
application of the technique to optimal design problems. These are
distributed parameter problems in which the shape of the boundary is not
known and has to be determined as part of the problem. We introduce a
transformation which maps the unknown region onto a unit square and then
apply the Ritz-Galerkin approximation. The method is finally

demonstrated on a simple test example.



2 Statement of the Problem
We consider the following fixed boundary problem:

Find the minimum of the functional:

I(u) = Ijg(x.y.g)dde= (2.1)
R

subject to a set of first order, non-linear, partial differential

equations:

flymn.n) = @, (2.2)
and the boundary conditions:
u = 0 oem T, , (2.3)

where u(x,y) € U 1is an n-dimensional vector, £(x,y,g,gx,gy) is an
r-dimensional vector and g(x,y.u) 1is a scalar-valued function. We
assume that the domain R is bounded by the piecewise smooth, closed
curve I = FI u F2. assumed known. The space U 1is chosen to be the
Sobolev space consisting of all n-vector valued functions z defined on
R, such that z and its partial derivatives of order a + 1, (a > 1),
with respect to x and y are square integrable, that is

Bi+jz

s n
U = {z|{z m (i+j < a+l)} € {L,[R].E'}} .

In subsequent analysis we shall use the following norms:
n

2 2 > z 2
”3”2 = “2“2.0 = J J‘zi dxdy , (2.4)
i=1 R



and
n
2 a E 2 2 2
HZH2‘1 = J‘J‘[Zi tz, ¢t ziy]dxdy : (2.5)
i=1 R
The problem (2.1)-(2.3) can be treated as a standard Calculus of
Variation problem. We introduce vector-valued Lagrange multipliers

A(x,y) and define the Lagrangian L[u,A] by:

Llu.A] = Jj{g(x.y.l_li * £T(x.y-\_1-l_1x-‘_1y)>_\(x,y)}dxdy (2.6)
R
where
ai+jz
N€A = {z|z, ——= (i+j < a+1)} C {L,[R], E}} .
ax*ay?

The problem can now be reformulated in the following way:
Given the functional (2.1) and the system (2.2) find the optimal
quantities g* and é* such that:

L[w A"] = sup inf L[u.A] . (2.7)
A€A u€l

The problem is also equivalent to the following one:

% 3
Find the optimal quantities u and A such that partial Fréchet

derivatives:

gL - »* _%
o e.A] =0
(2.8)
dL *
an[u.A]1 = 0,

simul taneously.



The existence and uniqueness of a solution to the original problem

is assumed and the equivalence of the three formulations can be proved

using standard variational arguments.

Let

af f f

s Beaaxets s %l o8 B2

plwd) = mm+ gz -5 [Z‘u 3] = [Zu g

= = =3 ¥

and let
L. T
f(x.y.uu u0) = f

E3 E .3
g(x,.y,u) =g

All three formulations of the problem give the familiar

conditions:

p =p(u.a) =0
£ =0
u* = 0 on T
= = 1
£ a4,
Wdy—aa—dXJk = 9 on F2.
LI u

The following assumptions are made about the problem:

(1) Functions g(x,y.g,gx,gy) and g(x,y.u) are twice
differentiable with respect to u, u and Ey and

differentiable with respect to x and y.

] , (2.9)

(2.10)

set of necessary

(2.11)
(2.12)

(2.13)

(2.14)

continuously

continuously



(2)

(3)

(4)

Let

way -

ai+j+kf i

= d'g
T 0 and —3
du'dulau du
U onod.

The operators with i+j+k < 2, map bounded

neighbourhoods of U into bounded neighbourhoods of {L2[R],En}

and {L2[R],E1} respectively.

% 3%
The Lagrangian is extremised at the pair (u .\ ), which satisfies

(2.11)-(2.14).

The second variation of L with respect to u is strongly

»*® ¥
positive in a bounded convex neighbourhood of (u ,A ).

T

F=g+ A The condition (4) can be expressed in the following

T
T P o« Topeomim, ooT T o T 2
ff [h'.h b JH(w.M)[B b  h ] dxdy > o[bll5 | . (2.15)
R
~ ~oe »* >
where o = const. > 0, h=u-u, u€U, (u,A) €Nu) xNQA"), the
neighbourhoods of g* and é* and:
[ F F
uu uu uu
au Ll 5 Sig
HuA) = | F | Fou . (2.16)
-x- —X—X “x=y
F F
u u u u u u
9= =yx =y

The following lemma describes the behaviour of the Lagrangian at

the extremal and gives a result which will be needed for the proof of

subsequent theorems:



Lemma 1. Let u € N(E*) and A € N(é*). then L has a degenerate
saddle point at (g*,é*), that is, the following condition is

satisfied:

Llu' Al = L@ AT <LuX]. vaeah. (2.17)

Proof . The left-hand equality follows trivially by noting that £* = {0
and thus the condition is satisfied for any Al To obtain the

right-hand inequality we expand L[g.é*] into a Taylor series:

Llu.A] = LLu N7+ J\J‘{ET(E*=§*)AE}dXdY
R

* »*

f il f T
= 3% - »*
F}C{EZTR e gu‘l\]ﬂﬂdx}
r

= J Sy

1 n T
" J‘(l—T) J' [AQT.Agi,Agi]H(g,§*)[AgT,Agi,Aggj dxdy dr . (2.18)

where E = mu, + (I'T)B* and Au = g—g*. The first and second
integrand are zero since (2.11), (2.12) and (2.13) are satisfied, and

using the strong positivity assumption (2.15) we obtain:
LLw. AT > LLw N7 + ollad]? | 2 LLu™ 27T . (2.19)

which proves the lemma. 0

We note that the assumption (4) is a local sufficiency condition.

3. Finite dimensional approximation of the problem

The solution of the original problem can be found by solving the



necessary conditions (2.11)-(2.14). The exact solution of these,
usually non-linear, partial differential equations is often impossible,
and some approximation is needed. We look for the solutions u and
A, Dbelonging to finite dimensional subspaces generated by basis

functions w,.

im i =1,2,...m, which can be assumed orthogonal without

loss of generality. Thus u € Cm CU and A € Mm C A, where Cm and

Mm are finite dimensional spaces defined by:

O
Il

{uluec (w) NC) (3.1)

=
Il

A €m0 n k). (3.2)

The spaces Cm(w) and Mm(w) are given by:

Il
1

C_(w) = {ulu(x.y) } ¥ m(x¥).(x.y) €R: u=0 on I;} (3.3)
i=1

(AN (x.y)

M (%) Biw; n(x.3).(x.y) €R) (3.4)

1

I
I N~ S

i=1

and C and M denote the closures of :

C = {ulueUunnNEw)nN D} (3.5)

M o= AR eannN@)nDy . (3.6)

where Du and Dk are the sets of n-vector functions and r-vector
functions which are continuous, piecewise differentiable functions on

R. Thus we look for admissible, continuous and piecewise

differentiable finite dimensional approximations which are in the



neighbourhood of the optimum. The spaces Cm and Mm are closed and
convex, and so they possess unique best approximations to g* and h*,
which we shall denote by u and A, and which are defined in the

following way:

”2_2*“2.1 = inf ”E_E*Ilz‘l (37)
u€eC
=" m
[N [ ST 1 (3.8)
2.1 AEM =121
- m
Let e(g) = ﬁ—g* and e(i) = g—é*. We assume that Cm and Mm are

good approximating spaces in the sense that ”e(g)”2 1> 0 and

le@lly; =0 as m-e.

We now state the finite-dimensional analogues for the three

equivalent formulations of the problem (2.1)-(2.3):

Ritz Method Find u € C_ such that

I(@) = inf I(u) . (3.9)

subject to

1o
[
1l
—
3
—
W
—
o
—

J‘J;j,m(X-Y)i(XvY-E-Ex-Ey) dxdy =
R

u(x,y) = 0 on Fl . (3.11)

Alternatively, the problem can be formulated in the following way.

Find the pair (u,A) € C_x M_ such that



- 10 -

L[u.A] = sup inf L[u,A] . (3.12)
§€Mm E€Cm

The third formulation of the problem has the following finite

dimensional equivalent:

Galerkin Method Find the pair [u,A] € C, x M such that

S Al = o (3.13)
ax [BX] = 0 (3.14)

Because of the equivalence of the formulations both Ritz and Galerkin
method yield the same set of equations:

non

¥iim p(u,A) dxdy = O . i=1,..., m (3.15)
URU
1 w‘],rrl f(x,y.u,gx,gy) dxdy = O, 3 = 1sauwes m (3.16)
R
£ af _
T dy - Ea—-dx] A = 0 on F2 ; (3.17)
- 4y
where g = g(x,y,g) and f = ﬁ(x,y,g,gx.gy). The second formulation

is required for the convergence proofs which also need the result

established by the following lemma:

Lemma 2. Let (u,A) be the solution of the Ritz-Galerkin equations
(3.15)-(3.17), and let (u,A) denote an arbitrary pair in Cm X Mm.

Then L has a degenerate saddle point at (E,E) such that:
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L[u.Al = L[u.A] < L{uA] . (3.18)
Proof. The proof is similar to the proof of Lemma 1. ]
Let
r o= Lo AT (= 1Y) (3.19)
I = L[uAl (= I(w). (3.20)

where (g,g) is the solution of the Ritz-Galerkin equations.

We aim to prove that the method is convergent, that is
»* — €
”g —9”2 q 2 0, lIm -T | >0 as m - o We now state the theorem

which gives the bounds on ”E*‘Q|2 1

Theorem 1. Let (u,A) € Cm x Mm be the solution of the Ritz-Galerkin
equations (3.15)-(3.17). Then there exists a non-negative constant c,

independent of m, such that

el | < (3.21)
where
. = cllle@lly + lle@lly | + lle@Ils |7 - (3.22)
Proof . From Lemma 2 we have that:
L[u.A] = L[u.A] < L[u.A] ,
for any (u,A) € C,*M . and in particular
L[@.A] = I <L[u.A] . (3.23)



= [9 =

Expanding the right-hand side of (3.23) into a Taylor series about

(g*,g) we obtain:

R
»
I T 1
- E;;— b] (u —u )]dxdy + J‘(I—T) J‘J‘[(u—u ) (gx—gx)
P »* T ~ = ~ % T g * T =~ -KTT
@, HED [E09T QDT @] axayar (3.24)
where g = T + (1—7)9*. After the use of the Schwarz inequality and

Lemma 1, (3.24) becomes:

»*T *T *T
f af af ][(“ ¥ T .~ ¥ T

>
B J o i~ =
1, < T NE g, + 13 I, w3, G G

I
~ F¥3 T
(u,-u.) ] Il
i ~ » T =~ T =~ * T T
+ Hlu-aly B () () T, (3.25)

Using the assumption (2) and the fact that ”3”2 < Cy» (since g €M),

we finally obtain:
L <1+ clleqll, , + cle(w)|? (3.26)
m "~ 1 =202 1 2 = LLE> ) [ .

where Sy and c, are positive constants, independent of m.

A lower bound on Im is obtained by expanding the left-hand side

of (3.23) into a Taylor series about (E*-B):



~ 13 =

S
£ .5 1 _ B
* [gg;‘&](ey-gi)]dxdy * Jg(l—f) J J [(9-9*)T. (BX‘H:)T-
R
- » T ~ - % T - % T - »* T T
(4,-8.) ]H(gsé)[(g—g ) (uug), (uo-u)) J dxdydr (3.27)
where g = Tﬁ + (I—T)g*. We note that at the optimum the first

variation of the Lagrangian vanishes, and thus:

»*

(R e e R S A [
(3.28)

Subtracting (3.28) from (3.27) and using the Schwarz inequality and the

strong positivity assumption, we get the following expression:

T *T *T
f af af T
3 e = —_ -_— = £ 3 T i »* T = * T
Iy d = ”’fﬂbH [Zg T o T O, ][{9_9 ) (geu) s (uyuy) ] Iy

+ dla-ul3 |

which together with the assumption (2) gives:

1,2 T = efle@llllaully |+ dla-o3 , (3.29)

m

where c is a positive constant, independent of m. Combining

3



_14_
(3.26) with (3.29) we obtain:

T - eglle@lllawlly ; + dllaul3 | < 0+ ellle@lly |+ egle@ll? |

(3.30)
which is equivalent to:
- By o 12 cg 2l Cpi s
15271, - Sl < el + Hle@lly ; +
Cc A
Hlewll3 | - (3.31)

Thus:

2
c . % c 2 c S %
m@m21s§EQm2+E%u@m§+ﬁu@m21+ﬁumm3J
a

{3-32)
which immediately gives:
A A ~ ¥
Ia-wly < efle@lly + el | + le@ll, ] - (3.33)
the desired bound on H§—9ﬂ|2 1 o
We next consider the bounds on the cost functional Im'
Theorem 2.  Let (u,A) € C x M_ be the solution of the Ritz-Galerkin
equations (3.15)-(3.17). Then there exist positive constants K1 and
K2. independent of m, such that:
* o2 »*
I -Klle@ls € I < T+ Kg (3.34)
where

Cn = lle@lly ; +lleqll3 | - (3.35)
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Proof . The upper bound is obtained immediately from (3.26). To

obtain the lower bound we introduce the intermediate approximation:

J = sup inf L[u.A] . (3.386)
bEMm u€N(u )

We observe that Im > Jm‘ since Cm = N(g*], and that

J > inf, L[u,A] . (3.37)
u€N(u )

Expanding the right-hand side of (3.37) into a Taylor series about

(g*,ﬁ) we obtain:

» »*

cadr= o [+ B e T o B

R =X
1
» T * T * T ~ 2 * T » T
: J;(l—t)J;Jt(g—e (a9 () TIE DL 0, T
T

(gy—g;)T] dxdydTr , (3.38)

i * : :
where u = 1u + (1-T)u . We use the Schwarz inequality, an expression

similar to (3.28) and the strong positivity assumption to obtain:

T 5T 5T

T
A - ~ I L 2 % T »* T * T
L[u.Al > T = [A-AT1L) 50 '3u, 'au, ][(g-u ) (au ) e Tl

+ ollu-ull3 | (3.39)

This, together with the assumption (2), gives
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Llu] 2 T° = Kle@liladly | + olladl3 | . (3.40)

=
where Au =u-u , and K 1is a positive constant. Thus

|
ey
=
1272
(M}

N

3 = 2 2
> T+ oflladl, , - Sle@ll)? - Elec)1?
2.1 2 402 2

[AV4

»* T

From (3.37) and (3.41) we arrive at the following result:

; »* = 02 »* N A
J 2 l_leﬁf(’;*) {I" - K lleM5y = T - K lleM5 - (3.42)

The lower bound on Im is immediately obtained by observing that
L, 3% Jl.. u]

m m

We have assumed that Cm and Mm are good approximating spaces

and thus ”e(§)”2, ”e(l_l)“2 and He(t_;)”2 1 each tend to zero as
m = ®, It follows, therefore, that 1 and fm also tend to zero as
m tends to infinity. This proves the convergence of Q and Im

We note that if £(x,y,g.9x,gy) = 0 1is a quasilinear equation of

the form
a(x,y,u)u + b(x,y.l_l)l_ly + e(x,y,u) = 0. (3.43)

then the conditions on the approximating spaces Cm and Mm may be
slightly relaxed. In that case, the results of the theorems hold
provided u 1is square integrable with square integrable first partial

derivatives.



~ 1F -

4. Application to Optimal Design Problems

We now consider the application of the above theory to optimal
design problems which involve the computation of an unknown boundary
curve. These problems cover a wide area of application in science and
engineering. The examples include optimal design of an electro-
magnet [11], a nozzle [11], the minimum drag problem [11], optimization
of a wing [11], an elastic body subject to torsion [8] and many others.
All these problems require minimisation of a functional of the
type (2.1) subject to constraints (2.2) and some boundary conditions,
over a region R bounded by a curve TI' which is either wholly or
partly unknown. In particular, we consider the region as described in

Figure 1

y //////B
ALl Iy
R
Fl ,
0 ry *
Figure 1

where the shape of F4 is not known and the positions of points A and

B (and hence the lengths of I, and F3) may or may not be specified.

1
It is assumed that the shape of the unknown boundary may be expressed in

the form of an equation:

y = £(x)
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where the function £#(x) and its first and second derivatives are
square integrable and £(x) > O, Vx € [0,1].

The necessary conditions for an optimum are given by (2.11), (2.12)

and
T B e
ou 3@; A dy - éu EE; Adx = O (4-1)
I":I“IUI"ZUI”?)UT‘1
where o6u denotes the variation in u. If the positions of A and B

are not given we also need to satisfy:

af

af
T - o 1L

where &y represents the variation in y.

The optimal shape problem is tackled by transforming R to a known
region. Thus we introduce new coordinates X and Y such that X = x
and Y =

@rﬁy which has the effect of mapping R onto a unit square.

The transformed functions u and A are denoted by:

u(x.y) = u(X.Ye) = U(X.Y)
(4:3)
AMx.y) = MX.YZ) = A(X.Y)
and the derivatives Bx and Ey become:
2
l—lx = SR Y ? QY
(4.4}
1
Ey = P gy
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The problem is now to minimise

11
Jj‘G(X,Y,Q,g)dXdY 8 (4.5)
00
Subject to
F(X.Y.£,2' . U.U.U) = 0 (4.6)

and appropriate boundary conditions, where:

G(X.Y.2.U) = eg(x.y.u) (4.7)
and

F(X.Y.2.2",U.Uy.Uy) = 2f(x.y.u.u,.u) . (4.8)

It can be shown that the transformed problem is equivalent to the
original problem in the sense that they both yield the same set of
necessary conditions [7].

The Ritz-Galerkin method, described in section 3, can be applied to
the transformed problem. Let V = [QT,B]T. The proof of convergence,
given in the previous section, is valid provided the space Cm(w) is
constructed in the following way:

C (w) = {[ %—]lg 7w (GY). (X.Y) € R:

1

I
Il I~ 3

i=1

n(m)
6= ) oy 0 X € [0,1]} (4.9)
f=1
where ¥ and ¢i o are appropriate basis functions. In this case

the Ritz-Galerkin equations (3.15)-(3.17) for the optimal solution



([_7,?.7) € me Mm take the form

13|

ﬂ Jm[ﬁ o - ) - & [ )] e - o
= ~X =y
ﬂ Wi pE(Y. 2.0 U0 Up) dxdY = 0 (4.10)
= oF. aF
Oy =T
oyl T8 vy T =
R
where G = G(X,Y,?:?',ﬁ} and ?}X,Y,?.?'.ﬁ.g&.ﬁ;). The boundary

conditions and the appropriate transversality conditions need also to be

satisfied.
5, Example

In this section we present numerical results obtained for a very
simple test example. More complex problems have also been solved by
the same method [7].[8]. The test example is a degenerate case of the

problem described in section 4 where the region of integration

(Figure 2) is a rectangle of an unspecified length and unit width.

¥
r
P 4
Fl R I‘B
0 F2 1 X

Figure 2
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The equation of F4 is therefore
y = ¢ = const. (5.1)

The aim is to determine ¢ and u(x,y) which minimise the cost

functional
2
J‘J‘(u - 1) dxdy (5.2)
R

subject to

vu = 0 (5.3)
and

u(x,2) =0, ux(O,y) = ux(l,y) =10, uy(x,O) = 1. (5.4)

In order to reduce the problem to the standard form, Laplace’s equation

(5.3) is treated as a system of first order partial differential

equations:
o, = P
u = 5.8
y =¥ (5.5)
¢x + \{:}y = 0

The problem is now in the form in which the transformation technique and
the Ritz—Galerkin method may be applied. We adopt a finite element
approach where the region is divided into elements and basis functions
are chosen so that they are non-zero over a small patch of elements.
Because of the shape of R it is natural to perform the subdivision
into a finite number of rectangles. We choose a mesh of N x M equal

rectangles, such that the lengths of the sides of each element are



= 99 «

hX = 1/N and hY = 1/M. The simplest basis functions which can be

used with such a mesh are the bilinear functions. Let i denote the
node with the coordinates (jhx, khY)’ J = 0ulsessalNeg KBE=E0 1 M
then i = kN + j. The bilinear basis function Wi m(X,Y) is non-zero

only for (X.Y) € [(j—l)hx, (j+1)hx] X [(kvl)hY. (k+1)hY]. In this

region it is of the form:

Wi,m(X’Y) = a; + a2X + a3Y + a4XY (5.6)

where Wi i = 1 at the ith node and W, i = O at neighbouring nodes,
and the coefficients ai, i=1,...,4 are determined from the values

of Wi n 2t these nodal points. The approximating space Cm(w) is

now in the form

(N+1)(M+1)
C (w) = {[%]l; = A W, (XY). (X.Y) € [0.1] x [0.1].
i=1
L = const} (5.7)

where Z = (Q.Q,Q)T. With this choice of Cm(w) the Ritz-Galerkin
equations (4.10) are assembled and solved using the program of
J.K. Reid [14] based on the Marquardt algorithm.

The numerical solution has been calculated for various numbers of

elements and compared with the analytical solution, which in this case

can be easily calculated as
u = y -1, g = .1 . (5.8)

The results for 2 x 2, 2 x4 and 4 x 4 elements are given in tables

2, 3 and 4 while the analytical solution, evaluated at the mesh points,
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is given in Table 1. The errors in the discrete 82—norm are given at
the end of each table. We observe that even for small meshes the

method produces very accurate solutions.

6. Conclusions

In this paper we have devised a strategy for solving two-
dimensional distributed parameter control problems and demonstrated
convergence for a wide class of non-linear problems. The technique has
also been applied to optimal design problems where a transformation
technique is used to map the unknown region onto a known one. The
results for a simple test example indicate that the technique works well
in practice. More complex problems have been also successfully solved
in the same way [7], [8]. The transformation introduces the advantage
that the domain of integration becomes fixed and thus needs to be
discretized only once. The resulting equations are, however, always
non-linear, but in most cases this is not an additional disadvantage
because of the non-linearity of the original problem. The technique
requires all the variables to be approximated simul taneously, which may
result in a large system of non-linear equations. The equations are
fortunately sparse and the application of sparse solvers, such as one

described in [14] overcomes possible storage difficulties.
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Table 1: Example 1 — Analytical Solution

2 = 1.0000

u 0.0000 0.2500 0.5000 0.7500 1.0000 x
0.0000 -1.0000  -1.0000  -1.0000  -1.0000  -1.0000
0.2500 -0.7500  -0.7500  -0.7500  -0.7500  -0.7500
0.5000 -0.5000  -0.5000  -0.5000  -0.5000  -0.5000
0.7500 -0.2500  -0.2500  -0.2500  -0.2500  -0.2500
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

¥

Table 2: Example 1 - Numerical Solution - 2 x 2 Elements

¢ = 1.00000013

u 0.0000 0.2500 0.5000 0.7500 1.0000 X
0.0000 -1.00000012 -1.00000014 -1.00000012
0.2500
0.5000 —0.50000055 —0.500000075 -0.500000056
0.7500
1.0000 0.00000000 0.00000000 0. 00000000

!

Errors: lu-tll, = 2.453 x 107" [le-@l, = 1.3 x 107



Table 3:

- 25 —

Example 1 - Numerical Solution - 2 x 4 Elements

3]
1l

0.999999828

0.0000

0.2500

0.5000

0.7500

1.0000

X

—0.999999819

—0.499999911

0.000000000

1.0000

X

0.0000 | -0.999999820 -0.999999838 -0.999999820 -0.999999837
0.2500
0.50000 | —-0.499999910 -0.499999922 -0.499999910 -0.499999923
0.7500
1.0000 [ 0.000000000  0.000000000  0.000000000  0.000000000
y
. - -7 - -7
Errors: |lu-u, = 4.319 x 10 lle-el, = 1.72 x 10
Table 4: Example 1 - Numerical Solution - 4 x 4 Elements
2 = 0.999999997
u 0.0000 0.2500 0.5000 0.7500
0.0000 | -0.999999996 -0.999999999 -0.999999996 -0.999999999
0.2500 | -0.749999999 -0.749999997 -0.749999999 -0.749999997
0.50000 | -0.499999998 -0.499999999 -0.499999998 -0.500000000
0.7500 | -0.250000000 -0.249999999 -0.250000000 -0.249999999
1.0000 0.000000000  0.000000000  0.000000000  0.000000000
y
. ~ -9 - -9
Errors: ”u—u”2 = 0.2195 x 10 He—eu2 = 3.0 x 10

—-0.9999999596

-0.749999998

—0.4999999598

-0.250000000

0. 000000000
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