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Abstract

In this report simple procedures are used to determine piecewise

linear and piecewise constant L2 fits to a function of two variables

on a triangulation of the plane with adjustable nodes.



0. Introduction

In [1].[2] simple procedures for determining optimal or
near-optimal piecewise linear and piecewise constant L2 fits to
functions of a single variable were described. In this report we extend
these ideas to two dimensions and report further developments.

The situation is more complicated in 2D in several ways. Here,
however, we have simply generalised the 1-D ideas given in [1].[2].
Sometimes this works but not always and we have therefore also developed
a variation on the procedure taking our cue from related work on moving
finite elements [3]. The results obtained exhibit two effective
procedures for determining L2 fits with adjustable nodes, one for
piecewise linear approximation and one for piecewise constants.

In sections 1 and 2 generalisations of the theory of [1] and [2],
respectively, are given. In section 3 implementation of algorithms
arising from the theory is described. In section 4 an alternative
algorithm for the piecewise linear case is presented, drawing on
similarities with the moving finite element method. Finally in

section 5 some results are presented.



§1. Linear Fits: Theory

Let f(x,y) be a given function of x and y and denote by

uk(x.y) the best linear L, fit to f(x,y) in a triangle A

2 k -
Then
o) J {f(x,y)—uk(x,y)}2 dx dy = O u € Sk (1.1)
Ak

or

J {f(x.y)—uk(x,y)} éuk(x,y) dx dy = O 6uk(x.y)e Sk (1.2)

A

k

where Sk is the family of planes with support on the triangle Ak .

For a region A , the union of triangles Ak , the best L2 fit to

f(x,y) amongst piecewise linear discontinuous functions is also given

by (1.1) or (1.2), since the problems decouple.
Now consider the problem of determining the best L2 fit u(x.,y)
to f(x,y) amongst discontinous piecewise linear functions in a fixed

region A on a variable triangulation Ak(k=1,....n) . Then

J {f(x,y)—u(x.y)}2 dx dy = O (1.3)

By

o) J {f(x,y)—u(x,y)}zdx dy = &
A

= N

where the internal vertices of the Ak are also varied.

It is convenient to introduce new independent variables §.,n which

remain fixed, while x and y join u as dependent variables, all

A A~

now depending on £ and m and denoted by x,y and u respectively.



Then, with G(E.n) = u(x(§.,m). y(€.m)) . (1.3) becomes

5 ) [ {sGem.Em-aEm} g agan=o (1.4)
k Ak

where J = g%?*%% is the Jacobian.

Taking the variations of the integral in (1.4) gives

| {2{“2(5.)§,(§.n))—ﬁ(§.n)}

by

{£,GE.m.5(E M)k + 1, (K(Em).T(Em)I6T-00(E )} J

A A A 2
+ {f(X(E-n),y(f.n))-u(f.n)} BJ} dEdn. (1.5)
Integrating the last term by parts leads to

- o {ecem 5Em) - S m )} {sriem Se ) - ma) ok agan

by

+ Ja {(EGR(E.m).7(Em) - u(E.M}* (6x.6).0 ds} | (1.6)

ﬂ1(

where n is the outward drawn normal to an element ds of the boundary

6Ak of Ak .



Collecting terms and returning to the x,y,u notation, (1.4) yields

E J 2{f(X.Y) = u(x.y)} {6u—ux6x—uy6y} dxdy +

By

z J {£(x.y) - u(x.y)}*(6x.,6y).0 ds = O (1.7)
k

aAk

With 6x,6y = O this leads back to (1.2) and equations for the
best piecewise linear discontinuous L2 fit to f(x,y) . In terms of

independent variations 6uj,5xj.5yj at node j the full conditions are

J{f(x.y)—u(x.y)}éuj dxdy = O v 6uj (1.8)
A
k

E J 2{f(x.y)—u(x,y)}(—ux)6xj dxdy + I {f(x.y) - u(x.y)}znléxj ds =0
K Pk Oy

voox . (1.9)

z J 2{f(x.y)—u(x,y)}(—ux)6yj dxdy + 5Ak J {f(x.y) —u(x,y)}2n26yj ds = 0
k Ak aAk

v oy, - (1.10)

where n = (nl.n2) and k runs over elements surrounding node j

With 6uj in the space of piecewise linear discontinuous functions



the orthogonality condition (1.8) is equivalent [1] to the conditions

[{recmrucen} o sy =0 |
Ak
(1.11)
[{recnuean} o ey =0 |
a"
[eemucen} o axay = 0
Ak J

Basis Function
fig. 1

¢k1

where are linear basis functions in element k (see

fig. 1). On the other hand, since éxj,éyj lie in the space of
piecewise linear continuous functions, letting aj be the linear finite

element basis function at node j we may set

ox, =a,, 6y, =0, bu, = u _bx,
J J X J

and
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in turn in (1.7) to obtain

2
J [f(x,y)—u(x,y)] o ny ds =0 . (1.12)
j star
for x,, and
J
2
J [f(x.y)—u(x,y)] ) ds =0 (1.13)
J star
for Vi where £.= (nl,nz) and "j star” indicates the sides of the

triangles passing through the node j (see fig. 2).

The spokes of

fig. 2

The problem of finding u(x,y) . belonging to the union of the

Sk , which satisfies (1.11) is standard. Setting

uk(x) = z Wi Py (1.14)
i



in element k , we substitute into (1.11) and find that
Ckw—k = Ek (1.15)
where W = {uki} , Ek = {bki} , bki = J f(x,y)qbki dxdy , and
by
2 1 1
C = o 1 2 1 (1.16)
1 1 2

where Ak is the area of element k .

The other problems, those of finding xj satisfying (1.12) with
du, = uxéx. and yj satisfying (13) with 6uj = uy6yj , are much more
difficult non-linear problems. To make progress we solve the problem

approximately, with one or both of the following simplifications.

(a) replace the line integrals in (1.12) and (1.13) by a suitable
quadrature rule.

(b) hold the xj in f(x.y) constant in solving for the new xj ,
and embed the necessary iteration in the overall iteration.

Similarly for the yj .

The device (b) was used in [1] to obtain converged solutions for
x., in effect a "lagged" form of the equation being solved as the

overall iteration converged.
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82 Constant Fits: Theory

In the case of best piecewise constant fits with adjustable nodes,

u, =u = O and (1.7) reduces to

z J 2{f(x,y)-u(x,y)}ou dxdy + 2 J {f(x.y) - u(x,y)}z(ﬁx,éy).ﬁ ds = 0

k Ak k aAk

(2.1)

With 6u as the characteristic function Wk(x.y) on element k ,
and 6&x,8y taken successively, as in §1, to be the local "hat" function

associated with node j we have the conditions

J {f(x.y) - wk} dxdy = O (2.2)
A
k
J {f(x.y) - 2 wkwk(x,y)}2 oy nlds =0 (2.3)
j star Kk

J. {£(x.,y) - z wk-rrk(x,y)}2 oy ngds = 0 (2.4)
J star k*
where j star 1is as in (1.12),(1.13), k runs over the elements
surrounding node j and
u(x,y) = z wkwk(x,y) . (2.5)
k
From (2.2)
w, = L f(x,y) dxdy (2.6)
k™A
ko2

k
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while from (2.3),(2.4) we obtain new values of xj'yj

§3. The Algorithms

The algorithms used to find near-best discontinuous L2 fits with
variable nodes are in three stages (carried out repeatedly until
convergence), corresponding to the choices of variations referred to in
§1 and 82 above.

(a) Piecewise linears
Stage (i)

6xj = 0, 5yj =0, bu= ¢k1' ¢k2 or ¢k3 (3.1)
This stage of the algorithm corresponds to the best L2 fit amongst

discontinuous linear functions on a prescribed grid, as in (1.1),(1.2),

and (1.15) above.

Stage (ii)
6xj =5 éyj =0, 6uj— uxéxj =0 (j=1.2,..., n) (3.2)
Stage (iii)
ox, = 0, by. = ., ou.,— oyv. = 0 (j=1,2,..., 3.3
X y; = @y bugmu by, (3 n) (3.3)

Stage (ii) corresponds to finding X such that (1.12) holds, with
variations of x,u restricted to points lying on the planes of the
stage (i) solution (possibly extrapolated) in each of the elements s
surrounding j . Stage (iii) works similarly for yj

The algorithm is analogous to minimising a quadratic function
Q(X,Y,Z) using three search directions vl, v2 and v3 spanning a

space. Starting from some initial guess we may minimise Q(X.Y.Z) in
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the directions vl1, v2 and v3 in turn. Similarly. in the present

case to find the near-best L2 fit we may begin with an initial guess

{xj}.{yj},{uj} . Stage (i) is to find the minimum in the linear
manifold specified by the variations given in (3.2) and so solve
(1.10)-(1.11) for new discontinuous values w of u (see (1.15)) with
the xj,yj fixed. Stage (ii) is to seek the minimum in the manifold
specified by the variations given in (3.2) and so solve (1.12)
approximately for new {xj} by the implementation of 81(a),(b), more
fully described below. Stage (iii) corresponds to stage (ii) but with
X,y interchanged.

Let k = kl""' k2 denote the elements surrounding the node j

and let 21.82 denote the edges of the element k emanating from

node j (see fig. 2). Then (1.12) may be written

ks &y

Y [ {remmean) e ags, =0 @)

k= 1 2:81 edge ¢

where 92 is the angle between the edge £ and the x-axis so that

1=~ sin 62 . Since u(x,y) 1is restricted in element k by

n

bu = u, 6x , 6y = 0 , and passes through the point (xj. yj. wjk)’ say,

we have

u(xy) - Wy = Gex) )y Y leg) (3.5)
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so that, writing sin Ge dse = 6ye, the integral (3.4) becomes

k 2

2 2
VoY [{eegvp - mpe i)y #gay, = 0
k=k1 e=el edge £
(3.6)

where ¢e is a linear basis function along the side & (the restriction
of aj to the edge &), with the value 1 at j and O at the other
end of the line, to be solved for xj . This is a highly nonlinear

equation, bearing in mind the dependence of the range of integration on

the unknown x. .

J
As in [1] we introduce an iteration (to be run in tandem with the
main iteration,) in which we solve for x§i+1) in terms of xj(i)
where
ko
2
ST [{eeprp - mpe Gy (i Gy ()} $ydy, = 0
k=k1 2:21 edge ¢
(3.7)
where f and u  are based on xgl) and Xj and the range of
integration is based on x§i+1).

Equation (3.6) can then be written

AX> -BX+C=0 (3.8)
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where X = x_(i+1) - X,
J J
k 8
N
e E E J IS
—k1 8= 2 edge
8
ky
B = z z J’ {f(xe'ye) - wjk_(xe_xj)(ux)k_(ye_yj)(uy)k} ¢edye L(BQ)
k=k1 2:21 edge
2
ky 6
2
C = } z J {f(xesYQ) - wjk—(xe_xj)(ux)k—(ye_yj)(uy)k} ¢edye
k=k. &=£. edge

a

1 1 P
and (provided that BZ? > 4AC) solved for X . The integrals in (3.9)
may be evaluated by a quadrature rule. Both Gaussian quadrature and the
trapezium rule may been used. In the latter case (3.9) simplifies

considerably and becomes

) |
A= z E %(u )k(ye Yy )
k=k 2= 1

1

B=% z E {f(x.,y ) — W, }(u )k(yg Yy ):
k—kl e—e =

c =% } } W10y ) = ) g 3, ) (3.10)
k=k1 8—81 2 1 J

Call this method MBFLT.
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Two real solutions of (3.8) may be regarded in simple situations as
analogous to the "intersection” solution and "averaged" solution
encountered in the 1-D case discussed in [1], corresponding to
convex/concave parts and inflections of the function f , respectively.
In the present two-dimensional case the many contributions to A,B,C blur
the simple 1-D interpretation but for consistency we choose the root
corresponding to the intersection solution whenever the function f is
convex/concave: at other points it is not clear which root to take (but
see below).

If B2 = 4AC in (3.8) the roots coalesce while if B? < 4AC
imaginary roots occur. In the latter case we go for the '"nearest” real
solution, which is the equal roots case.

Numerical difficulties arise when A,B and/or C become small,
which may be due to non-convex or nearly planar patches in f or simply
closeness to the best fit. A regularisation parameter is therefore
introduced which protects the roots from the effects of the potential
resultant singularities. By adding a term

e(X - X, )2 (3.10)

e
to (3.8), with the appropriate sign, where Xave is the current mean
value of the coordinate displacements for the nodes surrounding the node
j . singularity is avoided and when (3.10) dominates, node j 1is simply
moved along with its neighbours.

An alternative approach to the iteration described above for (3.7)
(1)

is to base one of two factors in the square in (3.7) wholly on X3
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with the other factor treated as before. This gives
-BX + C =0 (311)

instead of (3.8) and an unambiguous (but weaker) iteration procedure.
Another approach, corresponding more closely to an 81 approximation,

would be to replace B,C by

B=) ) J (4,015,947
k=k, £&=£, edge
1 1
e
k. e :

2 2
c=y 3 | {ugwg—wﬁ—mfﬁnﬁ&—wf%uwm%gg%
k=k1 3:21 edge

2
(3.12)
where
Sk = sgn {f(xj.yj) = wjk} ; (3.13)
The corresponding forms using the trapezium rule are
ky i
_lz z _
B=3 (i (g ¥y ) Sy
k=k1 8=81 L
k2 82 (3.14)
1
C=zy oy ey -l (v, 7))
2 1
k= 1 e:el -

Call this method MBFLT1.
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There may still be the possibility of nodes being carried across
element boundaries leading to triangles with negative area. In these
situations a relaxation parameter is introduced which prevents this
happening.

(i+1) proceeds in a similar way.

The calculation of ¥y
To obtain a continuous piecewise linear approximation we may take
an average of the w‘].k values in each element adjacent to a given node
to give an approximate nodal value.
(b) Piecewise Constants
Stage (i)

éxj =8y, =0, 6bu-= ™ (3.10)

This stage of the algorithm corresponds to the best L2 fit amongst
piecewise constant functions on a prescribed grid (see (2.6)).
Stage (ii)

6u, = 6y, =0 , 6xj = o (3.11)
Stage (iii)

6uj = éxj =0 , 5yj = ay (3.12)
Stage (ii) corresponds to finding xj such that (2.3) holds, while
stage (iii) corresponds to finding yJ such that (2.4) holds.

As in the case of linear fits, the algorithm is analogous to

minimising a quadratic function Q(X.Y,Z) using three search directions

(see above).

Equation (2.3) may be written as

k, ¢

N

{f(xe.ye)—wk}2 $,dy, = 0 (3.13)

= N
& NN

_ J’edge 2
1 =4
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(c.f. (3.8)), and (2.4) as

— 2 —
{f(xe.ye) wj]} ¢edxe =0 (3.14)
edge £

(c.f. (3.7)).
To solve (3.13), (3.14) for the new node positions Xj' yj,
respectively, we use quadrature and bisection routines. Again, a

relaxation parameter is introduced to prevent nodes crossing element

boundaries. Call this method MBFCT.

§4 A Unified Algorithm for the Displacements

While the algorithm for piecewise constant approximation given in
§3(b) works well, that for piecewise linears is less robust and it seems
worthwhile to develop an alternative method in this case based on a
different approximation argument inspired by the ideas of Moving Finite
Elements [3].

Starting from (3.6) and noting that

ky &9
} z J’dye -0 (4.1)
Kk, e=e,

we observe that (3.6) expresses a kind of balance of the terms

{f(xe'YE) - ij_(xe—xj)(ux)k_(ye_yj)(uy)k}zq’e 2 (42)
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In the 1-D case this is obvious, since (3.6) reduces to
(R0 = Wy =(xx ) () )7 = {E(x) = wyp=(ex)) (m,)p)° = 0. (4.3)

To imitate the situation in 2-D we first approximate the integrals

in (1.12),(1.13) by the trapezium rule, giving (with (3.5))

k2 82

) ) Gy - wpeGex )l - YD) 0 v ) = 0
k=k1 2:21

(4.4)

(c.f. (3.10) and

ky 4
D} AEGRY) - Wby - Y ey g ) =0
k=k e:el

(4.5)

In 83, equation (4.4) with y =y, was solved for x and equation

J
(4.5) with x = xj is solved for y . Here we consider the single
equation
kg %
— - —' - —" 2 — —
) ) AR - W m(ex ) (e, CEDICONECIIPEL
k=k1 2:21

(4.6)

where r may be y or x , or indeed any other cartesian coordinate,
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and attempt to solve for x,y simultaneously. As above, since

ko &
2 z (r82_r21) =0, (4.7)
k=k1 =0 1

(4.6) expresses a certain balance between the terms
_ _ _ - . 2
(F(Y) = Wy (emx ) (u )y = ) (e - (4.8)

Now (4.6), (4.7) are satisfied if we can find x,y such that the
terms (4.8) are equal Yk . As we shall see, this is not generally
possible, but x,y can be found such that it is approximately true.

First, suppose that the expressions in the brackets in (4.8) have
the same sign (corresponding to convex or concave f(x,y)) so that we
may take the square roots (c.f. (4.3) and [1]). Then equality of the

terms in (4.8) is equivalent to equality of the terms
() - W (ex ) ()~ 7y (a)) VK (4.9)

c.f.(3.12)-(3.14), where for the moment we take Sk = ekl .
Since there are only two unknowns x and y , in general, and more than

two equations in (4.9), no solution for x,y exists.

The next best thing is a least squares solution which minimises
_ . - - _ 2
) Y = W (ex ) (u )y~ (y;) () + e (4.10)

where -e 1is the common quantity to which all the expressions (4.9) are
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equal. Minimising (4.10) over x, y and e yields the equations

[ 1 -2(u, ) —E(uy)k 1Te 1 [ z(wjk~ £(x,y))
3(a), 3w )p S (o) | || = PR Onpy = £(xy))
__E(uy)k E(ux)k(uj)k E(UX)IZ{ | -y—yj_ ._E(uy)k(wjk - f(x-Y))~

(4.11)

which may be readily solved for x and y , if non-singular. The
matrix in (4.11) is positive semi-definite: if the determinant is close
to zero no attempt to update x and y is made. This is method MBFMFE,;.

If the expressions in the brackets in (4.8) are not all of the same
sign then there is a + symbol multiplying e in (4.10) (see
(3.12)-(3.14)) and the corresponding least squares equations must be
modified to include extra factors Sk (see (3.13)). Call this method
MBFMFE1.

The algorithms of this section are motivated by the similarity

between the present problem and that of Moving Finite Elements (see

[31).

85 Results

We show results for the algorithms MBFLT and MBFCT on three
examples,

(a) tanh 20(x-%)

(b) tanh 20(x+y-1)

(¢) tanh 20(x® + y® - %)
each on the unit square with 49 interior grid points. In each case the
initial grid is uniform, as shown in fig O. The initial profiles are

shown as piecewise linear functions on the initial grid in figs. 1(a),
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1(b), 1(c). respectively. The algorithm MBFLT1 gives results which
differ only slightly from those of MBFLT, while those from algorithms
MBFMFE and MBFMFE1l are significantly worse in most cases.

Figures 2L(a), 3L(a) show example (a) after convergence of the
algorithm MBFLT, while figures 2C(a), 3C(a) show example (a) after
convergence of the algorithm MBFCT. Note that the figures show
piecewise continuous linear plots whereas the true plots should be
piecewise linear discontinuous or piecewise constant. For the case of
MBFLT the errors from the corresponding piecewise linear continuous
function obtained by averaging nodal values are shown in brackets.

Figures with brackets (b) and (c) show the corresponding results in
the case of examples (b) and (c), respectively.

A table of L errors follows:

2
initial final no. of
error error Steps [
(a) MBFLT  3.77 x 105 3.00 x 107, 40 1072
(2.49 x 10°2) (8.5¢ x 10°%)
MBFCT ~ 2.88 x 1072 1.37 x 1072 70 :
(b) MBFLT  4.06 x 10 >, 4.90 x 107 170 1078
(3.90 x 1072) (1.18 x 10°°)
MBFCT ~ 1.01 x 107" 9.69 x 10°% 140 e
(c) MBFLT  6.62 x 105 1.92 x 107, 38 1072
(2.86 x 1072) (2.70 x 1074
MBFCT  8.20 x 1072 2.34 x 10> 21 -

Table 1 L2 errors
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The piecewise constant algorithm MBFCT is more robust and gives
apparently more satisfactory grids than the piecewise linear algorithm
MBFLT. The amount of regularisation in MBFLT (through the coefficient
e) also varies considerably with the problem and further work is needed
on this aspect of the algorithm.

To illustrate the effect of boundaries, example (a) is repeated in
figs. 4L(a), 5L(a), 4C(a), 5C(a), with boundary node displacements along
the boundary set equal to the corresponding displacements on the next
grid line in from the boundary. This cleans up a lot of the noise
generated by the special behaviour of the boundary nodes and the
resulting pollution as it spreads into the interior. This is
particularly true of MBFLT, where an extra order of magnitude accuracy
is obtainable this way. The value of e is 10—2.

In conclusion it appears that the grids obtained by seeking best
fits with discontinuous piecewise linear elements and adjustable nodes
are as efficient as those obtained by enforcing continuity in the same
situation. That is to say, allowing the fit to be discontinuous and
then averaging local values to give continuity gives as good a fit as

forcing continuity from the outset.
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Appendix A

In this appendix we extend the result in the main body of the

report to general extremals (where they exist).

For the problem of finding the extremal of the integral

JF(x.y.u) dxdy

(A1)

over piecewise linear discontinuous functions u(x.,y) with variable

nodes, we follow the same procedure as in 8§81, obtaining

F (x,y,u)bu, dxdy = O Vou,
J u(x y.u) u, y u;

By

J Fu(x.y.u)(—ux)éxj dxdy + Jf‘(x.y,u)n1 6xj ds =0

Ak 6Ak

J Fu(x,y.u)(—uy)éyjdxdy + J'F(x,y.u)n2 6yj ds =0

Ak aAk

in place of (1.8),(1.9) and (1.10). Then (1.11), and (1.12) and (1.13)

become

J Fu(x.y.u) ¢k.i dxdy = O (i =1,2,3)

By

(A2)
Vk  (A3)
Vk  (A4)

(A5)



- 26 —

J F(x,y.u) o, nlds =0 . (A6)
J star

J F(x.y.u)aj n2ds =0 . (A7)
J star

The corresponding algorithm is to solve (A5) for uk(x) of the
form (1.14) in each element with fixed XYy (stage (i)) and then to
solve (A6), (A7) successively for the new XY with u restricted to
the stage (i) solution, possibly extrapolated (stages (ii) and (iii)).
Both problems are nonlinear and may or may not have solutions which are

unique.
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Final
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