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Abstract:

Different concepts of controllability for descriptor systems
Ex = Ax + Bu have been proposed and investigated. In this paper, their
relationship, their interpretation in terms of the Kronecker canonical
form of (E,A), and the implications in terms of pole assignment, regularity

and robustness of the closed-locop system, are discussed.



1. Introduction.

Consider a time - invariant, linear, multivariable, descriptor
system in R" with linear state feedback, described by

jE>’<
|

Ax + Bu , (1)

n

= s (2)
where x and u are n- and m-dimensional vectors, the matrix B

is assumed to be full ranked and E can be singular.

The generalized eigenvalue problem (GEVP) of the matrix-pencil

AA = (A- XE) has been studied in detail by Gantmacher [1974],

Van Dooren [1981] and Wilkinson [1878], and the references therein.

(See also the related perturbation analysis in Stewart [1978] and Chu [13985].)
The corresponding differential equations, of the type (1), have been

studied by Wilkinson [1378] and Campbell [13880,196821. The pole assignment
problem (PAP) has been investigated by Cobb [1981, 1984], Lewis and
Ozcaldiran [19841, Ozcaldiran and Lewis [1984], Armentano [1984],

Fletcher [19682], Chu and Nichols [1983], Chu [1986b] and the references
therein. The PAP is a difficult problem and a lot more work, especially

numerical, has to be done.



Apart from the usual complexity arising from the GEVP of the matrix-pencil

AA , one also has to cope with the following problems:

(i) There are different concepts of "controllability", depending
on the allowable initial conditions and whether one is interested

in the infinite eigenvalues or not.

(ii) Depending on how "controllable” the system (1) is, one may not

know how many eigenvalues one can assign.

(iii) The closed-loop matrix pencil AA' defined as (A + BF - AE), may

be singular for some feedback matrix F , in the sense that

det (;\A] 0 (3)

independent of A . (c.f. Gantmacher [1974]1, Golub and Van Loan
[(1983]. )

(iv) Given the eigenvector matrices X and Y such that YH AA X 1is
in the Kronecker canonical form, it is not clear whether X and Y

are well-conditioned or "robust” in any sense. Here [.JH denotes

the Hermitian.

In this paper, different concepts of controllability and their mutual
relationship are discussed, in the hope that a better understanding of
the above problems in (i)-Gv) can be achieved, using the Kronecker
canonical form and the related Yip-Sincovec decomposition (Gantmacher
[1972]1, VYip and Sincovec [1981]). Implications on the PAP and its

robustness problem are alsoc considered.



2. Controllability.

First one can write the system (1) in the Yip-Sincovec decomposition

(Yip and Sincovec [18981]):
x, = E, x, +B, u (4a)

E. x, = x, +B,u , (4b)

with X4 being n, - dimensional vectors, and the matrix E2 being nilpotent.

Equation (3) is essentially the result of the transformation of the

matrix-pencil AA to Kronecker canonical form (Gantmacher [18721),

with the Ei's not restricted to be in Jordan canonical forms. Note that

the decomposition in (4) is not unigue.
Different concepts of controllability can then be defined as follows:-

(a) R-controllability (RC):- (Van Dooran (1981], Yip and Sincovec

(19811, Wonham [1878].)
The system (1) is RC if and only if

rank [ s E - A, Bl = n (5)

for all finite complex number s

(b) C-controlability (CC) : (Yip and Sincovec [1981])

The system (1)} is CC if and only if it is RC and

rank (E , B) = n . (6)

(c) S-controllability (SC) : (Yip and Sincovec [1881]. Verghese

et al [1981].)

The system (1) is SC if and only if it is RC and
n -1
- 2
span < E2/B2 > span [82 . B By wn- ,E2 BZJD span (Ez]. (7]

(d) Complete assignability (CA): (Armentano [1984], Chu [188EbD]

Chu and Nichols [19831],)
The system (1) is CA if and only if it is RC and

rank [ AS, , E, B 1 =n, (8)



where ker (E) = span (S_) and the matrix (SE , S8,) 1is orthogonal.

It is obvious that RC corresponds to the controllability of finite
eigenvalues. It can be proved (Armentano [19841) that condition (8) corresponds
to the controllability of the infinite eigenvalues in the sense that no more
than n-rank (E) so many infinite eigenvalues are assigned. It can be easily

shown to be the case, using a different but interestingly simple argument:

The feedback matrix F can only assign less than rank (E) = g finite
eigenvalues if and only if the closed-loop matrix-pencil AX has more than
(ng) 1inifinite eigenvalues. As the matrix E is of rank g and thus only
(n-q) 1linearly independent null-vectors, there must exist non-linear
elementary divisiors for the infinite eigenvalues. As a result, the
feedback matrix F will assign exactly g eigenvalues if and only if (i)
the system is RA, and (ii) there exists no principal vectors or non-linear

elementary divisors for the zero eigenvalues of E , i.e.

$ Xq » X4 0 , Xq € ker (E) such that

(A + BFJ) x

1
m
X

0 1 F

- E(Sz . S,) (p,] = (A +BF) (S;pa)

p
L2

does not have non-trivial solutions Py and Py

s [ESE , (A + BF) S_] P, z0 |, Vp1 » Py * 0

P3



3. Controllability in Terms of the Kronecker Canonical Form

The following observations can easily be made from the above definitions
(a}-(d), by considering the Kronecker canonical form or Yip-Sincovec

decomposition in (4), or using other standard techniques:
Lemma 1.
(i) The following conditions are equivalent:

(a) RC ;

(b) rank [sIn -E,Bl=n , Vvse¢f

(c) rank [sI - E, , B,]1 n, ,Vvs €C ;
n1 1 1 1

(d) rank < E1 | B1 o=,

(e} rank B, (s - A) SE , ASm] =n, Vse€l(

(ii) The following conditions are equivalent:
(a) CC ;
(b) RC and rank (E , B} = n ;
(c) RC and rank (E 5 3
(d) RC and span (B} > ker (ET]

5 BZJ =n

(e} RC and span (52] D ker (E;]

(iid) The following conditions are eguivalent:
(a] SC ;

(b) RC and < E, | B

5 > D span [EZJ ;

2

>, ker [E;)] = n.

(c) RC and rank [¢ E, | B )

2
{iv) The following conditions are eguivalent:
(a) CA ;

(b)) RC and rank (ASm , E, B) =n ;

(c) RC and rank (ker [E2J , E



(d) RC and span (E BZ) D span (E;]

2 ’

Proof:- Only (iv) requires some explanations.

(b) is the definition of (a) in (8).
(b) <= (c) : consider the canonical form in (4), one has

rank [ASO° , E, B) =n
<= rank §] I 0 B =n
ker (E2) 0 E B

and thus (b) <= (c)

Ry,

(c) <= (d) because span (E;] ® ker [E2] =R

Note that by attaching the parameter s to the matrix A , instead
of E , in (i) (e) and passing the limit s > 0 , will produce the
condition in (8). Condition (6) and (i) (b) are related in a

similar way.

It is also clear from Lemma 1 that SC is a quite different concept

from the others.

The following characterizations for various controllability concepts

can be proved using the Kronecker canonical form (Gantmacher [1872])

of AX : (we cannot prove a similar result for SC.)
Lemma 2 :- (i) RC =¢rBT Z1 is full-ranked, with
span (Z1J = { left-eigenvectors corresponding to the finite
eigenvalues of AA'}
. T T .
(ii) CC < B Z1 and B 22 are full-ranked, with Z1

as defined in (i) and
span (22] = { left-eigenvectors corresponding to the infinite

}

eigenvectors of AA'



Proof:-

(iii) CA <= BT z and BT 7 are full-ranked,

1 3
with Z1 as defined in (i) and
span [23] = { left-eigenvectors corresponding to infinite

eigenvalues, with non-linear elementary divisors, of AA'}

(i) is a trivial generalization of the well-known result for

non-descriptor system.

(i), (ii) and (iii) can be proved from the characterizations

(i) (b) , (ii) (b) , (iv) (b) in Lemma 1, with AA in

Kronecker canonical form in (4). n

The following theorem on the relationship among various concepts

of controllability can be stated

Theorem 3. CC = CA = RC , SC = RC ,

Proof:-

and the converses are not true.

CA=RC , SC=RC and CC = CA are obvious from the
respective definitions, or Lemma 1 or 2. The converses can
be disproved bv counter examples, constructed by applying Lemma

1 or 2.

One can also use Lemma 2 to obtain the minimum number of linearly
independent controls, m , required for the system (1) to be

controllable

Corollary 4 : The minimum value of rank (B) = m required so that the

system (1) does not have to be "uncontrollable” in their respective sense,

is as follows; (with Zi 's as defined in Lemma 2)

(1)

For RC , m 2 mRC = rank (21]

in Kronecker canonical form, m.. is the number of

with A <0

A

Jordan blocks in AA for the finite eigenvalues.



(ii} For CA, m 2 Moy = Max {mRC R 01}

where 01 = rank [22] , the number of non-trivial Jordan

blocks corresponding to infinite eigenvalues of AA

}

e S -
(iii) For CC , m 2 Moc max {mRC Py

where = rank (Za) , the number of Jordan blocks corresponding

Py

to infinite eigenvalues of AA

IA
=

7 <
(iv) m S Mop cC
Property (iv]) in the Corollary shows that reguirements on the input
matrix B become more and more severe, as one moves from RC to CA ,

and then to CC . If m=m , m , the system will be

RC or m

CA CC
potentially controllable in their respective sense and the components

in B can then be chosen with care to satisfy the requirements of

Lemma 2.

Corollary 4 provides a simple test of uncontrollability or
potential controllability when the Kronecker canonical form, or geometric

structure of the eigenvectors, of AA is available.

It is unclear how SC 1is related to other concepts, except
SC = RC . Other properties of the various concepts of controllability
can be found in the references in the reference - list, and more work

is obviously needed in this area.
We now concentrate on systems which are CA
5. Regularity.

In order to find a feedback matrix F so that the closed-loop

matrix-pencil AA is regular, or (3) does not happen, one has the

following theorem for systems which are CA -



_/]O._

Theorem 5. For CA systems, there exists feedback matrix F such

that AA

Proof:-

= [(A + BF) - XE] 4is regular.

Let X =(X ,S) and Y = (Y , T
q ' e q’ e

H 3 R
be non-singular matrices such that Y AA X is in Kronecker

canonical form. The matrix S°° and To° can be chosen to be real.

The matrix-pencil is regular if and only if the matrix

T

M=T As +T B .FX

(o]

oo

T T
T_AS,+T B .G (9)

is non-singular, and there are g-finite eigenvalues for

~

AA {(a consequence of CA).

By considering the rows of the following matrix (which is

full-ranked because of CA):

Wie-a,m (x o) or s ,e,8

9] I
the matrix [Tl AS_ , Tl B) can be proved to be full-ranked,

in turn implies that the matrix ™M in {9) 1is non-singular for

some matrix G_. By selecting Gq = F Xq , the feedback matrix

can be retrived by solving the matrix equation

FX=6=1(G6_,6) , (10)

with the non-singular matrix operator X

Equation (8) indicates a way of finding G, for a non-singular

matrix M , and the PAP for CA descriptor systems now reduces
to finding the eigenvector matrix X which assigns the prescribed
set of g finite eigenvalues.

Note that if the open-loop matrix-pencil AA is already regular

one can choose Gm =1



6. CA Controllability Condensed Form.

In Chu [1986b] a descriptor system represented by (E , A, B) can

be transformed to a controllability condensed form by orthogonal

transformation (P , Q , Z) , such that QT[E , A, B) . diag (Z, Z, P) =

\ \ i -
Bk O ) Ak Poker O |
\ !' ~ N “ . :
\ : 0 N ‘_O 1 0 9 -
\ \ ~ \ B - -
* * |
E11 ; A11‘ A12 1 0 8]
S e e — . P _ _ - .
* * 1 |
0 v Aog " Aoa s
i — | e = e _: _— = 1 _ — —_— - — :_ PR l __ a_ - o, =
* * *
2 . ( S PRI I N

i i ] E.. -si «
with Aii and Eii being sguare, and ;4 Mnon singular
The system will be CA if and only if the matrices Ai j4q are of
full-row-rank.
A direct algorithm for the PAP was then proposed based on the above
condensed form.
Please refer to Chu [1986a,bl for details, with related work in Miminis and

Paige [1982], Paige [1981], Varga [1981], Van Dooren [1885].

7. An Iterative Pole Assignment Algorithm.

For CA descriptor systems, problems (i)-(iii) in section 1 are

solved, based on the discussion in the previous sections. The PAP will

then be solved if one selects the eigenvectors ><j in the columns of Xq

carefully to ensure that

(i) The g finite eigenvalues {Aq, ce ,Aq} are assigned.

(ii) The closed-loop matrix-pencil AA is regular, based on the

selection of Goo as discussed in Section 5.



=12 -
and (iii) The matrix X = [xq » S, ) in (10) is non-singular.

It is well-known, from Chu and Nichols [1983], Kautsky et al [1885] and

Wonham [1978], that (i) is satisfied with

span S.] = ker (A.E-A, B) , (11)
J k|

Gjl

.= 8, u, and columns of G in (10) , g. , chosen to be G, u,
XJ SB J g qJ J J
It is obvious from (11) that

»P. = span (S,) = ker {(I-BB").0, E- A} (12)
J J J

with ()7 denoting the (1,2,3,4) - or Penrose-speudo - inverse

(Golub and Van Loan [1983]).

A consequence of (11) and (12) is that
dim (xé% =m ,

and it will be more convenient to assume that the eigenvalues Aj have

no non-linear elementary divisors and the multiplicity of Aj is less than

or equal to m , as in Chu and Nichols [1983].

The eigenvectors x. are then selected iteratively to ensure that (iii)
is satisfied, with any degree of freedom left used to optimize the

conditioning of the closed-loop eigensystem. [(For more detail, see
Chu and Nichols [1883], Kautsky et al [1985], Chu [1985] and Stewart [1978];

see also Section 8.)

An equivalent algorithm was also suggested by Armentano (1984], with the
restriction that (Aj E - A) bhas to be invertible. The restriction

can be removed by better management of numerical processes.

8. Robustness.

For algorithms which solve the PAP by the selection of eigenvectors

-~

X of AA » (e.g. Chu (1886b], Chu and Nichols [1983]; see Sections
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6 and 7.), we can prove some useful results concerning the robustness
of the closed-loop system, involving the conditioning of the eigenvector

matrices X and Y

(i) From (10) - (12), one has

FX=0G=(6 , G (13)
g oo
with G =B (X A - A X)) (14)
g g g q
and A = diag {X, , ... LA}
g &ty q

Equation (13) implies that
-1
IFl, s IxM 0, - dsl, . (15)
and thus the feedback gain matrix F will not be too large if X is not

too ill-conditioned and G 1is reasonably small. In Chu [1986b], the

conditioning of X and the size of G are implicitly optimized.

In Chu and Nichols [18831, the conditioning of X is optimized, and

using (14), (15) implies that

-1 +
IFl, s DX, - ety - g a, - ax,« e 1)

(i1} From Ex = (A + BF) x and using the Drazin inverse in Campbell

{1980, 19821, one has

At
x(£) = X, e 9 v (16)

g "0
with X and Yq containing the right- and left-eigenvectors for the

finite eigenvalues Ai , and xO denoting the initial state
in span [Xq YE] . (Ai are assumed to be non-defective in

this case.) Equation (16) implies

Ait
max { [e = |} (17)

A

| -
||x(tJ||2 KZ(Xq] i ||x

ol
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with <y (X)) =][xq|]2 : llvqllz

Note that it has been proved in Chu [1985] that 5

s

[Xq] is related to

a condition number for the finite eigenvalues of the GEVP of AA

In equality (17) provides us with an upper bound of the state vector

x{(t) , and the bound will be tighter if Kz[XqJ is smaller, or
A, »,1=1, ..., g; better conditioned. Note that x(t) + 0 when all

Ai have negative real parts.

(iii) Similar to Kautsky et al [1984], one can prove the following result for

the stability margin of the descriptor system:

Assume that all Ai are non-defective. Similar to (4), the Kronecker
canonical farm of AA will be in the analogous form:

YWa«ery x= [ 8 O

(18a)
(18b)

Using a standard argument, any matrix M + A = M(I + M_ll A)  will be
non-singular, assuming that M already is, provided that

I m

B>
IA

ly s, <

< haly, < I - o

Here on[M] denotes the smallest singular value of the n x n matrix M

Apply the same argument to the closed-loop system matrix A + BF , then
the perturbed closed-loop system matrix A + BF + A remains stable for
all disturbaces A which satisfies

llAll2 £ min o {s E - (A +BF)} = 8(F) (19)

S = jw
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where j=v -1

From (138), &(F) has the lower bound

8(F) = mino_ vy H [SI - Hig U] x~ Ty

s=jw 0

-1 1 mi
o (Y Jeo (X )™ 5 {[sI - A 0l}
n n s=jw n g

A\

A\

min (Re(-1,) , 1}/||>< Iy 1, - (20)

In equality (20} means that if X and Y are ill-conditioned, then the
lower bound of &(F) will be small, and thus the allowable size of

l|A||2 for the closed-loop system matrix to remain stable may be small.

”A - " and "X " i ”Y ” in the RHS of (20) have been proved to be
2

q
related to a conditon number of the GEVP of AA (Chu [1985].)

Consider the stability margin &(F) , where the return difference

I +G(s) + A (s) G(s) of the disturbed closed-loop system, with

G(s) = -F (sI - A]-1 B , remains non-singular at s = jw for disturbances

A(s] which satisfies Hg(jw][|2 < é[F]



_']B...
It is easy to show that

ot [sI - (A + BF + A)] = det (sI - A) . det [T+ (I v 4 (&) G (s)]

with 4 =B A(s) F . Hence I+ G(s) + Als) G(s) is non-singular

at s = jw provided that

lal, = fel, . la Gwl, IFl; <81 (21)
A lower bound of the stability margin is thus

8§(F) z S§(F)/
12 8B g, L IF ]y =

from (21).

Other lower bounds can be obtained when ||F||2 in (22) is further bounded

by using (15).

From (20), (22) and (15), the stability margin will thus be larger if

the closed-loop eigensystem 1s well-conditioned in the sense that

< =Ixl, . Ivl, in (20, is small.



9. Conclusion

It is shown in this paper that, for CA descriptor systems, g finite
eigenvalues can be assigned so that the closed-loop system is regular.
Based on the discussicns on robustness in Section 8, the problems (i)-(iv)

in Section 1 have been countered.

However, it is still unclear even for CA descriptor systems whether it
is desirable to assign all g finite eigenvalues, or assign some but leave
others to remain infinite. Obviously, other controllability concepts

(such as SC) may well be more appropriate in different circumstances.

A few numerical algorithms for CA descriptor systems have been
proposed (Chu [1986b], Chu and Nichols [1984], Armentano [1984]) but more
wark, especially numerical, have to be done, in comparison to the vast amount

of literature available for the non-descriptor problem.
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